Tier 1 Algebra Examination, January, 2007

Important:

- Justify fully each answer unless otherwise directed.
- Notation: $\{1, 2, 3, \ldots\} = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote respectively the natural numbers, integers, rationals, reals, and complex numbers
- 1. (5 each pts.)
 - (a) Give an example of groups G, H such that $\operatorname{Aut}(G)$ and $\operatorname{Aut}(H)$ are finite but $\operatorname{Aut}(G \times H)$ is infinite. (Here, $\operatorname{Aut}(G)$ denotes the set of automorphisms of G.) No proof required.
 - (b) Give an example of an ideal in $\mathbb{Z}[x]$ that is prime but not maximal. No proof required.
 - (c) Give an example of an integral domain that is not a unique factorization domain. *No proof required.*
 - (d) State Eisenstein's criterion for a polynomial $f \in \mathbb{Z}[x]$ to be irreducible over \mathbb{Q} . No proof required.
- 2. (10 pts.) Let V be the real vector space of functions on \mathbb{R} spanned by the set of real-valued functions $\{e^x, xe^x, x^2e^x, e^{2x}\}$. Let $T: V \to V$ be the linear operator on V defined by T(f) = f'. Find (i) a Jordan canonical form of T, and (ii) a Jordan canonical basis.
- 3. (10 pts.) Let $f: V \to V$ be an endomorphism of a finite-dimensional vector space V. Show that there is a subspace U of V such that f(U) = f(V) and $V = U \oplus \ker f$.
- 4. (10 pts.) Let G be a finitely generated abelian group. Prove that there are no nontrivial homomorphisms $\phi : \mathbb{Q} \to G$, where \mathbb{Q} denotes the additive rationals.

- 5. (10 pts.) Let G be a simple group of order n. Let H be a subgroup of G of index k with $H \neq G$. Show that n divides k!.
- 6. (10 pts.) Let R be a commutative ring with unity 1. Suppose each subring of R contains 1. Prove that R is a field of nonzero characteristic.
- 7. (10 pts.) Let R be a ring with 1, let $a \in R$, and suppose $a^n = 0$ for some $n \in \mathbb{N}$. Prove that 1 + a is a unit of R.
- 8. (10 pts.) Let R be a commutative ring with 1. Let m be a maximal ideal of R such that $m \cdot m = 0$.
 - (a) Prove that m is the only maximal ideal of R.
 - (b) Let $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ be a polynomial in R[x] such that $a_i \in m$ for all i and $a_0 \neq 0$. Prove that f(x) is irreducible, i.e., f(x) is not a product of two polynomials in R[x] of degree strictly smaller than deg f.
- 9. (10 pts.) Let F denote a finite field of order $2^5 = 32$. Prove that for each integer $1 \le n < 32$ and each $a \in F$, the equation $x^n = a$ has a solution in F.
- 10. (10 pts.) Determine with proof the degree of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .