ALGEBRA TIER I
August, 2012

All answers must be justified. A correct answer without justification will receive little credit. Each problem is worth 10 points.

(1) Let \(f : \mathbb{Z}^3 \rightarrow \mathbb{Z}^4 \) be the function
\[
 f(a, b, c) = (a + b + c, a + 3b + c, a + b + 5c, 4a + 8b)
\]
(a) Prove that \(f \) is a group homomorphism.
(b) Let \(H \) denote the image of \(f \). Find an element of infinite order in \(\mathbb{Z}^4/H \).
(c) Calculate the order of the torsion subgroup of \(\mathbb{Z}^4/H \).

(2) Let \(A \) be the matrix
\[
 A = \begin{pmatrix}
 1 & \sqrt{3} \\
 -\sqrt{3} & 1
 \end{pmatrix}
\]
Calculate \([K : \mathbb{Q}]\) where \(K \) is the smallest subfield of \(\mathbb{C} \) containing \(\mathbb{Q} \) and the eigenvalues of \(A \).

(3) Let \(R = \mathbb{Z}[x]/I \), where \(I \) is the ideal generated by \(x^2 - 5x - 2 \).
Let \(S \) denote the ring of \(2 \times 2 \) integer matrices: \(S = M_2(\mathbb{Z}) \).
Let \(B \) denote the matrix
\[
 B = \begin{pmatrix}
 1 & 2 \\
 3 & 4
 \end{pmatrix}
\]
(a) Show that there exists a unique ring homomorphism \(f : R \rightarrow S \) satisfying \(f(x + I) = B \).
(b) Let \(J \) denote the ideal in \(R \) generated by the element \((x - 1) + I \). Is \(f(J) \) an ideal in \(S \)? Why or why not?

(4) Does there exist a non-abelian group of order 2012?

(5) Let \(n \in \{2, 3, 7\} \) and consider the ring
\[
 R_n = (\mathbb{Z}/n)[x]/(x^3 + x^2 + x + 2).
\]
For which \(n \in \{2, 3, 7\} \) (if any) is \(R_n \) a field? For which \(n \) (if any) is \(R_n \) a integral domain but not a field? For which \(n \) (if any) is \(R_n \) not an integral domain? Justify all your conclusions.
(6) Let \(R \) be the subring of \(\mathbb{R} \) given by \(R = \{ n + m\sqrt{-10} \mid m, n \in \mathbb{Z} \} \). Show that the element \(2 - \sqrt{-10} \) is irreducible in \(R \) but not prime.

(7) Let \(G \) be a finite abelian group and let \(\phi : G \to G \) be a group homomorphism. Note that for all positive integers \(k \) the function \(\phi^k = \phi \circ \phi \circ \cdots \circ \phi \) is also a homomorphism from \(G \) to \(G \). Prove there is a positive integer \(n \) such that \(G \cong \ker(\phi^n) \times \phi^n(G) \).

(8) Let \(G \) be a group containing normal subgroups of order 3 and 5. Prove \(G \) contains an element of order 15.

(9) Let \(M \) be the following matrix:

\[
\begin{pmatrix}
1 & -1 & 2 \\
2 & -1 & 1 \\
-4 & 1 & 0 \\
3 & -2 & 3 \\
\end{pmatrix}
\]

Prove or disprove (by giving a counterexample) each of the following statements:

(a) For every \(3 \times 4 \) complex matrix \(N \) there is a nonzero vector \(v \in \mathbb{C}^4 \) such that \(MNv = 0 \).

(b) For every \(3 \times 4 \) complex matrix \(N \) there is a nonzero vector \(v \in \mathbb{C}^3 \) such that \(NMv = 0 \).

(10) Suppose that \(K/F \) is a finite extension of fields and \(p \) is the smallest prime dividing \([K : F] \). Prove that for all \(\alpha \in K \), \(F(\alpha) = F(\alpha^{p^{-1}}) \).