Tier 1 Algebra Exam

January 2011

1. For an element g of a group G, define the centralizer subgroup $C(g)=$ $\{h \in G \mid h g=g h\}$. What is the minimal order of the centralizer subgroup of an element of order 2 in S_{6} ? Explain.
2. Let G be a group and H_{3} and H_{5} normal subgroups of G of index 3 and 5 respectively. Prove that every element $g \in G$ can be written in the form $g=h_{3} h_{5}$, with $h_{3} \in H_{3}$ and $h_{5} \in H_{5}$.
3. Show that every finite group whose order is at least 3 has a non-trivial automorphism.
4. The following matrix has four distinct real eigenvalues. Find their sum and their product.

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
3 & 0 & 2 & 1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 3 & 2
\end{array}\right)
$$

5. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T(a, b, c, d)=(a+b-$ $c, c+d)$. Find a basis for the null space.
6. A 5×5 matrix A satisfies the equation $(A-2 I)^{3}(A+2 I)^{2}=0$. Assume that there are at least two linearly independent vectors v that satisfy $A v=2 v$. What are the possibilities for the Jordan canonical form? List only one in each conjugacy class.
7. Prove that in a commutative ring with a finite number of elements, prime ideals are maximal.
8. Let \mathbb{F}_{4} be the finite field with four elements. Express

$$
\mathbb{F}_{4}[x] /\left\langle x^{4}+x^{3}+x^{2}+1\right\rangle
$$

as a product of fields. Prove your result.
9. Recall an element r of a ring R is a unit if there is an $s \in R$ so that $r s=1=s r$ and an element r of a ring R is nilpotent if there is a positive integer n so that $r^{n}=0$.
(a) Give an example of a ring R and a unit $r \in R$ with $r \neq 1$.
(b) Give an example of a ring R and a nilpotent element $r \in R$ with $r \neq 0$.
(c) Show that for any ring R and for any element $r \in R$, that r is a nilpotent element of R if and only if $1-r x$ is a unit in the polynomial ring $R[x]$.
10. Let $M_{n}(\mathbb{C})$ denote the vector space over \mathbb{C} of all $n \times n$ complex matrices. Prove that if M is a complex $n \times n$ matrix, then $C(M)=\left\{A \in M_{n}(\mathbb{C}) \mid\right.$ $A M=M A\}$ is a subspace of $M_{n}(\mathbb{C})$ of dimension at least n.

