Algebra Tier 1

January 2018

All your answers should be explained and justified. A correct answer without a correct proof earns little credit. Each problem is worth 10 points. Write a solution of each problem on a separate page.

\(\mathbb{Z} \), \(\mathbb{Q} \), \(\mathbb{R} \), and \(\mathbb{C} \) denotes the ring of integers, the field of rational numbers, the field of real numbers, and the field of complex numbers respectively.

Problem 1. Find the Jordan canonical form of the complex matrix

\[
A = \begin{bmatrix} 1 & -2 & 1/2 \\ 2 & -4 & 1 \\ 3 & -6 & 3/2 \end{bmatrix}
\]

Problem 2. Find a matrix \(A \in M_{3\times3}(\mathbb{R}) \) of rotation of \(\mathbb{R}^3 \) by 120 degrees about the vector \([1, 1, 1]^T\).

Problem 3. Suppose that \(V \) is a vector space of dimension \(n \) and \(T: V \to V \) is a linear transformation having \(n \) distinct eigenvalues. If \(H \subset V \) is an \(m \) dimensional subspace of \(V \) and \(T(H) \subset H \), let \(T' \) denote the restriction of \(T \) to \(H \). Prove that \(T' \) has \(m \) distinct eigenvalues as a linear transformation \(T': H \to H \).

Problem 4. Let \(T_1 \) and \(T_2 \) be linear operators on \(\mathbb{C}^n \), such that \(T_1 \circ T_2 = T_2 \circ T_1 \). Prove that there exists a nonzero vector in \(\mathbb{C}^n \) which is an eigenvector for \(T_1 \) and for \(T_2 \).

Problem 5. Prove that a group of order 77 is cyclic.

Problem 6. Let \(G \) be the quotient of the abelian group \(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \) by the subgroup generated by the elements \((2, 1, 5)\), \((1, 2, 10)\), \((2, 1, 7)\). Write \(G \) as a direct sum of cyclic groups.

Problem 7. Let \(C_n \) denote the cyclic group of order \(n \). Find the order of the automorphism group of the abelian group \(G = C_5 \oplus C_5 \).

Problem 8. Give an example of a nontrivial group \(G \), such that its automorphism group \(\text{Aut}(G) \) contains a subgroup \(G' \), which is isomorphic to \(G \).

Problem 9. Let \(S \) be the set of polynomials \(p(t) \) in the ring \(\mathbb{Z}[t] \) for which \(p(1) \) is even. Is \(S \) an ideal, and if so, is it principal?

Problem 10. The polynomial \(p(x) = x^3 + 2x + 1 \) is irreducible in \(\mathbb{Q}[x] \), and thus \(\mathbb{Q}[x]/\langle p(x) \rangle = F \) is a field. Any element \(z \in F \) can be expressed as \(z = \alpha_0 + \alpha_1 x + \alpha_2 x^2 \) for some \(\alpha_i \in \mathbb{Q} \). Find the values of the \(\alpha_i \) in the case that \(z = 1/(x - 1) \).