Algebra Tier 1

January 2012

All your answers should be justified. A correct answer without a correct proof earns little credit. All questions are worth the same number of points. Write a solution of each problem on a separate page. The notation $\mathbb{F}_n, \mathbb{R}, \mathbb{Z}$ stands for the field with n elements, the field of real numbers, and the ring of integers respectively.

Problem 1. Find the Jordan canonical form of the complex matrix

\[A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

Problem 2. Find the matrix A^{2011}, where A is the matrix from problem 1 above.

Problem 3. Find the eigenvalues and a basis for the eigenspaces of the matrix

\[B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Problem 4. Find the matrix $e^C := I + C + \frac{C^2}{2!} + \frac{C^3}{3!} + \ldots$, where

\[C = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \]

Problem 5. Let a and b be elements of a group G. Prove that ab and ba have the same order.

Problem 6. Prove that if G is a nonabelian group, then $G/Z(G)$ is not cyclic. Here $Z(G)$ denotes the center of G.

Problem 7. Prove that if G is a finite nonabelian group of order p^3, where p is a prime, then $Z(G) = [G,G]$, where $Z(G)$ denotes the center of G and $[G,G]$ denotes the commutator subgroup of G.

Problem 8. Let C_2 denote a cyclic group of order 2. Determine the group $\text{Aut}(C_2 \times C_2)$, calculating its order and identifying it with a familiar group.

Problem 9. Find all irreducible polynomials of degree ≤ 4 in $\mathbb{F}_2[x]$.

Problem 10. Find the set of polynomials in $\mathbb{F}_2[x]$ which are the minimal polynomials of elements in \mathbb{F}_{16}.

Problem 11. Prove that the rings $\mathbb{F}_{16}, \mathbb{F}_4 \times \mathbb{F}_4$, and $\mathbb{Z}/16\mathbb{Z}$ are pairwise non-isomorphic.

Problem 12. Find all the maximal ideals in the ring $\mathbb{R}[x]$.

Problem 13. Let R be the ring of Gaussian integers and $I \subset R$ be an ideal. If R/I has 4 elements what are the possibilities for I and R/I?