ALGEBRA TIER I JAN 2017

Instructions. Each problem is worth 10 points. You have 4 hours to complete this exam.

(1) (a) Prove or disprove that, if $A, B \subset V$ are subspaces of a finite-dimensional vector space V, then

 $\dim(A+B) = \dim(A) + \dim(B) - \dim(A \cap B)$

where A + B is the subspace spanned by the union of A and B.

(b) Prove or disprove that, if $A, B, C \subset V$ are subspaces of a finite-dimensional vector space V, then

$$\dim(A + B + C) = \dim(A) + \dim(B) + \dim(C)$$
$$- \dim(A \cap B) - \dim(B \cap C) - \dim(A \cap C)$$
$$+ \dim(A \cap B \cap C).$$

- (2) Find the number of two dimensional subspaces of $(\mathbb{Z}/p)^3$, where p is a prime.
- (3) Show that an element of $GL_2(\mathbb{Z})$ has order 1, 2, 3, 4, 6, or ∞ . Find elements of each of these orders.
- (4) Show the groups $\langle a, b | ababa = babab \rangle$ and $\langle x, y | x^2 = y^5 \rangle$ are isomorphic. Here, $\langle x_i, i \in I | r_j = s_j, j \in J \rangle$ stands for the quotient of the free group generated by $\{x_i, i \in I\}$ by the normal subgroup generated by the elements $r_j s_j^{-1}, j \in J$.
- (5) Suppose G is a group and $a \in G$ is an element so that the subset $S = \{gag^{-1} \mid g \in G\}$ contains precisely two elements. Prove that G contains a normal subgroup N so that $N \neq \{1\}$ and $N \neq G$.
- (6) Let $M: \mathbb{Z}^3 \to \mathbb{Z}^3$ be the homomorphism

M(a, b, c) = (2a + 4b - 2c, 2a + 6b - 2c, 2a + 4b + c)

Does the quotient group $\mathbb{Z}^3/M(\mathbb{Z}^3)$ have any elements of order 4? does it have any elements of infinite order? Justify your answer.

- (7) (a) Show that any group of order p^2 is abelian for any prime p.
 - (b) Let G be a group of order 2873. It can be shown that G contains one normal subgroup of order 17 and another normal subgroup of order 169. Use this assertion (which you need not prove) to show that G is abelian.
- (8) How many invertible elements are there in the ring $\mathbb{Z}/105$? Find the structure of the group of invertible elements as an abelian group.
- (9) Let $\mathbb{M}_n(\mathbb{C})$ denote the ring of $n \times n$ -matrices with complex entries (for a fixed $n \geq 2$).
 - (a) Show that there is no pair $(X, Y) \in \mathbb{M}_n(\mathbb{C}) \times \mathbb{M}_n(\mathbb{C})$ such that $XY YX = \mathrm{Id}_n$, where Id_n is the $n \times n$ -identity matrix.
 - (b) Exhibit a pair $(X, Y) \in \mathbb{M}_n(\mathbb{C}) \times \mathbb{M}_n(\mathbb{C})$ such that $\operatorname{Rank}(XY YX \operatorname{Id}_n) = 1$. If no such pair exists, prove that this is indeed the case.
- (10) Determine the degree of the field extension $\mathbb{Q}(\sqrt{2} + \sqrt[3]{5})$ over \mathbb{Q} .