Algebra Tier 1

January 2010

All your answers should be justified. A correct answer without a correct proof earns little credit. All questions are worth the same number of points. Write a solution of each problem on a separate page. The notation **Z**, **Q**, **C** stands for integers, rational numbers and complex numbers respectively.

Problem 1. Let A be a $n \times n$ complex matrix which does not have eigenvalue -1. Show that the matrix $A + I_n$ is invertible. (I_n is the identity $n \times n$ matrix.)

Problem 2. (a) Find the eigenvalues of the complex matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$

- (b) Find the eigenvectors of A.
- (c) Find an invertible matrix P such that $P^{-1}AP$ is diagonal.

Problem 3. Let A, B be $n \times n$ complex matrices such that AB = BA. Prove that there exists a vector $v \neq 0$ in \mathbb{C}^n which is an eigenvector for A and for B.

Problem 4. Suppose that G is a group of order 60 that has 5 conjugacy classes of orders 1, 15, 20, 12, 12. Prove that G is a simple group.

Problem 5. Prove that any group of order 49 is abelian.

Problem 6. How many conjugacy classes are there in the symmetric group S_5 ?

Problem 7. Let $G = GL_2(\mathbf{F}_5)$, the group of invertible 2×2 matrices with entries in the field \mathbf{F}_5 with 5 elements. What is the order of G?

Problem 8. Let G and H be any pair of groups and let S = Hom(G, H) denote the set of homomorphisms from G to H.

a) Prove that if H is an abelian group, then the operation "+" on S given by $(f_1 + f_2)(g) = f_1(g) + f_2(g)$ makes S into an abelian group.

b) Prove that if G is a finite cyclic group, then $Hom(G, \mathbf{Q}/\mathbf{Z})$ is isomorphic to G.

c) Find an infinite abelian group G so that $Hom(G, \mathbf{Q}/\mathbf{Z})$ is not isomorphic to G.

Problem 9. Describe the prime ideals in the ring $\mathbf{C}[x]$.

Problem 10. Find the degree of the minimal polynomial of $\alpha = \sqrt{2} + \sqrt[3]{3}$ over **Q**.

Problem 11. a) Prove that the polynomial $x^2 + x + 1$ is irreducible over the field \mathbf{F}_2 with two elements.

b) Factor $x^9 - x$ into irreducible polynomials in $\mathbf{F}_3[x]$, where \mathbf{F}_3 is the field with three elements.

Problem 12. Determine the following ideals in **Z** by giving generators:

(2) + (3), (4) + (6), $(2) \cap (3),$ $(4) \cap (6)$

Problem 13. Let $f(x) \in \mathbf{C}[x]$ be a polynomial of degree *n* such that *f* and *f'* (the derivative of *f*) have no common roots. Show that the quotient ring $\mathbf{C}[x]/(f)$ is isomorphic to $\mathbf{C} \times ... \times \mathbf{C}$ (*n* times).