Tier 1 Algebra exam - August 2021

All problems carry equal weight. All your answers should be justified. A correct answer without a correct proof earns little credit. Begin the solution of each problem on a new sheet of paper.

1. Let V be a finite vector space over the field \mathbb{R} of real numbers.

Suppose that $L: V \rightarrow V$ is an \mathbb{R}-linear map whose minimal polynomial (that is, the lowest degree monic polynomial which anihilates L) equals

$$
t^{3}-2 t^{2}+t-2
$$

Prove that there is a non-zero subspace $W \subset V$ such that $\left.L^{4}\right|_{W}=\mathrm{id}_{W}$, i.e., the restriction of $L^{4}=L \circ L \circ L \circ L$ to W is the identity map.
2. (a) (5 pts) Let V be a finite-dimensional vector space over a field k which is not assumed to be algebraically closed. Let $L: V \rightarrow V$ be an endomorphism of V, and v_{1}, \ldots, v_{n} eigenvectors of L with associated eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ respectively. Assume that $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j$. Prove that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set of vectors.
(b) (5 pts) Let k be a field and $a, b, c \in k$ fixed but arbitrary elements. Find the dimension of the kernel of the following map

$$
k^{3} \longrightarrow k^{3}, \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}+a x_{2}, x_{2}+b x_{3}, x_{3}+c x_{1}\right) .
$$

Remark. Your answer will depend on a, b, c.
3. Let V be a vector space over a field k of dimension $n \geq 1$, let $\phi: V \rightarrow k$ be a non-zero linear function, and let $a \in V$ be a fixed non-zero vector. Consider the endomorphism $L_{a}: V \rightarrow V$ defined by $L_{a}(v)=v+\phi(v) a$.
(i) Give the characteristic polynomial $\chi_{L_{a}}(t)$ of L_{a}.
(ii) Determine the minimal polynomial of L_{a} (your answer may depend on $\phi(a)$).
(iii) Identify the set of vectors $a \in V$ for which L_{a} is diagonalizable.
4. Let $L: \mathbb{C}^{6} \rightarrow \mathbb{C}^{6}$ be such that $L^{6}=0$ and $\operatorname{rank}\left(L^{2}\right)=2$. Describe all possibilities for the Jordan canonical form of L.
5. Give explicit examples/descriptions of
(a) two non-isomorphic abelian groups A, B of order 32, and
(b) two non-isomorphic non-abelian groups G, H of order 32 ,
with complete arguments that A is not isomorphic to B and G is not isomorphic to H.
6. Given a surjective homomorphism of groups $\phi: G \rightarrow H$, define

$$
\Gamma(\phi)=\{(g, \phi(g)) \mid g \in G\} \subset G \times H
$$

Prove that $\Gamma(\phi)$ is a subgroup of $G \times H$ and that $\Gamma(\phi)$ is a normal subgroup if and only if H is abelian.
7. Let G be a group of order p^{4} for a prime number p with $|Z(G)|=p^{2}$. Calculate the number of conjugacy classes in G as a function of p.
8. Set $\omega=\sqrt{-6}$ and let $A=\mathbb{Z}[\omega]=\{a+b \omega \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$.
(a) Define a surjective ring homomorphism $f: A \rightarrow \mathbb{Z} / 5 \mathbb{Z}$.
(b) Let I be the kernel of f. Show that I is not a principal ideal, i.e., cannot be generated by one element.

Hint. For part (b) you may use the function $N(a+b \omega)=a^{2}+6 b^{2}$, which is just the square of the complex absolute value.
9. (a) Let E be a finite field extension of F that is generated over F by a subset $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of E.
(a) Suppose $\alpha^{2} \in F$ for all $\alpha \in S$. Show that the degree of the extension, $[E: F]$ (i.e. the dimension of E as an F vector space), is a power of 2 .
(b) Suppose $\alpha^{3} \in F$ for all $\alpha \in S$. Give an example for which $[E: F]$ is not a power of 3 .
10. Let $\alpha=\sqrt[3]{2}, \beta=\sqrt[5]{2}$ be the positive third and fifth root of 2 in \mathbb{R}, respectively. Set $F=\mathbb{Q}(\alpha, \beta)$.
(a) Find $[F: \mathbb{Q}]$.
(b) Set $\gamma:=\frac{\alpha^{2}}{\beta^{3}} \in F$ and show that $F=\mathbb{Q}(\gamma)$.

