Tier 1 Algebra Examination, January, 2007

Important:

- Justify fully each answer unless otherwise directed.
- Notation: $\{1,2,3, \ldots\}=\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote respectively the natural numbers, integers, rationals, reals, and complex numbers

1. (5 each pts.)

(a) Give an example of groups G, H such that $\operatorname{Aut}(G)$ and $\operatorname{Aut}(H)$ are finite but $\operatorname{Aut}(G \times H)$ is infinite. (Here, $\operatorname{Aut}(G)$ denotes the set of automorphisms of G.) No proof required.
(b) Give an example of an ideal in $\mathbb{Z}[x]$ that is prime but not maximal. No proof required.
(c) Give an example of an integral domain that is not a unique factorization domain. No proof required.
(d) State Eisenstein's criterion for a polynomial $f \in \mathbb{Z}[x]$ to be irreducible over \mathbb{Q}. No proof required.
2. (10 pts.) Let V be the real vector space of functions on \mathbb{R} spanned by the set of real-valued functions $\left\{e^{x}, x e^{x}, x^{2} e^{x}, e^{2 x}\right\}$. Let $T: V \rightarrow V$ be the linear operator on V defined by $T(f)=f^{\prime}$. Find (i) a Jordan canonical form of T, and (ii) a Jordan canonical basis.
3. (10 pts.) Let $f: V \rightarrow V$ be an endomorphism of a finite-dimensional vector space V. Show that there is a subspace U of V such that $f(U)=f(V)$ and $V=U \oplus \operatorname{ker} f$.
4. (10 pts.) Let G be a finitely generated abelian group. Prove that there are no nontrivial homomorphisms $\phi: \mathbb{Q} \rightarrow G$, where \mathbb{Q} denotes the additive rationals.
5. (10 pts.) Let G be a simple group of order n. Let H be a subgroup of G of index k with $H \neq G$. Show that n divides k !.
6. ($\mathbf{1 0} \mathbf{~ p t s .) ~ L e t ~} R$ be a commutative ring with unity 1 . Suppose each subring of R contains 1 . Prove that R is a field of nonzero characteristic.
7. (10 pts.) Let R be a ring with 1 , let $a \in R$, and suppose $a^{n}=0$ for some $n \in \mathbb{N}$. Prove that $1+a$ is a unit of R.
8. (10 pts .) Let R be a commutative ring with 1 . Let m be a maximal ideal of R such that $m \cdot m=0$.
(a) Prove that m is the only maximal ideal of R.
(b) Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial in $R[x]$ such that $a_{i} \in m$ for all i and $a_{0} \neq 0$. Prove that $f(x)$ is irreducible, i.e., $f(x)$ is not a product of two polynomials in $R[x]$ of degree strictly smaller than $\operatorname{deg} f$.
9. ($\mathbf{1 0}$ pts.) Let F denote a finite field of order $2^{5}=32$. Prove that for each integer $1 \leq n<32$ and each $a \in F$, the equation $x^{n}=a$ has a solution in F.
10. (10 pts.) Determine with proof the degree of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}.

