TIER ONE ALGEBRA EXAM

(1) Consider the matrix $A=\left(\begin{array}{ll}-4 & 18 \\ -3 & 11\end{array}\right)$.
(a) Find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
(b) Using the previous part of this problem, find a formula for A^{n} where A^{n} is the result of multiplying A by itself n times.
(c) Consider the sequences of numbers

$$
a_{0}=1, b_{0}=0, a_{n+1}=-4 a_{n}+18 b_{n}, b_{n+1}=-3 a_{n}+11 b_{n} .
$$

Use the previous parts of this problem to compute closed formulae for the numbers a_{n} and b_{n}.
(2) Let P_{2} be the vector space of polynomials with real coefficients and having degree less than or equal to 2. Define $D: P_{2} \rightarrow P_{2}$ by $D(f)=f^{\prime}$, that is, D is the linear transformation given by taking the derivative of the polynomial f. (You needn't verify that D is a linear transformation.)
(3) Give an example of each of the following. (No justification required.)
(a) A group G, a normal subgroup H of G, and a normal subgroup K of H such that K is not normal in G.
(b) A non-trivial perfect group. (Recall that a group is perfect if it has no non-trivial abelian quotient groups.)
(c) A field which is a three dimensional vector space over the field of rational numbers, \mathbb{Q}.
(d) A group with the property that the subset of elements of finite order is not a subgroup.
(e) A prime ideal of $\mathbb{Z} \times \mathbb{Z}$ which is not maximal.
(4) Show that any field with four elements is isomorphic to

$$
\frac{\mathbb{F}_{2}[t]}{\left(1+t+t^{2}\right)}
$$

(5) Let \mathbb{F}_{p} denote a field with p elements, p prime. Consider the ring

$$
R=\frac{\mathbb{F}_{p}[x, y]}{\left\langle x^{2}-3, y^{2}-5>\right.}
$$

where $<x^{2}-3, y^{2}-5>$ denotes the ideal generated by $x^{2}-3$ and $y^{2}-5$. Show that R is not a field.
(6) Let

$$
R=\frac{\mathbb{C}[x, y]}{\left(x^{2}+y^{3}\right)}
$$

[^0]where $\mathbb{C}[x, y]$ is the polynomial ring over the complex numbers \mathbb{C} with indeterminates x and y. Similarly, let S be the subring of $\mathbb{C}[t]$ given by $\mathbb{C}\left[t^{2}, t^{3}\right]$.
(a) Prove that R and S are isomorphic as rings.
(b) Let I be the ideal in R given by the residue classes of x and y. Prove that I is a prime ideal of R but not a principle ideal of R.
(7) Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map.
(a) Suppose $n=2$ and $T^{2}=-I$. Prove that T has no eigenvectors in \mathbb{R}^{2}.
(b) Suppose $n=2$ and $T^{2}=I$. Prove that \mathbb{R}^{2} has a basis consisting of eigenvectors of T.
(c) Suppose $n=3$. Prove that T has an eigenvector in \mathbb{R}^{3}. Give an example of an operator T such that T has an eigenvector in \mathbb{R}^{3}, but \mathbb{R}^{3} does not have a basis consiting of eigenvectors of T.
(8) Let $p(x)$ and $q(x)$ be polynomials with rational coefficients such that $p(x)$ is irreducible over the field of rational numbers \mathbb{Q}. Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ be the complex roots of p, and suppose that $q\left(\alpha_{1}\right)=\alpha_{2}$. Prove that
$$
q\left(\alpha_{i}\right) \in\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}
$$
for all $i \in\{2,3, \ldots, n\}$.
(9) Let F be a field containing subfields F_{16} and F_{64} with 16 and 64 elements respectively. Find (with proof) the order of $F_{16} \cap F_{64}$.
(10) Let G be a finite group and suppose H is a subgroup of G having index n. Show there is a normal subgroup K of G with $K \subset H$ and such that the order of K divides n !.
(a) Find a matrix representing the linear function D in the basis $\left\{1, x, x^{2}\right\}$.
(b) Determine the eigenvalues and eigenvectors of D.
(c) Determine if P_{2} has a basis such that D us represented by a diagonal matrix. Why or why not?
(11) Suppose that W is a non-zero finite dimensional vector space over \mathbb{R}. Let T be a linear transformation of W to itself. Prove that there is a subspace U of W of dimension 1 or 2 such that $T(U) \subset U$ (i.e. U is an invariant subspace. Here $T(U)$ denotes the set $\{T(u) \mid u \in U\}$.)

[^0]: Date: August 2003.

