ALGEBRA TIER 1

Each problem is worth 10 points.
(1) Classify, up to isomorphism, all groups of order 24 which are quotient groups of \mathbb{Z}^{2}.
(2) If x, y are elements of G such that $(x y)^{11}=(y x)^{19}=1$, then x and y are inverses of one another.
(3) Prove that for all $n \geq 3$, the symmetric group S_{n} contains elements x and y of order 2 such that $x y$ is of order n.
(4) Let G be a non-trivial subgroup of the additive group \mathbb{R} of real numbers such that $\{x \in G \mid-1<x<1\}=\{0\}$. Prove that there exists $r \geq 1$ such that $G=\{n r \mid n \in \mathbb{Z}\}$.
(5) Let V be an n-dimensional complex vector space, $T: V \rightarrow$ V a linear transformation, and $v \in V$ a vector. Prove that $v, T v, T^{2} v, \ldots, T^{n} v$ spans V if and only if $v, T v, T^{2} v, \ldots, T^{n-1} v$ is a basis of V.
(6) Let A and B be $m \times n$ and $n \times m$ complex matrices respectively. Show that every non-zero eigenvalue of $A B$ is a non-zero eigenvalue of $B A$.
(7) If $M=\left(a_{i, j}\right)_{1 \leq i, j \leq 3}$ is a 3×3 complex matrix such that M and $\bar{M}=\left(\overline{a_{i, j}}\right)$ have the same characteristic polynomial, prove that M has a real eigenvalue.
(8) Let $R=\left\{\left.\frac{m}{2^{n}} \right\rvert\, m \in \mathbb{Z}, n \in \mathbb{N}\right\}$, where \mathbb{N} denotes the set of nonnegative integers. Prove that R is a subring of \mathbb{Q}. For every ideal I of R, prove that there exists an ideal J of \mathbb{Z} such that $I=\left\{\left.\frac{m}{2^{n}} \right\rvert\, m \in J, n \in \mathbb{N}\right\}$.
(9) Prove that if K is any finite extension of \mathbb{Q}, then there exists an integer n and a maximal ideal \mathfrak{m} of the n variable polynomial ring $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ such that $K \cong \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{m}$.
(10) Prove that if F is a finite field whose order is a power of 3 , then F contains a square root of -1 if and only if it contains a 4 th root of -1 .

[^0]
[^0]: Date: August 16, 2016.

