Tier 1 Algebra Exam

August 2014
Be sure to justify all your answers. Remember to start each problem on a new sheet of paper. Each problem is worth 10 points.
(1) Consider the matrix

$$
M=\left[\begin{array}{ccc}
-\frac{1}{2}+\mathbf{i} & 0 & \frac{1}{2} \\
-\frac{\sqrt{2}}{2} & 2 & \frac{\sqrt{2}}{2} \\
-\frac{1}{2} & 0 & \frac{1}{2}+\mathbf{i}
\end{array}\right]
$$

(where $\mathbf{i}=\sqrt{-1}$)
(a) Calculate the eigenvalues of M.
(b) Is M diagonalizable over \mathbb{C} ? Prove it is or explain why it is not.
(c) Calculate the minimal polynomial of M.
(2) (a) Let S_{n} denote the group of permutations of the set $\{1,2, \ldots, n\}$. How many different subgroups of order 4 does S_{4} have? Justify your calculation. (Two subgroups are considered different if they are different as sets.)
(b) There is a homomorphism of S_{4} onto S_{3}. (You do not need to prove that there exists such a homomorphism.) Show that there is no homomorphism of S_{5} onto S_{4}.
(3) Let R be a commutative ring with unit and let $a, b \in R$ be two elements which together generate the unit ideal. Show that a^{2} and b^{2} also generate the unit ideal together.
(4) Let $\mathbb{F}_{p^{n}}$ denote the field with p^{n} elements and suppose that $p^{n}-1=q_{1}^{a_{1}} \cdots q_{k}^{a_{k}}$ for distinct primes q_{i}. Find the number of integers $r \in\left\{0,1, \cdots, p^{n}-2\right\}$ for which the equation

$$
x^{r}=a
$$

has a solution for every $a \in \mathbb{F}_{p^{n}}$.
(5) (a) Let G be a group and let H_{1}, H_{2} be normal subgroups of G for which $H_{1} \cap H_{2}=\{e\}$. Assume that any $g \in G$ can be written $g=h_{1} h_{2}$ with $h_{i} \in H_{i}$. Show that G is isomorphic to the direct product $H_{1} \times H_{2}$.
(b) Show by giving an example that the above conclusion can be false if you only assume that one of the H_{i} is normal.
(6) (a) Find the degree of the splitting field of the polynomial $x^{4}+1$ over \mathbb{Q}.
(b) Find the degree of the splitting field of the polynomial $x^{3}-7$ over \mathbb{Q}.
(7) Show that a ring homomorphism $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}[x]$ is an isomorphism if and only if $\phi(x)=a x+b$ for some $a, b \in \mathbb{Q}, a \neq 0$.
(8) For V a vector space, $L: V \rightarrow V$ a linear map from V to itself, and a positive integer n, let $L^{n}=L \circ L \circ \cdots \circ L$ (n times).
(a) Give an example of a pair $V, L: V \rightarrow V$ so that L is not the zero map, $L \neq I d$ and $L^{2}=L$.
(b) Give an example of a pair V, L so that $L \neq I d$ and $L^{3}=I d$.
(c) Prove that if V has finite dimension, then there exists an N so that $\operatorname{ker} L^{n}=\operatorname{ker} L^{N}$ for all $n \geq N$.
(9) Consider the rings $\mathbb{F}_{5}[x] /\left(x^{2}\right), \mathbb{F}_{5}[x] /\left(x^{2}-3\right)$, and $\mathbb{F}_{5} \times \mathbb{F}_{5}$. Show that no two of them are isomorphic to each other.
(10) (a) Show that any ring automorphism of \mathbb{R} sends every element of \mathbb{Q} to itself.
(b) Show that any ring automorphism of \mathbb{R} sends positive numbers to positive numbers.
(c) Deduce that \mathbb{R} has no nontrivial automorphisms.

