Algebra Tier I exam - January 2021

Work all problems. They all count equally. Show computations and justify your answers; a correct answer without a correct proof earns little credit. Begin the solution of each problem on a separate page. You have 4 hours.

1. Let I be an ideal in a commutative ring R. Set

$$
J=\left\{x \in R: \text { there exists } n>0 \text { so that } x^{n} \in I\right\} .
$$

(a) Show that J is an ideal in R and $J \supset I$.
(b) What is J if I is a prime ideal? Prove your answer.
2. Let R be a commutative ring and let S be the ring that is $R \oplus R \oplus R$ as an abelian group with multiplication

$$
\left(r_{1}, r_{2}, r_{3}\right) \cdot\left(r_{4}, r_{5}, r_{6}\right):=\left(r_{1} r_{4}, r_{1} r_{5}+r_{2} r_{4}, r_{1} r_{6}+r_{3} r_{4}\right)
$$

(You may assume without proof that S is indeed a ring.)
(a) What is the unit in the ring S ?
(b) Which elements $\left(r_{1}, r_{2}, r_{3}\right) \in S$ are invertible?
(c) For any invertible element $\left(r_{1}, r_{2}, r_{3}\right) \in S$, give a formula for its inverse.
3. A ring is simple if every 2 -sided ideal in this ring is either zero or the whole ring. Prove that for all $n \geq 1$, the ring of $(n \times n)$-matrices over a field F is simple.
4. Let F be a finite field of characteristic p. Let q be the number of elements of F. Prove that:
(a) the minimal subfield of F is isomorphic to $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$;
(b) $q=p^{n}$ for some integer $n \geq 1$;
(c) $a^{q}=a$ for all $a \in F$.
5. Prove that the quotient group G / Z of a non-abelian group G by its center $Z=Z(G)$ cannot be a cyclic group.
6. Find the order of the group $\operatorname{Aut}\left(\operatorname{Aut}\left(\operatorname{Aut}\left(\mathbb{Z}_{9}\right)\right)\right)$, where $\mathbb{Z}_{9}=\mathbb{Z} / 9 \mathbb{Z}$ and $\operatorname{Aut}(G)$ is the group of automorphisms of the group G.
7. Let p be a prime number and let $G=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ be the group of invertible 2-by-2 matrices with entries in $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$.
(a) Find subgroups of G of order $p-1, p,(p-1)^{2}$, and $p(p-1)$.
(b) Show that G has no subgroups of order p^{2}.
8. Let V be a finite-dimensional vector space, and let U_{1}, U_{2}, U_{3} be subspaces of V.
(a) Prove that

$$
\operatorname{dim}\left(U_{1}+U_{2}\right)=\operatorname{dim} U_{1}+\operatorname{dim} U_{2}-\operatorname{dim}\left(U_{1} \cap U_{2}\right) .
$$

(b) Prove that

$$
\begin{aligned}
\operatorname{dim}\left(U_{1}+U_{2}+U_{3}\right) \leq & \operatorname{dim} U_{1}+\operatorname{dim} U_{2}+\operatorname{dim} U_{3} \\
& -\operatorname{dim}\left(U_{1} \cap U_{2}\right)-\operatorname{dim}\left(U_{1} \cap U_{3}\right)-\operatorname{dim}\left(U_{2} \cap U_{3}\right)+\operatorname{dim}\left(U_{1} \cap U_{2} \cap U_{3}\right) .
\end{aligned}
$$

(c) Give an example of V, U_{1}, U_{2}, U_{3} such that the inequality in (b) is not an equality.
9. Consider the $n \times n$ matrix over \mathbb{R} :

$$
\left(\begin{array}{cccccc}
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\cdot & & & & & \\
\cdot & & & & & \\
0 & 0 & 0 & \cdots & 1 & -1 \\
-1 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

(a) Calculate its characteristic polynomial.
(b) Find an eigenvalue of this matrix, and a corresponding eigenvector.
(c) What is the multiplicity of your eigenvalue?
(d) Is this matrix invertible? Why?
10. Let A be an $m \times n$ matrix, and let B be an $n \times m$ matrix over a field.
(a) If $A \cdot B=I_{m}$, then what is $\operatorname{rank}(B \cdot A)$? Prove your answer.
(b) Suppose that $A \cdot B=I_{m}$. Give a necessary and sufficient condition on n, m for $B \cdot A=I_{n}$.
(c) Give an example of m, n, A, B such that

$$
\operatorname{rank}(A \cdot B)<\operatorname{rank}(A)=\operatorname{rank}(B)=m \leq n .
$$

