Algebra Tier 1

January 2010

All your answers should be justified. A correct answer without a correct proof earns little credit. All questions are worth the same number of points. Write a solution of each problem on a separate page. The notation $\mathbf{Z}, \mathbf{Q}, \mathbf{C}$ stands for integers, rational numbers and complex numbers respectively.

Problem 1. Let A be a $n \times n$ complex matrix which does not have eigenvalue -1 . Show that the matrix $A+I_{n}$ is invertible. (I_{n} is the identity $n \times n$ matrix.)

Problem 2. (a) Find the eigenvalues of the complex matrix

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 4 \\
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0
\end{array}\right]
$$

(b) Find the eigenvectors of A.
(c) Find an invertible matrix P such that $P^{-1} A P$ is diagonal.

Problem 3. Let A, B be $n \times n$ complex matrices such that $A B=B A$. Prove that there exists a vector $v \neq 0$ in \mathbf{C}^{n} which is an eigenvector for A and for B.

Problem 4. Suppose that G is a group of order 60 that has 5 conjugacy classes of orders 1,15,20,12,12. Prove that G is a simple group.

Problem 5. Prove that any group of order 49 is abelian.
Problem 6. How many conjugacy classes are there in the symmetric group S_{5} ?
Problem 7. Let $G=G L_{2}\left(\mathbf{F}_{5}\right)$, the group of invertible 2×2 matrices with entries in the field \mathbf{F}_{5} with 5 elements. What is the order of G ?

Problem 8. Let G and H be any pair of groups and let $S=\operatorname{Hom}(G, H)$ denote the set of homomorphisms from G to H.
a) Prove that if H is an abelian group, then the operation " + " on S given by $\left(f_{1}+f_{2}\right)(g)=$ $f_{1}(g)+f_{2}(g)$ makes S into an abelian group.
b) Prove that if G is a finite cyclic group, then $\operatorname{Hom}(G, \mathbf{Q} / \mathbf{Z})$ is isomorphic to G.
c) Find an infinite abelian group G so that $\operatorname{Hom}(G, \mathbf{Q} / \mathbf{Z})$ is not isomorphic to G.

Problem 9. Describe the prime ideals in the ring $\mathbf{C}[x]$.
Problem 10. Find the degree of the minimal polynomial of $\alpha=\sqrt{2}+\sqrt[3]{3}$ over \mathbf{Q}.
Problem 11. a) Prove that the polynomial $x^{2}+x+1$ is irreducible over the field \mathbf{F}_{2} with two elements.
b) Factor $x^{9}-x$ into irreducible polynomials in $\mathbf{F}_{3}[x]$, where \mathbf{F}_{3} is the field with three elements.

Problem 12. Determine the following ideals in \mathbf{Z} by giving generators:

$$
(2)+(3), \quad(4)+(6), \quad(2) \cap(3), \quad(4) \cap(6)
$$

Problem 13. Let $f(x) \in \mathbf{C}[x]$ be a polynomial of degree n such that f and f^{\prime} (the derivative of f) have no common roots. Show that the quotient ring $\mathbf{C}[x] /(f)$ is isomorphic to $\mathbf{C} \times \ldots \times \mathbf{C}$ (n times).

