Tier One Algebra Exam
 January 1999

4 Hours

Each problem is 10 points.

1. Find a invertible matrix M such that $M^{-1} A M$ is diagonal, where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

2. Give an example of a 2×2 matrix that does not have two linearly independent eigenvectors.
3. A square matrix A is called nilpotent if $A^{k}=0$ for some $k>0$.
a) Give an example with justification of a nonzero nilpotent A.
b) Prove that if A is nilpotent, then $I+A$ is invertible.
4. Let G be a finite group, $a, b \in G$. Prove that the orders of $a b$ and $b a$ are equal.
5. Prove that the set of elements of finite order in an abelian group is a subgroup.
6. Let G be a finite group of order >2. Prove that G has a nontrivial automorphism.
7. Find two generators for the subgroup of $\mathbb{Z} \oplus \mathbb{Z}$ generated by $\{(8,7),(2,5),(9,3)\}$.
8. Consider the ring homomorphism

$$
f: \mathbb{Z}[x] \rightarrow \mathbb{R}
$$

which maps x to $\sqrt[3]{2}$. Consider the ideal $\operatorname{Ker}(f)$ in $\mathbb{Z}[x]$. Show $\operatorname{Ker}(f)$ is generated by a single polynomial and find that polynomial.
9. Prove that the ring $H:=\mathbb{F}_{2}[x] /\left(x^{3}+x^{2}+1\right)$ is a field. Find the degree of the field extension $\left[H: \mathbb{F}_{2}\right]$.
10. Let R be a commutative ring and $I \subset R$ be an ideal. Consider the set

$$
J:=\left\{x \in R \mid x^{n} \in I \text { for some } n \geq 1\right\} .
$$

a) Show that J is an ideal in R.

An ideal I is called primary if for all x and y satisfying $x y \in I$, either $x \in I$ or $y^{m} \in I$ for some $m \geq 1$, where m may depend on y.
b) Show that if I is primary, J is prime.
11. Show that if some element of a commutative ring has three or more square roots, the ring is not an integral domain.

