Tier I Algebra Exam

August, 2007

- Be sure to fully justify all answers.
- Notation The sets of integers, rational numbers, real numbers, and complex numbers are denoted $\mathbf{Z}, \mathbf{Q}, \mathbf{R}$, and \mathbf{C}, respectively. All rings are understood to have a unit.
- Scoring Each single part problem is worth 10 points. Each part of a multiple part problem is worth 5 points. (eg. Problem 1 is worth 10 points, Problem 2 is worth 25 points.)
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
(1) Prove that for a group G and positive integer k, if G contains an index k subgroup, then the intersection of all index k subgroups of G is a normal subgroup.
(2) Let $F: G \rightarrow G$ be an endomorphism, that is, a homomorphism from the group G to itself. Let F^{n} denote the n-fold composition of F with itself, and let $K_{n}=\operatorname{Kernel}\left(F^{n}\right)$.
(a) Show that $K_{n} \subseteq K_{n+1}$ for all n.
(b) Let $F:(\mathbf{Z} / 16 \mathbf{Z})^{3} \rightarrow(\mathbf{Z} / 16 \mathbf{Z})^{3}$ be the endomorphism defined by $F(x, y, z)=(2 z, 2 x, 8 y)$. For all $n \geq 1$, describe K_{n} as a direct sum of cyclic groups.
(c) Show that if F is an endomorphism of the symmetric group $S_{5}, K_{n+1}=K_{n}$ for all $n \geq 2$.
(d) Give an example of an endomorphism F of the symmetric group S_{5} for which $K_{2} \neq K_{1}$.
(e) Prove that for general G and F, if $K_{n}=K_{n+1}$, then $K_{n}=K_{n+i}$ for all $i \geq 0$.
(3) Let $S=\{(x, y) \mid 23 x+31 y=1, x+y<100\} \in \mathbf{Z}^{2}$. Find the element of S for which $x+y$ is as large as possible.
(4) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ and $S: \mathbf{R}^{4} \rightarrow \mathbf{R}^{1}$ be linear transformations given by:

$$
\begin{aligned}
& T(x, y, z)=(x+2 y+z, x-y+4 z, x-y+4 z, 2 x+y+5 z) \\
& S(x, y, z, w)=(x-y+2 z-w)
\end{aligned}
$$

Find two sets of vectors in $\mathbf{R}^{4},\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ such that $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a basis of $\operatorname{Im}(T)$ and $\left\{\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}\right\}$ is a basis for $\operatorname{Ker}(S)$. Justify your answer.
(5) Let $T_{1}, T_{2}: \mathbf{C}^{3} \rightarrow \mathbf{C}^{3}$ be linear transformations. Show that if both linear transformations have minimal polynomials of degrees at most 2 , then there is a vector that is an eigenvector for both T_{1} and T_{2}.
(6) Let R be a commutative ring with unity and suppose that for every $r \in R$ there is an $n \geq 2$ so that $r^{n}=r$. Show that every prime ideal in R is maximal.
(7) Suppose that R is an integral domain. Is it possible that R contains additive subgroups isomorphic to $\mathbf{Z} / p \mathbf{Z}$ and $\mathbf{Z} / q \mathbf{Z}$ for p and q distinct primes? Justify your answer.
(8) Prove that the polynomial $2 x^{4}+x+1 \in \mathbf{Q}[x]$ is irreducible. Justify all your work.
(9) Let F_{q} denote the finite field with q elements. Show that for any $a \in F_{q}$ the equation $x^{n}=a$ has a solution in F_{q} if n is relatively prime to $q-1$.
(10) Let $p(t)=t^{3}-2 \in \mathbf{Q}[t]$. Let $\alpha=\sqrt[3]{2}$ be the real root of p and let β be a complex root of p. Determine if $\alpha \in \mathbf{Q}[\beta]$ and explain your answer.
(11) Let $d>1$ and let $p(x)$ and $q(x)$ be relatively prime irreducible polynomials in $\mathbf{Q}[x]$ of degree d. Suppose $p(\alpha)=0=q(\beta)$ for some $\alpha, \beta \in \mathbf{C}$. It follows that $1 \leq[\mathbf{Q}(\alpha, \beta): \mathbf{Q}(\alpha)] \leq d$.
(a) Find an example of a d, p, q, α, and β, so that $[\mathbf{Q}(\alpha, \beta): \mathbf{Q}(\alpha)]=1$.
(b) Find an example of a d, p, q, α, and β, so that $[\mathbf{Q}(\alpha, \beta): \mathbf{Q}(\alpha)]=d$.

