ALGEBRA TIER I EXAM

January 2004
You have 25 questions. Each one is worth 4 points.

1. Let $V \neq\{0\}$ be a vector space over the real numbers \mathbb{R} with the dimension $\operatorname{dim}(V)=n<\infty$. Let $f: V \rightarrow V$ be a linear mapping different the identical mapping id_{V} and different from $-\mathrm{id}_{V}$. Assume that f is an involution, i.e., $f \circ f=$ id_{V}.
a) Prove that the only possible eigenvalues are $\lambda=1$ and $\lambda=-1$.
b) Let V_{1} and V_{-1} be the subspace of V consisting of all the eigenvectors corresponding to the eigenvalue $\lambda=1$ and $\lambda=-1$, respectively. Prove that $V_{1} \neq\{0\}$, $V_{-1} \neq\{0\}, V_{-1} \cap V_{1}=\{0\}$, and $V_{-1}+V_{1}=V$.
c) Prove that there exists a basis for V such that the matrix representation F for f takes the form of a 2×2 block matrix

$$
F=\left(\begin{array}{cc}
I_{p} & 0_{p \times q} \\
0_{q \times p} & -I_{q}
\end{array}\right),
$$

where $I_{p}, 1_{q}, 0_{p \times q}$, and $0_{q \times p}$, denote the $p \times p$ unit matrix, the $q \times q$ unit matrix, the $p \times q$ zero matrix, and the $q \times p$ zero matrix, respectively, and where $p+q=n$, with $p>0$ and $q>0$.
2. Let $V \neq\{0\}$ be a vector space over the real numbers \mathbb{R} with the dimension $\operatorname{dim}(V)=n<\infty$. Let $f: V \rightarrow V$ be a linear mapping. Assume that f has the property $f \circ f=-\mathrm{id}_{V}$, where id_{V} denotes the identity mapping of V.
a) Prove that f has no (real) eigenvalues.
b) Let $e \in V, e \neq 0$. Prove that e and $f(e)$ are linearly independent.
c) Prove that the dimension n of V must be even.
3. Consider the following matrices in $M_{3}(\mathbb{C})$.

$$
\text { (i) }\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right) \quad \text { (ii) }\left(\begin{array}{ccc}
3 & 0 & 0 \\
2 & 3 & -1 \\
0 & 0 & 3
\end{array}\right) \quad \text { (iii) }\left(\begin{array}{ccc}
2 & -3 & 1 \\
1 & -2 & 1 \\
1 & -3 & 2
\end{array}\right)
$$

a) Find the characteristic polynomials $C(x)$ for each of the matrices above.
b) Find the minimal polynomials $M(x)$ for each of the matrices above.
c) Find the Jordan canonical form for each of the matrices above.
4. a) Describe the automorphism group $\operatorname{Aut}(\mathbb{Z} / 9 \mathbb{Z})$ of the group $\mathbb{Z} / 9 \mathbb{Z}$.
b) Give an example of a group with the trivial center.
c) Prove that if a group G has the trivial center then $|\operatorname{Aut}(G)| \geq|G|$.
5. Let S_{n} denote the symmetric group on n letters.
a) Find an element $a \in S_{n}$ of order n.
b) Find an element $b \in S_{5}$ of order 6 .
c) Describe the conjugacy classes in S_{4}. How many are there?
6. Let G be the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by elements $(2,6),(8,21),(-4,-9)$. Find two generators for G.
7. a) Let R be a commutative ring, $I \subset R$ an ideal such that R / I is a field. Let $a, b \in R$ such that $a b \in I$. Prove that $a \in I$ or $b \in I$.
b) Describe all maximal ideals in the polynomial ring $\mathbb{C}[x]$.
c) Show that the principal ideal $(y) \subset \mathbb{C}[x, y]$ is prime, but not maximal.
d) Show that the principal ideal $\left(y-x^{2}\right) \subset \mathbb{C}[x, y]$ is prime.
8. Consider the ring $M_{n}(\mathbb{R})$ of $n \times n$ matrices with real entries.
a) Show that $M_{n}(\mathbb{R})$ is a simple ring (has no nontrivial two-sided ideals).
b) Let M be a left module over $M_{n}(\mathbb{R})$. Notice that the field \mathbb{R} is embedded in the $\operatorname{ring} M_{n}(\mathbb{R})$ as scalar matrices; hence in particular M is an \mathbb{R}-vector space. Prove that $\operatorname{dim}_{\mathbb{R}}(M) \geq n$. (Hint: use a)).
9. a) Let \mathbb{F}_{q} denote a finite field with q elements. Prove that $q=p^{n}$ for a prime p and some $n>0$. (You cannot use the classification of finite fields.)
b) Describe the Galois group $\operatorname{Gal}\left(\mathbb{F}_{8} / \mathbb{F}_{2}\right)$ explicitly.
c) Let $f(x) \in \mathbb{F}_{2}[x]$ be a polynomial of degree 5 . Show that the field \mathbb{F}_{32} contains all the roots of $f(x)$.

