## Tier 1 Algebra Exam <br> August 2022

All your answers should be explained and justified. A correct answer without a correct proof earns little credit. Each problem is worth 10 points. Write a solution of each problem on a separate page.
$\mathbb{Z}$ and $\mathbb{Q}$ denote the ring of integers and the field of rational numbers, respectively.

1. Let $A$ be the following matrix over $\mathbb{Q}$ :

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

(a) Find the characteristic polynomial of $A$.
(b) Find the minimal polynomial of $A$.
2. Let $A$ be an $m \times n$ matrix, and let $B$ be an $n \times p$ matrix.
(a) Prove that

$$
\operatorname{nullity}(A) \geq \operatorname{nullity}(A B)-\operatorname{nullity}(B)
$$

(b) Use part (a) to prove Sylvester's rank inequality:

$$
\operatorname{rank}(A B) \geq \operatorname{rank}(A)+\operatorname{rank}(B)-n
$$

3. The inequality in problem 2 (b) implies that for a $5 \times 5$ matrix $A$ of rank 3 , one has $\operatorname{rank}\left(A^{2}\right) \geq 1$. Find all Jordan canonical forms of complex $5 \times 5$ matrices $A$ with $\operatorname{rank}(A)=3$ and $\operatorname{rank}\left(A^{2}\right)=1$.
4. (a) Let $A$ be an invertible $n \times n$ matrix with integer entries. Prove that

$$
A^{-1} \text { has all integer entries if and only if } \operatorname{det}(A)= \pm 1
$$

(b) Let $R$ be a commutative ring with unit, and let $M_{n}(R)$ be the ring of $n \times n$ matrices with entries in $R$. Fill in the blank along the lines of part (a):
$A$ has a two-sided inverse in $M_{n}(R)$ if and only if $\qquad$
Your answer should mention $\operatorname{det}(A)$. You need not prove your answer.
5. Let $G$ be a group $G$ of order 60 which contains a subgroup $H$ of order 12 .
(a) Find a non-trivial homomorphism $\varphi$ from $G$ to the group of permutations of the cosets of $H$.
(b) Now assume that $G$ is simple. Prove that $\varphi$ is a one-to-one function whose image is the alternating group $A_{5}$.
6. Let $G$ be a group, and denote by $Z$ its center.
(a) Prove that if $G / Z$ is cyclic, then $G$ is abelian.
(b) Prove that if $G$ is non-abelian, then $[G: Z] \geq 4$.
7. Let $G$ be finite group. Let

$$
C=\{(x, y) \in G \times G: x y=y x\} .
$$

Show that $|C|=h|G|$, where $h$ is the number of conjugacy classes in $G$.
8. Let $\alpha=\sqrt{6-3 \sqrt{2}}$, and let $K=\mathbb{Q}(\alpha)$.
(a) Find a polynomial $p(x) \in \mathbb{Q}[x]$ such that $K \cong \mathbb{Q}[x] /(p(x))$.
(b) Show that $\sqrt{2} \in K$, and find a basis for $K$ as a vector space over $\mathbb{Q}(\sqrt{2})$.
9. An idempotent element of a ring is an element $x$ such that $x^{2}=x$. Find an idempotent in $\mathbb{Z} / 2022 \mathbb{Z}$ other than 0 or 1 , using the prime factorization $2022=$ $2 \times 3 \times 337$.
10. Let $\omega=\sqrt{2}$, and let $R=\mathbb{Z}[\omega]$. Consider the function $N: R \backslash 0 \rightarrow \mathbb{N}$ given by

$$
N(a+b \omega)=\left|a^{2}-2 b^{2}\right| .
$$

You may use without proof that $N$ is a multiplicative function: $N(\alpha \beta)=N(\alpha) N(\beta)$.
(a) Show that $R$ is a Euclidean domain with norm function $N$.
(b) Show that the units in $R$ are precisely the elements $\alpha$ with $N(\alpha)=1$.
(c) Show that a prime number $p$ is a prime element in $R$ if and only if 2 is not a square modulo $p$ (i.e., there is no integer $k$ such that $k^{2} \equiv 2 \bmod p$ ).

