TIER ONE EXAMINATION - ALGEBRA
 AUGUST, 2008

Justify your answers. All rings are assumed to have an identity. The numbers in parentheses are the points for that problem.
(9)1. Complete the following definitions:
(a) Let G be a group and let $g \in G$. The order of g is
(b) Let K / F be a field extension. An element $a \in K$ is called algebraic if
(c) An ideal I in a commutative ring R is called prime if
(12)2. Let G be a group and let $G_{2}=\left\{g^{2} \mid g \in G\right\}$. Let H denote the intersection of all subgroups of G containing G_{2}.
(a) Prove that H is a normal subgroup of G.
(b) Prove that G / H is abelian.
(c) Prove that if G / H is finite, its order is a power of 2 .
(10)3. Let K be a field. Let $a, b \in K$ and let $R=K[x] /\left(x^{2}+a x+b\right)$. Prove that exactly one of the following is true:

- R is a field.
- R is isomorphic to K^{2}, the direct sum of two copies of K.
- There is a nonzero element $r \in R$ such that $r^{2}=0$.
(8)4. A complex matrix A has characteristic polynomial $(x-2)^{4}(x+2)$ and minimal polynomial $(x-2)(x+2)$. Determine the possible Jordan canonical forms for A.
(12)5.Let V be an n-dimensional real vector space.
(a) Let a, b be nonnegative integers. Prove there are subspaces V_{a} and V_{b} of dimension a, b respectively with $V_{a} \cap V_{b}=0$ if and only if $a+b \leq n$.
(b) Let a, b, c be nonnegative integers. Prove there are subspaces V_{a}, V_{b} and V_{c} of dimension a, b, c respectively with $V_{a} \cap V_{b} \cap V_{c}=0$ if and only if $a \leq n, b \leq n, c \leq n$ and $a+b+c \leq 2 n$.
(8)6. Let F be a field. Determine the possible finite groups G that are isomorphic to a subgroup of F^{+}, the additive group of F.
(10)7. A nonzero prime ideal P in a commutative ring R is called minimal if the only nonzero prime ideal Q contained in P is P itself. Now let F be a field and let $R=F[x, y]$, the polynomial ring in two variables over F. Prove that if P is a minimal prime ideal of R there is an irreducible element $f(x, y)$ in R such that $P=(f(x, y))$.
(10)8. Let D_{n} denote the dihedral group of order $2 n$ (that is, D_{n} is the group of symmetries of the regular n-gon). Let G be a finite group. Prove that if there is a nontrivial homomorphism from D_{n} to G then the order of G is even.
(10)9. Let G be a group and let M, N be normal subgroups such that $M N=G$ and $M \cap N=\{e\}$. Prove that G is isomorphic to the direct product $G / M \times G / N$.
(10)10. Let $M_{n}(\mathbf{Q})$ denote the ring of $n \times n$ matrices over the rationals. Let K be a subring of $M_{n}(\mathbf{Q})$ such that K is a field and K contains \mathbf{Q}. Prove that the degree $[K: \mathbf{Q}]$ is finite and $[K: \mathbf{Q}]$ divides n.

