TIER ONE ALGEBRA EXAM

(1) Consider the matrix $A = \begin{pmatrix} -4 & 18 \\ -3 & 11 \end{pmatrix}$.

(a) Find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.
(b) Using the previous part of this problem, find a formula for A^n where A^n is the result of multiplying A by itself n times.
(c) Consider the sequences of numbers

 $a_0 = 1, b_0 = 0, a_{n+1} = -4a_n + 18b_n, b_{n+1} = -3a_n + 11b_n.$

 Use the previous parts of this problem to compute closed formulae for the numbers a_n and b_n.

(2) Let P_2 be the vector space of polynomials with real coefficients and having degree less than or equal to 2. Define $D : P_2 \rightarrow P_2$ by $D(f) = f'$, that is, D is the linear transformation given by taking the derivative of the polynomial f. (You needn’t verify that D is a linear transformation.)

(3) Give an example of each of the following. (No justification required.)

(a) A group G, a normal subgroup H of G, and a normal subgroup K of H such that K is not normal in G.
(b) A non-trivial perfect group. (Recall that a group is perfect if it has no non-trivial abelian quotient groups.)
(c) A field which is a three dimensional vector space over the field of rational numbers, \mathbb{Q}.
(d) A group with the property that the subset of elements of finite order is not a subgroup.
(e) A prime ideal of $\mathbb{Z} \times \mathbb{Z}$ which is not maximal.

(4) Show that any field with four elements is isomorphic to $\frac{\mathbb{F}_2[t]}{(1 + t + t^2)}$.

(5) Let \mathbb{F}_p denote a field with p elements, p prime. Consider the ring

$R = \frac{\mathbb{F}_p[x, y]}{< x^2 - 3, y^2 - 5 >}$

where $< x^2 - 3, y^2 - 5 >$ denotes the ideal generated by $x^2 - 3$ and $y^2 - 5$. Show that R is not a field.

(6) Let

$R = \frac{\mathbb{C}[x, y]}{(x^2 + y^3)}$

Date: August 2003.
where \(\mathbb{C}[x, y] \) is the polynomial ring over the complex numbers \(\mathbb{C} \) with indeterminates \(x \) and \(y \). Similarly, let \(S \) be the subring of \(\mathbb{C}[t] \) given by \(\mathbb{C}[t^2, t^3] \).

(a) Prove that \(R \) and \(S \) are isomorphic as rings.

(b) Let \(I \) be the ideal in \(R \) given by the residue classes of \(x \) and \(y \). Prove that \(I \) is a prime ideal of \(R \) but not a principle ideal of \(R \).

(7) Suppose that \(T : \mathbb{R}^n \to \mathbb{R}^n \) is a linear map.

(a) Suppose \(n = 2 \) and \(T^2 = -I \). Prove that \(T \) has no eigenvectors in \(\mathbb{R}^2 \).

(b) Suppose \(n = 2 \) and \(T^2 = I \). Prove that \(\mathbb{R}^2 \) has a basis consisting of eigenvectors of \(T \).

(c) Suppose \(n = 3 \). Prove that \(T \) has an eigenvector in \(\mathbb{R}^3 \). Give an example of an operator \(T \) such that \(T \) has an eigenvector in \(\mathbb{R}^3 \), but \(\mathbb{R}^3 \) does not have a basis consisting of eigenvectors of \(T \).

(8) Let \(p(x) \) and \(q(x) \) be polynomials with rational coefficients such that \(p(x) \) is irreducible over the field of rational numbers \(\mathbb{Q} \). Let \(\alpha_1, \ldots, \alpha_n \in \mathbb{C} \) be the complex roots of \(p \), and suppose that \(q(\alpha_1) = \alpha_2 \). Prove that

\[
q(\alpha_i) \in \{\alpha_1, \alpha_2, \ldots, \alpha_n\}
\]

for all \(i \in \{2, 3, \ldots, n\} \).

(9) Let \(F \) be a field containing subfields \(F_{16} \) and \(F_{64} \) with 16 and 64 elements respectively. Find (with proof) the order of \(F_{16} \cap F_{64} \).

(10) Let \(G \) be a finite group and suppose \(H \) is a subgroup of \(G \) having index \(n \). Show there is a normal subgroup \(K \) of \(G \) with \(K \subset H \) and such that the order of \(K \) divides \(n! \).

(a) Find a matrix representing the linear function \(D \) in the basis \(\{1, x, x^2\} \).

(b) Determine the eigenvalues and eigenvectors of \(D \).

(c) Determine if \(P_2 \) has a basis such that \(D \) is represented by a diagonal matrix. Why or why not?

(11) Suppose that \(W \) is a non-zero finite dimensional vector space over \(\mathbb{R} \). Let \(T \) be a linear transformation of \(W \) to itself. Prove that there is a subspace \(U \) of \(W \) of dimension 1 or 2 such that \(T(U) \subset U \) (i.e. \(U \) is an invariant subspace. Here \(T(U) \) denotes the set \(\{T(u) | u \in U\} \).)