1. Give examples (no need to prove anything):
a. Two non-isomorphic abelen groups of order 108 such that the order of every element divides 72.
b. A linear transformation $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ such that the eigenvectors of T do not span \mathbb{C}^{3}.
c. A unique factorization domain D and a pair of elements $u, v \in D$ such that the greatest common divisor of u and v is NOT a linear combination of u and v.
d. Three ring homomorphisms from $\mathbb{Z} \rightarrow \mathbb{Z}_{10}$.
(A ring homomorphism between rings A and A^{\prime} is a map $f: A \rightarrow A^{\prime}$ such that for $a, b \in A$, $f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) f(b)$.
2. Let G be a group. An equivalence relation \equiv on G is called a congruence relation if $g_{1} \equiv g_{2}$ and $h_{1} \equiv h_{2}$ implies $g_{1} h_{1} \equiv g_{2} h_{2}$.
a. Suppose that \equiv is a congruence relation on G. Show that the equivalence class of the identity element of G is a normal subgroup of G.
b. Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism of groups and \equiv^{\prime} be a congruence relation on G^{\prime}. Define a relation \equiv on G by: $x \equiv y$ iff $\phi(x) \equiv^{\prime} \phi(y)$. Show that \equiv is an equivalence relation on G that is also a congruence relation.
(4 points)
3. Let A be a commutative ring with 1 . An element $x \in A$ is called nilpotent if $x^{r}=0$ for some positive integer r.
a. Show that the set N of all nilpotent elements in A is an ideal in A and that the quotient ring A / N has no non-zero nilpotent elements.
b. Show that if $x \in N$, then $1-x$ is a unit in A. (Hint: Factor $u^{r}-v^{r}$ and specialize.)
4. Let $\mathbf{P}_{2}(\mathbb{R})$ be the vector space of all polynomials of degree 2 or less with real coefficients. Consider the linear transformation $T: \mathbf{P}_{\mathbf{2}}(\mathbb{R}) \rightarrow \mathbf{P}_{\mathbf{2}}(\mathbb{R})$ given by:

$$
T(f)(x)=f(0)+f(1)\left(x+x^{2}\right) .
$$

Find the eigenvalues of T and determine whether T is diagonalizable.
5. Let G be the subgroup of 2×2 complex invertible matrices generated by $x=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$ and $y=$ $\left[\begin{array}{cc}0 & \omega \\ -\omega^{-1} & 0\end{array}\right]$, where ω is a primitive cube-root of 1 . Let H and K be the subgroups of G generated by x and y respectively.
a. Show that H and K are normal in G.
b. Compute the orders of the subgroups $H, K, H \cap K$, and G.
6. Let V be an n-dimensional real vector space. Consider the set $F(V)$ of all functions from $V \times V$ to \mathbb{R}. It can be proved that $F(V)$ is a real vector space under the operations: For all $\phi, \psi \in F(V)$ and $r \in \mathbb{R}$,

$$
(i)(\phi+\psi)(x, y)=\phi(x, y)+\psi(x, y), \quad(i i)(r \phi)(x, y)=r \phi(x, y) \text {. }
$$

Let $S(V)$ be the subset of all functions $\phi \in F(V)$ which satisfy the following condition: For all $x, y, x^{\prime} \in V$ and $a, a^{\prime} \in \mathbb{R}$,

$$
\text { (i) } \phi(x, y)=\phi(y, x), \quad(i i) \phi\left(a x+a^{\prime} x^{\prime}, y\right)=a \phi(x, y)+a^{\prime} \phi\left(x^{\prime}, y\right) .
$$

a. Show that $S(V)$ is a subspace of $F(V)$.
b. Find the dimension of $S(V)$. (Hint: Use a suitable map from $S(V)$ to the vector space of all $n \times n$ matrices.)
(5 points)
7. Consider the ring $\mathbb{Z}_{2}[x]$ and two ideals I and J generated by the elements $\left(x^{2}-1\right)$ and $x^{2}+x+1$ respectively.
a. Find all the units in the quotient rings $\mathbb{Z}_{2}[x] / I$ and $\mathbb{Z}_{2}[x] / J$.
b. If F is a field of 4 elements, is it true that F is isomorphic to one of these two rings? (Justify your answer.)
8. Find the irreducible polynomial over \mathbb{Q} of the element $\alpha=\sqrt{5} \cdot \sqrt[3]{2}$. (Hint: Prove first that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{5}, \sqrt[3]{2})$.
9. Let R be the ring $\mathbb{Z}[i]$ of Gaussian integers (i.e. $R=\{a+b i \mid a, b \in \mathbb{Z}\}$.)
a. Let $p \in \mathbb{Z}$ be a prime integer. Show that p is a prime element of R if the equation $x^{2}+y^{2}=p$ has no integer solutions for x and y. (Hint: use the norm $N(a+b i)=a^{2}+b^{2}$.)
b. Using (a) or otherwise, show that 11 does not divide $4 n^{2}+1$ for all $n \in \mathbb{Z}$.
10. Give reasons why the following examples do not exist:
a. Elements in $x, y \in S_{5}$ of order 3 and 4 respectively such that $x y=y x$.
b. Elements $\alpha, \beta \in \mathbb{C}$ with α transcendental over \mathbb{Q} and $\beta, \alpha^{2}+\beta$ both algebraic over \mathbb{Q}.
c. An integral domain with 20 elements.

