ALGEBRA TIER I

August, 2012
All answers must be justified. A correct answer without justification will receive little credit. Each problem is worth 10 points.
(1) Let $f: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{4}$ be the function

$$
f(a, b, c)=(a+b+c, a+3 b+c, a+b+5 c, 4 a+8 b)
$$

(a) Prove that f is a group homomorphism.
(b) Let H denote the image of f. Find an element of infinite order in \mathbb{Z}^{4} / H.
(c) Calculate the order of the torsion subgroup of \mathbb{Z}^{4} / H.
(2) Let A be the matrix

$$
A=\left(\begin{array}{cc}
1 & \sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right)
$$

Calculate $[K: \mathbb{Q}]$ where K is the smallest subfield of \mathbb{C} containing \mathbb{Q} and the eigenvalues of A.
(3) Let $R=\mathbb{Z}[x] / I$, where I is the ideal generated by $x^{2}-5 x-2$. Let S denote the ring of 2×2 integer matrices: $S=M_{2}(\mathbb{Z})$.
Let B denote the matrix

$$
B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

(a) Show that there exists a unique ring homomorphism f : $R \rightarrow S$ satisfying $f(x+I)=B$.
(b) Let J denote the ideal in R generated by the element $(x-1)+I$. Is $f(J)$ an ideal in S ? Why or why not?
(4) Does there exist a non-abelian group of order 2012?
(5) Let $n \in\{2,3,7\}$ and consider the ring

$$
R_{n}=(\mathbb{Z} / n)[x] /\left(x^{3}+x^{2}+x+2\right) .
$$

For which $n \in\{2,3,7\}$ (if any) is R_{n} a field? For which n (if any) is R_{n} a integral domain but not a field? For which n (if any) is R_{n} not an integral domain? Justify all your conclusions.
(6) Let R be the subring of \mathbb{R} given by $R=\{n+m \sqrt{-10} \mid m, n \in$ $\mathbb{Z}\}$. Show that the element $2-\sqrt{-10}$ is irreducible in R but not prime.
(7) Let G be a finite abelian group and let $\phi: G \rightarrow G$ be a group homomorphism. Note that for all positive integers k the function $\phi^{k}=\underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{k \text { times }}$ is also a homomorphism from G to G. Prove there is a positive integer n such that $G \cong \operatorname{ker}\left(\phi^{n}\right) \times \phi^{n}(G)$.
(8) Let G be a group containing normal subgroups of order 3 and 5. Prove G contains an element of order 15 .
(9) Let M be the following matrix:

$$
\left(\begin{array}{ccc}
1 & -1 & 2 \\
2 & -1 & 1 \\
-4 & 1 & 0 \\
3 & -2 & 3
\end{array}\right)
$$

Prove or disprove (by giving a counterexample) each of the following statements:
(a) For every 3×4 complex matrix N there is a nonzero vector $v \in \mathbb{C}^{4}$ such that $M N v=0$.
(b) For every 3×4 complex matrix N there is a nonzero vector $v \in \mathbb{C}^{3}$ such that $N M v=0$.
(10) Suppose that K / F is a finite extension of fields and p is the smallest prime dividing $[K: F]$. Prove that for all $\alpha \in K$, $F(\alpha)=F\left(\alpha^{p-1}\right)$.

