Algebra Tier I Exam
 August 2010

1. Find all irreducible monic quadratic polynomials in $\mathbb{Z}_{3}[x]$.
(Monic: coefficient of the highest power of x is one.)
2. Let G be a finite group and $\Phi: G \rightarrow G$ an automorphism.
(a) Show that Φ maps a conjugacy class of G into a conjugacy class of G.
(b) Give a concrete example of non-trivial G and Φ such that $\{e\}$ is the only conjugacy class of G that Φ maps into itself. Explain.
(c) Show that if $G=S_{5}$ (the symmetric group on five letters), then g and $\Phi(g)$ must be conjugate for any $g \in G$.
3. Let V and W be real vector spaces, and let $T: V \rightarrow W$ be a linear map. If the dimensions of V and W are 3 and 5 , respectively, then for any bases B of V and B^{\prime} of W, we can represent T by a 5×3 matrix $A_{T, B, B^{\prime}}$. Find a set S of 5×3 matrices as small as possible such that for any $T: V \rightarrow W$ there are bases B of V and B^{\prime} of W such that $A_{T, B, B^{\prime}} \in S$.
4. Is it possible to find a field F with at most 100 elements so that F has exactly five different proper subfields? If so, find all such fields. If not, prove that no such field F exists.
5. Let G be the group of rigid motions (more specifically, rotations) in \mathbb{R}^{3} generated by $x=$ a 90° degree rotation about the x-axis, and $y=$ a 90° degree rotation about the y-axis.
(a) How many elements does G have?
(b) Show that the subgroup generated by x^{2} and y^{2} is a normal subgroup of G.
6. In this problem, R is a finite commutative ring with identity. Define $a \in R$ to be periodic of period k if a, a^{2}, \ldots, a^{k} are all different, but $a^{k+1}=a$.
(a) In $R=\mathbb{Z}_{76}$, find an element $a \neq 0,1$ of period 1 .
(b) In the same ring $R=\mathbb{Z}_{76}$ find an element that is not periodic.
(c) In $R=\mathbb{Z}_{76}$, list the possible periods and the number of elements of each period.
7. In this problem, R is a finite commutative ring with identity. Let $p(x) \in R[x]$, the ring of polynomials over R.
(a) Show that $a \in R$ is a root of $p(x)$ if and only if $p(x)$ can be written as $p(x)=(x-a) g(x)$ with $g(x) \in R[x]$ of degree one less than the degree of $g(x)$.
(b) Prove or give a counterexample: A polynomial of $p(x) \in R[x]$ of degree n can have at most n distinct roots in R.
8. Consider S_{5}, the symmetric group on 5 letters. If $\sigma \in S_{5}$ has order 6 , how many elements of S_{5} commute with σ ?
9. Let A be a 5×5 real matrix of rank 2 having $\lambda=-i$ as one of its eigenvalues. Show that $A^{3}=-A$ and that A is diagonalizable (as a complex matrix).
10. (a) Give an example of an irreducible monic polynomial of degree 4 in $\mathbb{Z}[x]$ that is reducible in the field $\mathbb{Q}[\sqrt{2}]$. Explain why your example has the stated properties.
(b) Show that there is no irreducible monic polynomial of degree 5 in $\mathbb{Z}[x]$ that is reducible in the field $\mathbb{Q}[\sqrt{2}]$.
11. Let M be the ring of 3×3 matrices with integer entries. Find all maximal two-sided ideals of M.
12. For which values of n in \mathbb{Z} does the ring $\mathbb{Z}[x] /\left(x^{3}+n x+3\right)$ have no zero divisors?
