ALGEBRA TIER 1

Each problem is worth 10 points.
(1) Prove or give a counterexample: every $n \times n$ complex matrix A is similar to its transpose A^{t}.
(2) Let M denote the 3×4 matrix

$$
\left(\begin{array}{llll}
1 & 3 & 2 & 4 \\
2 & 4 & 3 & 5 \\
3 & 5 & 4 & 6
\end{array}\right)
$$

Determine with proof the dimension of the space of 3×4 matrices N such that $N^{t} M=0$.
(3) Let V be a vector space and V_{1}, V_{2}, V_{3} subspaces of V such that $\operatorname{dim}\left(V_{i}\right)=2$ for all i and $\operatorname{dim}\left(V_{i} \cap V_{j}\right)=1$ for all $i \neq j$. Prove that either $\operatorname{dim}\left(V_{1} \cap V_{2} \cap V_{3}\right)=1$ or $\operatorname{dim}\left(V_{1}+V_{2}+V_{3}\right)=3$.
(4) Let $V=\mathbb{C}^{2}$. Let $T: V \rightarrow V$ denote a \mathbb{C}-linear transformation with determinant $a+b i, a, b \in \mathbb{R}$. Prove that if we regard V as a 4-dimensional real vector space, the determinant of T as an \mathbb{R}-linear transformation of this space is $a^{2}+b^{2}$.
(5) Let G be a finite group of order $n \geq 2$.
(a) Prove that G is always isomorphic to a subgroup of $\mathrm{GL}_{n}(\mathbb{Z})$.
(b) Prove or disprove: G is always isomorphic to a subgroup of $\mathrm{GL}_{n-1}(\mathbb{Z})$.
(6) Prove that for any integer $n \geq 1$ and any prime $p \geq 2$, the symmetric group $S_{n p}$ contains an n-element subset P such that every non-trivial element of $S_{n p}$ of order p is conjugate to an element of P. Is there a set $P \subset S_{n p}$ with the same property and less than n elements?
(7) Let G be a group which is the union of subgroups $G_{1}, G_{2}, \ldots, G_{n}$, $n \geq 2$. Show that there exists $k \in\{1,2, \ldots, n\}$ such that

$$
\bigcap_{i \neq k} G_{i} \subseteq G_{k}
$$

(8) Prove or give a counterexample:
(a) Let $f: R \rightarrow S$ be a ring homomorphism and let I be a maximal ideal of S. Then $f^{-1}(I)$ is maximal.

[^0](b) Let $f: R \rightarrow S$ be a ring homomorphism and let I be a maximal ideal of S. Then $f^{-1}(I)$ is prime.
(9) Consider the ideal $I=(2, \sqrt{-10})$ of $\mathbb{Z}[\sqrt{-10}]$.
(a) Show I^{2} is principal.
(b) Show I is not principal.
(c) Show $R / I \cong \mathbb{Z} / 2 \mathbb{Z}$ as abelian groups.
(10) Are $\mathbb{F}_{5}[x] /\left(x^{2}+2\right)$ and $\mathbb{F}_{5}[y] /\left(y^{2}+y+1\right)$ isomorphic rings? If so, write down an explicit isomorphism. If not, prove they are not.

[^0]: Date: January 7, 2015.

