ALGEBRA TIER ONE EXAMINATION, JANUARY 2005

(1) (a) Compute the units in the ring $\mathbb{Z}_{4}[x]$.
(b) Find an irrreducible polynomial of degree 4 in $\mathbb{Z}_{2}[x]$. Justify your answer.
(2) Give examples of two 6×6 matrices A and B over \mathbb{Q} with minimal polynomial $(x-2)^{2}\left(x^{2}+3\right)$ such that A is not similar to B.
(3) Find an explicit formula for the entries of the following matrix in terms of n.

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)^{n}
$$

(4) Let G be a group containing a normal subgroup H isomorphic to D_{8}, the dihedral group of order 8. Prove that G must have a nontrivial center.
(5) Let ϕ be a group homomorphism from D_{18}, the dihedral group of order 18, to S_{8}. Prove that ϕ is not injective.
(6) Let R be a unique factorization domain.
(a) Prove that if P is a nonzero prime ideal of R then P must contain an irreducible element.
(b) A prime ideal P in an integral domain R is called minimal if $P \neq 0$ and the only prime ideals Q such that $Q \subseteq P$ are $Q=0$ and $Q=P$. Prove that in a unique factorization domain every minimal prime is principal.
(7) Let F be a field and let $f(x) \in F[x]$ be a nonzero polynomial. Let n be the degree of $f(x)$. The quotient ring $F[x] /(f(x))$ may be viewed as an F-vector space via $\alpha(g(x)+(f(x)))=\alpha g(x)+(f(x))$ for all $\alpha \in$ F and $g(x) \in F[x]$. Prove that this vector space is finite dimensional over F and that the images of the elements $1, x, x^{2}, \ldots, x^{n-1}$ form a basis.
(8) Let R be a ring and let $N(R)=\left\{r \in R \mid r^{k}=0\right.$ for some $\left.k>0\right\}$.
(a) Prove that if R is commutative, then $N(R)$ is an ideal in R.
(b) Give an example to show that there are noncommutative rings R in which $N(R)$ is not an ideal.
(9) Prove that for any prime p, the field \mathbb{F}_{p} with p elements contains an element a such that $\left[\mathbb{F}_{p}(\sqrt[3]{a}): \mathbb{F}_{p}\right]=3$ if and only if $p-1$ is divisible by 3 .
(10) For each of the following construct an example or prove that there is none.
(a) A finite field extension L / K and elements $\alpha, \beta \in L$ of degree 2 over K such that $\alpha+\beta$ is of degree 3 over K.
(b) A finite field extension L / K and elements $\gamma, \delta \in L$ of degree 3 over K such that $\gamma+\delta$ has degree 6 over K.

