Tier 1 Algebra Exam August 2011

Do all 12 problems.

- 1. (8 points) Let A be a matrix in $GL_n(\mathbb{C})$. Show that if A has finite order (i.e., A^k is the identity matrix for some $k \ge 1$), then A is diagonalizable.
- 2. (8 points) Let V be a finite-dimensional real vector space of dimension n. Define an equivalence relation \sim on the set $\operatorname{End}_{\mathbb{R}}(V)$ of \mathbb{R} -linear homomorphisms $V \to V$ as follows: if $S, T \in \operatorname{End}_{\mathbb{R}}(V)$ then $S \sim T$ if an only if there are invertible maps $A: V \to V$ and $B: V \to V$ such that S = BTA. (You may assume this is an equivalence relation.)

Determine, as a function of n, the number of equivalence classes.

- 3. (8 points) Let $n \ge 2$. Let A be the n-by-n matrix with zeros on the diagonal and ones everywhere else. Find the characteristic polynomial of A.
- 4. (8 points) Find the Jordan canonical form of $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4 \end{pmatrix}$.

Justify your answer.

- 5. (8 points) Let $R = K[x, y, z]/(x^2 yz)$, where K is a field. Show that R is an integral domain, but not a unique factorization domain.
- 6. (8 points) Let P be a prime ideal in a commutative ring R with 1, and let $f(x) \in R[x]$ be a polynomial of positive degree. Prove the following statement: if all but the leading coefficient of f(x) are in Pand f(x) = g(x)h(x), for some non-constant polynomials $g(x), h(x) \in$ R[x], then the constant term of f(x) is in P^2 .

[We recall that P^2 is the ideal generated by all elements of the form ab, where $a, b \in P.h$]

7. (10 points) Let p be a prime number and denote by F_p = Z/pZ the field with p elements. For a positive integer n let F_{pⁿ} be the splitting field of x^{pⁿ} - x ∈ F_p[x]. Prove that the following statements are equivalent:
1) k|n.
2) (p^k - 1)|(pⁿ - 1).

3)
$$\mathbb{F}_{p^k} \subset \mathbb{F}_{p^n}$$
.

- 8. (10 points) i) Show that $x^3 2$ and $x^5 2$ are irreducible over \mathbb{Q} .
 - ii) How many field homomorphisms are there from $\mathbb{Q}[\sqrt[3]{2}, \sqrt[5]{2}]$ to \mathbb{C} ?
 - iii) Prove that the degree of $\sqrt[3]{2} + \sqrt[5]{2}$ over \mathbb{Q} is 15.
- 9. (8 points) Let p be a prime number. Prove that any group of order p^2 is abelian.
- 10. (8 points) Let a be an element of a group G. Prove that a commutes with each of its conjugates in G if and only if a belongs to an abelian normal subgroup of G.
- 11. (8 points) Find the cardinality of Hom $(\mathbb{Z}/20\mathbb{Z}, \mathbb{Z}/50\mathbb{Z})$, where Hom (\cdot, \cdot) denotes the set of group homomorphisms.
- 12. (8 points) Let G be a finite group, and let $M \subset G$ be a maximal subgroup, i.e., M is a proper subgroup of G and there is no subgroup M' such that $M \subsetneq M' \subsetneq G$. Show that if M is a normal subgroup of G then |G:M| is prime.

[Hint. Consider the homomorphism $G \to G/M$.]