Tier 1 Algebra Exam

August 2018
Each problem is worth 10 points.

1. Find the Jordan canonical form of the matrix

$$
\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & -1 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

2. Let S_{11} be the symmetric group in 11 letters. Find (with a proof) the smallest positive integer N such that all elements of S_{11} have order dividing N. You may leave your answer as a product of factors.
3. (a) (3 points) State the definition of a finitely generated ideal in a commutative ring R.
(b) (7 points) Let R be the ring of continuous functions on the unit interval $[0,1]$. Construct (with proof) an ideal in R which is not finitely generated.
4. Let $n \geq 1$ be an integer and let λ be a complex number. Determine the rank of the following $(n+1) \times(n+1)$ matrix. (Caution: Your answer may depend on the value of λ.)

$$
\left(\begin{array}{ccccc}
1 & \lambda & \lambda^{2} & \ldots & \lambda^{n} \\
2 & 1 & \lambda & \ldots & \lambda^{n-1} \\
2 & 2 & 1 & \ldots & \lambda^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
2 & 2 & 2 & \ldots & 1
\end{array}\right)
$$

5. Let A and B be normal subgroups of a group G such that $A \cap B=1$. Prove that G has a subgroup isomorphic to $A \times B$.
6. Let $F \subset K$ be fields. Suppose $\alpha, \beta \in K$ are algebraic over F. Let $f(x) \in F[x]$ be the irreducible polynomial of α over F, and let $g(x) \in$ $F[x]$ be the irreducible polynomial of β over F. Suppose that $\operatorname{deg} f(x)$ and $\operatorname{deg} g(x)$ are relatively prime. Prove that $g(x)$ is irreducible in $F(\alpha)[x]$. (We denote by $F(\alpha)$ the subfield of K generated by F and
α. The irreducible polynomial of α over F is often called the minimal polynomial of α over F.)
7. (a) (7 points) Let V be a finite dimensional vector space over a field and let $T: V \rightarrow V$ be a linear transformation from V to itself such that $T(V)=T(T(V))$. Prove that $V=\operatorname{Ker} T \oplus T(V)$.
(b) (3 points) Give an example showing the conclusion may not hold if $T(T(V)) \neq T(V)$.
8. Let G be a finite group whose order is a power of a prime integer. Let $Z(G)$ denote the center of G. Show that $Z(G) \neq\{e\}$.
9. Let $F \subset K$ be fields such that K is algebraic over F. Prove that if R is a subring of K containing F, then R is a subfield of K. (Caution: the degree $[K: F]$ may be infinite.)
10. Let R be an integral domain, and let

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in R[x]
$$

be a polynomial with coefficients in R of degree $n \geq 1$. Suppose $P \subset R$ is a prime ideal such that $a_{i} \in P$ for all $i=0,1, \cdots, n-1$. Prove that if $f(x)$ is reducible, then $a_{0} \in P^{2}$. (Note that $P^{2} \subset R$ is the ideal generated by all products $\{a b: a, b \in P\}$ and that the leading coefficient of $f(x)$ is 1 .)

