Algebra Tier 1

January 2012

All your answers should be justified. A correct answer without a correct proof earns little credit. All questions are worth the same number of points. Write a solution of each problem on a separate page. The notation $\mathbf{F}_{n}, \mathbf{R}, \mathbf{Z}$ stands for the field with n elements, the field of real numbers, and the ring of integers respectively.

Problem 1. Find the Jordan canonical form of the complex matrix

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Problem 2. Find the matrix A^{2011}, where A is the matrix from problem 1 above.
Problem 3. Find the eigenvalues and a basis for the eigenspaces of the matrix

$$
B=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Problem 4. Find the matrix $e^{C}:=I+C+\frac{C^{2}}{2!}+\frac{C^{3}}{3!}+\ldots$, where

$$
C=\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right]
$$

Problem 5. Let a and b be elements of a group G. Prove that $a b$ and ba have the same order.
Problem 6. Prove that if G is a nonabelian group, then $G / Z(G)$ is not cyclic. Here $Z(G)$ denotes the center of G.

Problem 7. Prove that if G is a finite nonabelian group of order p^{3}, where p is a prime, then $Z(G)=[G, G]$, where $Z(G)$ denotes the center of G and $[G, G]$ denotes the commutator subgroup of G.

Problem 8. Let C_{2} denote a cyclic group of order 2. Determine the group Aut $\left(C_{2} \times C_{2}\right)$, calculating its order and identifying it with a familiar group.

Problem 9. Find all irreducible polynomials of degree ≤ 4 in $\mathbf{F}_{2}[x]$.
Problem 10. Find the set of polynomials in $\mathbf{F}_{2}[x]$ which are the minimal polynomials of elements in \mathbf{F}_{16}.

Problem 11. Prove that the rings $\mathbf{F}_{16}, \mathbf{F}_{4} \times \mathbf{F}_{4}$, and $\mathbf{Z} / 16 \mathbf{Z}$ are pairwise non-isomorphic.
Problem 12. Find all the maximal ideals in the ring $\mathbf{R}[x]$.
Problem 13. Let R be the ring of Gaussian integers and $I \subset R$ be an ideal. If R / I has 4 elements what are the possibilities for I and R / I ?

