TIER ONE ALGEBRA EXAM

August, 1996

The ring of integers is denoted Z. The ring of rational numbers is denoted Q. All rings have identity.

- (30)1. Give an example of each of the following (No justification required):
- (a) A nonabelian group of order 18.
- (b) A ring R with exactly four ideals (including R and $\{0\}$).
- (c) A nonabelian group all of whose proper subgroups are cyclic.
- (d) An element in S_{11} of order 21.
- (e) An infinite group all of whose elements are of finite order.
- (f) A noncommutative ring in which every nonzero element is either a zero divisor or a unit.
- (15)2. Let H, K be subgroups of a group G with K normal.
- (a) Prove that $HK = \{hk | h \in H, k \in K\}$ is a subgroup of G.
- (b) Provide an example to show that HK need not be a subgroup if neither H nor K is normal.
- (15)3. Let G be a group with exactly three subgroups (including $\{e\}$ and G).
- (a) Prove that G is a cyclic group.
- (b) Prove that the order of G is p^2 for some prime p.
- (15)4. Let p be a prime and let $R = \{a \in \mathbb{Q} | a = n/m \text{ for } n, m \in \mathbb{Z}, p \not| m\}$.
- (a) Prove R is a ring under the usual operations in Q.
- (b) Prove that R contains a unique maximal ideal.
- (10)5. Let R be a commutative ring. Let I,J be ideals in R. Prove that the canonical ring homomorphism $\pi:R\to R/I\oplus R/J$ given by $\pi(r)=(r+I,r+J)$ is an isomorphism if and only if
- $(1) I \cap J = 0$
- and (2) I + J = R.

- (10)6. An element x in a ring R is called <u>nilpotent</u> if $x \neq 0$ but $x^k = 0$ for some k > 0. Find a necessary and sufficient condition on n for the ring $\mathbb{Z}/n\mathbb{Z}$ to contain a nilpotent element. Prove your answer.
- (15)7. (a) Prove that if F is a field then F contains a subfield isomorphic to \mathbb{Q} or to $\mathbb{Z}/p\mathbb{Z}$ for some prime p.
- (b) Prove that if F is a finite field then there is a prime q such that the number of elements in F is q^k for some positive integer k.
- (c) Prove there exists a field containing exactly 7³ elements.
- (10)8. Let R be an integral domain and let S be a subring of R. Prove that if S is a field and R is finite dimensional as an S-vector space, then R is a field.
- (20)9. Let A be the following 3x3 matrix over Q:

$$\begin{pmatrix} 0 & 1 & -2 \\ 0 & 0 & -2 \\ 1 & 0 & 0 \end{pmatrix}$$

- (a) Find the characteristic polynomial of A.
- (b) Find the minimal polynomial of A over Q.
- (c) Let $Q[A] = \{a_0I + a_1A + \ldots + a_kA^k | k \ge 0, a_0, a_1, \ldots a_n \in Q\}$. Prove Q[A] is a field.

Tier 1 Algebra Examination

August, 1997.

Time: 3 Hours

Question 1 is worth 25 points, questions 2 through 4 are worth 10 points each and questions 5 through 7 are worth 15 points each.

Start each question on a fresh sheet of paper.

- 1. Give examples (no need to prove anything) or give mathematical reasons if you can not give examples:
 - a. An infinite group all of whose elements have orders 1 or 3.
 - b. Matrices A and B of sizes 3×2 and 2×3 respectively such that $A \cdot B = I_3$, (identity matrix of size 3×3)
 - c. Two elements in the alternating group A_5 which are conjugate in the symmetric group S_5 but not in A_5 .
 - d. An u.f.d. which is not a p.i.d.
 - e. A transcendental element $\alpha \in \mathbb{C}$ such that $\alpha \frac{1}{\alpha}$ is an algebraic element.
- 2. a. Let f be an automorphism of the group $\mathbb{Z}/16\mathbb{Z}$. Show that there exists an odd integer $m \ (1 \le m \le 15)$ such that f(x) = mx for all $x \in \mathbb{Z}/16\mathbb{Z}$.
 - b. Decompose the group Aut(I /16II) of all automorphisms of I /16II as a product of cyclic groups.
- 3. a. Let G be a group and H be a subgroup. Let N = { g ∈ G | gHg⁻¹ = H } be the normalizer of H in G. Show that there is a bijective correspondence between the left cosets of N in G and the set 𝒞 = { K | K = xHx⁻¹ for some x ∈ G } of all conjugates of H.
 - b. Let G, H, and N be as in (a) above. If in addition, G is finite with |H| = r and [G:H] = s, then show that the union of all members of \mathscr{O} (i.e. $\bigcup_{K \in \mathscr{O}} K$) has at most (rs s + 1) elements.

- 4. Let V be an n-dimensional vector space.
 - a. Show that a proper subspace W of V is the intersection of all subspaces of V of dimension n-1 which contain W.
 - b. Let A(V) be the vector space of all linear transformations of V to itself. For $x \neq 0$ in V, compute the dimension of $A_x(V) = \{ T \in A(V) | T(x) = 0 \}$.
- 5. Let R be a commutative ring with 1. For an ideal I of R, define $\sqrt{1}$ to be the set $\{x \in R \mid x^n \in I \text{ for some integer } n \geq 1\}$.
 - a. Show that I is an ideal of R which contains I.
 - b. If I is a prime ideal, show that $\sqrt{I} = I$.
 - c. If R is a u.f.d and x is a non-zero, non-unit element in R, find a y such that $\frac{1}{R.x} = R.y$. (Hint: consider a prime power factorization for x).
- 6. Let R be an Euclidean domain with a valuation v (i.e. v is a function from the set of non-zero elements of R to the set of non-negative integers such that (i) v(x) ≤ v(xy) for x, y ∈ R \ {0} and (ii) given z ∈ R and y ∈ R \ {0}, there exist q and r such that z = yq + r with r = 0 or v(r) < v(y)). Assume further that v⁻¹(n) is finite for all n.
 - a. Show that for any non-zero ideal I, R/I is finite. (Note that I = R.y for some y).
 - b. For the ring $\mathbb{Z}[i] = \{ a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z} \}$ of Gaussian integers with standard valuation v given by $v(a + bi) = a^2 + b^2$, prove that $\mathbb{Z}[i] / 3 \cdot \mathbb{Z}[i]$ is a field of 9 elements. (Hint: show that 3 is a prime)).
- 7. Let p be a prime and n be a positive integer relatively prime to p. Let K be the splitting field of $x^n 1$ over F_p , the prime field of p elements. Let $[K : F_p] = m$.
 - a. Show that n divides p^m-1. (a hint is given below)
 - b. If r is such that n divides $p^{r}-1$, show that $m \le r$.

(Hint for parts (a) and (b): Show first that roots of $x^n - 1$ are all distinct and they form a subgroup of the multiplicative group $K \setminus \{0\}$ which is cyclic).

c. Find $[K:F_3]$ where K is the splitting field of $x^{14}-1$.