Tier 1 Algebra Exam August 2022

All your answers should be explained and justified. A correct answer without a correct proof earns little credit. Each problem is worth 10 points. Write a solution of each problem on a separate page.

 \mathbb{Z} and \mathbb{Q} denote the ring of integers and the field of rational numbers, respectively.

1. Let *A* be the following matrix over \mathbb{Q} :

(1	1	1	
	0	0	0	
	1	1	1	

- (a) Find the characteristic polynomial of *A*.
- (b) Find the minimal polynomial of *A*.
- 2. Let *A* be an $m \times n$ matrix, and let *B* be an $n \times p$ matrix.
 - (a) Prove that

 $\operatorname{nullity}(A) \ge \operatorname{nullity}(AB) - \operatorname{nullity}(B).$

(b) Use part (a) to prove Sylvester's rank inequality:

 $\operatorname{rank}(AB) \ge \operatorname{rank}(A) + \operatorname{rank}(B) - n.$

- 3. The inequality in problem 2 (b) implies that for a 5×5 matrix *A* of rank 3, one has rank $(A^2) \ge 1$. Find all Jordan canonical forms of complex 5×5 matrices *A* with rank(A) = 3 and rank $(A^2) = 1$.
- 4. (a) Let *A* be an invertible $n \times n$ matrix with integer entries. Prove that

 A^{-1} has all integer entries if and only if $det(A) = \pm 1$.

(b) Let *R* be a commutative ring with unit, and let $M_n(R)$ be the ring of $n \times n$ matrices with entries in *R*. Fill in the blank along the lines of part (a):

A has a two-sided inverse in $M_n(R)$ if and only if _____

Your answer should mention det(A). You need not prove your answer.

- 5. Let *G* be a group *G* of order 60 which contains a subgroup *H* of order 12.
 - (a) Find a non-trivial homomorphism φ from *G* to the group of permutations of the cosets of *H*.
 - (b) Now assume that G is simple. Prove that φ is a one-to-one function whose image is the alternating group A₅.
- 6. Let *G* be a group, and denote by *Z* its center.
 - (a) Prove that if G/Z is cyclic, then G is abelian.
 - (b) Prove that if *G* is non-abelian, then $[G : Z] \ge 4$.
- 7. Let *G* be finite group. Let

$$C = \{(x, y) \in G \times G : xy = yx\}.$$

Show that |C| = h|G|, where *h* is the number of conjugacy classes in *G*.

- 8. Let $\alpha = \sqrt{6 3\sqrt{2}}$, and let $K = \mathbb{Q}(\alpha)$.
 - (a) Find a polynomial $p(x) \in \mathbb{Q}[x]$ such that $K \cong \mathbb{Q}[x]/(p(x))$.
 - (b) Show that $\sqrt{2} \in K$, and find a basis for *K* as a vector space over $\mathbb{Q}(\sqrt{2})$.
- 9. An idempotent element of a ring is an element *x* such that $x^2 = x$. Find an idempotent in $\mathbb{Z}/2022\mathbb{Z}$ other than 0 or 1, using the prime factorization 2022 = $2 \times 3 \times 337$.
- 10. Let $\omega = \sqrt{2}$, and let $R = \mathbb{Z}[\omega]$. Consider the function $N : R \setminus 0 \to \mathbb{N}$ given by

$$N(a+b\omega) = |a^2 - 2b^2|.$$

You may use without proof that *N* is a multiplicative function: $N(\alpha\beta) = N(\alpha)N(\beta)$.

- (a) Show that *R* is a Euclidean domain with norm function *N*.
- (b) Show that the units in *R* are precisely the elements α with $N(\alpha) = 1$.
- (c) Show that a prime number *p* is a prime element in *R* if and only if 2 is *not* a square modulo *p* (i.e., there is no integer *k* such that $k^2 \equiv 2 \mod p$).