ALGEBRA TIER 1 EXAM JANUARY, 2009

Instructions: Each problem or major part of a problem counts five points, as indicated, for a total of 90 points. Start each problem on a new sheet of paper. Unless otherwise stated you should show your work and justify your claims.

Problem 1 (10 points).
(1) Prove that every subgroup of a cyclic group is cyclic.
(2) Determine, up to isomorphism, the finitely generated abelian groups with the property that every proper subgroup is cyclic.

Problem 2 (5 points). Let G be a group. Define a subgroup $H \leq G$ to be characteristic if for every isomorphism $\varphi: G \rightarrow G$ one has $\varphi(H) \subseteq H$. Now suppose that $H \leq G$ is a normal subgroup and $K \leq H$ is a characteristic subgroup of H. Prove that K is a normal subgroup of G.

Problem 3 (5 points). Let G be a finite abelian group of order n, in which the group operation is written multiplicatively. Suppose that the map f : $x \mapsto x^{m}$ is an automorphism of G, for some positive integer m. Prove that $\operatorname{gcd}(n, m)=1$.

Problem 4 (10 points). Let V denote a finite-dimensional complex vector space, and $L(V)$ the complex vector space of linear transformations from V to itself. Given $A \in L(V)$, the function $T_{A}: L(V) \rightarrow L(V)$ defined by $T_{A}(X)=A X-X A$ for all $X \in L(V)$ is a linear transformation.
(1) Suppose that $A, B \in L(V)$ have the same Jordan canonical form. Prove that T_{A} and T_{B} have the same Jordan canonical form.
(2) Suppose that the dimension of V is equal to 2. Prove that for every $A \in L(V)$, the rank of the transformation T_{A} is either 0 or 2.

Problem 5 (5 points). Let V be a real vector space and $T: V \rightarrow V$ a linear transformation. Suppose every nonzero vector in V is an eigenvector of T. Prove that T is a scalar multiple of the identity.

Problem 6 (10 points).
(1) Let A be a 2×2 matrix with entries in the field of real numbers such that $A^{2}+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Show that A is similar over the real numbers to the matrix $B=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
(2) Let A be an $n \times n$ matrix with entries in the field of real numbers such that $A^{2}+I_{n}=0$ where I_{n} is the $n \times n$ identity matrix. Show that n is even and A is similar over the real numbers to the matrix $B=\left[\begin{array}{cc}0 & I_{m} \\ -I_{m} & 0\end{array}\right]$, where $n=2 m$.
Problem 7 (10 points). Let R be a commutative ring with 1 that contains exactly three ideals.
(1) Show that every nonzero element of R is either a unit or a zero divisor.
(2) Is the converse true? Justify your answer.

Problem 8 (5 points). For a prime integer p, let F_{p} denote the field of p elements. Suppose the greatest common divisor of the polynomials $f(x)=$ $6 x^{3}+10 x^{2}-10 x+16$ and $g(x)=6 x^{2}+10 x-16$ in $F_{p}[x]$ is 1 . Find p.
Problem 9 (10 points). Let F_{3} denote the finite field with 3 elements and \bar{F}_{3} be its algebraic closure. Let K be the splitting field of $g(x)=x^{21}-1$.
(1) Find the number of zeros of $g(x)$ in the field \bar{F}_{3}.
(2) (a) Find the number of elements in K. (b) What are the numbers of elements in the maximal proper subfields of K ? (A subfield of K is said to be proper if it is not equal to K itself.)

Problem 10 (10 points).
(1) Suppose γ is a complex number such that γ^{2} is algebraic over \mathbb{Q}. Show that γ is algebraic over \mathbb{Q}.
(2) Let α, β be complex numbers such that α is transcendental over \mathbb{Q}. Show that at least one of $\alpha-\beta$ and $\alpha \beta$ is transcendental.
Problem 11 (10 points). Let D be a domain. Two non-zero ideals $I, J \subset D$ are called "comaximal" if $I+J=D$ and the two ideals are called "coprime" if $I \cap J=I \cdot J$.
(1) Show that if the ideals $I, J \subset D$ are comaximal, then they are coprime.
(2) Show that if D is a principal ideal domain and the ideals $I, J \subset D$ are coprime, then they are comaximal.

