Tier 1 Algebra Exam

August 2023

You may answer as many questions as you like and all questions count equally. Show computations and justify your answers; a correct answer without a correct proof earns little credit. Write a solution of each problem on a separate page. Write the problem number on each page. At the end, assemble your solutions with the problems in increasing order. You have four hours.

1. Let G be a finite group and H a normal subgroup of G of order 5 . Prove that if H contains an element not in the center of G, then G has an element of order 2 .
2. Let $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$. We say a subset S of the additive group G generates G if every element of G can be expressed as a sum of elements of S with repetition allowed. Prove that there is no two-element subset $S=\{x, y\}$ of G which generates G.
3. Prove that every homomorphism from any symmetric group to $\mathbb{Z} / 3 \mathbb{Z}$ is trivial.
4. Let A and B be $n \times n$ matrices over any field F
(a) Prove $A B$ and $B A$ have the same trace.
(b) Prove that if $F=\mathbb{C}$, then $A B-B A=I$ is impossible.
5. If A is a real $n \times n$ matrix and $A^{2}=-I$, what are the possible eigenvalues of A ? If A is such a matrix, show that n must be even. For each even n, give an explicit example of such a real matrix A.
6. Let A be a complex square matrix and x and y be column vectors. If $A x=\lambda_{1} x$ and $A^{T} y=\lambda_{2} y$ with $\lambda_{1} \neq \lambda_{2}$, show that $x^{T} y=0$. (B^{T} denotes the transpose of matrix B.)
7. Show that if A is a real $m \times n$ matrix with linearly independent columns then $A^{T} A$ is invertible.
8. Consider the subring $R=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, a, b, d \in \mathbb{C}\right\}$ of $M_{2}(\mathbb{C})$.
(a) Define a surjective ring homomorphism $\phi: R \rightarrow \mathbb{C} \times \mathbb{C}$ and prove that it is indeed a ring homomorphism.
(b) Find two distinct maximal two-sided ideals of R.
9. (a) Show that $\mathbb{Q}[x] /\left(x^{2}+x+1\right)$ is a field. Find the multiplicative inverse of the class represented by $x+1$ in this field.
(b) Show that $\mathbb{C}[x] /\left(x^{2}+x+1\right)$ is not a field.
10. Let F be a field and let $F[[x]]$ be the ring of formal power series. In other words, elements of $F[[x]]$ are infinite sums $\sum_{n=0}^{\infty} a_{n} x^{n}$ which add and multiply like polynomials. In particular, the x^{n} coefficient of $\sum_{i=0}^{\infty} a_{i} x^{i} \sum_{j=0}^{\infty} b_{j} x^{j}$ is $\sum_{i+j=n} a_{i} b_{j}$.
(a) Find all units in $F[[x]]$.
(b) Show that every ideal in $F[[x]]$ is principal.
