ALGEBRA TIER I JAN 2017

Instructions. Each problem is worth 10 points. You have $\mathbf{4}$ hours to complete this exam.
(1) (a) Prove or disprove that, if $A, B \subset V$ are subspaces of a finite-dimensional vector space V, then

$$
\operatorname{dim}(A+B)=\operatorname{dim}(A)+\operatorname{dim}(B)-\operatorname{dim}(A \cap B)
$$

where $A+B$ is the subspace spanned by the union of A and B.
(b) Prove or disprove that, if $A, B, C \subset V$ are subspaces of a finite-dimensional vector space V, then

$$
\begin{aligned}
\operatorname{dim}(A+B+C)= & \operatorname{dim}(A)+\operatorname{dim}(B)+\operatorname{dim}(C) \\
& -\operatorname{dim}(A \cap B)-\operatorname{dim}(B \cap C)-\operatorname{dim}(A \cap C) \\
& +\operatorname{dim}(A \cap B \cap C) .
\end{aligned}
$$

(2) Find the number of two dimensional subspaces of $(\mathbb{Z} / p)^{3}$, where p is a prime.
(3) Show that an element of $\mathrm{GL}_{2}(\mathbb{Z})$ has order $1,2,3,4,6$, or ∞. Find elements of each of these orders.
(4) Show the groups $\langle a, b \mid a b a b a=b a b a b\rangle$ and $\left\langle x, y \mid x^{2}=y^{5}\right\rangle$ are isomorphic. Here, $\left\langle x_{i}, i \in\right.$ $I\left|r_{j}=s_{j}, j \in J\right\rangle$ stands for the quotient of the free group generated by $\left\{x_{i}, i \in I\right\}$ by the normal subgroup generated by the elements $r_{j} s_{j}^{-1}, j \in J$.
(5) Suppose G is a group and $a \in G$ is an element so that the subset $S=\left\{g a g^{-1} \mid g \in G\right\}$ contains precisely two elements. Prove that G contains a normal subgroup N so that $N \neq\{1\}$ and $N \neq G$.
(6) Let $M: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ be the homomorphism

$$
M(a, b, c)=(2 a+4 b-2 c, 2 a+6 b-2 c, 2 a+4 b+c)
$$

Does the quotient group $\mathbb{Z}^{3} / M\left(\mathbb{Z}^{3}\right)$ have any elements of order 4 ? does it have any elements of infinite order? Justify your answer.
(7) (a) Show that any group of order p^{2} is abelian for any prime p.
(b) Let G be a group of order 2873 . It can be shown that G contains one normal subgroup of order 17 and another normal subgroup of order 169. Use this assertion (which you need not prove) to show that G is abelian.
(8) How many invertible elements are there in the ring $\mathbb{Z} / 105$? Find the structure of the group of invertible elements as an abelian group.
(9) Let $\mathbb{M}_{n}(\mathbb{C})$ denote the ring of $n \times n$-matrices with complex entries (for a fixed $n \geq 2$).
(a) Show that there is no pair $(X, Y) \in \mathbb{M}_{n}(\mathbb{C}) \times \mathbb{M}_{n}(\mathbb{C})$ such that $X Y-Y X=\operatorname{Id}_{n}$, where Id_{n} is the $n \times n$-identity matrix.
(b) Exhibit a pair $(X, Y) \in \mathbb{M}_{n}(\mathbb{C}) \times \mathbb{M}_{n}(\mathbb{C})$ such that $\operatorname{Rank}\left(X Y-Y X-\mathrm{Id}_{n}\right)=1$. If no such pair exists, prove that this is indeed the case.
(10) Determine the degree of the field extension $\mathbb{Q}(\sqrt{2}+\sqrt[3]{5})$ over \mathbb{Q}.

