Tier 1 Examination - Algebra
January 4, 2001

Justify all answers! All rings are assumed to have an identity element. The set of real numbers is denoted by \(\mathbb{R} \). The set of integers modulo \(n \) is denoted \(\mathbb{Z}_n \). The group of permutations on \(n \) letters is denoted \(S_n \).

(20)1. Give an example of each of the following. No justification is required.
(a) A nonabelian group of order 18.
(b) An infinite commutative ring \(R \) such that for all \(y \in R \), \(y + y + y = 0 \).
(c) A 3 by 3 real matrix that is diagonalizable over the complex numbers but not over the reals.
(d) A unique factorization domain that is not a principal ideal domain.
(e) An element of order 3 in \(\text{GL}_2(\mathbb{R}) \).

(10) 2. Let \(G \) be a group with the property that \(g^2 = e \) for all \(g \in G \). Prove \(G \) is abelian.

(10)3. Determine the number of homomorphisms from \(S_3 \) to \(\mathbb{Z}_2 \times \mathbb{Z}_4 \).

(10)4. Find \(\lim_{n \to \infty} \left(\begin{array}{cc} 2 & 3 \\ -1/2 & -1/2 \end{array} \right)^n \).

(10)5. Let \(n \) be a positive odd integer and let \(A, B \in \mathcal{M}_n(\mathbb{R}) \) such that \(A^2 = B^2 = I \). Prove that \(A \) and \(B \) have a common eigenvector (not necessarily with the same eigenvalue).

(10)6. Let \(R \) and \(S \) be commutative rings and let \(\phi : R \to S \) be a ring homomorphism. Suppose there is an ideal \(I \) of \(R \) such that \(\ker(\phi) \subset I \subset R \) (proper containments). Prove that the image of \(\phi \) is not a field.

(10)7. Let \(F \) be a subfield of \(\mathbb{R} \) and suppose \(m \) and \(n \) are positive integers with \(\sqrt{m} + \sqrt{n} \in F \). Prove that \(\sqrt{m} \) and \(\sqrt{n} \) are in \(F \).

(10)8. Let \(K \) be a field and let \(K^\times \) denote the group of nonzero elements of \(K \). Prove that \(K^\times \) contains at most two elements of order 6.
(10)9. Let $G = (\mathbb{Q}, +)/(\mathbb{Z}, +)$, where $(\mathbb{Q}, +)$ denotes the group of rational numbers under addition and $(\mathbb{Z}, +)$ denotes the subgroup of integers under addition. Prove that G is an infinite group in which every element has finite order.

(15)10. (a) Let R be a commutative ring and suppose I and J are ideals of R such that $I + J = R$, where $I + J = \{i + j | i \in I, j \in J\}$. Prove the map $\phi: R/I \cap J \to R/I \times R/J$ given by $\phi(r + I \cap J) = (r + I, r + J)$ is an isomorphism of rings.

(b) Let R be a commutative ring containing exactly 4 ideals (including $\{0\}$ and R). Let I and J denote the other two ideals and suppose they are incomparable, that is $I \not\subseteq J$ and $J \not\subseteq I$. Prove that R is isomorphic to the direct product of two fields.