Tier 1 Algebra Exam
 August, 2013

1. (8 points) Prove Fermat's Little Theorem: If p is a prime number and a is any integer, then $a^{p}-a$ is divisible by p.
2. (8 points) Compute A^{2013}, where $A=\left(\begin{array}{ll}-1 & 4 \\ -1 & 3\end{array}\right)$.
3. (8 points) Construct an explicit isomorphism between $\mathbb{Z}[\sqrt{-1}] /(7)$ and $\mathbb{Z}[\sqrt{-2}] /(7)$, where (7) denotes the ideal generated by 7 .
4. (9 points) Let $\mathbb{Z} / n \mathbb{Z}$ be the cyclic group of order $n>1$.
(a) Show that the automorphism group $A=\operatorname{Aut}(\mathbb{Z} / n \mathbb{Z})$ is abelian.
(b) What is the order of the automorphism group of the finite group $G=\mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 25 \mathbb{Z}$?
(c) Let G be as in part (b). Is the group $\operatorname{Aut}(G)$ abelian?
5. (8 points) Show that $x^{5}-(3+i) x+2$ is irreducible in $(\mathbb{Z}[i])[x]$.
6. (8 points) For any pair of real numbers a and b, let $M_{a, b}$ be the $n \times n$ matrix

$$
M_{a, b}=\left(\begin{array}{cccc}
a & b & \ldots & b \\
b & a & \ldots & b \\
\vdots & \vdots & \ddots & \vdots \\
b & b & \ldots & a
\end{array}\right)
$$

with entries a on the diagonal and b off the diagonal. Find the eigenvalues of $M_{a, b}$ and their multiplicities.
7. (10 points) Classify (up to isomorphism) all groups of order 8. (You may use the following fact without proof: if $g^{2}=1$ for each element g in a group G, then G is abelian.)
8. (8 points) Let K be an algebraically closed field of characteristic $p>0$, and let $q=p^{n}$. Show that the solutions of the equation $x^{q}=x$ form a subfield $F \subseteq K$.
9. (8 points) Let $M \in \mathcal{M}_{n}(\mathbb{C})$ be a diagonalizable complex $n \times n$ matrix such that M is similar to its complex conjugate \bar{M}; i.e., there exists $g \in G L_{n}(\mathbb{C})$ such that $\bar{M}=g M g^{-1}$. Prove that M is similar to a real matrix $M_{0} \in \mathcal{M}_{n}(\mathbb{R})$.
10. (8 points) Let $p>2$ be an odd prime. Let F be a field with $q=p^{n}$ elements. How many solutions of the equation

$$
x^{2}-y^{2}=1
$$

are there with $x, y \in F$?
11. (8 points) Let G be a group. Let t be the number of subgroups of G that are not normal. Prove that $t \neq 1$.
12. (9 points) Let V be a vector space of dimension n over a finite field F with q elements.
(a) Find the number of 1-dimensional subspaces of V.
(b) Find the number of $n \times n$ invertible matrices with entries from F.
(c) For each $k, 1 \leq k \leq n$, find the number of k-dimensional subspaces of V.

