Tier 1 Algebra Exam

August 2011

Do all 12 problems.

1. (8 points) Let A be a matrix in $G L_{n}(\mathbb{C})$. Show that if A has finite order (i.e., A^{k} is the identity matrix for some $k \geq 1$), then A is diagonalizable.
2. (8 points) Let V be a finite-dimensional real vector space of dimension n. Define an equivalence relation \sim on the set $\operatorname{End}_{\mathbb{R}}(V)$ of \mathbb{R}-linear homomorphisms $V \rightarrow V$ as follows: if $S, T \in \operatorname{End}_{\mathbb{R}}(V)$ then $S \sim T$ if an only if there are invertible maps $A: V \rightarrow V$ and $B: V \rightarrow V$ such that $S=B T A$. (You may assume this is an equivalence relation.)
Determine, as a function of n, the number of equivalence classes.
3. (8 points) Let $n \geq 2$. Let A be the n-by- n matrix with zeros on the diagonal and ones everywhere else. Find the characteristic polynomial of A.
4. (8 points) Find the Jordan canonical form of $\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4\end{array}\right)$.

Justify your answer.
5. (8 points) Let $R=K[x, y, z] /\left(x^{2}-y z\right)$, where K is a field. Show that R is an integral domain, but not a unique factorization domain.
6. (8 points) Let P be a prime ideal in a commutative ring R with 1 , and let $f(x) \in R[x]$ be a polynomial of positive degree. Prove the following statement: if all but the leading coefficient of $f(x)$ are in P and $f(x)=g(x) h(x)$, for some non-constant polynomials $g(x), h(x) \in$ $R[x]$, then the constant term of $f(x)$ is in P^{2}.
[We recall that P^{2} is the ideal generated by all elements of the form $a b$, where $a, b \in P . h]$
7. (10 points) Let p be a prime number and denote by $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ the field with p elements. For a positive integer n let $\mathbb{F}_{p^{n}}$ be the splitting field of $x^{p^{n}}-x \in \mathbb{F}_{p}[x]$. Prove that the following statements are equivalent:

1) $k \mid n$.
2) $\left(p^{k}-1\right) \mid\left(p^{n}-1\right)$.
3) $\mathbb{F}_{p^{k}} \subset \mathbb{F}_{p^{n}}$.
8. (10 points) i) Show that $x^{3}-2$ and $x^{5}-2$ are irreducible over \mathbb{Q}.
ii) How many field homomorphisms are there from $\mathbb{Q}[\sqrt[3]{2}, \sqrt[5]{2}]$ to \mathbb{C} ?
iii) Prove that the degree of $\sqrt[3]{2}+\sqrt[5]{2}$ over \mathbb{Q} is 15 .
9. (8 points) Let p be a prime number. Prove that any group of order p^{2} is abelian.
10. (8 points) Let a be an element of a group G. Prove that a commutes with each of its conjugates in G if and only if a belongs to an abelian normal subgroup of G.
11. (8 points) Find the cardinality of $\operatorname{Hom}(\mathbb{Z} / 20 \mathbb{Z}, \mathbb{Z} / 50 \mathbb{Z})$, where $\operatorname{Hom}(\cdot, \cdot)$ denotes the set of group homomorphisms.
12. (8 points) Let G be a finite group, and let $M \subset G$ be a maximal subgroup, i.e., M is a proper subgroup of G and there is no subgroup M^{\prime} such that $M \subsetneq M^{\prime} \subsetneq G$. Show that if M is a normal subgroup of G then $|G: M|$ is prime.
[Hint. Consider the homomorphism $G \rightarrow G / M$.]
