- Be sure to fully justify all answers.
- Notation The sets of integers, rational numbers, real numbers, and complex numbers are denoted **Z**, **Q**, **R**, and **C**, respectively. All rings are understood to have a unit.
- Scoring Each single part problem is worth 10 points. Each part of a multiple part problem is worth 5 points. (eg. Problem 1 is worth 10 points, Problem 2 is worth 25 points.)
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
- (1) Prove that for a group G and positive integer k, if G contains an index k subgroup, then the intersection of all index k subgroups of G is a normal subgroup.
- (2) Let $F: G \to G$ be an endomorphism, that is, a homomorphism from the group G to itself. Let F^n denote the *n*-fold composition of F with itself, and let $K_n = \text{Kernel}(F^n)$.
 - (a) Show that $K_n \subseteq K_{n+1}$ for all n.
 - (b) Let $F : (\mathbf{Z}/16\mathbf{Z})^3 \to (\mathbf{Z}/16\mathbf{Z})^3$ be the endomorphism defined by F(x, y, z) = (2z, 2x, 8y). For all $n \ge 1$, describe K_n as a direct sum of cyclic groups.
 - (c) Show that if F is an endomorphism of the symmetric group S_5 , $K_{n+1} = K_n$ for all $n \ge 2$.
 - (d) Give an example of an endomorphism F of the symmetric group S_5 for which $K_2 \neq K_1$.
 - (e) Prove that for general G and F, if $K_n = K_{n+1}$, then $K_n = K_{n+i}$ for all $i \ge 0$.
- (3) Let $S = \{(x, y) \mid 23x + 31y = 1, x + y < 100\} \in \mathbb{Z}^2$. Find the element of S for which x + y is as large as possible.
- (4) Let $T: \mathbf{R}^3 \to \mathbf{R}^4$ and $S: \mathbf{R}^4 \to \mathbf{R}^1$ be linear transformations given by:

T(x, y, z) = (x + 2y + z, x - y + 4z, x - y + 4z, 2x + y + 5z)S(x, y, z, w) = (x - y + 2z - w).

Find two sets of vectors in \mathbb{R}^4 , $\{\alpha_1, \ldots, \alpha_m\}$ and $\{\beta_1, \ldots, \beta_n\}$ such that $\{\alpha_1, \ldots, \alpha_m\}$ is a basis of $\operatorname{Im}(T)$ and $\{\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n\}$ is a basis for $\operatorname{Ker}(S)$. Justify your answer.

- (5) Let $T_1, T_2 : \mathbf{C}^3 \to \mathbf{C}^3$ be linear transformations. Show that if both linear transformations have minimal polynomials of degrees at most 2, then there is a vector that is an eigenvector for both T_1 and T_2 .
- (6) Let R be a commutative ring with unity and suppose that for every $r \in R$ there is an $n \ge 2$ so that $r^n = r$. Show that every prime ideal in R is maximal.
- (7) Suppose that R is an integral domain. Is it possible that R contains additive subgroups isomorphic to $\mathbf{Z}/p\mathbf{Z}$ and $\mathbf{Z}/q\mathbf{Z}$ for p and q distinct primes? Justify your answer.

- (8) Prove that the polynomial $2x^4 + x + 1 \in \mathbf{Q}[x]$ is irreducible. Justify all your work.
- (9) Let F_q denote the finite field with q elements. Show that for any $a \in F_q$ the equation $x^n = a$ has a solution in F_q if n is relatively prime to q 1.
- (10) Let $p(t) = t^3 2 \in \mathbf{Q}[t]$. Let $\alpha = \sqrt[3]{2}$ be the real root of p and let β be a complex root of p. Determine if $\alpha \in \mathbf{Q}[\beta]$ and explain your answer.
- (11) Let d > 1 and let p(x) and q(x) be relatively prime irreducible polynomials in $\mathbf{Q}[x]$ of degree d. Suppose $p(\alpha) = 0 = q(\beta)$ for some $\alpha, \beta \in \mathbf{C}$. It follows that $1 \leq [\mathbf{Q}(\alpha, \beta) : \mathbf{Q}(\alpha)] \leq d$.
 - (a) Find an example of a d, p, q, α , and β , so that $[\mathbf{Q}(\alpha, \beta) : \mathbf{Q}(\alpha)] = 1$.
 - (b) Find an example of a d, p, q, α , and β , so that $[\mathbf{Q}(\alpha, \beta) : \mathbf{Q}(\alpha)] = d$.