Tier I Algebra Exam
 August, 2009

- Be sure to fully justify all answers.

- Notation The sets of integers, rational numbers, and real numbers are denoted \mathbf{Z}, \mathbf{Q}, and \mathbf{R}, respectively. For a prime integer $p, \mathbf{Z} / p$ denotes the quotient $\mathbf{Z} / p \mathbf{Z}$. All rings are understood to have a unit.
- Scoring Each problem is worth 10 points.
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
(1) Let A and B be finite subgroups of a group G of relatively prime orders; that is, $\operatorname{gcd}(|A|,|B|)=1$. Prove that the function $\phi: A \times$ $B \rightarrow G$ defined by $\phi(a, b)=a b$ is injective.
(2) Find an element of largest order in the symmetric group S_{12}. Justify your answer.
(3) (a) Let G and H be abelian groups and let $\operatorname{Hom}(G, H)$ denote the set of all group homomorphisms from G to H. If $\phi, \psi \in$ $\operatorname{Hom}(G, H)$, define $\phi+\psi$ by $(\phi+\psi)(g)=\phi(g)+\psi(g)$ for all $g \in G$. Prove that $\operatorname{Hom}(G, H)$ is an abelian group.
(b) Let C be a cyclic group such that $\operatorname{Hom}(C, \mathbf{Z} / p) \cong \mathbf{Z} / p$. What can you say about the order of C ?
(c) Let G be a finitely generated abelian group and $\operatorname{Hom}(G, \mathbf{Z} / p) \cong$ $(\mathbf{Z} / p)^{n}$. What does this tell you about G ?
(4) Let A, B be commuting 2×2 real matrices with characteristic polynomials $x^{2}-3 x+2$ and $x^{2}-1$, respectively. Show that either $A+B$ or $A-B$ has determinant 0 .
(5) Suppose that T is a linear transformation of a finite dimensional real vector space V having characteristic polynomial $f(t) g(t)$ where f and g are relatively prime. Show that $V=\operatorname{Ker}(f(T)) \oplus \operatorname{Ker}(g(T))$.
(6) Let T be a linear transformation of a finite dimensional real vector space V and assume that V is spanned by eigenvectors of T. If $T(W) \subset W$ for some subspace $W \subset V$, show that W is spanned by eigenvectors. (Hint: consider the minimal polynomial of T.)
(7) Let F denote the field with two elements and let E be an extension field of F.
(a) Show that if $\alpha \in E$ satisfies $f(\alpha)=0$ for some $f \in F[x]$, then $f\left(\alpha^{2}\right)=0$.
(b) Suppose that $\alpha \in E$ is a root of the polynomial $f(x)=x^{5}+$ $x^{2}+1 \in F[x]$. List all roots of $f(x)$ in E in the form $a_{0}+a_{1} \alpha+$ $a_{2} \alpha^{2}+a_{3} \alpha^{3}+a_{4} \alpha^{4}$ with each $a_{i}=0$ or 1.
(8) Let $f(x)=x^{2}+a x+b$ and $g(x)=x^{2}+c x+d$ be irreducible rational polynomials, having roots α and β, respectively. Find necessary and sufficient conditions on the coefficients (a, b, c, d) that imply that $\mathbf{Q}(\alpha)$ is isomorphic to $\mathbf{Q}(\beta)$. Prove that your conditions are both necessary and sufficient.
(9) (a) Is the ring $\mathbf{Z}[i]$ of Gaussian integers an integral domain? Justify your answer.
(b) Let $R=\mathbf{Z}[T] /\left\langle T^{4}-1\right\rangle$, where $\left\langle T^{4}-1\right\rangle$ is the ideal generated by $T^{4}-1$. Is R an integral domain? Justify your answer.
(c) Show that sending T to i determines a ring homomorphism ψ : $R \rightarrow \mathbf{Z}[i]$. Describe Ker ψ as all elements $a+b T+c T^{2}+d T^{3} \in R$ where a, b, c, d satisfy some conditions.
(10) Let F^{*} denote the multiplicative group of all nonzero elements of a finite field F. Show that F^{*} is cyclic.

