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Preface

During the summer of 2010 eight students participated in the Research Experi-
ences for Undergraduates program in Mathematics at Indiana University. The
program ran for eight weeks, from June 20 through August 12, 2011. Six fac-
ulty served as research advisers. Two faculty members oversaw a pair of related
projects; all other faculty advised one student each.

The program opened with an introductory pizza party. On the following
morning, students began meeting with their faculty mentors; these meetings
continued regularly throughout the first few weeks. During week one, there were
short presentations by faculty mentors briefly introducing the problem to be in-
vestigated. Several other IU faculty gave talks on their favorite topics during
the first half of the program. Students also received orientations to the math-
ematics library and to our computing facilities. In week three, students gave
short, informal presentations to each other on the status of work on the project;
they also enjoyed a party at a local swimming pool, hosted by Dr. Housworth.
Brief training sessions on using LATEXwere given during week four. Housed in
a common dorm, the students themselves organized a barbecue and a to see
renowned local violinist Joshua Bell. In week five, they received a personal tour
of the cyclotron facility. During week six, we hosted the Indiana Mathematics
Undergraduate Research conference, which featured 20 lectures by 27 students
from Rose-Hulman Institute of Technology, Goshen College, Valparaiso Univer-
sity, and Indiana University, and ended with an hourlong panel discussion on
graduate school. The next week ended with a picnic at Rawles Hall; the location
moved inside due to the heat and humidity. The program concluded with the
students giving formal, hourlong presentations to the REU students and faculty,
and the submission of final reports, contained in this volume.

It took the help and support of many different groups and individuals to
make the program a success.

We thank the National Science Foundation for major financial support through
the REU program through grant DMS-0851852. We also thank Indiana Univer-
sity’s Vice President for Diversity, Equity, and Multicultural Affairs, Dr. Edwin
Marshall, and Vicki Roberts, Associate Vice President for Administration and
Culture, for additional funding. We thank Indiana University for the use of
facilities, including library, computers, and recreational facilities. We thank
the staff of the Department of Mathematics for support, especially Mandie Mc-
Carty for coordinating the complex logistical arrangments (housing, paychecks,
information packets, meal plans, frequent shopping for snacks and peanut-free
items) and Cheryl Miller (now retired) for her assistance in coordinating the
application process; we will miss her. We thank Indiana graduate student Tri
Lai for serving as LATEXconsultant and for compiling this volume.

Thanks to mathematics faculty Chris Connell, Elizabeth Housworth, Matvei
Libine, William Orrick, Kevin Pilgrim, and Bruce Solomon for serving as men-
tors and giving lectures, and to Matthias Strauch for giving lectures. Thanks to
Matthias Weber for the plenary talk on minimal surfaces at our annual confer-
ence. Thanks to Jillian Hinchcliffe of the Lily Library for her personal tour of
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the Slocum collection. Thanks to David Baxter of the Center for Exploration
of Energy and Matter (nee IU cyclotron facility) for his personal tour of the
cyclotron facility.

KMP
October, 2011
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Figure 1: REU Participants, from left to right: Kevin Pilgrim (PI); Nick Ede-
len, Matthew Mizuhara, Rebecca McCarthy, Frederick Robinson, Clark Butler,
Rachel Moger-Reischer, Hanna Astephan. Not shown is Ewain Gwynne.
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Negatively Curved Surfaces in R3

Hanna Astephan

Abstract

We explore Vaigant’s surface, the only known negatively curved sur-
face with cuspidal ends. The goal of this project is to find a negatively
curved surface with more than four cuspidal ends or surfaces of other
topological types with only cuspidal ends. Building on his work, we hope
to modify this surface in a variety of ways. The first modification entails
adding genus to the surface and exploring the topological ramifications.
The next type of modification transforms Vaigant’s surface to a six-ended
surface, as well as an eight-ended one. We are investigating ways to pre-
serve negative curvature after these modifications. As a part of this, we
are looking at the indices of planar slice curves in light of these surfaces’
Euler characteristics. The main tool we use, apart from algebraic manipu-
lations, is the Poincaré-Hopf theorem. We also look at how to parametrize
negatively curved tubes and what types of conditions must be satisfied for
a general plane curve.

I. Introduction

Curvature, in the most intuitive sense, can be thought of as how much a
surface bends. In the case of negative curvature, every region of the surface as
a graph is locally a saddle.

The following definitions, all taken from [1] unless stated otherwise, will be
useful in our analysis of negatively curved surfaces. In this paper, each surface
will be interpreted as a graph, or a function z = f(x, y). However, the given
definitions apply to surfaces in parametric form.

Assume S is a regular, smooth, and complete surface embedded in R3 for
the following definitions. We write the surface S in parametric form as

~x(u, v) = (x(u, v), y(u, v), z(u, v)),

for (u, v) ∈ U , where U is an open subset of R2.

Definition 0.1. Tangent Vector: At a point p ∈ S, the tangent vector α′(0) is
a differentiable parametrized curve α : (−ε, ε) −→ S such that α(0) = p.

Definition 0.2. Tangent Plane: ∀p ∈ S, the set of tangent vectors to the
parametrized curves of S, passing through p, defines the tangent plane. The
vector subspace of dimension 2, d~xq(R2) ⊂ R3, coincides with set of tangent
vectors to S at ~x(q). The tangent plane will be denoted as Tp(S). The choice
of the parametrization ~x determines a basis ~xu, ~xv of Tp(S), called the basis
associated to ~x.
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Definition 0.3. Normal Vector: Given a parametrization ~x : U ⊂ R2 −→ S
of a regular surface S at a point p ∈ S, we can choose a normal vector at each
point of ~x(U) by the rule:

N(q) = ~xu∧~xv
|~xu∧~xv| (q), for q ∈ ~x(U).

Definition 0.4. Let S ⊂ R3 be a surface with an orientation N . The map
N : S −→ R3 takes it values in the unit sphere

S2 = {(x, y, z) ∈ R3; x2 + y2 + z1 = 1}

The map N : S −→ S2 is called the Gauss Map of S.
The differential dNp at p ∈ S is a linear map from Tp(S) to TN(p)(S2). It

measures how N pulls away from N(p) in a neighborhood of p. In the case
of curves, this measure is given by a number, the curvature k, times the cross
product of the tangent vector and normal vector. In the case of surfaces, this
measure is characterized by a linear map.

Definition 0.5. Let p ∈ S, and let dNp : Tp(S) −→ Tp(S) be the differential
of the Gauss map. The determinant of dNp is the Gaussian curvature K of S
at p.

Definition 0.6. Let C be a regular curve in S passing through p ∈ S, k the
curvature of C at p, and cosθ =< ~n, ~N > where ~n is the normal vector to C
and ~N is the normal vector to S at p. The number kn = kcosθ is then called
the normal curvature of C ⊂ S at p. In other words, kn is the length of the
projection of the vector k~n over the normal to the surface at p, with a sign given
by the orientation ~N of S at p.

Definition 0.7. A point of a surface S is called hyperbolic if det(dNp) < 0.
In the case, there are curves through p whose normal vectors at p point toward
any sides of the tangent plane at p.

Definition 0.8. Let p be a point in S. An asymptotic direction of S at p is a
direction of ~Tp(S) for which the normal curvature is zero. An asymptotic curve
of S is a regular connected curve C ⊂ S such that ∀ p ∈ C, the tangent line of
C at p is an asymptotic direction.

At a hyperbolic point there are exactly two asymptotic directions. Thus,
these form two independent line fields on a surface of negative curvature.

Definition 0.9. First fundamental form: suppose we have two vectors, ~w1, ~w2,
in the tangent plane of a surface S. We can take the inner product of these
vectors, Ip(w) = 〈w,w〉p = |w|2 ≥ 0. The quadratic form Ip on Tp(S) defined
by this equation, is called the first fundamental form of the regular surface
S ⊂ R3 at p ∈ S. Therefore, the first fundamental form is the expression of
how the surface S inherits the natural inner product of R3.
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We can compute the Gaussian curvature of a surface using local coordinates.
While there are ways to compute the curvature when a surface is in parametric
form, there are also ways to compute the curvature for a graph.

This is done by parametrizing a surface as ~x(u, v) = (u, v, h(u, v)), for
(u, v) ∈ U , where U in a open subset of R2. Here, the normal vector is given as:

N(x, y) = (−hx,−hy,1)

(1+h2
x+h2

y)
1
2

,

as a unit normal field on the surface. This results in coefficients of the second
fundamental form as:

e = hxx

(1+h2
x+h2

y)
1
2

, f = hxy

(1+h2
x+h2

y)
1
2

, and g = hyy

(1+h2
x+h2

y)
1
2

.

Curvature is thus:

K = hxxhyy−h2
xy

(1+h2
x+h2

y)2

Since the denominator of this fraction is always positive, the numerator,
hxxhyy−h2

xy, is of interest in determining whether a surface is negatively curved
or not.

Another necessary component in our analysis of negatively curved surfaces
is studying the ends of such surfaces. We will first distinguish two types of ends
from one another–bowl ends and horn ends, taken from [2].

Definition 0.10. Let Σ denote an end of a surface S. We call a simple closed
curve Γ on Σ a belt curve if it is homotopic to the boundary of the closure of
Σ. Then Σ is called a horn end if there is no belt curve of shortest length on
the closure of Σ. Otherwise, Σ is a bowl end. In addition, a horn end is called
a cusp if the infimum of the lengths of the belt curves is zero.

In studying these ends, we will also consider their planar slice curves in order
to make use of the Poincaré-Hopf theorem.

Definition 0.11. Let ~v : S −→ R3 be a differentiable vector field on a surface
S. Then pi ∈ S is called a singular point of the vector field ~v if ~v(pi) = 0. The
singular point p is isolated if there exists a neighborhood V of p in S such that
v has no singular points in V other than p.

Definition 0.12. Let ~x : U −→ S be an orthogonal parametrization at p =
~x(0, 0) compatible with the orientation of S, and let α : [0, l] −→ S be a sim-
ple, closed, positively-oriented piecewise regular parametrized curve such that
α([0, l]) ⊂ ~x(U) is the boundary of a simple region R containing p as its only
singular point. Let v = v(t), t ∈ [0, l], be the restriction of v along α, and
let φ = φ(t) be some differentiable determination of the angle from ~xu to v(t).
Since α is closed, there an integer I defined by
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2πI = φ(l)− φ(0) =
∫ l

0
dφ
dt dt

Then I is called the index of v at p.

Similarly, for a line field, we can think of the line field index of a singular
point on S as the number of clockwise π turns a line field makes around a simple,
closed curve enclosing the singular point, when traversed clockwise. Here, a
singular point is a point of which the line field is either not defined or cannot
be extended continuously.

Definition 0.13. Let S be a closed, orientable surface. Then the Euler charac-
teristic of S, denoted as χ(S), is given as χ(S) = 2− 2g, where g is the genus,
or the number of holes on the surface.

From those definitions, we can now state the following theorem:

Theorem 0.14. Poincaré-Hopf Theorem (line field version): Let S be a closed,
orientable surface, and let L be a differentiable line field defined on S, with
isolated singular points pi ∈ P , where P is some finite index set. Then,∑n

i=1 indpi(L) = 2χ(S)

Where indpi(L) denotes the index of L at the singular point, pi.

Note that the vector field version would be the same except the right-hand
side of the equation is just the regular Euler characteristic, χ(S), since the index
in that curve makes 2π turns instead of π turns.

With the Poincaré-Hopf theorem in mind, we now consider planar slice
curves of different types of ends. We do this by slicing a surface transversally
with a plane. It is necessary to make the planar slice transverse to the surface
S so that the normal of the surface is not the normal of the plane. We can
compute the index of the end point at ∞ using this planar slice curve, simply
by looking at the number of inflection points of the curve.

There are two cases to consider when looking at the asymptotic line fields
of slice curves.

Case 1. The slice curve is convex. There are no inflection points in this case,
as shown by this relevant lemma, modified from [3]:

Lemma 0.15. An asymptotic line crosses through a tangency on a transverse
slice curve if and only if the point is an inflection point on the curve.

Proof : Let c : [0, 1] → S represent a convex plane curve. If c′(t) is asymp-
totic for some t then by definition, 〈dN(c′(t)), c′(t)〉 = 0, where dN denotes the
derivative of the Gauss map. On the other hand, we have 〈dN(c′(t)), c′(t)〉 =
k(t)

〈
~n(t), ~N(t)

〉
, where ~n(t) is the normal to the curve at c(t), ~N(t) is the sur-

face normal at c(t), and k(t) is the curvature of the curve. However, k(t) > 0
since c is convex, and ~n(t) lies in the plane because the curve is planar. Thus,
the only way it could be zero is if ~N(t) is perpendicular to the plane at some
point. However, then the plane is tangent to the surface at that point on the
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curve, which contradicts the assumption that the plane is slicing the surface
transversally.

Case 2. The slice curve is non-convex. Then, the number of inflection points
varies. The normal curvature of the slice curve changes sign when it crosses
through a tangency to an asymptotic line, since these divide up the positive
and negative regions of the second fundamental form in the tangent plane to
the surface. However, such a change in concavity is also the definition of an
inflection point.

Corollary 0.16. The index is between 2− t and 2+ t where t is half the number
of inflection points, which is always even on a closed curve.

Note that if there are three inflection points in a row and the field to which
each inflection point belongs alternates from one inflection point to the next,
then this means that both asymptotic line fields rotated through in succession
and return to the starting position by the time the third inflection point is
reached. This contributes a positive or negative half turn. However, these can
cancel, and we do not have a reason to rule out the possibility of the same field
being tangent at consecutive inflection points.

Nevertheless, in our examples the index appears to follow the lower bound,
2 − t, the case when the line field is consistently rotating counter-clockwise
through 2t inflection points.

We can now begin our main investigation: does there exist a negatively
curved surface in R3 with more than four cuspidal ends?

II. Vaigant’s Surface

Vaigant’s surface is the only known example of a negatively curved surface
with cuspidal ends. It is given as this graph:

(z − u+ v)2(8 + u+ v)2 − ε2(2− (u− 1)(v − 1)) = 0

Where, u =
√

1 + x2, v =
√

1 + y2, and 0 < ε < 1
2
√

2
.

This is what it looks like for ε equal to 1
2 .
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It has four cuspidal ends, its Euler characteristic is 2, and each end has an
index of 1. Based on this surface, we are going to modify his surface in a variety
of ways: adding genus, adding two more cuspidal ends, and adding four more
cuspidal ends. Our main concern will be the index of the ends of these new
surfaces in hopes of being able to preserve negative curvature.

It is important to note its planar slice curve:

and that this type of cuspidal end has an index of 1. Although it has two
inflection points along the non-convex portion of the curve, by symmetry of the
asymptotic directions, we only count one of these inflection points. Note that
the remaining cuspidal ends in the following surfaces also have an index of 1.

We will begin with our first modification, adding genus.

IIa. Adding Genus.

Suppose we graph Vaigant’s surface in (u, v) coordinates, and in particular,
the positive root after solving for z:

z = u− v + ε
√

1+u+v−uv
8+u+v
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In the positive quadrant, we see a bend that coincides with the bend we
see in the surface after we graph it in (x, y) coordinates. Extending the axes,
however, in the negative direction of both u and v, shows us that there is a ridge
that resembles a portion of a circle like so:

Taking that into consideration, we can shift this piece of the surface so that
a hole can be created in the middle of the surface, equivalent to adding genus.
The new equation of the surface would be as follows:

(z − u+ v)2(8 + u+ v)2 − ε2(1 + (u− h) + (v − h)− (u− h)(v − h)) = 0

Here h is the translation; thus, the size of the hole depends on the value of
h. The following shows the surface for when h = 2, and ε = 1/2.

11



By symmetry, we can compute the curvature of one portion of the surface,
the same portion in which the surface lied in the positive quadrant. We will
compute the curvature of the following equation:

g(x, y) =
√

1 + x2 −
√

1 + y2 − ε
q

1−2h+
√

1+x2+
√

1+y2+(
√

1+x2−h)(h−
√

1+y2)

8+
√

1+x2+
√

1+y2

Since we are most interested in the sign of the curvature, we compute the
curvature function as:

Kg = guugvv − g2
uv

After replacing
√

1 + x2 as u and
√

1 + y2 as v.
After such computations for small ε, we see that there are small regions

of nonnegative curvature. This can be seen by graphing both curvature as a
function of (u, v) and a plane at 0. The places in which Kg(u, v) lies above the
plane are regions in which there is nonnegative curvature. For a specific value
of h = 2 and ε = 1/8, this looks like this:
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The reason for positive curvature can be explained in a variety of ways.
Adding genus changes the Euler characteristic of the surface, and therefore, the
surface must also have different ends in order to not violate the Poincaré-Hopf
theorem under the assumption of the surface being negatively curved every-
where. However, the process of adding genus only changed the center of the
surface; the original Vaigant ends were preserved. Each end, as a result, still
has an index of 1, but the surface now has a Euler characteristic of 0 because
χ(S) = 2− 2g = 2− 2(1) = 0. Thus, the the issue of positive curvature on the
surface is likely to be a result of not changing the ends accordingly. Further
work in hopes of preserving negative curvature would require changing the ends
of the surface, but this remains difficult to do because of the coordinate shift.

IIb. Six Ends.

We now construct a Vaigant surface with six cuspidal ends. For this surface,
the Euler characteristic remains the same as 2. Because there are six ends now,
though, each end cannot have the same index, since the sum must be 4 and each
index has to be an integer.

There were a few ways in which we approached the construction of this
surface.

The first approach entailed using the shape of the cruciform algebraic curve.
Its implicit equation is given as x2y2 − b2x2 − a2y2 = 0, where a and b are
constants not equal to zero, taken from [5]. The purpose of using this curve is
to create a new profile curve of the surface to add two more ends. The general
shape of the Vaigant surface is largely determined by the discriminant portion of
the equation after solving for z, given as:

√
1 + u+ v − uv in (u, v) coordinates.

To add another end, we change the discriminant such that another piece of the
surface becomes imaginary.

Rather than stacking two three-ended pieces together, we bridge two three-
ended surfaces by a bridge in the center. Note that this does not have the
same type of symmetry as the original Vaigant surface. The way in which we
construct it admits two ends point in the downward direction, and four ends
pointing in the upward direction. The two ends pointing down will have the
same index because of the symmetry, and the ends going up will have the same
index. In (u, v) coordinates, the piece looks like this:
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Thus, the index of the ends must satisfy the equation 2a + 4b = 4, where
a represents the index of the two ends going down, and b represents the index
of the ends going up. While there are many finitely many solutions to this
equation, mainly a = 2 − 2b, it is best to keep the index value of each end as
low as possible, for these type of ends have simpler equations and planar slice
curves.

The problem, however, with the cruciform curve, is that the ends do not
taper like they do in Vaigant’s surface. It is necessary for the ends to taper for
this type of surface, because as stated by Efimov in [4], the curvature must tend
to zero as one travels to infinity down at least one end of the surface. This led
us to use hyperbolic curves instead. The general equation for this curve, taken
from [5], is a lot simpler as well:

xpyq = a

For a > 0, p ∈ N, q ∈ N, G.C.D (p, q) = 1.
Using the same method of modifying the discriminant of the equation, we

created a six-ended surface with cusp ends that tapered. After modifying the
discriminant of the original Vaigant surface, we have the equation:

(z − u+ v)2(8 + u+ v)2 − ε2(1 + u+ v − ((u− 1)3(v − 5)4)) = 0

Where u and v have the same replacements as they do in Vaigant’s surface.
The main difference is the original term uv in the discriminant being modified to
(u−1)3(v−5)4 to create more ends on the surface. Furthermore, the translation
is needed so that the center of the surface is not imaginary.

This yielded a surface that looked like this:
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Its curvature was computed and graphed with a plane, and the surface
showed some regions of positive curvature:

Now, we modify the surface in hope of changing the index of the ends in order
to not violate the Poincaré-Hopf theorem under the assumption of negative
curvature. While the Poincaré-Hopf theorem holds true no matter what the
curvature is, if the sum of the indices for the ends does not account for the total
index, then there must be points of zero curvature. Thus, at the very least, the
ends must be modified. The main purpose of these modifications is to induce
inflection points along the arms of the surface through scaling and bending.

We use the curve f(x) = h√
1+x2 −

√
1 + x2 − h for bending, for some h > 0.

This is because its second derivative shows two inflection points. Incorporating
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this curve into the equation of the surface will allow for more bending at certain
points of the surface.

This is what this curve specifically looks for f(x) = 10√
1+x2 −

√
1 + 1

10x
2−10.

The next modification entails scaling the surface so that the inflection points
are in the correct spot. This is important due to the tapering of the ends.
Scaling can be done by holding v constant if we look at the equation in (u, v)
coordinates. In (x, y) coordinates, this is done by multiplying the x term by√

1 + y2 and dividing the entire expression by
√

1 + y2.
With that in mind, we have new replacements for the equation of the six-

ended surface. We send v −→ v, and we send u −→ u− h
uv + h√

v
. Note that u

still equals
√

1 + x2 and v still equals
√

1 + y2. Thus, the new equation of the
surface is the following:“

h
uv
− h√

v
− u+ v + z

”2

(h (u
√
v − 1) + uv(8 + u+ v))

2 −

ε2u2v2

„
− (v−5)4(h(u

√
v−1)+(u−1)uv)3

u3v3
− h

uv
+ h√

v
+ u+ v + 1

«
= 0.

It looks like this:
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This, however, does not yield a surface with negative curvature, as seen by
the following graph:

Here, the graph is the curvature function (in terms of sign) and the plane at
0.

What was realized, though, was that whether or not the ends have the correct
index, the main issue with the six cuspidal ends is the center of the surface, the
piece that bridge the ends together.

The following proposition, taken from [1], explains why this bridge is prob-
lematic:

Proposition 0.17. Let p ∈ S be an elliptic point of a surface S. Then there
exists a neighborhood V of p in S such that all points in V belong to the same
side of the tangent plane Tp(S). Let p ∈ S be a hyperbolic point. Then in each
neighborhood of p there exist points of S in both sides of Tp(S).

If we take a tangent plane to this region of the surface, we can see a neigh-
borhood of points to one side of the tangent plane. Thus, it cannot be negatively
curved here.

IIc. Eight Ends.

In order to remove the positive curvature along the middle bend of the
surface, we add two ends to the surface, to create a saddle-like shape in that
region. The resulting surface has eight cuspidal ends.

Similar to the way we modified the original Vaigant surface, we strive to
create a new profile curve to add more ends to the surface. This can be done by
modifying the hyperbolic curves and creating more asymptotes. These asymp-
totes are created by adding more zeroes to the equation in the discriminant.

To give a better idea of this, we can look at the contour plot of the new
piece:
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In order to get this shape, we change the original uv term in the discriminant
to (u− 1)2(v − 1)2(v − 5)2. This looks like the following in (u, v) coordinates:

Our new equation is thus:

(z − u+ v)2(8 + u+ v)2 − ε2(1 + u+ v − ((u− 1)2(v − 1)2(v − 5)2)) = 0

The eight-ended surface looks like the following, for ε = 1
2 :
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Note that the ends do go out to infinity here. Like the six-ended surface,
however, we need to modify the ends so that the index is correct for each end.
Without modifications, we have four cusp ends and four convex ends, leaving us
with an index of 12. The sum of the indices for all the ends is 2a+ 4b+ 2c = 4,
because of the new symmetry of the surface. Here, a represents the ends that
taper down, and b and c represent ends tapering up. We distinguish b from c
because the center ends that taper up originally show a different planar slice
curve. The four outside ends, which are represented by b, are the ends that are
convex. Note that the Euler characteristic of the surface has not changed.

The following pictures show us the original slice curves:

This is for the ends that go down, and the two center ends pointing up.
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This is for the four outside ends pointing up.

It is important to note that we want our a ends to have an index of -1, and
the b and c ends to each have an index of 1. This makes our index equation
2(−1) + 2(1) + 4(1) = 4, which is two times the Euler characteristic, as desired.
Our modification of the ends entails incorporating two different curves.

Bending the Surface Along the Spine.

We bend the surface along the spine to force the convex ends to become cuspidal.
We introduce two equations:

f(x) = h2 +
√

1 + x2 − h2√
1+x2 and f(y) = h1 +

√
1 + y2 − h1√

1+y2
,

For h1 and h2 not equal to zero.
These curves have two inflection points that are equal but opposite in sign.

For the equation of f(y) in particular, these inflection points are
√

1+h1√
−1+2h1

, and −
√

1+h1√
−1+2h1

,

which are found by solving f ′′(y) = 0.
We find the value of h1 by setting f(y) =

√
24, and letting y equal the

inflection point. We choose
√

24 as our value because this is when v is equal to
5, and when v is equal to 5, the modified portion of the discriminant vanishes.
Where this is on the surface, however, is the midpoint of the b ends, but in the
place along the spine. This creates a bend that changes the index. On the other
hand, h2 does not have any constraints, because the surface is not subject to
any limitations along the x direction.

This leads to new substitutions: u→ h2 +
√

1 + x2 − h2√
1+x2 .

v → h1 +
√

1 + y2 − h1√
1+y2

After solving for h1, we get a value of approximately .540402.
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Scaling the Bending of the Surface Along the Spine.

We also consider scaling the bending along the surface, by adding a constant
in front of our substitution, such that f(y) now equals:

f(y) = h1 +
√

1 + y2 − h1√
1+sy2

for some s ∈ R, such that s 6= 0.
This modification controls how ”sharp” the bending is. In general, this curve

looks like the same curve that was used in modifying the surface with six ends.
This time it is of interest, though, because this determines the shape of the
bridge. For large s, the surface with eight ends will have a bridge that points
more up.

Changing the a ends.

For our a ends to have an index of -1, we hope to induce a bending on the
surface such that its planar slice curve has six inflection points, three for each
asymptotic direction.

The curve for this modification is f(x) =
√

1 + x2 − 13
10 . This function looks

like this:

In our graph of the surface as a function of (x, y), we send x→
√

1 + x2− 13
10

to induce the bending. This creates six inflection points along the planar slice
curve of the a ends, as desired. It can be seen as follows:
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The problem that remains, however, is that in spite of the previous modi-
fications, the b ends are convex, which means they have an index of 2. The c
ends remain cuspidal. The slice curves of the other ends look like so:

For the b ends, and

for the c ends.

Further work, in hopes of preserving negative curvature, would require more
modification of the ends. This remains difficult because the surface becomes
more insensitive to modifications as more ends are added.

III. Curvature of a Parametrized Tube.

We now begin an exploration of parametric surfaces. Suppose we have a
parametrized tube, with parametric form

~φ(t, z) = (x(t, z), y(t, z), z).

We show that in order for this tube to be negatively curved, then the following
condition must be satisfied:

det

(
~Vt
~Vtt

)
det

(
~Vt
~Vzz

)
<

(
det

(
~Vt
~Vtz

))2

Where ~V = (x(t, z), y(t, z)). We first compute the curvature of this tube in
its general form and see what type of conditions must hold. We use the first
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and second fundamental forms to find the curvature.

First fundamental form:

E = 〈~Vt, ~Vt〉, F = 〈~Vt, ~Vz〉, and G = 〈~Vz, ~Vz〉

And second fundamental form:

e = 〈Nt, ~Vtt〉, f = 〈Nt, ~Vtz〉, and g = 〈Nt, ~Vzz〉

And K = eg−f2

EG−F 2 .
After such computations, we have a general form for the curvature:

K = y2
t (xzzxtt−x2

tz)+xtyt(2xtzytz−yzzxtt−xzzytt)+x2
t (yzzytt−y

2
tz)

((1+y2
z)x2

t−2xzyzxtyt+(1+x2
z)y2

t )2

Since the denominator is always positive, we only consider the numerator in
determining what conditions are necessary for negative curvature. After reduc-
ing the equation to when y2

t (xzzxtt − x2
tz) + xtyt(2xtzytz − yzzxtt − xzzytt) +

x2
t (yzzytt − y2

tz) < 0, we have some of the following cases:

(1)

x(0,2)(t, z) > 0 ∧ y(2,0)(t, z) >“
x(1,1)(t,z)y(1,0)(t,z)−x(1,0)(t,z)y(1,1)(t,z)

”2
x(1,0)(t,z)y(0,2)(t,z)−x(0,2)(t,z)y(1,0)(t,z)

+ x(2,0)(t, z)y(1,0)(t, z)

x(1,0)(t, z)
∧ x(1,0)(t, z)

> 0 ∧ y(1,0)(t, z) >
x(1,0)(t, z)y(0,2)(t, z)

x(0,2)(t, z)

(2)

x(0,2)(t, z) > 0 ∧ y(2,0)(t, z) >“
x(1,1)(t,z)y(1,0)(t,z)−x(1,0)(t,z)y(1,1)(t,z)

”2
x(1,0)(t,z)y(0,2)(t,z)−x(0,2)(t,z)y(1,0)(t,z)

+ x(2,0)(t, z)y(1,0)(t, z)

x(1,0)(t, z)
∧ x(1,0)(t, z) <

0 ∧ y(1,0)(t, z) <
x(1,0)(t, z)y(0,2)(t, z)

x(0,2)(t, z)

(3)

x(0,2)(t, z) > 0 ∧ y(1,0)(t, z) >
x(1,0)(t, z)y(0,2)(t, z)

x(0,2)(t, z)
∧ x(1,0)(t, z) <

0 ∧ y(2,0)(t, z) <

“
x(1,1)(t,z)y(1,0)(t,z)−x(1,0)(t,z)y(1,1)(t,z)

”2
x(1,0)(t,z)y(0,2)(t,z)−x(0,2)(t,z)y(1,0)(t,z)

+ x(2,0)(t, z)y(1,0)(t, z)

x(1,0)(t, z)

(4)

x(0,2)(t, z) > 0 ∧ x(1,0)(t, z) > 0 ∧ y(1,0)(t, z) <
x(1,0)(t, z)y(0,2)(t, z)

x(0,2)(t, z)
∧ y(2,0)(t, z) <

“
x(1,1)(t,z)y(1,0)(t,z)−x(1,0)(t,z)y(1,1)(t,z)

”2
x(1,0)(t,z)y(0,2)(t,z)−x(0,2)(t,z)y(1,0)(t,z)

+ x(2,0)(t, z)y(1,0)(t, z)

x(1,0)(t, z)
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(5)

x(0,2)(t, z) < 0 ∧ y(2,0)(t, z) >“
x(1,1)(t,z)y(1,0)(t,z)−x(1,0)(t,z)y(1,1)(t,z)

”2
x(1,0)(t,z)y(0,2)(t,z)−x(0,2)(t,z)y(1,0)(t,z)

+ x(2,0)(t, z)y(1,0)(t, z)

x(1,0)(t, z)
∧ y(1,0)(t, z) >

x(1,0)(t, z)y(0,2)(t, z)

x(0,2)(t, z)
∧ x(1,0)(t, z) < 0

(6)

x(0,2)(t, z) < 0 ∧ y(2,0)(t, z) >“
x(1,1)(t,z)y(1,0)(t,z)−x(1,0)(t,z)y(1,1)(t,z)

”2
x(1,0)(t,z)y(0,2)(t,z)−x(0,2)(t,z)y(1,0)(t,z)

+ x(2,0)(t, z)y(1,0)(t, z)

x(1,0)(t, z)
∧ x(1,0)(t, z)

> 0 ∧ y(1,0)(t, z) <
x(1,0)(t, z)y(0,2)(t, z)

x(0,2)(t, z)

(7)

x(0,2)(t, z) < 0 ∧ x(1,0)(t, z) > 0 ∧ y(1,0)(t, z) >
x(1,0)(t, z)y(0,2)(t, z)

x(0,2)(t, z)
∧ y(2,0)(t, z) <

“
x(1,1)(t,z)y(1,0)(t,z)−x(1,0)(t,z)y(1,1)(t,z)

”2
x(1,0)(t,z)y(0,2)(t,z)−x(0,2)(t,z)y(1,0)(t,z)

+ x(2,0)(t, z)y(1,0)(t, z)

x(1,0)(t, z)

(8)

x(0,2)(t, z) < 0 ∧ x(1,0)(t, z) < 0 ∧ y(1,0)(t, z) <
x(1,0)(t, z)y(0,2)(t, z)

x(0,2)(t, z)
∧ y(2,0)(t, z) <

“
x(1,1)(t,z)y(1,0)(t,z)−x(1,0)(t,z)y(1,1)(t,z)

”2
x(1,0)(t,z)y(0,2)(t,z)−x(0,2)(t,z)y(1,0)(t,z)

+ x(2,0)(t, z)y(1,0)(t, z)

x(1,0)(t, z)

Note that there are other more general cases, such as when xt = 0 or when
xt 6= 0.

Within these inequalities, we see determinant forms of the derivative of the
vector form of the planar curve. This leads us to generalize with our original
inequality statement containing the determinants. For instance, we can easily
see that (

x(1,1)(t, z)y(1,0)(t, z)− x(1,0)(t, z)y(1,1)(t, z)
)2

is the determinant form of Vt and Vtz. We can summarize the above 8 cases
into one condition because the inequality changes are consistent with changing
xzz to either positive or negative.

Now let us consider the following inequality:

det

(
~Vt
~Vtt

)
det

(
~Vt
~Vzz

)
−
(
det

(
~Vt
~Vtz

))2

< 0

24



Then the following holds for a curve parametrized by arclength:

−k
〈
~Vzz, n̂

〉
<
〈
~Vtz, n̂

〉2

= ||~Vtz||2 (**)

Here, k is the signed curvature of the plane curve, n̂ is the outward unit
normal in the plane of the curve such that it is positively oriented. This equality
follows from the fact that ~Vtt = kn̂, ~Vtt being orthogonal to ~Vt, as well as

det

(
~Vt
n̂

)
equaling 1.

Note that ~Vtz = ±||~Vtz||n̂. In terms of the curvature of the curve φ(t, z) =
(x(t, z), y(t, z)), we have the following cases:

Case 1. When k = 0, there is an inflection point on the curve. We need
~Vtz 6= ~0.

Case 2. For k > 0, the curve is convex, and what results is that
〈
~Vzz, n̂

〉
> 0.

This essentially means that we need the radius deformation to be a convex
function in the normal direction.

Case 3. For k < 0, the curvature is already negative.
Overall, these inequalities help us conclude what conditions are sufficient for

a parametric tubular surface to have negative curvature. This can lead to new
methods of gluing different ends to one another.

IV. Conclusion and Further Work

Although we were unable to construct negatively curved surfaces with more
than four cuspidal ends, it is worthwhile to note that further work can be done
on the surface with eight cuspidal ends, as well as the surface with genus. The
latter surface would require careful consideration of changing the ends, while
modifying the eight-ended one would require incorporating different types of
curves into the original equation to change index. It would also be worthwhile
to look at parametric tubular surfaces for specific forms of x(t, z) and y(t, z),
such as when x(t, z) = r1(z)x(t) and y(t, z) = r2(z)x(t) for specific radius
functions r1(z) and r2(z). The formula (**) provides a convenient necessary and
sufficient set of conditions for tubing. This is an important step in a number of
constructions of new negatively curved surfaces.

IV. Acknowledgments

I would really like to thank my advisor, Chris Connell, for being very helpful
and encouraging throughout this project. I also extend my thanks to Indiana
University and the faculty and staff of its mathematics department.

References

[1] M. do Carmo. Differential Geometry of Curves and Surfaces, Prentice Hall,
Englewood Cliffs, NJ (1976).

25



[2] C. Connell and J. Thurman. The Construction of a Complete, Bounded,
Negatively Curved Surface in R3, REU Report 2009.

[3] C. Connell and J. Ullman, Ends of negatively curved surfaces in Euclidean
space, Manuscripta Math. 131 (2010), no. 3-4, 275–303.

[4] N. V. Efimov, Surfaces with slowly varying negative curvature, Uspehi Mat.
Nauk 21 (1966), no. 5 (131), 3–58.

[5] E. Shikin. Handbook and Atlas of Curves, CRC Press, Boca Raton, FL
(1995).

26



Negatively Curved Slab Surfaces

Clark Butler

Abstract

We study negatively curved slab surfaces, which are complete regular
surfaces of negative curvature that are embedded between two parallel
planes in Euclidean space. There are very few known examples of such
surfaces, and all known examples are homeomorphic either to a plane or an
annulus. We construct new examples of negatively curved slab surfaces of
these known topological types, completely classify ruled negatively curved
slab surfaces, and investigate the general properties of generic these sur-
faces with the goal of a classification of the possible topologies of these
surfaces. Our primary tools are planar cross sections of the surface, Morse
functions, and the behavior of the asymptotic line field of the surface at
infinity.

1 Curvature of Regular Surfaces in R3

We begin with some background material (see Do Carmo [doCar76] for addi-
tional details.)

Definition 1.1. A regular surface S is a set S ⊂ R3 such that for each point
p ∈ S, there are open sets U ⊂ R2, V ⊂ R3, with p ∈ V , and a differentiable
map φ : U → V , such that

1. φ : U → V ∩ S is a homeomorphism.

2. dφq has rank 2, for q = φ−1(p).

The function φ is called a local parametrization at p.

Write φ as φ(u, v). The vectors φu(q), φv(q) span a two-dimensional linear
subspace of R3, called the tangent space to S at p, which is denoted Tp(S).
Tp(S) is independent of the local parametrization used at p.

The Gauss map N : φ(U)→ S2 is defined by

N(p) =
φu ∧ φv
‖φu ∧ φv‖

(q)

The Gauss map gives the normal to Tp(S). It is well-defined in a neighbor-
hood of p up to a change in orientation. Since the Gauss map is a differentiable
map between two surfaces, we may take its differential dN . The Gaussian cur-
vature of S at p is, by definition,

K(p) = det(dNp)
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K is defined independently of the orientation.
We can give an equivalent formulation of the Gaussian curvature in terms of

second-order approximations to S. In a sufficiently small neighborhood of p, S
is the graph of a function f over its tangent space Tp(S). We may identify Tp(S)
with R2, and let the origin correspond to p. Write f as f(x, y). By translation
we may assume that f(0, 0) = 0. Since the normal at p is parallel to the plane
of the graph, we have that fx(0, 0) = fy(0, 0) = 0. The second-order Taylor
series approximation to f at (0, 0) is thus,

fxx(0, 0)x2 + fyy(0, 0)y2 + 2fxy(0, 0)xy

The Gaussian curvature at p is the determinant of this quadratic form,

K(p) = (fxxfyy − f2
xy)(0, 0)

We are interested in negatively curved surfaces, i.e. those which satisfy
K < 0 everywhere. We will also assume that S is complete, that is S is complete
as a metric space in its intrinsic metric that is derived from the Euclidean metric
on R3

2 Slab Surfaces

A slab surface is a complete regular surface S which lies between two parallel
planes. We will suppose these two planes to always be parallel to the xy-plane.
We are interested in the possible topological type of S when we assume that
S is negatively curved. In particular, we are concerned with surfaces of finite
topological type.

Definition 2.1. A complete regular surface M is of finite topological type if
M ∼= Σg − {p1, . . . , pn}, where Σg is the compact orientable surface of genus g,
a sphere with g handles attached.

The points p1, . . . , pn are the ends of S.We can then define the Euler char-
acteristic χ for any surface of finite topological type,

Definition 2.2.
χ(M) = 2− 2g − n

Note that if a surface is negatively curved, then it must have at least one
end, as otherwise the surface is compact, and thus contains a point of positive
curvature. All known examples of negatively curved slab surfaces are homeo-
morphic to a plane or an annulus, i.e. they have either one or two ends and no
genus. If we do not restrict ourselves to a slab, then a result due to Connell and
Ullman[CU10] states that all finite topological types with at least one end are
possible for negatively curved surfaces. Their constructions are done by joining
together hyperboloids. We will show that an analagous construction inside of a
slab is impossible due to the presence of inflection points on planar slices of the
surface.
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It should be noted as well that examples are known of slab surfaces of non-
positive curvature (K ≤ 0) with any genus and with one end. These are due to
Chan and Treibergs[CT01].

As just one example of the difference between negative and nonpositive cur-
vature, however, we have the following proposition.

Proposition 2.3. A negatively curved slab surface S cannot contact its bound-
ing planes.

Proof. At any such point of contact, S lies to one side of a plane it touches, and
so must have nonnegative curvature at that point.

3 Topological Restrictions

Let S be a complete, negatively curved surface of finite topological type, so that
S ∼= Σg − {p1, . . . , pn}.We will formulate two restrictions on the topology of S.
The first is based on the fields of asymptotic lines on S. At each point p in S,
the differential of the Gauss map gives a self-adjoint linear map,

dNp : Tp(S)→ TN(p)(S2)

Since Tp(S) = TN(p)(S2), we may regard this as a linear map from Tp(S) to
itself. For v ∈ Tp(S), we may then define a quadratic form,

IIp(v) = 〈v, dNp(v)〉

This is the second fundamental form of S at p. Since det(dNp) < 0, there
will be two linear subspaces in Tp(S) on which IIp(v) = 0. We may choose
one of these two subspaces at each point p in such a way that the assignment
is continuous. The resulting association of a linear subspace of Tp(S) to each
point p ∈ S is an asymptotic line field on S.

We note other properties of IIp that will be used later. There are two other
distinguished subspaces of Tp(S), given by the eigenvectors of the second funda-
mental form. These subspaces will be orthogonal, and are called the principal
curvature directions at p. The principal curvature directions correspond to the
maximal and minimal values of IIp on the unit circle in Tp(S). These values
are the eigenvalues κ1 and κ2 of dNp. Note that,

K = det(dNp) = κ1κ2

If K < 0, the eigenvalues thus have opposite signs.
Secondly, an equivalent definition of IIp is given as follows: Take any parametrized

curve α : (−ε, ε)→ S with α(0) = p, α′(0) = v. Then, IIp is the normal curva-
ture of the curve α at p,

IIp(v) = 〈N(p), α′′(0)〉
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Observe that this only depends on the point p and v, by equivalence with
the previous definition of IIp. We will be particularly interested in the case
where α is the curve resulting from slicing S by a plane.

Returning to the asymptotic line fields, in a neighborhood of each of its ends,
S is homeomorphic to a punctured disk. Consider a positively oriented closed
curve γ : [0, l]→ S in this punctured disk which wraps once about the puncture.
Let θ(s) be the positively oriented angle that the linear subspace at γ(s) makes
with that at γ(0). ∫ l

0

dθ

ds
ds = πI

for some integer I, since the linear subspace at γ(0) is the same as that at
γ(l). I is the index of the asymptotic line field around the end.

Let Ij be the index of the end pj , j = 1, . . . , n. By the Poincare-Hopf
theorem for line fields, we have

2χ(Σg) =
n∑
j=1

Ij

Thus the index of the ends of S determines the topology of S.
The second restriction is due to Verner[Ver67]. We suppose that there exists

v ∈ S2 such that there is no sequence of points um ∈ S with um tending to
an end of S and N(um)→ ±v. Colloquially, the normal to S is bounded away
from the axis of v at infinity. Let P be the plane through the origin with normal
v. Let P (h) = P + hv for h ∈ (−∞,∞). Verner proved,

Theorem 3.1. P (h) ∩ S has a finite number of connected components.

The curves of P (h) ∩ S may be pulled back to Σg − {p1, . . . , pn} by the
homeomorphism. These curves may be closed in S, but those curves that are
not closed must converge to the ends pj . Then each end pj will have a finite
number of topological rays coming into it, each of which will be called an exit
to infinity.

The number of exits to infinity is also finite and is even. Furthermore, the
number of exits to infinity is the same for every value of h. Let m be half the
number of exits to infinity, and let q be the number of points on S at which the
normal to S is parallel to v. Then

Theorem 3.2. (Verner)
m− q = χ(S)

We hope to, under reasonable assumptions on the slab surface S, prove the
existence of such an axis v, in order to apply this formula to investigate the
topology of S.
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4 Plane Slices of Negatively Curved Surfaces

In this section we introduce new tools for analyzing planar cross sections of
negatively curved surfaces.

Let S be a negatively curved surface embedded in R3. Let P be a plane
through the origin with unit normal NP . Let Ph = P + hNP be the parallel
translation of P by a distance h. Ph slices S in a collection of curves with
isolated, nondegenerate critical points. Observe that, by continuity, sufficiently
small changes in h will preserve the sign of the curvature of the slice curves in
a neighborhood of any point on a slice curve where the curvature is nonzero.
Hence points of inflection where the sign of the curvature changes are preserved
under small changes in h. More generally, if the slice curve inflects across a line
segment, the endpoints of this line are stable, and we will also refer to these as
points of inflection. By this stability, then, an inflection point q ∈ Ph0 extends
to a family of inflection points qh ∈ Ph, h ∈ (h0 − ε, h0 + ε) which form a curve
in R3. Let θ(h) be the integral of the directed angle that the tangent line at qh
makes with the tangent line at qh0 .

Lemma 4.1. θ(h) is strictly monotone.

Proof. Near qh0 , S is a graph over the plane which contains NP and the tangent
line to the slice curve at qh0 . We can thus parametrize S locally as

(t, h, f(t, h))

for some function f . Setting h = const. gives a parametrization for the slice
curve near qh as a graph over the tangent line at qh0 . Let qh correspond to
its t value in the parametrization. Then ftt(qh, h) = 0. The condition that
S is negatively curved implies that fttfhh − f2

th < 0 everywhere. This gives
f2
th(qh, h) 6= 0. It follows that either fth(qh, h) > 0 or < 0 ∀ h. The slope of the

tangent line at qh relative to that at qh0 thus only strictly increases or strictly
decreases with increasing h.

Thus as h increases, each inflection point on the slice curves will rotate
monotonically either clockwise or counterclockwise according to an orientation
of the plane P . Since the slice curve has zero curvature at an inflection point,
the second fundamental form of S at that point will evaluate to 0 on the tangent
direction of the slice curve. Thus an asymptotic line field is tangent to the slice
curve at each inflection point. However, we do not know a priori which of the
two asymptotic line fields is tangent to each inflection point. Let us suppose we
have two neighboring inflection points p and q (not connected by a straight line
segment) on a slice curve with no critical points between them. Extend these
inflection points to curves ph, qh. Then,

Lemma 4.2. The slope of the slice curve at ph and qh rotates in the same
direction as h increases ⇔ the slice curve is tangent to the same asymptotic line
field at both p and q.
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Proof. In the proof of Lemma 4.1, note that fth will also be exclusively positive
or negative near the inflection point, by continuity. Thus, locally, the rotation of
the slice curve about the inflection point as h varies will be in the same direction
as the rotation of the tangent to the inflection point. Further, if we maintain
our orientation along the slice plane and mark the relative orientation of the
slice curve when writing the surface locally as a graph, one rotational direction
will always correspond to fth > 0, the other to fth < 0. It thus suffices to
observe what happens when the slopes change from rotating in one direction to
rotating in the other, that is, we must investigate points where fth = 0.

Note that if fth(t, h) = 0, then the coordinate axes are the principal cur-
vature directions, and so a principal curvature direction is tangent to the slice
curve at the point (t, h, f(t, h)). Further, noting that we are in the case of a
graph, observe that the eigenvectors of the second fundamental form in the basis
{(1, 0, ft), (0, 1, fh)} of the tangent space are given by,

(ftt − fhh −
√

(ftt − fhh)2 + 4f2
th, 2fth)

(2fth,−ftt + fhh +
√

(ftt − fhh)2 + 4f2
th)

Thus when fth changes sign, each eigenvector crosses a distinct coordinate
axis. The lemma then follows from the fact that between the two asymptotic
directions there is always a single principal curvature direction corresponding to
one of these eigenvectors. Thus if p and q have tangencies belonging to distinct
asymptotic line fields, this principal curvature direction must cross the (1, 0, ft)
coordinate axis an odd number of times as the curve is traversed from p to q, and
so ph and qh must have slopes rotating in opposite directions as h increases.

This lemma allows us to distinguish which inflection points belong to which
asymptotic line field on a curve. This lemma is particularly useful when we
know that two inflection points are rotating in opposing directions, as then we
know that there is a tangency to the slice curve of a principal curvature direction
in between the two points.

Now consider a point r on a slice curve in Ph0 with tangent line T . By
similar stability arguments as before, if r is not a point of zero curvature on the
slice curve, then r extends to a family of points rh ∈ Ph, h ∈ (h0 − ε, h0 + ε)
where each rh has the same tangent line T . Along this curve rh, S can be
written as the graph of a function f(t, h) over the plane containing T and NP .
The curve rh projects down onto a graph over the axis of NP in this plane;
let g be the corresponding function. Let us reparametrize the curve (g(h), h)
by arclength; let γ(s) = (x(s), y(s)) be the arclength parametrization. Set
w(s) = f(x(s), y(s)).

Lemma 4.3. w′′(s) has the same sign whenever w′′(s) 6= 0, and this sign is the
opposite of the sign of ftt(γ(s)).

Proof. Fix s. First suppose γ′(s) and T are not parallel. We then have two
independent directions in the plane of the graph, one given by T , the other
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given by γ′(s). The partial derivative of ft in the direction of γ′(s) at γ(s) is 0
since the tangent direction is fixed in that direction. Changing coordinates, we
then have by the negative curvature of S that ftt(γ(s))w′′(s) < 0.

Now suppose γ′(s) and T are parallel. The partial of ft in the direction of
γ′(s) is still 0, so we have that ftt(γ(s)) = 0. If this point is not a point of
inflection, we may continue the fixed tangent curve past this slice, and ftt will
keep the same sign, so w′′(s) must also keep the same sign. If this is a point of
inflection, then by Lemma 4.1, the slope of the tangent line at slice inflection
points must be strictly monotone with increasing h. Since the fixed tangent
direction traveled into the inflection point, the monotonicity of the slopes implies
that the tangent direction must locally disappear when h increases so that the
fixed tangent direction curve cannot be extended past this point.

Thus w′′(s) never changes sign. w′′(s) can only be 0 when γ′(s) and T are
parallel, which happens only at a measure zero set of points. Hence we have the
following corollary,

Corollary 4.4. Suppose that the curve γ(s) can be extended to s ∈ (−∞,∞).
Then w(s) is unbounded.

We hope to apply this corollary to show that certain arrangements of inflec-
tion points on the slice curves of a slab surface must lead to critical points. We
will consider slicing the surface by planes transverse to the slab plane. Then
the slice curves are always bounded between two parallel lines corresponding to
the intersection of the slice plane with the bounding planes.

In particular, if we follow a fixed tangent direction as in Lemma 4.3, and
suppose that this fixed tangent direction is not perpendicular to the bounding
parallel lines, we can consider the surface along this fixed tangent direction curve
to be locally a graph over the plane of the slab. Then, by the corollary, this
curve cannot be extended to be defined for all values of an arclength parameter,
since the function w(s) must be bounded in this case. Thus the fixed tangent
direction must eventually disappear. If it never encounters a point of inflection,
then it must eventually vanish at a critical point.

5 New Examples

5.1 Pulled Annulus

The surface,

y2 + x2 =
1

1− z2
, −1 < z < 1

is a known example of a negatively curved slab surface that is topologically
an annulus. It is a surface of revolution; we note that similar examples may
be obtained by rotating any plane curve which is bounded between two parallel
lines, does not intersect the z-axis, has nonzero curvature, and tends to its
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bounding lines as it tends to infinity, about the z-axis. These are the only
possibilities.

We may pull the circles of this annulus out to infinity to construct a new
negatively curved example,

x = y2 − 1
1− z2

, −1 < z < 1

This surface belongs to a more general class of slab surfaces. Let α(y) satisfy
α′′(y) > 0, and β(z) satisfy β′′(z) < 0, β(z)→ −∞ as z → ±1. Set,

x = α(y) + β(z) , −1 < z < 1

The Hessian of this graph over the yz-plane is α′′(y)β′′(z) < 0, so this surface
is negatively curved. As the z-slices move up through the surface, the convex
plane curve α comes in from infinity, stops, and exits back to infinity in the
direction from which it came.

One might hope to carry out a construction in analogy to Connell and Ull-
man, using the slab annulus and pulled annulus in place of the hyperboloid and
ripped hyperboloid. However, such a construction is impossible, even if we do
not glue along a plane. If we consider slices by parallel translations of the yz-
plane, as the plane moves past the core of the annulus (or pulled annulus) the
inflection points on the slice have slopes flattening to horizontal. However, if
we glue another annulus onto this, the slopes of the inflection points must stop
flattening out and rotate back in the opposite direction, contradicting Lemma
4.1.

5.2 Parabolic Helicoid

We first construct a negatively curved variation of the helicoid, using a rotating
parabola instead of a line. We let z be the height parameter, and we let t
parametrize the parabola. The equation is then,

ψ(t, z) =
{
t cos(z)− t2 sin(z), t2 cos(z) + t sin(z), z

}
In order to check the sign of the curvature, it suffices to check that the

expression,

K̃ = 〈ψtt, ψt ∧ ψz〉〈ψzz, ψt ∧ ψz〉 − 〈ψtz, ψt ∧ ψz〉2

is always negative. A computation gives,

K̃ = −16t4 − 6t2 − 1

which is easily checked to be negative for all t.
We now attempt to fit this parabolic helicoid into a slab. We replace z

by arctan z so that the surface only reaches a finite height in each direction,
and translate the basepoint of the parabola by (z, 0) so it does not contact the
bounding planes of the slab as z → ±∞. The result is the parametrization,
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ψ̄(t, z) =
{
− t2z√

z2 + 1
+

t√
z2 + 1

+ z,
t2√
z2 + 1

+
tz√
z2 + 1

, arctan(z)
}

where the trigonometric functions have become algebraic. K̃ is then,

−16t4 + 6t2 + 8tz
√
z2 + 1 + 4z2

√
z2 + 1 + 1

(z2 + 1)4

The sign of the curvature is determined by the sign of the numerator. As
(t, z)→ ±∞, the t4 term dominates, so the numerator is negative outside some
compact ball about the origin. Another computation yields that the gradient of
the numerator vanishes only at t = 0, z = 0, where the numerator has value −1.
It follows that the numerator is always negative, and so the surface is negatively
curved.

It is possible to add more turns to the surface inside a slab by replacing
the argument of sin and cos by n arctan z instead of arctan z, for n ∈ N. The
equation to determine the sign of the curvature will again be algebraic, but of
increasingly higher degree as n increases, making verification of the negative
curvature more difficult.

5.3 Classification of Ruled, Negatively Curved Slab Sur-
faces

The known examples of ruled slab surfaces are of the following form [CG08]:

y = xz +
zn

1− z2
, −1 < z < 1

We generalize these examples and completely classify negatively curved ruled
slab surfaces.

Theorem 5.1. If S is a connected, ruled, negatively curved surface that lies
minimally between the planes z = −1 and z = 1, then S admits a parametriza-
tion of the form

F (v, z) = (v cos a(z) + b(z), v sin a(z) + c(z), z) , −1 < z < 1

where a′(z) 6= 0.
Furthermore, S is intrinsically complete iff the lines lz(v) = v(cos a(z), sin a(z))+

(b(z), c(z)) are such that as z → ±1, there is no sequence of compact sets
Km ⊆ R2 with

⋂
Km a single point, such that a portion of the line lz always

lies in Km for z ∈ (εm, 1) (or z ∈ (−1,−εm), for z → −1) for εm → 1.
Conversely, if S is defined by such a parametrization, then S is intrinsically

complete and negatively curved.
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Proof. Suppose S is a connected, intrinsically complete, negatively curved, ruled
surface that lies between the planes z = −1 and z = 1, with these bounding
planes being minimal. Since S is ruled, there must be a line passing through
each point of S. This line must lie in a parallel translation of the xy-plane,
as otherwise it will escape the slab. A slice of S parallel to the xy-plane thus
consists of a collection of lines. But there can only be one line, since if there
were two, the two lines would have to meet as the slice moved upward with z,
by the connectedness of S. The intersection of two nonparallel lines is stable
under small perturbation, however, so the point at which the two lines meet
must be a degenerate critical point, i.e. a point of zero curvature. Thus if the
two lines meet, they must meet when they are parallel, but then the normal to
S along the line along which they meet must be in the z-direction, so that S
has zero curvature along this line.

The slice of S by a plane z = const. is thus a single line. This line can be
parametrized by

lz(v) = v(cos a(z), sin a(z)) + (b(z), c(z))

where a, b, c are differentiable functions in z. This extends immediately to a
full parametrization of the surface,

F (v, z) = (v cos a(z) + b(z), v sin a(z) + c(z), z) , −1 < z < 1

A straightfoward computation verifies that S is negatively curved iff a′ 6= 0.
It is clear that if such a sequence of compact sets Km exists, then S cannot

be intrinsically complete: any sequence in S with z-coordinate converging to ±1
and that remains within the sets Km is Cauchy in the metric of S, but cannot
converge in S since S cannot contact its bounding planes.

Conversely, if no such sequence Km exists, then S is intrinsically complete:
Let sn be a Cauchy sequence in S. Then sn is Cauchy in R3 as well, and thus
converges to a point s ∈ R3. If the z-coordinate of s is in (−1, 1), then the
sequence sn lies in the image of a compact portion of the parametrization F ,
and thus converges in S. Suppose the z-coordinate of s is 1 (the case for −1 is
analagous). Since sn is Cauchy in S, for a sequence εm → 1, we can find δm ∈ N
such that n, k ≥ δm ⇒ d(sn, sk) ≤ 1− εm. Consider the sets,

Km = {p ∈ S | d(p, sδm) ≤ 1− εm}

Projecting these sets into the xy-plane (which we identify with R2) gives a
sequence of compact sets whose intersection is a point. Such a sequence cannot
contain a portion of the line lz for every z sufficiently near ±1, so there must
be some sequence of lines lzm , defined for large enough m, such that lzm misses
the projection of Km. But then sn cannot be Cauchy, as when such a missed
line occurs, the points of the sequence before and after the missed line occurs in
the z-height must cross out of the compact set to reach the line in S, and then
back in, thus contradicting the distance bound defining the Km.
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Note that a useful sufficient condition for completeness is simply that for
any compact subset K of R2, there is a sequence of lines lzm, zm → ±1, such
that lzm misses K.

If we let a(z) increase from −∞ to ∞ (for example, a(z) = tan π
2 z), while

setting b(z) = 0, c(z) = z we obtain a surface which is extrinsically incomplete
but intrinsically complete, as infinitely many sheets of the helicoid approach the
bounding planes as z → ±1. Note as well that the Gauss map of this surface
must be dense on a hemisphere of S2 at infinity. Otherwise, by Theorem 3.1,
we would be able to find a plane which slices the surface in a finite number of
components, and for which each parallel translation of the plane has the same
number of exits to infinity. It is clear that any plane not parallel to the xy-
plane must slice the surface in an infinite number of components, as the slicing
plane eventually misses the translated core of the helicoid. If we consider slices
parallel to the xy-plane, then those slices with −1 < z < 1 have two exits to
infinity, since the slice is a line, while those with |z| ≥ 1 have no exits to infinity,
since the plane misses the surface.

If instead we let a(z) be bounded (for example, a(z) = rz, b(z) = 0, c(z) =
1

1−z2 ), we may obtain helicoidal slab surfaces with arbitrarily many twists that
are extrinsically complete.

6 Future Research

We hope to resolve the following questions with future research.

1. Can a slab surface have more than two ends, or have genus? Closely
related to this is,

2. Can a slab surface have a normal that is parallel to the z-direction? All of
the examples constructed so far have z-slices consisting of a single curve
at each height; there are no critical points as the height increases.

3. If we have a slab surface whose z-slices are a single curve, can this curve
have points where the sign of the curvature changes?

4. Can a slab surface be a graph over the plane of the slab?
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Figure 1: The slab annulus

Figure 2: The pulled annulus
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Figure 3: The slab parabolic helicoid

Figure 4: (a) n = 1 Figure 5: (b) n = 0
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Figure 6: A ruled slab surface with a(z) = 5π
4 z, b(z) = 0, c(z) = 1

1−z2
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Helicoidal Surfaces of Constant Mean

Curvature in R3, S3 and H3

Nick Edelen

Abstract

We develop a conservation law for constant mean curvature (CMC)
surfaces introduced by Korevaar, Kusner and Solomon [2], and provide
a converse, so as to characterize CMC surfaces by a conservation law.
We work with ‘twizzler’ construction, which applies a screw-motion to
some base curve. We show that, excluding cylinders, CMC helicoidal
surfaces can be completely determined by a first-order ODE of the base
curve. Further, we demonstrate that in R3 this condition is equivelent
to the treadmillsled characterization of helicoidal CMC surfaces given by
Perdomo [3].

1 Introduction

We study immersed, constant mean curvature (CMC) surfaces which have screw-
motion symmetry. Such surfaces can be described by the twizzler construction,
which applies a screw-motion to some base curve γ. Recently Perdomo [3]
characterized CMC twizzlers in R3 by giving, and geometrically interpreting, a
first-order ODE on γ, using what he called the ‘treadmillsled coordinates.’

In 1989 Korevaar, Kusner and Solomon [2] derived (later refined by Kusner
[1]) a ‘flux conservation’ law of any CMC surface Σ immersed in a simply-
connected spaceform. The law describes in essence a conserved quantity on any
loop on Σ in a given homology class. When calculating this quantity for certain
examples of surfaces, a stiking similarity with Perdomo’s treadmillsled condition
arises.

Here we will extend the result of [1] to the converse: given that a certain
quantity is conserved over every loop in some homology class of Σ, then neces-
sarily Σ has constant mean curvature. In each spaceform R3, S3 (the 3-sphere),
H3 (3-dimensional hyperbolic space), we use the conservation law to derive a
first-order ODE on γ for its twizzler to have constant mean curvature. Further,
by considering γ parameterized by the angle of normal (the support parame-
terization), we show that the treadmillsled condition of [3] is identical to the
conservation law on γ in R3.

This is helpful since the second-order ODE for constant mean curvature
is quite difficult to understand. In R3 [3] classified geometrically the curves
satisfying this first-order ODE, and we hope to find a similar analysis in S3 and
H3.
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1.1 Preliminaries

Consider an orientable surface Σ embedded in some 3-dimensional, simply-
connected spaceform N . Pick ν to be the smooth unit normal of Σ in N .
Let (g1, g2, g3) be any local, orthonormal frame on N , and likewise (f1, f2, ν) a
local, orthonormal adapted frame of Σ. For any vector field Y on Σ, we call
Y > = (Y · ν)ν and Y ⊥ = Y − Y > the normal and tangential components of Y .

Denote covariant differentiation in N by D. For any smooth vector field Y ,
the divergence in N is given by DIV(Y ) =

∑3
1(DgiY ) · gi, and the divergence

on Σ by div(Y ) = Df1Y · f1 + Df2 · f2. The gradient and Laplacian on Σ are
given by ∇Y = (DY )⊥ and ∆Y = div(∇Y ).

All 3-dimensional integrals are taken with respect to the volume element of
N ; integrals of 2-dimensions are taken w.r.t. the surface element.

The mean curvature vector of Σ is h = hν = ∆x, for x the inclusion map-
ping. The mean curvature h is, up to sign, the trace of the second fundamental
form.

Let (e1, · · · , en) denote the standard orthonormal frame of Rn. In R3, we will
often (implicitly) identify span(e1, e2) with C by ae1 + be2 ↔ a+ ib. Likewise,
we will identity R4 with C× C.

2 Conservation Law

We loosely follow [2]. Let Σ be a connected, orientable surface embedded in
a 3-dimensional, simply-connected spaceform N (i.e. effectively R3, S3 or H3).
Identify the Killing fields on N with the Lie algebra g of N ’s isometry group.
Observe that the Killing vectors span each tangent space on N .

Let Γ1 and Γ2 be two smooth, homologous 1-cycles in Σ bounding a compact
subset S ⊂ Σ. As H1(N) = 0, we can take K1 and K2 to be any smooth 2-
chains so that ∂Ki = −Γi. Then, since H2(N) = 0, there is a 3-chain U ⊂ N
with piecewise smooth boundary ∂U = S +K1 +K2.

We write ν for the unit normal on any 2-chain in N ; likewise, denote the
unit cornomal on any 1-chain in Σ by η.

Pick a Killing field Y ∈ g. It is easily found that the variation of volume |U |
along Y is

δY (|U |) =
∫
U

div(Y ) =
∫
K1−K2

Y · ν +
∫
S

Y · ν
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Similarly, the variation of area |S| along Y is known to be [4]:

δY (|S|) =
∫
S

div(Y ) =
∫
S

div(Y >) + div(Y ⊥)

=
∫
∂S

Y · η +
∫
S

Y · νdiv(ν)

=
∫

Γ1−Γ2

Y · η +
∫
S

Y · hν

having used Stoke’s theorem, and observing that div(ν) = trace(∇ν) = h.
Combining these two calculations, we obtain the first variation formula:

0 = δY (|S| −H|U |)

=
∫

Γ1−Γ2

Y · η −H
∫
K1−K2

Y · ν +
∫
S

(h−H)Y · ν (2.1)

The first equality is a direct consequence of Y being a Killing field.
Our main theorem arises naturally from relation (2.1).

Theorem 2.1. Using the above notation, if Σ has constant mean curvature H
then there is a linear function ω : H1(Σ)→ g∗ defined by

ω([Γ])(Y ) =
∮

Γ

Y · η −H
∫∫

K

Y · ν (2.2)

where K is any smooth 2-chain with ∂K = −Γ.
Conversely, if for any homology class [Γ] ∈ H1(Σ), ω([Γ]) as given by (2.2)

is well-defined, then Σ has constant mean curvature.

Proof. If h = H everywhere on Σ, then the first variation formula (2.1) reduces
to

0 =
∮

Γ1−Γ2

Y · η −H
∫∫

K1−K2

Y · ν

and as our choice of Γi is arbitrary, we can fix Γ1, and immediately observe that
for any Γ2,∮

Γ2

Y · η −H
∫∫

K2

Y · ν =
∮

Γ1

Y · η −H
∫∫

K1

Y · ν = constant

Conversely, suppose that ω is well-defined for the null homology class [0] ∈
H1(Σ). Then by the first variation formula,

0 =
∫∫

S

(h−H)Y · ν (2.3)

for any compact S ⊂ Σ with smooth boundary.
Suppose, towards a contradiction, there is a p ∈ Σ with h(p) 6= H; wlog

suppose h(p) > H, and hence h(p) > H in some open neighboord S1 of p. Then
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we can choose a Y so that ν(p) · Y (p) > 0, an ε > 0, and a neighborhood S2 of
p so that ν · Y > ε on Sp. Then for any sufficiently small ball B centered at p,
with B ∩ Σ ⊂ S1 ∩ S2,

0 =
∫∫

B∩Σ

(h−H)Y · ν > 0

This contradiction shows that h ≡ H on Σ.
More generally, if ω is well-defined for an arbitrary homology class [Γ] ∈

H1(Σ), we have that ω([Γ + Γ0]) = ω([Γ]) for any null-homologous Γ0. Thus,
by linearity of ω, ω([Γ0]) = 0, and we have already shown this forces Σ to have
constant mean curvature.

Remark 2.2. Embedding of Σ is not essential in the theorem above, which can
be readily generalized to immersed surfaces.

Remark. By considering 3-currents instead of 3-chains, the above theorem can
be readily generalized to immersed surfaces.

A further generalization can relax the conditions on N to allow non-trivial
first and second homologies. Given the inclusion map I : H1(Σ)→ H1(N), we
would then have for each smooth 1-cycle β inN a function ωβ : I−1([β])×g→ R.
ωβ would satisfy (2.2), except the 2-chain K would have boundary ∂K = −Γ−
β. To by-pass H2(N) 6= 0, we would consider the 3-current U ⊂ N to have
boundary ∂U = S + K1 + K2 + C, where C is some fixed 2-cycle homologous
to S +K1 +K2.

3 Twizzlers in R3, S3 and H3

In this section we introduce twizzlers to explicitly parameterize helicoidal sur-
faces in terms of a base curve. Using the ideas presented by theorem 2.1, we
then derive a first-order ODE on the base curve to characterize CMC twizzlers.

We will only lay out in full the proof of twizzlers in R3, as it readily gener-
alizes to S3 and H3.

3.1 Case: R3

Definition 3.1. Let γ : I → C be an immersed C2 curve on the interval I ⊂ R,
and m ∈ R+. Then the twizzler of γ with pitch m in R3 is the surface T
parameterized by

T(u, v) = eivγ(u) +mve3 (u, v) ∈ I × R

which we may also reference with the pair 〈γ,m〉.

T is always immersed, orientable, and connected. Holding u = u0 constant,
we call the curve T(u0, v) a helix of T . T has discrete translational symmetry
along the z-axis, described by the group G with action g ·r = r+2πme3. Denote
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the quotient surface T/G by T̂ , and observe that the helices of T are smooth
loops in T̂ .

Using the language of section 2, we would like to take Γ as a helix of T , and
N as R3/G. Complications arise, however, since helices are not null-homologous
in R3/G. We bypass this issue by using the z-axis as a ‘reference’ 1-cycle, homol-
ogous to the helices in R3/G, to construct 2-chains with a common boundary.

As suggested by our remark 2.2, we will explicitly prove that theorem 2.1
applies although T is not embedded.

Definition 3.2. The shaving of T̂ at u0 is the surface T [u0] parameterized by

T [u0](v, t) = teivγ(u0) +mve3 (v, t) ∈ [0, 2π]× [0, 1]

we can consider T [−] a bijection between I and shavings on T̂ .

Theorem 3.3. The twizzler T ≡ 〈γ, r〉 in R3 has constant mean curvature iff
there are constants H and C so that

C =
2π
√
g
mγ′ · iγ −Hπ|γ|2 (3.1)

where
√
g =

√
(Tu ·Tu)(Tv ·Tv)− (Tu ·Tv)2 is the are density on T .

Further, if T is not a cylinder, H is the mean curvature of T .

Proof. Take Y = e3, generating translation along the z-axis; Y then descends
to R3/G. Assume T has constant mean curvature H, and pick an interval J ⊂ I
so that S = T(J × [0, 2π]) is embedded. For i = 1, 2, let Γi ⊂ S be the helix
at any point ui ∈ J , and Ki ≡ T [ui]. Then K1 + K2 + S bounds a compact
volume in R3/G, and the first variation formula (2.1) holds. As in the proof of
theorem 2.1, we deduce the existence of a constant C so that, for any shaving
T [u], u ∈ J ,

C =
∮
∂T [u]

Y · η −H
∫∫
T [u]

Y · ν (3.2)

Note that if T is a cylinder,
∫∫
S
ν vanishes for any S ⊂ Σ bounded by

helices, so for any H we can find a C so that (3.2) holds. We then evaluate (3.2)
explicitly to give relation (3.1).

Using Gram-Schmidt, we calculate that

η · Y =
√
Tv · Tv√

(Tu · Tu)(Tv · Tv)− (Tu · Tv)2

(
Tu −

Tu · Tv
Tv · Tv

Tv

)
· η

= −
√
|γ|2 +m2

√
g

γ′ · iγ
|γ|2 +m2

m

so that ∮
∂S

e3 · η =
1
√
g

∫ 2π

0

− mγ′ · iγ
|γ|2 +m2

(|γ|2 +m2)dv

= − 2π
√
g
mγ′ · iγ
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.
On the shaving,

νdS = Sv ∧ St = iγeiv − t|γ|2e3

Note order of cross product: we must be consistent with the requirement ∂K =
−Γ. The second integral becomes∫∫

S

e3 · ν = −
∫ 2π

0

∫ 1

0

t|γ|2dtdv = −π|γ|2

For each point u we can find a neighborhood u ∈ Ju ⊂ J so that T(Ju ×
[0, 2π]) is embedded, and hence a constant Cu satisfying (3.1) on T(Ju× [0, 2π]).
By compactness, any closed interval [a, b] ⊂ I is covered by finitely many Ju,
implying that Ca = Cb. We deduce that C = Ca = Cb satisfies (3.1) everywhere
on T .

Conversely, given that (3.1) – and hence the conservation formula (2.2) –
holds for every shaving, the first variation formula (2.1) gives

0 =
∫∫

T(J×[0,2π])

(h−H)Y · ν

= 2π
∫
γ(J)

(h−H)Y · ν
√
|γ|2 +m2 (3.3)

whenever J ⊂ I is sufficiently small for T(J × [0, 2π]) to be embedded.
The subet I∗ ⊂ I defined by Y · ν 6= 0 is open in I. Suppose h(p) 6= H

at some point p ∈ I∗, then there is a ball Bε 3 p in I∗ on which h −H has a
fixed sign. But likewise Y · ν 6= 0 in Bε, so the integral (3.3) cannot vanish, a
contradiction. It follows that h ≡ H on I∗.

If I∗ is also dense in I, then h = H everywhere. If I∗ is not dense, there is
a maximal interval I0 ⊂ I − I∗ on which Y · ν = 0. Then necessarily, γ′⊥γ on
I0, and hence T(I0 × [0, 2π]) is a segment of a cylinder having some constant
mean curvature H0.

If I0 = I then T is entirely a cylinder, with mean curvature H0. Otherwise
there is a sequence of points in I∗ approaching an end-point of I0, implying by
continuity of h that H = H0.

3.2 Case: S3

Embed S3 in R4 by equipping the submanifold {x ∈ R4|x · x = 1} with the
induced metric.

Definition 3.4. Let (γ, f) : I → C×R ⊂ S3 be a curve on the interval I ⊂ R, so
that |γ|2 +f2 = 1. Pick an m ∈ R+. Define the twizzler T : I×R→ C×C ∼= R4

in S3 to be the surface parameterized by

T(u, v) = (eivγ(u), eimvf(u))
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Definition 3.5. For a twizzler T in S3, define the shaving at u0 ∈ I to be the
surface parameterized by

T [u0](v, t) = (eiv
γ(u0)
|γ(u0)|

sin t, eimv cos t) (v, t) ∈ [0, 2π]× [0, cos−1 f(u0)]

Theorem 3.6. The twizzler T in S3 has constant mean curvature iff there are
constants H and C so that, for all values of γ

C =
2π
√
g
mf2(γ′ · iγ)−Hπ|γ|2 (3.4)

Further, if T is not a torus, H is the mean curvature of T .

Proof. Pick Y(z, w) = (0, iw). Then the proof is precisely the same as in R3,
only considering the S3 equivelent of the cylinder to be the torus. Torii in S3 are
defined by the parameterization T (u, v) = (cos eiu, sin teiv), for some constant
ξ ∈ R. All S3 torii have constant mean curvature, as every point T (u, v) can be
mapped to T (0, 0) by ambient isometries.

3.3 Case: H3

We work with the Lorentz model of H3, as follows. Define the quadratic form
Q = diag(−1,−1,−1, 1). Then H3 ∼= {x ∈ R4| < x,x >= 1} with inner product
< x,y >= x>Qy. Further, for some non-zero real m, define the mapping
Bm : R→ SO(1, 1) by

Bm(v) =
(

coshmv sinhmv
sinhmv coshmv

)
Definition 3.7. Let (γ, f) : I → C × R be a curve on the interval I ⊂ R, so
that f2−|γ|2 = 1. Pick m ∈ R+ . Define the twizzler T : I× [−∞,∞]→ C×C
in H3 by the parameterization

T(u, v) = (eivγ(u), Bm(v)if(u))

Define a cylinder in hyperbolic space to be the twizzler of (γ(u), f(u)) =
(aeiu, b), for a, b ∈ R satisfying b2 − a2 = 1.

Definition 3.8. For a twizzler T in H3, define the shaving at u0 ∈ I to be the
surface S parameterized by

T [u0](v, t) = (eiv
γ(u0)
|γ(u0)|

sinh t, Bm(v)i cosh t) (v, t) ∈ [0, 2π]×[0, cosh−1 f(u0)]

Theorem 3.9. The twizzler T in H3 has constant mean curvature iff there are
constants H and C so that, for all values of γ

C =
2π
√
g
mf2 < γ′, iγ > +Hπ|γ|2 (3.5)

where g =< Tu,Tu >< Tv,Tv > + < Tu,Tv >
2.

Further, if T is not a cylinder, then H is the mean curvature of T .
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Proof. Take Y(z, w) = (0,
(

0 1
1 0

)
w). The proof now follows as in the R3

case.

4 Perdomo’s Characterization

An alternate characterization of helicoidal, constant mean curvature surfaces in
R3 is given by Perdomo [3]. A first integral for the second-order constant mean
curvature ODE is interpreted by a kinetic condition called the treadmillsled.
We shall use a special parameterization (by angle of normal) to better relate his
condition with our conservation law.

4.1 The treadmillsled

Intuitively, the treadmillsled is a variation of a roulette – imagine rolling a curve
along a line, while simultaneously moving the line in the opposite direction, so
that the curve’s point of contact stays in one place. By tracing out the path
of a point fixed relative to the curve, one obtains the treadmillsled. We shall
consider a slight generalization, allowing for any proportion ` of movement of
the line: when ` = 0, the line doesn’t move, and we have a roulette; when ` = 1,
the line matches the curve’s speed, yielding the treadmillsled.

Definition 4.1. The `-treadmill of a C2 curve γ : I → C is defined by σ`[γ] =
(1− l)s− 1

vγ
′γ̄, where s is the arc-length of γ, and v the speed.

By construction, σ` is independent of parameterization of γ. We write τ for
Perdomo’s treadmillsled, which is the same as our σ1.
Remark. Observe that σ satisfies

1
v
σ′ = ik(1− `)s− (`+ ikσ)

Proposition 4.2. A curve (x, y) : I → C is the `-treadmill of a curve γ iff it
satisfies the differential equations

1
s′
x′ = −`+ ky

1
s′
y′ = (1− `)ks− kx

(4.1)

with s : I → R+ is strictly increasing, and k : I → R.
Further, up to rotations, σ` maps C2 curves injectively to C1 curves.

Proof. Given γ, verifying (4.1) if (x, y) = σ`[γ] is a simple calculation. k is then
the curvature of γ, and s the arc-length.

Conversely, given equation (4.1), then by the fundamental theorem of curves,
there is a planar curve γ(t) having curvature k and arc-length s. The further
condition that σ`[γ](0) = (x, y)(0) fixes the orientation of γ with respect to
the origin, i.e. up to rotation. The curve γ is well-defined in the sense that, if
(x1, y1) = (x, y)◦f is a reparameterization of (x, y), then σ`[γ◦f ] = (x1, y1).
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Observe that shifting the ‘starting position’ of γ will effectively translate
σ`[γ]. Formally, if I = (a, b] ∪ (b, c), then σ`[γ]|(b,c) = (1 − `)s(b) + σ`[γ|(b,c)].
This is true except for the special case τ (i.e. ` = 1); since no s term is present,
τ is determined without the ambiguity of ‘starting position’. Further, τ [γ](p)
is determined by only γ(p) and γ′(p). This fact, and that τ is continuous,
immediately gives the following lemma.

Lemma 4.3. Given a smooth curve γ : I → C, knowing the values of γ and γ′

on some dense subset of I is sufficient to completely determine τ [γ].

4.2 Support parameterization

Our key angle of attack in relating the ODE’s of [3] and the conservation law
lies in our choice of parameterization. We will parameterize in the (culmulative)
angle of normal, called the support parameterization. We shall lay out the
relavant machinery below.

Definition 4.4. A curve is strictly convex if the curvature never vanishes.

Lemma 4.5. Every strictly convex curve can be support-parameterized.

Proof. Consider a curve γ : I = (a, b) → C with curvature k and speed v.
Without loss of generality suppose k < 0 ∀t ∈ I. Let n be the normal of the
curve γ, and θ = arg(n) be the normal angle. Then n := i

vγ
′.

Define the culmulative normal angle by Θ : I → R by Θ(t) =
∫ t
a

dθ. Since
θ′ = −vk > 0, Θ is strictly increasing. Therefore there is a an inverse Θ−1 :
Θ(I)→ I.

There is a nice form for the support parameterization. Let θ be the normal
angle of γ. We can then write γ(θ) = (q+ir)eıθ, for some functions q, r : Θ(I)→
R.

So that θ is indeed the angle of the normal, we require that θ = arg(n) =
arg(iγ′), imposing the condition q′ = r. We have then γ = (q + iq′)eıθ, and
γ′′ = (q+q′′)ieiθ. As long as q+q′′ > 0, this is a valid param of γ, by the above
lemma. (Conversely, every q satisfying q + q′′ > 0 is the support function for
some convex curve.)

The function q : Θ(I)→ R is called the support function of γ. The advantage
in this choice of parameterization becomes clear from the following.

Proposition 4.6. If strictly convex curve γ has support function q, then

τ [γ] = −q′ − iq

Proof. From the definition of σ1 ≡ τ , and the above comments, we have

τ [γ](θ) = − 1
q + q′′

(q + q′′)ieiθ(q − iq′)e−iθ

= −q′ − iq
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4.3 Twizzlers of constant mean curvature

In the interest of focus, we will quote Perdomo’s theorem without proof, but
will provide a sketch of its origin.

Theorem 4.7. (Perdomo) The twizzler T ≡ 〈γ,m〉 has constant mean curva-
ture H iff: T is a cylinder of radius − 1

2H , or τ [γ] satisfies

H(x2 + y2)− 2my√
m2 + x2

= M (4.2)

for some constant M ≥ − 1
H .

Remark 4.8. The above theorem arises directly as a first-integral of the second-
order ODE condition for CMC twizzlers. Explicitly, suppose γ has a support
parameterization. Then express τ [γ] in terms of the support function q of γ,
and differentiate (4.2). We obtain

H

2m
(2q′q + 2q′′q′) =

−q′

(m2 + q′2)1/2
+

q′′q′q

(m2 + q′2)3/2

which, if q′ 6= 0 (i.e. T is not a cylinder), simplifies to the canonical expression
for mean curvature H of a twizzler, expressed in terms of a support function q:

H =
−m

v(m2 + q′2)3/2
(m2 + q′2 − qq′′)

4.4 Equivalence

An equivelance can be directly established between the two treadmillsled and
conservation law characterizations. This equivalence is clear if T is the helicoid,
as both relations (3.1) and (4.2) reduce to 0. Otherwise we need the following
lemma.

Lemma 4.9. An xy-slice of a CMC twizzler contains a line segment iff it is a
line.

Proof. Immediate from the fact the only ruled, non-planar CMC surface is the
helicoid, and the well-known property that CMC surfaces are real analytic.

Then if T is not a helicoid, using lemmas 4.9 and 4.3, we can (piecewise)
support parameterize γ of the twizzler 〈γ,m〉, using support function q. The
conservation law (3.1), written in terms of q, is precisely equation (4.2):

C =
2π
√
g
mγ′ · iγ −Hπ|γ|2

=
2πmq(q + q′′)√

(q + q′′)2(q2 + q′2 +m2)− (q + q′′)2q2
−Hπ(q2 + q′2)

=
2π√

m2 + q′2
mq −Hπ(q2 + q′2)

= −πM
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Thus, our theorem 2.1 can be expressed in the language of Perdomo’s tread-
millsled, and conversely Perdomo’s theorem 4.7 can be rewritten as a conserva-
tion law.

Theorem 4.10. If C is the constant from theorem 2.1, and M the constant
from theorem 4.7, then C = −πM .
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The Poisson Integral Formula and

Representations of SU(1,1)

Ewain Gwynne

Abstract

We present a new proof of the Poisson integral formula for harmonic
functions using the methods of representation theory. In doing so, we ex-
hibit the irreducible subspaces and unitary structure of a representation of
the group SU(1, 1) of 2× 2 complex generalized special unitary matrices.
Our arguments illustrate a technique that can be used to prove similar
reproducing formulas in higher dimensions and for other classes of func-
tions. Our paper should be accessible to readers with minimal knowledge
of complex analysis.

Keywords: Poisson integral formula, harmonic functions, representations
of SU(1,1), fractional linear transformations, conformal transformations

1 Introduction

Recall that a function f of two variables x and y is harmonic if it is twice
continuously differentiable and satisfies ∂2f

∂x2 + ∂2f
∂y2 = 0. Such functions are ex-

actly the solutions to Laplace’s equation, ∆f = 0. This equation has numerous
physical applications. For various interpretations of the function f , it can rep-
resent Fick’s Law of diffusion, Fourier’s law of heat conduction, or Ohm’s law of
electrical conduction. Moreover, harmonic functions play a role in probabalistic
models of Brownian motion [2].

By identifying z = x + iy ∈ C with (x, y) ∈ R2, a function of a complex
variable can be viewed as a function of two real variables and can thus be
defined as harmonic in a natural manner. The Poisson integral formula is a
fundamental result that enables one to recover all of the values of a harmonic
function defined on a disk in the complex plane given only its values on the
boundary of the disk:

Theorem 1.1 (The Poisson Integral Formula). Let f be a complex-valued har-
monic function defined on a neighborhood of a closed disk D(p,R) of radius R
and center p in the complex plane. Then

f(reiθ + p) =
1

2π

∫ 2π

0

f(Reiφ + p)
R2 − r2

R2 + r2 − 2r cos(θ − φ)
dφ,

where reiθ is an element of the interior of D(p,R).

53



By translating and scaling the disk, it is no loss of generality to assume
that R = 1 and p = 0, in which case D(p,R) is the closed unit disk, which we
henceforth denote simply by D. In this case, the formula reduces to

f(reiθ) =
1

2π

∫ 2π

0

f(eiφ)
1− r2

1 + r2 − 2r cos(θ − φ)
dφ.

In this paper, we give a new proof of the Poisson integral formula. Our
method makes use of a representation (essentially a group action on a vector
space by linear transformations) of the group SU(1, 1) of 2 × 2 generalized
special unitary matrices with complex entries (isomorphic to SL(2,R)) over the
vector space of harmonic functions on D. The interested reader can find more
information on matrix Lie groups like SU(1, 1) and their representations in [1].
We show that as a representation, the space of harmonic functions is generated
by the identity function z 7→ z and its conjugate z 7→ z. We then use this
fact to reduce the proof of the Poisson integral formula to a few elementary
computations, in much the same way that one reduces the study of a linear
transformation to the study of its effect on a basis. Along the way, we describe
the irreducible subspaces and unitary structure of our representation, properties
which the reader may find of independent interest.

Our proof is inspired by a paper by Igor Frenkel and Matvei Libine [3]
which uses representation theory to develop analysis over the quaternions. In
particular, the authors make use of the theory of the conformal group SL(2,H),
the group of 2 × 2 matrices with quaternion entries and determinant 1. Many
of the parallels between complex and quaternionic analysis are made apparent
by restating results in complex analysis from the perspective of representations
of the complex analogue of SL(2,H), SL(2,C). This lends importance to the
question of which results in complex analysis can, in fact, be restated and proven
in terms of representations of SL(2,C) and its subgroups, including SU(1, 1),
for these are the results which can likely be extended to quaternionic analysis.

Although the classical proof of the Poisson integral formula is short and
elementary, our proof illustrates a technique which has been successfully used
to prove reproducing formulas for other kinds of functions (as is done in [3]
and [4]), and which is likely to be used again in the future. For example,
methods similar to ours might be used to prove higher dimensional analogues
of the Poisson formula in Rn, which are discussed in [11]. The matrix group
SO(n + 1, 1) acts on the vector space of harmonic functions on Rn and its
subgroup SO(n, 1) preserves the unit ball, as is explained in [6]. Plausibly,
SO(n, 1) group and its own subgroup SO(n) could play roles similar to those
that the groups SU(1, 1) and SO(2) play in our paper to engender a proof of
the higher dimensional formulas.1 As another example, in Section 5.4 of [3], the
authors conjecture that the Feynman diagrams, which describe the interactions
of subatomic particles, correspond to projections onto irreducible components

1To complete the analogy, we note that, as real Lie groups, SL(2,C)/{±1} is isomorphic
to the connected component of the identity of SO(3, 1) and SU(1, 1)/{±1} is isomorphic to
the connected component of the identity of SO(2, 1).
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of certain representations of the group SU(2, 2). It is quite possible that the
technique we illustrate here could be used to prove this conjecture.

We begin with a preliminary section in which we introduce the definitions
and concepts we shall use in the remainder of the paper and construct our rep-
resentation of SU(1, 1). This is followed by Section 3, which contains the proof
that certain subrepresentations of our representation are in fact irreducible. The
only fact from this section that is needed for the proof of the Poisson integral
formula is that z and z generate the entire vector space, but we give a more
detailed exposition of the invariant subspace structure of our representations
which the reader might find of independent interest. Section 4 consists of the
elementary computations needed to finish the proof of the Poisson integral for-
mula. To complete the description of our representations, we conclude with
Section 5, in which we define an SU(1, 1)-invariant inner product on a modified
version of our vector space.

2 Preliminaries

An action of a group G on a set S is a function from G × S → S, denoted by
(g, x) 7→ gx, such that for all x ∈ S and all g, h ∈ G, (gh)x = g(hx) and 1x = x,
where 1 is the identity in G.

Definition 2.1. A representation of a group G over a vector space V is a group
homomorphism ρ : G → GL(V ), where GL(V ) is the group of invertible linear
transformations from V to V .

In effect, a representation is an action of a group on a vector space by linear
transformations. Oftentimes, when there is no danger of ambiguity, one refers
to the vector space itself, rather than the function ρ, as a representation. A
group G that acts on a set U possesses a natural representation over a vector
space of functions defined on U given by composition on the right: for g ∈ G,
ρ(g) : f 7→ f ◦ g−1. The inverse of g is needed so that the representation
preserves group multiplication. Representations arise frequently in this context,
and it is this sort of representation that we study here. Let us first define our
group.

Definition 2.2. The group SU(1, 1) is the set of matrices

SU(1, 1) =
{
γ =

(
a b

b a

)
: a, b ∈ C, |a|2 − |b|2 = 1

}
,

with group multiplication given by matrix multiplication.

The group SU(1, 1) is isomorphic to the group SL(2,R) of 2 × 2 real matrices
with determinant 1.

We let CP 1 denote complex projective space, the set of pairs of complex
numbers which are not both equal to zero modulo the equivalence relation of
being scalar multiples of one another: (z, w) ∼ (z′, w′) provided z/w = z′/w′
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or w = w′ = 0. The group SL(2,C) of 2 × 2 invertible matrices with complex
entries and determinant 1, and hence also its subgroup SU(1, 1), acts on CP 1

by matrix-vector multiplication. If we associate with each z ∈ C the equivalence
class of the tuple (z, 1) ∈ CP 1 and with ∞ the equivalence class of the tuple
(1, 0) ∈ CP 1, we may think of this as an action of SL(2,C) on the extended

complex plane C ∪ {∞}. Under this action, γ =
(
a b
c d

)
∈ SL(2,C) sends

z ∈ C ∪ {∞} to az+b
cz+d .

A function from C ∪ {∞} to itself of the form z 7→ az+b
cz+d is called a Möbius

transformation. Thus, we see that each element of SL(2,C) defines a Möbius
transformation on C. We shall henceforth denote the Möbius transformation
associated with γ ∈ SL(2,C) by γ̃.

Of particular interest for our purposes are those matrices whose Möbius
transformations preserve the closed unit disk D. It is easily checked that for
each matrix γ ∈ SU(1, 1), the Möbius transformation

γ̃(z) =
az + b

cz + d

associated with γ maps each element z ∈ D to another element of D and does so
in a bijective manner2. Via these Möbius transformations, the group SU(1, 1)
acts on D.

We identify the circle group SO(2) with the subgroup of SU(1, 1) given by

SO(2) =
{
kθ =

(
eiθ 0
0 e−iθ

)
: θ ∈ [0, 2π)

}
.

The group SO(2) is thereby associated with Möbius transformations that merely
rotate D, i.e. those of the form k̃θ(z) = e2iθz.

We next define our vector space.

Definition 2.3. We denote by V the vector space of complex-valued functions
which are continuous on D and harmonic on the interior of D,

V =
{
f : D → C : f continuous,

∂2f

∂x2
(z) +

∂2f

∂y2
(z) = 0 ∀z ∈ int(D)

}
.

A complex valued function is harmonic if and only if both its real and imag-
inary parts are harmonic. Recall that for U an open subset of C, a complex
valued function f = u+ iv : U → C is called holomorphic if f is complex differ-
entiable. A complex-valued function f = u+ iv : U → C is anti-holomorphic if
its complex conjugate f = u− iv is holomorphic.

The partial derivatives of a holomorphic function satisfy the Cauchy-Riemann
Equations, ∂u

∂x = ∂v
∂y and ∂u

∂y = − ∂v
∂x . Given these equations, it follows from a

2In fact, these Möbius transformations are the only complex diffeomorphisms of D [7], but
we will not need this fact for our paper.
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simple computation of derivatives that every holomorphic function and every
anti-holomorphic function is harmonic. Thus, every function which is either
holomorphic or anti-holomorphic on the interior of D and continuous on its
boundary is an element of V.

Definition 2.4. We denote by Vh the subspace of V consisting of functions
which are holomorphic on int(D), by Vah the subspace of V consisting of func-
tions which are anti-homomorphic on int(D), and by Vc the subspace of V
consisting of constant functions.

Proposition 2.5. V = Vh + Vah.

Proof. Let f = u + iv : D → C be in V. We seek to show that f can be ex-
pressed as the sum of a holomorphic function and an anti-holomorphic function
in V. The real and imaginary parts of f , u and v, are harmonic on int(D) and
continuous on ∂D. So, there exist harmonic conjugates ũ and ṽ for u and v,
respectively, such that the functions g = u+ iũ and h = v+ iṽ are holomorphic
on the interior of D and continuous on its boundary [7]. Then u = 1

2 (g+ g) and
v = 1

2 (h+h), so f = 1
2 (g+ g) + i

2 (h+h) expresses f as the sum of holomorphic
and antiholomorphic functions f1 = 1

2 (g + ih) and f2 = 1
2 (g + ih).

This is almost, but not quite a direct sum: harmonic functions cannot be ex-
pressed as a sum of holomorphic and antiholomorphic functions in a unique way,
since constant functions are both holomorphic and anti-holomorphic: Vh∩Vah =
Vc.

It can be shown that every holomorphic function is analytic in the sense
of being equal to a convergent power series in any open disk contained in its
domain. Typically this fact is proven using the Cauchy integral formula [7], but
it can also be proven using elliptic operator theory [5]. As is always the case
for analytic functions, the series representation centered at any given point is
unique. From the fact that any holomorphic function can be expressed as a
convergent series in powers of z − p on any open disc with center p contained
in its domain, it follows immediately that any anti-holomorphic function can be
expressed as a convergent series in powers of z − p on any open disk with center
p contained in its domain.

Since the interior of D is an open disk centered at the origin, Proposition 2.5
implies that each function in f ∈ V can be expressed as f(z) =

∑∞
n=0 anz

n +∑∞
n=1 bnz

n on int(D). We thus have the following alternative characterization
of V:

V =

{
f : D → C : f continuous, f(z) =

∞∑
n=0

anz
n +

∞∑
n=1

bnz
n on int(D)

}
.

When there is no danger of ambiguity, we sometimes write f(z) =
∑∞
n=0 anz

n+∑∞
n=1 bnz

n for functions f ∈ V, keeping in mind that this series representation
is only valid on the interior of D.
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Define a norm on V by

‖f‖ = max{|f(z)| : z ∈ D}.

Like any norm, ‖.‖ induces a topology on V. Henceforth when we speak of
subspaces of V being closed or open, we mean with respect to this topology.

Recall that a sequence of functions {fn} on a common domain X converges
uniformly to a function f on a set S ⊂ X if for each ε > 0, there exists N ∈ N
such that for all n ≥ N , |fn(x) − f(x)| < ε for all x ∈ S. This is contrasted
with pointwise convergence, under which N may vary for different choices of
x. If the domain X is open, one often replaces uniform convergence on X with
the requirement that {fn} converge uniformly on any compact subset K of X,
as we do in Section 4. It is easily seen that convergence with respect to the
maximum norm we defined above is equivalent to uniform convergence on D.
In introductory analysis texts, it is proven that the integrals of a uniformly
convergent sequence of functions converge to the integral of the limit function
[9].

A metric space M is said to be complete if every Cauchy sequence in M
converges to an element of M , and a normed linear space is said to be a Banach
space if it is complete with respect to its norm. Once the Poisson formula is
established, it is easy to show that V is complete, and is hence a Banach space.
This fact is, of course, not needed in our proof.

We are now ready to define our representation.

Definition 2.6. Define a map ρ : SU(1, 1) → GL(V) by ρ(γ)f = (f ◦ γ̃−1),
where γ̃ is the Möbius transformation induced by γ by its action on D.

Before we prove that this is indeed a representation of SU(1, 1), we note
that for a representation over an infinite-dimensional vector space, most authors
require that the representation function ρ be continuous. There are a variety of
notions of continuity, discussed, for example, in [10]. It can be shown that our
representation satisfies this requirement under most standard definitions.

Proposition 2.7. ρ is a representation of SU(1, 1).

Proof. In light of the discussion after Definition 2.1, we need only show that
for all f ∈ V, for all γ ∈ SU(1, 1), ρ(γ)f ∈ V. The Möbius transformation
γ̃−1 associated with γ−1 is holomorphic on D, and the composition of holomor-
phic functions is holomorphic. Since the composition of continuous functions is
continuous, if f1 ∈ Vh, then ρ(γ)f1 ∈ Vh. If c : z 7→ z denotes the conjugate
function, then f2 ∈ Vah if and only if (c◦f2) is holomorhpic on int(D), in which
case ρ(γ)(c ◦ f2) = (c ◦ f2 ◦ γ̃−1) is holomorphic on int(D). So, (f2 ◦ γ̃−1) is
anti-holomorphic on int(D) and ρ(γ)f2 ∈ Vah. A function is in V if and only if
it is the sum of a function in Vh and a function in Vah. Therefore ρ(γ)f ∈ V for
all f ∈ V.

58



This representation of SU(1, 1) induces a representation of the subgroup SO(2)
of SU(1, 1) in the obvious way: by restricting ρ to SO(2).

The question of which subspaces of a vector space are preserved under the
action of a group is of great importance in representation theory. We devote
the remainder of this section and most of the next to exploring which subspaces
of V are preserved under the action of SU(1, 1).

Definition 2.8. Let ρ be a representation of a group G over a vector space
V . We say that a subspace W of V is G-invariant if ρ(g)w ∈ W for all g ∈ G
and all w ∈ W . A G-invariant subspace W of V is a subrepresentation if W is
closed, and is a proper subrepresentation if W is neither the zero subspace nor
all of V . A subrepresentation W of V is irreducible if W itself has no proper
subrepresentations.

Note here the requirement that a subrepresentation W be closed, in the topo-
logical sense. This is important in the context of infinite dimensional represen-
tations in that it implies that W must contain the limit of any convergent series
of its elements, as well as any finite linear combination of them. For example,
although the set of rational functions with no singularities on D is an SU(1, 1)-
invariant subspace of V, it is not closed because there exist sequences of rational
functions (even polynomials) which converge uniformly to elements of V which
are not themselves rational functions, such as the exponential function ez. So,
this subspace is not a subrepresentation.

Proposition 2.9. Vc, Vh, and Vah are SU(1, 1) subrepresentations of V.

Proof. We have established that these subspaces are SU(1, 1)-invariant in the
proof of Proposition 2.7. It remains to show that they are closed. Let {fn}
be a sequence in Vh which converges uniformly on D to f ∈ V. For each n,
express fn as a power series on int(D) as fn(z) =

∑∞
k=0 ankz

k. Write f(z) =∑∞
k=0 ckz

k +
∑∞
k=1 dkz

k for z ∈ int(D). To show that f ∈ Vh, we must show
that dm = 0 for all m = 1, 2, 3, ....

Fix r ∈ (0, 1). Since the series for f is valid on int(D) and r < 1, fr(z) =
f(rz) is equal to a power series on all of D, including its boundary. Because
power series converge uniformly on compact subsets of their domain [9], they
can be integrated term by term. For each positive integer m, we thus have

1

2π

Z 2π

0

fr(e
iθ)eimθdθ =

1

2π

∞X
k=0

ck

Z 2π

0

eimθ(reiθ)kdθ +
1

2π

∞X
k=1

dk

Z 2π

0

eimθ(reiθ)
k
dθ

=
1

2π

∞X
k=0

rkck

Z 2π

0

ei(m+k)θdθ +
1

2π

∞X
k=1

rkdk

Z 2π

0

ei(m−k)θdθ.

We evaluate the terms of this sum individually. For each non-negative integer
k, ∫ 2π

0

ei(m+k)θdθ = −i(m+ k)−1ei(m+k)θ

∣∣∣∣2π
0

= 0,
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since the period of ei(m+k)θ is an integer fraction of 2π. Similarly, for each
k 6= m,

∫ 2π

0
ei(m−k)θdθ = 0. Therefore

1
2π

∫ 2π

0

fr(eiθ)eimθdθ =
rmdm

2π

∫ 2π

0

ei(m−m)θdθ = rmdm.

Because {fn(rz)} −→ f(rz) uniformly as n −→∞ and integrals commute with
uniform limits, we can integrate the series for fn(rz) on ∂D term by term to
obtain

rmdm =
1

2π

∫ 2π

0

f(reiθ)eimθdθ = lim
n→∞

1
2π

∫ 2π

0

fn(reiθ)eimθdθ = 0,

by the same computations as above and the fact that the series for the holomor-
phic functions fn contain no zm term. Therefore dm = 0 for every m, so f ∈ Vh
and Vh is closed. By an identical argument, Vah is closed. As a consequence,
Vc = Vh∩Vah, as the intersection of closed sets, is also closed. Thus, these three
SU(1, 1)-invariant subspaces are indeed subrepresentations.

We end this section with a lemma about V which we shall need in Section 3.

Lemma 2.10. Let f ∈ V be expressed as a convergent series on int(D) as
f(z) =

∑∞
k=0 anz

k +
∑∞
m=1 bmz

m. Then there exists a sequence of polynomials
in zk and zm (finite linear combinations of powers of z and z) which converges
uniformly to f . We may choose this sequence so that for each k with ak = 0
and each m with bm = 0, the coefficients on zk and zm for the polynomials in
the sequence are zero.

Proof. For each r ∈ (0, 1), define fr(z) = f(rz). Since f is uniformly continuous
on D, fr converges uniformly to f on D as r −→ 1 from the left. As in the
proof of Proposition 2.9, the series representation of f is valid on the interior of
D, so since each r is less than 1, fr is equal to a series on all of D. Since power
series converge uniformly on compact subsets of their domain,

fr(z) = lim
n→∞

n∑
k=0

rkakz
k +

n∑
m=1

rmbmz
m ≡ lim

n→∞
gr,n(z),

and this limit is uniform on all of D. Each gr,n is a polynomial in zk and zm,
and for each k or m with ak or bm equal to zero, the coefficients on zk and zm

in the formula for gr,n are zero. Moreover, for a suitable choice of {rj} −→ 1−

and {nj} −→ ∞, a diagonal subsequence {grj ,nj} converges uniformly to f , as
desired.

In particular, this lemma, along with Proposition 2.9, implies that Vh =
span{1, z, z2, ...} and Vah = span{1, z, z2, ...}, where the bar denotes the closure.
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3 Invariant Subspaces

Our aim in this section is to show that Vh, Vah, and Vc are in fact the only
proper SU(1, 1) subrepresentations of V. In particular, this will imply that the
identity function and its conjugate generate V as a representation of SU(1, 1),
in the sense that the smallest subrepresentation of V which contains these two
functions is is all of V. This fact will play a key role in our proof of the Poisson
integral formula in Section 4. We shall first consider subspaces of V which are
invariant under the action of the subgroup SO(2) of SU(1, 1).

Lemma 3.1. Let α ∈ R and define an operator Aα : V → V by

Aα(f)(z) =
1
π

∫ π

0

eiαθρ(kθ)f(z)dθ =
1
π

∫ π

0

eiαθf(e−2iθz)dθ,

where each kθ ∈ SO(2). If W is a closed SO(2)-invariant subspace of V and
f ∈W , then Aα(f) ∈W .

Proof. It is clear that Aα(f) is continuous on D, and it follows from differenti-
ation under the integral sign that Aα(f) is harmonic on int(D), so Aα(f) is an
element of V. It remains to show that Aα(f) ∈ W . The integral expression for
Aα(f) is given by a limit of Riemann sums: for each z ∈ D,

Aα(f)(z) = lim
n→∞

1
n

n∑
j=1

eiαθjf(e−2iθjz),

where for each n, 0 ≤ θ1 < ... < θn ≤ π are test points in a partition of the
interval [0, π] which becomes arbitrarily fine as n −→ ∞. Since W is SO(2)-
invariant, the function

fn(z) ≡ 1
n

n∑
j=1

eiαθjf(e−2iθjz)

is in W for each n. By definition, {fn} −→ Aα(f) pointwise. We claim that
this convergence is uniform.

By the Arzelá-Ascoli Theorem [8], it suffices to show that {fn} is equicon-
tinuous3. That is, given ε > 0, there is a single δ > 0 such that for all n, for
all z, w ∈ D with |z − w| < δ, we have |fn(z) − fn(w)| < ε. The function f is
uniformly continuous, so we can choose δ > 0 such that |f(z) − f(w)| < ε for
all z, w ∈ D with |z − w| < δ. Since |e−2iθj | = 1 for all j, |z − w| < δ implies

3The Arzelá-Ascoli Theorem states that any bounded sequence of equicontinuous functions
on a compact set has a uniformly convergent subsequence. It is an immediate consequence (and
indeed is usually proven in the course of proving the theorem itself) that an equicontinuous
sequence which converges poitwise on a compact set also converges uniformly.
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that |e−2iθjz − e−2iθjw| < δ. For all n we thus have

|fn(z)− fn(w)| =

∣∣∣∣∣∣ 1n
n∑
j=1

eiαθjf(e−2iθjz)− 1
n

n∑
j=1

eiαθjf(e−2iθjw)

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

|f(e−2iθjz)− f(e−2iθjw)| < nε

n
= ε.

So, δ satisfies the ε requirement for equicontinuity of {fn}. Thus, {fn} −→
Aα(f) uniformly, so since W is closed, Aα(f) ∈W .

Lemma 3.2. Let W be a closed SO(2)-invariant subspace of V and let f ∈W ,
f(z) =

∑∞
k=0 akz

k +
∑∞
k=1 bkz

k on int(D). For each n, if an 6= 0 then zn ∈W ,
and if bn 6= 0 then zn ∈W .

Proof. We consider only zn. The case for its conjugate is identical. By the
Lemma 3.1, the function A2n(f) is in W . We claim that this function is a
constant multiple of zn. Indeed, let z ∈ int(D). Then since power series can be
integrated term by term,

A2n(f)(z) =
1
π

∞∑
k=0

∫ π

0

ake
2niθ(e−2iθz)kdθ +

1
π

∞∑
k=1

∫ π

0

bke
2niθ(e−2iθz)

k
dθ

=
1
π

∞∑
k=0

ak

∫ π

0

e2(n−k)iθdθzk +
1
π

∞∑
k=1

bk

∫ π

0

e2(n+k)idθzk.

As in the proof of Proposition 2.9, for each non-negative integer k 6= n,∫ π

0

e2(n−k)iθdθ = (2(n− k)i)−1e2(n−k)iθ|π0 = 0,

and if k > 0,
∫ π

0
e2(n+k)iθdθ = 0. Therefore

A2n(f)(z) =
an
π

∫ π

0

e2(n−n)iθdθzn = anz
n.

By continuity, A2n(f)(z) = anz
n on ∂D as well. So, since an 6= 0, W contains

zn.

We can use these two lemmas to completely characterize the closed SO(2)-
invariant subspaces of V.

Proposition 3.3. Let W be a closed SO(2)-invariant subspace of V. Then

W = span{zn1 , zm1 , zn2 , zm2 ...},

where the nj are the non-negative integers such that znj ∈ W , the mj are the
positive integers such that zmj ∈W , and the bar denotes the closure.
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V

Vh Vc Vah

z3 z2 z 1 z z2 z3

Figure 1: Subrepresentations of V.

Proof. Let f(z) =
∑∞
n=0 anz

n +
∑∞
m=1 bmz

m ∈ W be expressed as a power
series valid on int(D). By Lemma 3.2, for each n such that an 6= 0, zn ∈ W
and for each m such that bm 6= 0, zm ∈ W . By Lemma 2.10, f is equal to the
uniform limit of a sequence of polynomials in only those zn and zm that occur
with non-zero coefficients in the power series for f , i.e. only a subset of the znj
and the zmj . Thus, W = span{zn1 , zm1 , zn2 , zm2}, as required.

Before we prove the climactic theorem of this section, we take a moment
to think about our representation visually, and, perhaps, to reflect on why we
decided to study mathematics rather than, say, art. The subrepresentation
structure of our representation is shown in Figure 1. The subspaces Vh and Vah
of functions which are holomorphic or anti-holomorphic on the interior of D
are subrepresentations, and intersect in a third subrepresentation: the constant
functions, Vc. We are about to prove that V cannot be decomposed any further
than shown in the diagram. Note that our claim is only the quotient spaces
Vh/Vc and Vah/Vc, not Vh and Vah themselves, are irreducible4. Indeed, this is
the best that could be hoped for, given that the space of constant functions Vc
is an SU(1, 1)-invariant subspace of both Vh and Vah.

Theorem 3.4. The only proper SU(1, 1) subrepresentations of V are Vh, Vah,
and Vc. In particular, Vh/Vc and Vah/Vc are irreducible.

Proof. LetW be a proper SU(1, 1) subrepresentation of V, i.e. a closed SU(1, 1)-
invariant subspace not equal to V or {0}. Assume that W does not consist solely
of constant functions. Since W is invariant under the action of SU(1, 1), W is
also invariant under the action of its subgroup SO(2). Because W contains a
non-constant function, Lemma 3.2 implies that W must contain either zn or zn

for some n > 0.
Suppose first that W contains zn. Because W is SU(1, 1)-invariant, for each

Möbius transformation γ̃(z) = az+b
bz+a

corresponding to an element of SU(1, 1),
W contains the function γ̃(z)n. Choose one such γ̃ with a and b non-zero. Since
γ̃(z)n is holomorphic on D, it equals its Taylor series about the origin. The
linear coefficient of this series is the derivative of γ̃(z)n evaluated at z = 0,

nγ̃(0)n−1γ̃′(0) = n

(
b

a

)n−1( 1
a2

)
=
bn−1

an+1 6= 0.

4Since Vc is SU(1, 1)-invariant, the representation ρ gives rise to a well-defined represen-
tation of SU(1, 1) on the quotient space V/Vc.
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Thus, by Lemma 3.2, the identity function z must be in W . Therefore, again
by invariance, W contains the function γ̃ itself. Using partial fractions and the
properties of geometric series, we find that for all z ∈ D,

γ̃(z) =
az + b

bz + a
=
b

a
+

z

a2

(
1

1 + (b/a)z

)
=
b

a
+

1
a2

∞∑
k=1

(−b/a)k−1zk.

In particular, for each non-negative integer k, the coefficient on zk in this series
is non-zero. Thus, again by Lemma 3.2, W contains zk for every non-negative
integer k. Since W is closed, the comment following Lemma 2.10 implies that
W must contain all of Vh. This same argument works for a subspace of Vh that
contains a non-constant function. Hence, Vh/Vc is irreducible.

By an identical argument, if zn ∈ W for some n, then W contains z, and
hence zk for all k. Therefore Vah ⊂ W and Vah/V is irreducible. Likewise, if
W contains both zn and zm for some m and n, then W contains both Vh and
Vah, and since V = Vh +Vah, W is all of V, contrary to the assumption that W
is proper. We are thus left with only two possibilities: W must be either Vh or
Vah. This completes the proof.

Let W be a closed SU(1, 1)-invariant subspace of V which contains h and h.
Theorem 3.4 implies that W must be all of V. In other words,

Corollary 3.5. The identity function h : z 7→ z and its conjugate h : z 7→ z
generate V as a representation of SU(1, 1).

In particular, each f ∈ V must be the uniform limit of a sequence of finite linear
combinations of the images of h and h under the action of elements of SU(1, 1).

4 The Poisson Integral Formula

Having established the necessary representation theoretic background for our
proof of the Poisson integral formula (Theorem 1.1 in the introduction), we are
almost ready to prove the formula itself. We start with a definition.

Definition 4.1. Let ρ be a representation of a group G over a vector space V .
An operator T on V is G-equivariant or G-invariant if ρ(g)T (v) = T (ρ(g)v) for
all g ∈ G and all v ∈ V .

The proof we finish in this section is based on the following general result:

Proposition 4.2. Let ρ be a representation of a group G over a topological
vector space V . Suppose that the set S ⊂ V generates V as a representation of
V (in the terminology given at the beginning of Section 3). Then a continuous,
linear G-equivariant operator T on V is completely determined by its values on
S.
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Proof. Since S generates V , any v ∈ V can be expressed as v = limn→∞ vn,
where each vn =

∑Nn
k=1 ankρ(gnk)snk for scalars ank and for some snk ∈ S and

gnk ∈ G. Since T is continuous and linear, it commutes with limits and sums.
Thus, G-invariance gives

T (v) = lim
n→∞

T (vn) = lim
n→∞

Nn∑
k=1

ankρ(gnk)T (snk).

In particular, T (v) depends only on the values of T on the snk.

The idea of Proposition 4.1 is similar to that of a linear transformation
being completely determined by its values on a basis for a vector space, or a
group homomorphism being completely determined by the images of a set of
generators. In our case, we have already shown that our generating set consists
of the identity function h and its conjugate h (Corollary 3.5). We must now show
that the Poisson integral operator is in fact continuous and equivariant under the
action of the group SU(1, 1), then evaluate the operator at the identity function
and its conjugate. The necessary computations require no more analysis than
is typically encountered in introductory courses.

Before we define the Poisson integral operator, we need to define its target
space. The formula is only defined for z on the interior of the disk D, so properly
speaking it does not output an element of V, which consists of functions defined
on the boundary of D as well. However, since the integrand in the formula
is continuous, by the properties of the integral we do know that the output
function is continuous as well. We therefore define V ′ to be the vector space
of all continuous complex-valued functions defined on the interior of D, with
topology such that convergence in V ′ is equivalent to uniform convergence on
compact subsets of the interior ofD. We note that by restricting elements of V to
the interior of D, V can be viewed as a subspace of V ′. Since convergence in V is
uniform convergence, convergence in V implies convergence in V ′. Consequently,
this inclusion of V in V ′ is continuous.

Definition 4.3. Let P : V → V ′ be the Poisson integral operator,

P (f)(reiθ) =
1

2π

∫ 2π

0

f(eiφ)
1− r2

1 + r2 − 2r cos(θ − φ)
dφ

for z = reiθ ∈ int(D).

The term multiplied by f in the integrand is called the Poisson Kernel.
Routine computation shows that for z = reiθ, this term equals

1− r2

r2 + 1− 2r cos(θ − φ)
=

1− |z|2

|z − eiφ|2
=

eiφ

eiφ − z
+

e−iφ

e−iφ − z
− 1. (4.1)

Proposition 4.4. P is a continuous operator on V.
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Proof. Let K ⊂ int(D) be compact. Then since the Poisson kernel is continuous
on the compact set K × [0, 2π], there exists B > 0 such that for all reiθ ∈ K,
for all φ ∈ [0, 2π], ∣∣∣∣ 1− r2

1 + r2 − 2r cos(θ − φ)

∣∣∣∣ < B.

Now, suppose that {fn} −→ f in V. Then {fn − f} −→ 0 uniformly. So by the
properties of integration under uniform limits,

|P (fn)(reiθ)− P (f)(reiθ)| =
∣∣∣∣ 1
2π

∫ 2π

0

(fn(eiφ)− f(eiφ))
1− r2

1 + r2 − 2r cos(θ − φ)
dφ

∣∣∣∣
≤ B

2π

∫ 2π

0

∣∣fn(eiφ)− f(eiφ)
∣∣ dφ −→ 0.

Since the term tending to zero does not depend on reiθ ∈ K, this convergence
is uniform on all compact subsets K of D.

To show the SU(1, 1)-equivariance of P , we shall need two simple lemmas.

Lemma 4.5. The operator P is SO(2)-equivariant, i.e. if ψ ∈ [0, 2π) and
kψ ∈ SO(2), then for all f ∈ V, ρ(kψ)P (f) = P (ρ(kψ)f).

Proof. Writing z = reiθ ∈ int(D), we have

ρ(kψ)P (f)(reiθ) = P (f ◦ k̃−ψ)(reiθ)

=
1

2π

∫ 2π

0

f(ei(φ−2ψ))
1− r2

r2 + 1− 2r cos(θ − φ)
dφ.

Substituting σ = φ− 2ψ and dσ = dφ gives

1
2π

∫ 2π

0

f(ei(σ))
1− r2

r2 + 1− 2r cos(θ − 2ψ − σ)
dσ = P (f)(rei(θ−2ψ))

= P (ρ(kψ)f)(reiθ).

Lemma 4.6. Each γ ∈ SU(1, 1) can be decomposed as γ = ksγrkt, where

ks =
(
eis 0
0 e−is

)
, γr =

(
cosh(r) sinh(r)
sinh(r) cosh(r)

)
, and kt =

(
eit 0
0 e−it

)
for s, r, t ∈ R.

Proof. For a, b ∈ R, we may write

γ =
(

aeiψ beiθ

be−iθ ae−iψ

)
=
(
eis 0
0 e−is

)(
a b
b a

)(
eit 0
0 e−it

)
,

where s = ψ+θ
2 and t = ψ−θ

2 . Since det(γ) = a2 − b2 = 1, a = cosh(r) and
b = sinh(r) for some r ∈ R.
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Proposition 4.7. The operator P is SU(1, 1)-equivariant, i.e. if γ ∈ SU(1, 1),
then for all f ∈ V, P (ρ(γ)f) = ρ(γ)P (f).

Proof. It suffices to check this fact only for the generators of SU(1, 1). The
matrices shown to generate SU(1, 1) in Lemma 4.6 correspond to Möbius trans-
formations of the forms

k̃t(z) = e2itz and γ̃r(z) =
cosh(r)z + sinh(r)
sinh(r)z + cosh(r)

.

The verification that P (ρ(kt)f) = ρ(kt)P (f) for kt ∈ SO(2) was completed in
Lemma 4.5. Therefore we can restrict our attention to Möbius transformations
of the latter form. Moreover, by rotating the unit disk so that the point in
question lies on the real axis, we may assume that z ∈ int(D) ∩ R. Applying
equation (1), for all f ∈ V, we have

ρ(γ−1
r )(P (ρ(γr)f)(z) = P (f ◦ γ̃−1

r )(γ̃r(z))

=
1

2π

∫ 2π

0

f(γ̃−1
r (eiφ))

1− |γ̃r(z)|2

|γ̃r(z)− eiφ|2
dφ

=
1

2π

∫ 2π

0

f(γ̃−1
r (eiφ))

1− γ̃r(z)2

|γ̃r(z)− eiφ|2
dφ,

where the last equality follows from the fact that z is real. We must show that
this quantity equals P (f)(z). Let eiσ = γ̃−1

r (eiφ) = cosh(r)eiφ−sinh(r)
− sinh(r)eiφ+cosh(r)

. Then
eiφ = γ̃r(eiσ). Differentiating gives

ieiσdσ =
ieiφdφ

(− sinh(r)eiφ + cosh(r))2
=

iγ̃r(eiσ)dφ
(− sinh(r)γ̃r(eiσ) + cosh(r))2

.

Plugging in the expression for γr, solving for dφ and simplifying yields

dφ = eiσ
(

cosh(r)eiσ + sinh(r)
sinh(r)eiσ + cosh(r)

)−1

×
(
− sinh(r)

(
cosh(r)eiσ + sinh(r)
sinh(r)eiσ + cosh(r)

)
+ cosh(r)

)2

dσ

=
(
sinh(r)2 + cosh(r)2 + sinh(r) cosh(r)(eiσ + e−iσ)

)−1
dσ.

Substitute eiσ = γ̃−1
r (eiφ) and dφ = ((sinh(r)2 +cosh(r)2 +sinh(r) cosh(r)(eiσ+

e−iσ))−1dσ. Since γr(1) = 1, the limits of integration remain unchanged and
we obtain

1
2π

∫ 2π

0

f(eiσ)
(

1− γ̃r(z)2

|γ̃r(z)− γ̃r(eiσ)|2

)
×
(
sinh(r)2 + cosh(r)2 + sinh(r) cosh(r)(eiσ + e−iσ)

)−1
dσ.
(4.2)
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For the numerator of the middle term, we have

1− γ̃r(z)2 = 1−
(

cosh(r)z + sinh(r)
sinh(r)z + cosh(r)

)2

=
(sinh(r)z + cosh(r))2 − (cosh(r)z + sinh(r))2

(sinh(r)z + cosh(r))2

=
1− z2

(sinh(r)z + cosh(r))2
.

The denominator equals

|γ̃r(z)− γ̃r(eiσ)|2 =

˛̨̨̨„
cosh(r)z + sinh(r)

sinh(r)z + cosh(r)

«
−
„

cosh(r)eiσ + sinh(r)

sinh(r)eiσ + cosh(r)

«˛̨̨̨2
=

˛̨̨̨
(cosh(r)z + sinh(r))(sinh(r)eiσ + cosh(r))− (cosh(r)eiσ + sinh(r))(sinh(r)z + cosh(r))

(sinh(r)z + cosh(r))(sinh(r)eiσ + cosh(r))

˛̨̨̨2
=

|z − eiσ|2

(sinh(r)z + cosh(r))2 (sinh(r)2 + cosh(r)2 + sinh(r) cosh(r)(eiσ + e−iσ))
,

where we can drop the absolute value on the denominator since z is real.
Substituting into equation (2) and cancelling terms gives

(γ̃r ◦ P (f) ◦ γ̃−1
r )(z) =

1
2π

∫ 2π

0

f(eiσ)
1− z2

|z − eiσ|2
dσ = P (f)(z),

as required. We thus see that P is an SU(1, 1)-equivariant operator.

Proposition 4.8. Let h(z) = z be the identity function on D and let h(z) = z
be its conjugate. Then P (h) = h and P (h) = h.

Proof. By Lemma 4.5, P is invariant under rotations of D, so once again it
suffices to consider only the case where z is positive and real. Equation (1) and
partial fraction decomposition give

P (h)(z) =
1

2π

∫ 2π

0

eiφ
(

eiφ

eiφ − z
+

e−iφ

e−iφ − z
− 1
)
dφ

=
1

2π

∫ 2π

0

e2iφ

eiφ − z
+

1
e−iφ − z

− eiφdφ

=
1

2π

∫ 2π

0

z +
z2

eiφ − z
+

1
e−iφ − z

dφ

= z +
1

2π

∫ 2π

0

z2

eiφ − z
+

1
e−iφ − z

dφ.

To show that the remaining term of this integral equals 0, substitute u = eiφ

and du = ieiφdφ = iudφ. Letting a circled integral sign indicate integration
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once counter-clockwise around the unit circle, this gives

1
2π

∫ 2π

0

z2

eiφ − z
+

1
e−iφ − z

dφ =
1

2πi

∮
z2

u(u− z)
+

1
1− zu

du

=
1

2πi

∮
(1/z)
u− z

− (1/z)
u

+
1

1− zu
du

=
1

2πzi
(
log(eiφ − z)− log(eiφ)− log(1− zeiφ)

)∣∣∣∣2π
0

= 0,

since e0i = e2πi. Thus, the entire integral equals z, as desired.
For h, equation (1) again gives

P (h)(z) =
1

2π

∫ 2π

0

e−iφ
(

eiφ

eiφ − z
+

e−iφ

e−iφ − z
− 1
)
dφ.

Substitute σ = −φ and dσ = −dφ and use the periodicity of eiφ to obtain

P (h)(z) = − 1
2π

∫ 0

−2π

eiσ
(

e−iσ

e−iσ − z
+

eiσ

eiσ − z
− 1
)
dφ = P (h)(z) = z = z,

since z is assumed real.

We are now ready to prove the Poisson integral formula.

Proof of Theorem 1.1. We must show that for any function f ∈ V, P (f) = f
on int(D). But, for h the identity function and h̄ its conjugate, P (h) = h and
P (h) = h. Since h and h generate V as a representation of SU(1, 1) and P is
continuous, linear, and SU(1, 1)-equivariant, Proposition 4.1 implies that P (f)
does indeed equal f for all f ∈ V.

The astute reader will have noticed that we did not invoke the full force of
Theorem 3.4 in our proof. We used only the implication that h and h generate
all of V, rather than the stronger assertion, which we proved, that Vc, Vh and
Vah are the only proper subrepresentations of V. The stronger result was proven
to shed more light on the structure of our representations.

5 An SU(1,1)-Invariant Inner Product

Although it is not a necessary part of our proof of the Poisson integral formula,
for the sake of completeness of our description of our representations of SU(1, 1),
we end this paper by constructing an inner product which is invariant under
the action of SU(1, 1): that is, one satisfying 〈ρ(γ)f, ρ(γ)g〉 = 〈f, g〉 for all γ ∈
SU(1, 1). However, V itself cannot possess an SU(1, 1)-invariant inner product,
for if it did, the orthogonal complement of a subrepresentation would also be a
subrepresentation. But, as we proved in Section 3, the only subrepresentations of
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V are Vh, Vah and their intersection Vc. In particular, every subrepresentation
intersects the proper subrepresentation Vh non-trivially, so Vh cannot have a
closed SU(1, 1)-invariant orthogonal complement. Consequently, we must define
a slightly modified version of our vector space for use in this section.

Definition 5.1. We denote by Ṽ the vector space of complex-valued functions
f which are harmonic on some neighborhood Uf of the closed unit disk D ⊂ C
modulo the equivalence relation of differing by a constant:

Ṽ =
{
f : Uf → C : D ⊂ Uf ,

∂2f

∂x2
(z) +

∂2f

∂y2
(z) = 0 ∀z ∈ Uf

}
/{constant functions}.

For each γ ∈ SU(1, 1), ρ(γ) preserves the subspace of constant functions in V,
and the set of functions which are harmonic on a neighborhood of D is a subset
of V. Therefore our representation restricts to a well defined representation of
SU(1, 1) on Ṽ.

Define the degree operator from Ṽ to Ṽ by

deg(f)(x+ iy) =
(
x
∂f

∂x
(x+ iy) + y

∂f

∂y
(x+ iy)

)
.

Since the partial derivatives of a constant are zero, deg is well-defined on Ṽ.
Moreover, if pn is the equivalence class of z 7→ zn in Ṽ, for each n = 1, 2, 3, ...
we have

deg(pn)(x+ iy) = nx(x+ iy)n−1 + niy(x+ iy)n−1 = n(x+ iy)n = npn

and, similarly,
deg(pn)(x+ iy) = npn.

Proposition 5.2. Define an operator 〈., .〉 on Ṽ × Ṽ by

〈f, g〉 =
1

2π

∫ 2π

0

deg(f)(eiφ)g(eiφ)dφ.

Then 〈., .〉 is a hermitian inner product on Ṽ, and {p1, p1, p2, p2, ...} is orthogonal
with respect to 〈., .〉.

Proof. Linearity in the first argument and anti-linearity in the second are ob-
vious. To show that 〈., .〉 is an inner product, we must show that it is well
defined on Ṽ (i.e. adding a constant to one or the other input function doesn’t
change the operator’s value), and we must check positive definiteness and sym-
metry. Since any element of Ṽ can be written as a power series in zn and zn,
n = 1, 2, ..., valid on all of D, it suffices to verify these properties only for ele-
ments of {p1, p1, p2, p2, ...}. The relevant properties can then be generalized to
arbitrary elements of Ṽ using the fact that power series can be integrated term
by term.
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From the computations given after the definition of the degree operator, we
obtain that if f(z) = c is constant, then for any positive integer n,

〈pn, f〉 =
1

2π

∫ 2π

0

neniφcdφ = −iceniφ |2π0 = 0,

since the period of eiφ is an integer fraction of 2π. Similarly, 〈pn, f〉 = 0. Since
deg(f) = 0, 〈f, g〉 = 0 for any g ∈ Ṽ. Therefore 〈., .〉 is well defined on Ṽ: it does
not matter which representatives of the equivalence classes of functions which
differ by a constant we choose in computing the inner product.

Moreover, for any positive integers n and m,

〈pn, pm〉 =
1

2π

∫ 2π

0

neniφe−miφdφ =
n

2π

∫ 2π

0

ei(n−m)φdφ =

{
n if m = n;
0 if m 6= n.

Similar computations show that 〈pn, pm〉 = nδn,m and 〈pn, pm〉 = 〈pn, pm〉 = 0.
This implies that {p1, p1, p2, p2, ...} is orthogonal with respect to 〈., .〉, and that
〈., .〉 is both symmetric and positive definite on powers of z and z.

Thus, if f =
∑∞
n=1 anpn +

∑∞
n=1 bnpn and g(z) =

∑∞
n=1 cnpn +

∑∞
n=1 dnpn

are elements of Ṽ,

〈f, g〉 = 〈
∞∑
n=1

anpn,

∞∑
n=1

cnpn〉+ 〈
∞∑
n=1

anpn,

∞∑
n=1

dnpn〉

+ 〈
∞∑
n=1

bnpn,

∞∑
n=1

cnpn〉+ 〈
∞∑
n=1

bnpn,

∞∑
n=1

dnpn〉

=
∞∑
n=1

ancn〈pn, pn〉+
∞∑
n=1

bndn〈pn, pn〉

=
∞∑
n=1

nancn +
∞∑
n=1

nbndn = 〈g, f〉

and

〈f, f〉 =
∞∑
n=1

n|an|2 +
∞∑
n=1

n|bn|2 ≥ 0,

so 〈., .〉 is an inner product. The fact that {p1, p1, p2, p2, ...} is orthogonal was
established above.

Unlike V under the maximum norm, Ṽ is not complete with respect to the
norm induced by this inner product. However, Ṽ can be completed to a Hilbert
space, or a complete inner product space with Hilbert basis {p1, p1, p2, p2, ...}.

Proposition 5.3. The inner product 〈., .〉 is SU(1, 1)-invariant, i.e. for all
f, g ∈ Ṽ, for all γ ∈ SU(1, 1), 〈f, g〉 = 〈ρ(γ)f, ρ(γ)g〉.
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Proof. Let γ̃ = az+b
bz+a

be the Möbius transformation associated with γ ∈ SU(1, 1).

We must show that 〈f ◦ γ̃, g ◦ γ̃〉 = 〈f, g〉 for all f, g ∈ Ṽ. By linearity and term-
by-term integration of power series, it suffices to show this only for the cases
where f(z) = zn and f(z) = zn, n ∈ N. Define f(z) = zn. We first compute
deg(f ◦ γ̃). Writing z = x+ iy,

∂

∂x

(
a(x+ iy) + b

b(x+ iy) + a

)n
= n

(
a(x+ iy) + b

b(x+ iy) + a

)n−1( 1
(b(x+ iy) + a)2

)
and

∂

∂y

(
a(x+ iy) + b

b(x+ iy) + a

)n
= n

(
a(x+ iy) + b

b(x+ iy) + a

)n−1(
i

(b(x+ iy) + a)2

)
.

Thus,

deg(f ◦ γ̃)(z) = n

(
a(x+ iy) + b

b(x+ iy) + a

)n−1(
x

(b(x+ iy) + a)2
+

iy

(b(x+ iy) + a)2

)
=
nγ̃(z)n−1z

(bz + a)2
.

For all g ∈ Ṽ, we therefore have

〈f ◦ γ̃, g ◦ γ̃〉 =
1

2π

∫ 2π

0

nγ̃(eiφ)n−1

(
eiφ

(beiφ + a)2

)
g(γ̃(eiφ))dφ.

Let eiσ = γ̃(eiφ). Then eiσdσ =
(

eiφ

(beiφ+a)2

)
dφ, so substitution gives

〈f◦γ̃, g◦γ̃〉 =
1

2π

∫ 2π+ψ

ψ

n(eiσ)ng(eiσ)dσ =
1

2π

∫ 2π

0

deg(f)(eiσ)g(eiσ)dσ = 〈f, g〉,

where eiψ = γ̃(1) and the equivalence of the different limits of integration follows
because both correspond to integrating exactly once around the unit circle in
the same direction. A similar computation shows that 〈f ◦ γ̃, g ◦ γ̃〉 = 〈f, g〉 for
f(z) = zn, and we thus conclude that 〈f ◦ γ̃, g ◦ γ̃〉 = 〈f, g〉 for all f, g ∈ Ṽ.
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Properties and Applications of the Ising

Model

Rebecca McCarthy

Abstract

The Ising Model arises in the study of classical statistical mechanics.
Using this model, we can determine the macroscopic properties based on
its microscopic constituents. Through the use of Linear Algebra tech-
niques, the problem can be simplified for further analysis and application
to particle behavior in quantum mechanics. Using these techniques we
can look at the behavior of the system as the temperature goes to zero,
infinity, and a critical point in between. Additionally, we look at the quan-
tum particle interpretation at each of these temperatures and a possible
mapping among the three.

1 Background

The physicist Wilhelm Lenz developed the Ising model as a problem for his
student Ernest Ising. This model uses a configuration of particles with either a
positive or negative spin to describe a ferromagnetic system as a whole. Only
interactions between neighboring particles and the external magnetic field on
individual particles are considered. We assume periodic boundary conditions,
so that in a system of N particles, the N + 1 term is equivalent to the first
term, creating translational invariance within the model. The energy of each
configuration can be calculated as follows.

E(σ) = −J
N∑
i=1

σi σi+1 −H
N∑
i=1

σi (1.1)

We can use this information to calculate the probability that the system is in a
particular state.

P (σ) =
e−(

E(σ)
T k )

ZN
(1.2)

In these equation, T is the temperature of the system, k is Boltzmann’s constant,
J is the strength of the interaction between particles, and H is the strength of
the external magnetic field. The normalizing factor in the equation for the
Boltzman distribution (1), called the partition function and labeled as ZN , is
the central equation within the Ising model. ZN is the sum of all the Boltzman
factors, the numerator in (1), of all possible spin configurations. This partition
function is of interest because from it we can derive many different properties
of the system, such as free energy [1].
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2 The One-Dimensional Model

The one-dimensional Ising model consist of a string of N particles. The image
below shows a representation in terms of positive and negative spins for a chain
of length four.

+ +−+

There are two possible states for each particle, positive or negative, and there
are N particles. The result is 2N possible spin configurations for a given system.

ZN =
∑
σ

eK
PN
i=1 σi σi+1+h

PN
i=1 σi (2.1)

In equation (2) K = J
k T and h = H

k T , with J as the strength of the magnetic
interaction between neighboring particles and H the strength of the external
magnetic field. This model has been solved using transfer matrices. Define
V (σj , σj+1) to be the following.

V (σj , σj+1) = eK σj σj+1+ 1
2 (σj+σj+1) (2.2)

Using the fact that and exponent raised to a sum is equivalent to a product of
exponents, we can rewrite (2).

ZN =
∑
σ

N∏
j=1

V (σj , σj+1) (2.3)

Since there are only two possible values for each σj , there are only four possible
values for (3). We can place all of these values within a matrix, called the
transfer matrix. The resulting matrix is shown in (5).(

V (+,+) V (+,−)
V (−,+) V (−,−)

)
=
(
eK+h e−K

e−K eK−h

)
(2.4)

N multiplications of this matrix give all possible values for string of length
N + 1. The top left value of the resulting matrix is the partition function
over all strings starting with σj and ending with σj+1. Due to the assumption
the N + 1 term is the first term, only strings starting and ending with the
same value are valid. Thus, only the diagonal values are valid strings of length
N , making the diagonal of the resulting matrix the quantity we are interested
in. Additionally the transfer matrix can be diagonalized, allowing for further
simplification of the equation.

ZN = Trace
(
eK+h e−K

e−K eK−h

)
(2.5)

= Trace

((
P

(
λ1 0
0 λ2

)
P−1

)N)
(2.6)
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A final simplification can be made using the fact that for matrices A and B, the
Trace(AB)=Trace(BA).

ZN = Trace

((
λ1 0
0 λ2

)N)
= λN1 + λN2 (2.7)

This new form of ZN is much more readily analyzed and lends itself to calcu-
lating the physical qualities of the system [1].

3 The Two-Dimensional Model

The two dimensional model consists of a square lattice of particles. We will
only consider the case where there is no external magnetic field present, so
temperature is the only variable changing within a given system. Below is an
example of a possible configuration of a system of size three.

+ +−
−−−
+−−

In the two-Dimensional model, equation (10) is the partition function, where K
is the strength of the horizontal particle interaction and J is the strength of the
vertical interactions. Both K and J are dependent upon temperature.

ZN =
∑
σ

eK
P

(i,j) σi σj+L
P

(i,k) σi σk (3.1)

As in the one-dimensional case, a transfer matrix can be made to create all
possible states. Unlike the one dimensional case, successive multiplication of
this matrix adds rows of particles rather than individual particles. There 2N

possible chains of length N , so the transfer matrix is now 2N by 2N with chains
of particles denoted by φ. This formula can then be rearranged as a product of
exponential terms [1].

V (φ, φ
′
) = e

PN
j=1K σj+1 σ

′
j+Lσj σ

′
j

=
N∏
j=1

eK σj+1 σ
′
j eLσj σ

′
j (3.2)

Look at each exponential term separately. Because each σ can only take on
values of positive or negative one, each individual exponential term can only
take on two values, differing only by a sign. Using the delta function, as defined
below, we can rewrite both eK σj+1 σ

′
j and eLσj σ

′
j .

δ(a, b) =

{
1 if a = b

0 if a 6= b
(3.3)
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eLσj σ
′
j = eL δ(σj , σ

′

j) + e−L (1− δ(σj , σ
′

j))

= eL [(1− e−2L)δ(σj , σ
′

j) + e−2L] (3.4)

This allows us to factor out eL as part of a normalizing factor that will not
affect the structure of our matrix. A similar process can be done with the other
exponential term yielding the following result.

eK σj+1 σ
′
j = eK [δ(σj+1 , σ

′

j) (1− e−2K) + e−2K ] (3.5)

We can then rewrite the equation for both exponentials and the transfer matrix
with the normalizing factors.

fL,j = (1− e−2L)δ(σj , σ
′

j) + e−2L

fK,j = δ(σj+1 , σ
′

j) (1− e−2K) + e−2K

P (φ, φ
′
) =

N∏
j=1

[δ(σj+1 , σ
′

j) (1− e−2K) + e−2K ] [δ(σj , σ
′

j) + e−2L (1− δ(σj , σ
′

j))]

=
N∏
j=1

fK,j fL,j (3.6)

Using Baxter’s reparameterization of K and L we can then rewrite the equation
for the transfer matrix in terms of u and k where k = sinh 2K sinh 2L. This
function is analytic and can thus be written as a Taylor expansion as a function
of u. For any fixed k, the terms of the Taylor expansion commute with one an-
other. If two matrices commute, then they can be simultaneously diagonalized,
which means that they can be diagonalized using the same set of eigenvectors.
If all the eigenvalues of both matrices are distinct, then the eigenvectors are au-
tomatically identical. Using this fact, we can then restrict our attention to only
one term within this expansion and derive information about the eigenvalues
and eigenvectors of the system from this simplified model. The first term in the
expansion is too simple to glean any useful information, so we turn our atten-
tion to the second term, which is complicated enough to be useful without being
too difficult to analyze. After several manipulations we will call this matrix H.
We will write out reparameterization of K and L in terms of u at the critical
temperature, which can be done in terms of trigonometric functions and then
written as a Taylor series. At other temperatures elliptic functions are necessary
for this transformation, but the process of parameterizing and manipulating the
system works in an analogous way.

e−2K =
1− sinu

cosu

= 1− u+
1
2
u2 − 1

3
u3 +O(u4) (3.7)
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e−2L =
1− cosu

sinu

=
1
2
u+

1
24
u3 +O(u5) (3.8)

Because we want to look at the second term of the Taylor series, we need to
calculate dP

du .

dP

du
= P

N∑
j=1

[
f
′

L,j

fL,j
+
f
′

K,j

fK,j

]
(3.9)

Now we can evaluate f
′

L,j and f
′

K,j separately. First look at the Taylor expansion
of e−2K and e−2L in terms of u evaluated at 0.

d

du

(
1− sinu

cosu

)
(0) = −1

d

du

(
1− cosu

sinu

)
(0) =

1
2

(3.10)

Then we can substitute these values directly into the exponential product terms.

f
′

L,j = −1
2
δ(σj , σ

′

j) +
1
2

f
′

K,j = δ(σj+1, σ
′

j)− 1 (3.11)

Substituting the above results into dP
du we get equation (21).

P (φ, φ
′
) = P

N∑
j=1

[
− 1

2δ(σj , σ
′

j) + 1
2

δ(σj , σ
′
j)

+
δ(σj+1, σ

′

j)− 1
1

]
(3.12)

Expanding out the j = 1 as follows allows us to make more generalizations.(
−1

2
δ(σ1, σ

′

1) +
1
2

)
(δ(σ2, σ

′

2)(δ(σ3, σ
′

3)...(δ(σN , σ
′

N )

−(δ(σ2, σ
′

1) + 1)(δ(σ1, σ
′

1)(δ(σ2, σ
′

2)...(δ(σN , σ
′

N ) (3.13)

Let us denote the first portion of the sum as p1 and the second portion as p2.
For each j = i, p1 can be rewritten.

p1 =

{
0 if all (δ(σj , σ

′

j) = 1 or ∃j 6= i such that (δ(σj , σ
′

j) = 0
1
2 otherwise

(3.14)

Let us denote the following matrix as σx.

σx =
(

0 1
1 0

)
(3.15)

78



Each term in p1 can be written as a Kronecker product of N − 1 2 by 2 identity
matrices with the matrix σx as the jth term in this product. We will refer to
each of these individual terms as σxj Next we turn our attention to p2. This
term can also be formulated into a Kronecker product of N−2 identity matrices
with the matrix below in the jth position, denoted by σzj ⊗ σzj .

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

 (3.16)

Next we define a new matrix σz and rewrite the above matrix in terms of it.

σz =
(

1 0
0 −1

)
(3.17)


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

 =
(

3
2I + 1

2 (σz ⊗ σz)
)

(3.18)

Finally we can rewrite the entire sum as follows.

dP

du
= −3

2
N

x∑
j=1

1
2
σxj −

1
2
σzj ⊗ σzj (3.19)

Now we can define H as dP
du without the leading multiple of the sum, which

simply functions as a shift in the energy.

H =
N∑
j=1

1
2
σxj −

1
2
σzj ⊗ σzj (3.20)

Note that this is only the equation at the critical temperature, but the general
equation looks the same. As we continue our manipulation of this equation into
a more manageable form, we will switch from the statistical mechanics to the
realm of quantum mechanics.

4 H in Quantum Mechanics

The method we are using to solve the two-dimensional Ising model matches
a separate problem in quantum mechanics. This model analyzes a string of
quantum particles in the presence of a magnetic field. In quantum mechanics
σx and σz are Pauli spin matrices, and they are used, along with an additional
matrix σy, to describe the angular momentum of 1

2 spin particles. We define the
current form of H as being in the x-basis. We will change the basis of H from
x to z using the similarity transform described in equation (31). We will switch
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between the two bases often as both have different interpretations physically.
Define matrix U as the Kronecker product of N of the matrix below.

1√
2

(
1 1
−1 1

)
(4.1)

Equation (31) shows H in the z basis, where U† is the adjoint of U .

H = UHU†

=
N∑
j=1

1
2
σzj −

1
2
σxj ⊗ σxj (4.2)

Since we are interested in more than just the critical temperature, we will write
out the general form of H. In this new formula, the variables have been repa-
rameterized so that µ now represents temperature. µ ranges from −1 to 1,
where −1 is the temperature as it goes to infinity, 0 is the critical temperature,
and 1 is the temperature as it goes to 0. This new form of H is based largely
upon a paper by Pfeuty, but with minor adjustments to include terms the paper
discarded as irrelevant [4].

H = −1− µ
2

N∑
j=0

σzj −
1 + µ

2

N∑
j=0

σxj ⊗ σxj+1 (4.3)

At this point, we will start looking at the eigenvalues and eigenvectors of the
system. In order to study this system as a whole, we numerically calculate the
eigenvalues and eigenvectors as µ goes from −1 to 1. A plot of the eigenvalues of
the system at N = 3 is displayed in figure 1. Because H is a 2N by 2N matrix,
there are 2N eigenvalues. As a result, while the graph for N = 3 appears simple,
for higher system sizes the graph quickly becomes much more complicated. Now
that we can solve for the eigenvalues, which we interpret as energy, we move
our focus to the eigenvectors. Each eigenvector can be associated with different
states or mixtures of states, and then the states can be linked to a specific energy
by the vector’s eigenvalue. For example, when we evaluate H at µ = 0 we find
a specific set of energies associated states. The vector below is the eigenvector
rounded to four decimal places associated with λ = 2.7079. The labeling to the
left is the order that the values associated with each state are ordered within
H, and as a result, the order they appear in the eigenvector.

−−− 0.9990
−−+ −0.0454
−+− 0
−+ + 0
+−− 0
+−+ 0
+ +− 0
+ + + 0

(4.4)
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Figure 1: Eigenvalues
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Clearly, the first entry of the vector has the highest magnitude, and therefore
the state − − − is associated with the energy 2.7079. We use this process
with the rest of the eigenvalues and eigenvectors to associate all of the energies
with one or more states. In the given example, the components of the vector
clearly indicate just one state. However, in many cases, the results are not so
clear. This hurdle in identifying the state in question largely follows from the
degeneracy of H. As you can see from the graph, many eigenvalues converge at
µ = −1 and µ = 1. Also, you may note that there are only 6 lines of eigenvalues
represented on the graph when we expect there to be 2N , which is 8 in this
case. This discrepancy is due to the fact two sets of eigenvalues are identical
for all values of µ, making it impossible to distinguish the them on the graph.
In order to lessen the affects of the degeneracy and create a clearer image of
the behavior of H, we break down H into more manageable pieces. Before we
look at the process of breaking down H, there is still much to be gained from
analyzing the behavior at the endpoints at this stage in our manipulation of H.

5 Behavior at the Endpoints

Different sides of the graph behave in different ways and have different particle
interpretations. Our goal in this project is relating the endpoints to one another,
so it is important to be familiar with the behavior on both sides.

5.1 µ = −1

µ approaching −1 is equivalent to the temperature in the original system ap-
proaching infinity. When µ = −1, H can be reduced to the following form:

H = −1− µ
2

N∑
j=0

σzj (5.1)

When working on this side of the spectrum, we work within the z-basis, which
refers to the fact that σz is a diagonal matrix within this basis. From the
structure of H listed above, we can conclude that only the signs of the particles
within a state effect H at this point. In fact, based on this information, we can
calculate the eigenvalue of any given state at µ = −1 as −1·(the number of ”−”
signs within a state). The physical interpretation of this in the original Ising
model is that at very high temperatures, interactions between particles become
less of an influence upon the system, making this portion of the spectrum the
disordered side. Now we can consider the quantum interpretation. On this side
of the graph, minus signs within a state are considered particles. For example,
in N = 3 +−+ would be a one particle state and −−+ would be a two particle
state. We can see from figure 1 that states with the same number of particles
converge to the same eigenvalues, or equivalently, converge to the same energy,
at µ = −1.
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5.2 µ = 1

µ approaching 1 is equivalent to the temperature in the original system ap-
proaching 0. At this value of µ, we can simplify H like we did for µ = −1.

H = −1 + µ

2

N∑
j=0

σxj ⊗ σxj+1 (5.2)

Near values of µ = 1, we will be working within the x-basis. In order to do this,
we perform a change of basis upon H that diagonalizes σx. Define matrix A as
the Kronecker product of the below matrix with itself N times.

− 1√
2

(
1 1
1 −1

)
(5.3)

Now we can rewrite H in the appropriate basis as AUA†. The labeling of the
eigenvectors stays the same, but now they take on a slightly different particle
interpretation. First let us examine the new structure of H. As µ approaches
1, the temperature in the original model is approaching 0. The only factor
that matters now is the inter-particle interactions, making this the ordered side.
Particles are now defined as sign changes within the state. This means that
+−+ is now a two particle state and + + + is a zero particle state. It follows
that states with the same number of particles, and thus the same number of
sign changes, converge to the same eigenvalue at µ = 1 and therefore have the
same energy at this point.

6 Block Diagonalization of H

By block diagonalizing H, we are able to look at the eigenvalues and eigenvectors
of each block separately and lessen the effects of the degeneracy within H.
In order to perform this diagonalization, we will break H down into different
momentum sectors as well as even and odd sectors using the matrices T and F
described in the next two sections.

6.1 Division into Momentum Sectors

In the beginning of this paper, we defined the model to be translationally invari-
ant, which means that states that are translates of one another, such as + +−
and + − +, will be numerically equivalent. Therefore, switching around states
that are translates of one another has no effect on H. We construct a matrix T
built from translation matrices that performs exactly that operation. Seeing as
T does not effect H, T commutes with H. This commutation property allows
for H and T to be simultaneously diagonalized, allowing us to gain information
about H from T . T is composed of translation matrices, so its eigenvalues are
Nth roots of unity, denoted by ω.

ω = e
2πi
N (6.1)
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Figure 2: T Eigenvectors

We label each distinct eigenvalue of T as a momentum, p, that corresponds to the
power ω is raised to. Using the eigenvectors of T grouped together by momen-
tum, we form a unitary transformation matrix C. An example of C for N = 3 is
listed below. In figure 2, the first four columns are eigenvectors with eigenvalue
ω0, so we label them momentum 0 vectors. The next two columns correspond
to ω1 and the final two match with ω2, making them momentum 1 and 2 vec-
tors respectively. Note that within this matrix, each vector only has nonzero
entries in positions corresponding to translate of a particular state. The general
format of each vector is (ωp)0 |state1 > +(ωp)1 |state1translated 1 position >
+...+(ωp)t |state1translated t positions > where t is the number of translates of
state1 and p is the momentum. An eigenvector of this form exists in all momen-
tums such that p

N
t

is an integer value. The following transformation separates
H into blocks of momentum groups with all translates grouped together.

H = C†HC (6.2)

Below is the structure of this matrix for N = 3. The labels for the top of the
matrix are the same as those listed to the left of the matrix. All the blocks
along the diagonal with the dimensions written inside are momentum sectors in
increasing order as we move down the diagonal. All empty blocks are filled with
0s. We can extract each of the blocks along the diagonal and then analyze the
eigenvalues and eigenvectors in the same manner as before, with the exception
that each eigenvalue is now associated with a momentum eigenstate.

6.2 Division into Even and Odd Sectors

In order to further divide H, we use a unitary operator F . F commutes with
H, and using it we block diagonalize each momentum sector into even and odd
blocks. F is the matrix that flips the sign of the x-component of every spin.
Doing this twice restores the original configuration, and therefore F must have
eigenvalues 1 and −1. Once again, F behaves differently at opposite ends of the
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Figure 3: H after transformation to basis of T eigenstates

µ spectrum. Towards µ = −1, a state is defined to be even if it has an even
number of ”−” signs and odd if it has an odd number of ”−” signs. On the
µ = 1 side, a state is defined to be even if flipping the signs does not change
the state and odd if flipping the signs does change the state. For example,
(+ + +) + (− − −) becomes (− − −) + (+ + +) with the signs flipped, and
therefore is even whereas (+ + +)− (−−−) becomes (−−−)− (+ + +), which
is a different state and is thus odd. Now we can extract the even smaller blocks
from H’s diagonal and look at each block of momentum in even and odd sectors
and analyze the eigenvalues and eigenvectors separately as we have been doing.

7 The Critical Temperature

An exact solution for the eigenvalues of H is known. The equation for the
eigenvalues is construction using Λm defined below.

Λm =

{√
2(1 + µ2)− 2(1− µ2) cos

(
2πm
N

)
if m 6= 0

−2µ if m = 0
(7.1)

In order to evaluate the eigenvalues, we need to introduce a Dirac’s ket notation
and divide the spectrum into even and odd sectors. At µ = 0, we associate
each eigenvalue with a state occupied with particles with certain momenta.
Two particles of the same momentum are not allowed within the same ket. For
example |−1, 0, 1 > is a three particle state consisting of particles with momenta
−1, 0, 1. |−1,−1, 0 > is not an allowed state because two of the particles would
have −1 as their momentum. Now we focus upon the division into even and odd
sections. In the even sector, momenta must be an odd multiple of 1

2 and states
must contain and even number of particles. In the odd sector, momenta must
be an even multiple of 1

2 and states must contain an odd number of particles.
In both cases, −N2 < m ≤ N

2 and the sum of the particles in a state must equal
the momentum group the eigenvalue is in. Now we have all the information
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needed to calculate the eigenvalues.

λ = −1
2
(
Λm1 + Λm2 + · · ·+ Λmp

)
(7.2)

The subscripts m are all the values of m that satisfy the requirements for being
in the even or odd group. If the mj momentum is contained in the ket, then
the sign in front of Λmj is changed to a minus sign. For example, in N = 3, the
state | − 1, 0, 1 > has eigenvalue λ = − 1

2 (Λ−2 − Λ−1 − Λ0 − Λ1 + Λ2) [3].

8 Relating µ = −1, 1 and 0

Now that we have examined and developed a labeling convention for the eigen-
values of H at µ = −1, 0, and 1, we wish to relate the three points. Figure 4
displays the plots of the eigenvalues for H with N = 5 separated by momentum
and even or odd status. Only the values for three momentums are displayed be-
cause if p1 ≡ −p2 mod N , then the plots for p1 and p2 are the same. Some gen-
eral observations are that in even sectors, eigenvalues that converge at µ = −1
also converge to the same point at µ = 1. In fact, the eigenvalues are symmetric
about the vertical axis. Additionally, states with n particles at µ = −1 map to
n particle states at µ = 1. In the odd case, these results do not hold. There
does appear to be some symmetry, as most eigenvalues that converge at µ = −1
also converge at µ = 1. However, not all eigenvalues obey this rule. We suspect
that this descepancy is related to the inclusion of the momentum 0 particle in
the ket notation at the critical temperature, because its addition or subtraction
to a ket causes no change in the associated eigenvalue at µ = 0.

9 Further Questions

Through researching this material, the observations we made suggest that a
relatively simple bijection between µ = −1 and µ = 1 could exist. However, the
actual problem of finding such a bijection is still of interest. Additionally, the
results of this model could prove useful in finding a bijection for the Rogers-
Ramanujan identity (43) [2]. First define the following.

(q)0 = 1 (9.1)

(q)n =
n∏
k=1

(1− qk) (9.2)

∞∑
n=0

qn(n+1)

(q)n
=
∞∏
n=1

1
(1− q5n−2)(1− q5n−3)

(9.3)

As N goes to infinity, the number of states at a given energy level at µ = 0 can
be written as a generating function. We now define N 1

16
.

N 1
16

= {n ∈ N | n ≡ ±1,±3,±5, or ± 7 mod 16} (9.4)
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Equation (45) counts the number of states at a particular energy in the odd
sector. While this equation is not the same as equation (43), it is very similar,
suggesting that this physics model may be helpful in finding this bijection.

χ 1
16

= q−
1
48 + 1

16

∞∑
j=0

qj(2j+1)2

(q)2j+1
= q−

1
48 + 1

16

∏
j∈N 1

16

1
(1− qj)

(9.5)
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Geodesics in the Farey Complex
Matthew Mizuhara

Abstract

The Farey complex has as vertices the rational numbers together with
the point at infinity, represented as −1/0 = 1/0. Given vertices p/q and
r/s in lowest terms, join them by an edge if |ps − rq| = 1. By this rule,
it is possible to consider the combinatorial distance between any pair of
extended rational numbers. In this work, we prove a locally deterministic
method to calculate a geodesic path between two points, as well as con-
sider the relationship between continued fraction expansions and geodesic
paths. These results require nothing more than elementary methods and
simple results regarding Möbius transformations. We also construct a
recursive algorithm to calculate the number of distinct geodesic paths
between two points. We conclude with other interesting, related results
as well as provide two distinct programs which can be used to calculate
geodesic paths and Farey distances between two extended rational num-
bers.

1 Introduction

The Farey complex (alternatively the Farey graph), denoted F , has several con-
structions. Its most elementary representation has as its vertices the extended
rational numbers, Q̂ = Q ∪

{
1
0 = −1

0

}
. We join two vertices p

q ,
r
s ∈ Q̂ by an

edge if and only if |ps − qr| = 1. Adjacent vertices are called Farey neighbors.
Given Farey neighbors p

q ,
r
s ∈ Q̂, we define a binary operator ⊕, called Farey

addition, by
p

q
⊕ r

s
:=

p+ r

q + s
.

We call p
q and r

s Farey parents of p+r
q+s , which is in turn known as the mediant

of p
q and r

s . It turns out that the mediant is in fact a Farey neighbor to both
Farey parents and will always be in reduced terms [Hat1, page 2, 18].

For consistency, we will always assume that any vertex p
q ∈ Q is written so

that gcd(p, q) = 1, and we identify Q with Z × N, where (a, b) ⇔ a
b . Finally,

we write the point at infinity as 1
0 = −1

0 and the point at zero as 0
1 .

As is well-known, the Farey graph is the 1-skeleton of whose 2-simplices
are determined by Farey neighbors and their mediant. The Farey complex
is isomorphic to the 2-complex given by the (essentially unique) tiling of the
hyperbolic plane by ideal triangles [Min1, page 566].

In this work, we derive algorithmic and computational methods to compute
the Farey distance between two arbitrary vertices of the Farey graph (as orig-
inally proposed in [Pil1]). In Section 2 we introduce the proper notation and
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Figure 1: A finite representation of the Farey complex [Hat1, page 1]

language required, as well as present a main theorem which proves a local, de-
terministic way to construct a geodesic path between two points. In Section 3
we introduce the relationship between the Farey complex and continued fraction
expansions, and prove a theorem which calculates the distance from any rational
number to 1/0 from the continued fraction expansion. In Section 4 we provide a
recursive function which can be used to count the number of geodesics between
two vertices and in Section 5 we explore further investigations including an al-
gorithm to construct alternate geodesic paths. Finally, in Section 6 we provide
two programs written in Maple code which can be used to calculate paths or
distances between vertices.

2 Preliminaries

2.1 Möbius Transformations

A Möbius transformation is a function, f : Ĉ→ Ĉ, of the form

f(z) =
az + b

cz + d
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where a, b, c, d, ∈ C and ad− bc 6= 0. All Möbius transformations form a group
under composition which we denote by Möb(Ĉ). A particularly special subgroup
of Möb(Ĉ) is denoted PSL2(Z) and defined as

PSL2(Z) :=
{
z 7→ az + b

cz + d
: a, b, c, d ∈ Z and ad− bd = 1

}
.

It is well known that
z 7→ z + 1

and
z 7→ −1

z

generate PSL2(Z), so it is often sufficient to prove results only on these two
elements. One can show that PSL2(Z) acts on Q̂ in the obvious way, and so we
check further that all elements indeed maintain Farey relations.

Lemma 2.1. For any A ∈ PSL2(Z), if p
q and r

s are Farey neighbors then A(pq )
and A

(
r
s

)
are also Farey neighbors.

Proof. We assume without loss of generality that ps − qr = 1. It suffices to
prove that the statement holds for the two generating elements of PSL2(Z). In
the first case, we see that p

q 7→
p+q
q and r

s 7→
r+s
s . It follows that these two

numbers are Farey neighbors if and only if

(p+ q) · s− (r + s) · q = 1.

After expansion and cancelation, it is clear that this is equivalent to the hy-
pothesis, so the result holds.
The result holds similarly for the second generator mapping. Hence, it holds for
any element of PSL2(Z) by some composition of the above functions.

In particular, this result proves that any A ∈ PSL2(Z) preserves all edges
and hence it preserves all triangles in F . We conclude that PSL2(Z) is a group
of orientation-preserving isometries of the Farey complex. In particular, we show
that given any 2-simplex there exists an element of PSL2(Z) which maps the
aforementioned simplex to any other 2-simplex, while maintaining orientation.
We first present a result from [Hat1, page 15].

Lemma 2.2. If p/q, r/s ∈ Q are Farey neighbors, then

p

q
⊕ r

s
∈
(
p

q
,
r

s

)
.

Lemma 2.3. PSL2(Z) acts simply transitively on positively oriented, labeled
simplices.
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Proof. It suffices to show that we can map any 2-simplex to the 2-simplex defined
by the triple of vertices 0

1 , 1
1 , and 1

0 in any way (while preserving positive
orientation). Given some 2-simplex, we can write the vertices as p

q <
p+r
q+s <

r
s

(by Lemma 2.2). It is clear that p
q <

r
s if and only if ps− qr < 0. Since p

q and
r
s are Farey neighbors, we conclude that ps− qr = −1. Thus,

z 7→ −qz + p

sz − r

precisely maps p
q 7→

0
1 , p+r

q+s 7→
1
1 , and r

s 7→
1
0 . We specially note that this

mapping still successfully works in the case that any of the points is initially
1
0 ,

0
1 , or 1

1 . Finally, the map

z 7→ 1
−z + 1

permutes the points 0
1 , 1

1 , and 1
0 cyclically. So, a composition of the two appli-

cable maps will translate and rotate the 2-simplex as desired. As any Möbius
transformation is uniquely determined by three points, we conclude that the
resulting map is unique.

2.2 Properties of F
With these tools, we now characterize the Farey complex by its various relation-
ships and restrictions which we will use to later construct our geodesic path.
The following lemma is clear from the disk model of F , however its result will
generalize in a useful way.

Lemma 2.4. Every rational number is adjacent in F only to other numbers
with like sign, excluding 1

0 and 0
1 .

Proof. Suppose that there exist two Farey neighbors, pq and r
s , and without loss

of generality, that p
q > 0 and r

s < 0. By our convention of writing extended
rational numbers, we then conclude that r < 0, p > 0, and q, s ≥ 0. It is
clear that ps − qr > 0, so we conclude that ps − qr = 1. However, ps ≥ 0 and
−qr ≥ 0, so it must be the case that at least one of ps and −qr is equal to 0.
As we assumed neither p/q nor r/s is identically 0, we conclude that p 6= 0 and
r 6= 0. So, it must be the case that either s = 0 or q = 0. In either case, we
conclude that one of the numbers is 1

0 (or −1
0 , which is identified with 1

0 ).

So, any path which travels between positive and negative numbers must
necessarily travel through either 1

0 or 0
1 . We define this phenomenon generally

as separating the Farey complex and as expected, this holds symmetrically for
any edge in F .

Definition 2.5. Given a connected graphG = (V, E) and two adjacent vertices,
a, b ∈ V , we say that the edge {a, b} is a vertex separator of x, y ∈ V (distinct
from a and b) if removing the vertices a and b, along with any edges incident
to either vertex separates x and y into distinct, connected components. We say
{a, b} separates x from y.
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Lemma 2.6. Every edge,
{
p
q ,

r
s

}
, of F is a vertex separator of every x ∈

(p/q, r/s) from y 6∈ (p/q, r/s).

Proof. We first prove that
{

1
0 ,

0
1

}
is a vertex separator of the desired form.

Lemma 2.4 implies that 1
0 and 0

1 are the only vertices which are Farey neighbors
to both positive and negative numbers. Thus, we conclude that by removing
the vertices 1

0 and 0
1 , there no longer exists a path from any positive number

to any negative number, so the graph is disconnected. In other words, every
x ∈ (0, 1/0) is separated from every y ∈ (−1/0, 0). In general, another way to
view the set (p/q, r/s) is as the set of all successive mediants of all adjacent
vertices starting with p/q and r/s. As every Möbius transformation preserves
Farey relations, the result holds in general by Lemma 2.3.

Definition 2.7. The nth extended Stern-Brocot poset, denoted Fn, is a poset
(with the standard ≤ ordering, where −∞ ≤ p/q ≤ ∞ for any p/q ∈ Q) defined
inductively as follows:

F0 =
{
−1
0
,

1
0

}
,

where −∞ := −1
0 ≤

1
0 =: +∞,

F1 =
{
−1
0
,

0
1
,

1
0

}
and

Fn+1 = Fn ∪
{
p

q
⊕ r

s
:
p

q
,
r

s
are successive elements in Fn

}
,

when n ≥ 1. Additionally, we define the nth level of the Farey complex, denoted
Ln, as the set of all elements which are added to the nth extended Stern-Brocot
poset:

Ln := Fn \ Fn−1.

For consistency, we maintain that L0 := F0.

Remark 2.8. We note that for any n > 1, it is clear that Fn ∩ Q+ is the (n −
1)st order Stern-Brocot sequence [GKP1, section 4.5]. By extending the Stern-
Brocot sequence to the negative numbers, we have the ability to reconstruct all
of the extended rational numbers.
Example 2.9. We list the first few extended Stern-Brocot posets:

F0 =
{
−1
0
,

1
0

}
,

F1 =
{
−1
0
,

0
1
,

1
0

}
,

F2 =
{
−1
0
,
−1
1
,

0
1
,

1
1
,

1
0

}
,

F3 =
{
−1
0
,
−2
1
,
−1
1
,
−1
2
,

0
1
,

1
2
,

1
1
,

2
1
,

1
0

}
.
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For each n ≥ 0, once we identify −1/0 with 1/0, each extended Stern-Brocot
poset, Fn, determines a subset of Q̂ and, therefore, a subcomplex of F ; abusing
notation, we denote this subcomplex also as Fn.

Lemma 2.10. Each Fn is convex.

Proof. It is clear that Fn is connected. Take x, y ∈ Fn and let γ be a geodesic
from x to y. Without loss of generality, we assume −∞ ≤ x < y ≤ ∞, where
at least one of the ≤ inequalities is strict, or else the result is trivial. Suppose
to the contrary that γ passed through z ∈ F \ Fn. Given the cyclic ordering of
Fn as determined by the extended Stern-Brocot posets, we know there exists a
unique x0 and its successor y0, both in Fn satisfying x0 < z < y0. There are
several cases to consider; we first prove the case where

x < x0 < z < y0 < y.

As y0 is the successor of x0, it must hold that they are Farey neighbors, so
Lemma 2.6 implies that {x0, y0} separates z from x and y. Thus, any path
passing through z must necessarily pass initially through either x0 or y0, then
pass through z, and finally pass through either x0 or y0. It is clear that this is
inefficient, and so γ cannot be a geodesic. This is the necessary contradiction.

We now consider the case where

x = x0 < z < y0 < y.

Similar to above, it is obvious that {x, y0} separates z from y. Again, any path
through z must necessarily pass initially through x or y0, then pass through z,
and finally pass through either x or y0. This is again clearly inefficient, drawing
the same contradiction. All other cases follow similarly, proving the result.

We conclude that if we have two numbers, p/q ∈ Ln and r/s ∈ Lm, then it
suffices to construct either Fn or Fm, depending on whether n or m is larger.
Once we do so, we know all geodesic paths from p/q to r/s are represented,
and so the problem of calculating a geodesic path has been reduced to a finite
number of cases. However, if we assume one point is 1/0 ∈ L0, then it is possible
to strengthen these results to find a more deterministic method of constructing
a geodesic path from any rational number to 1/0. To do so, we first require the
uniqueness of the Farey parents of any rational number.

Lemma 2.11. Given a
b ∈ Q \

{
0
1

}
, there exists a unique pair p

q ,
r
s ∈ Q̂ such

that
a

b
=
p

q
⊕ r

s

where p
q and r

s are Farey neighbors.
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Proof. Without loss of generality, we assume gcd(a, b) = 1. By the symmetry
in the Farey complex and by Lemma 2.4, it is sufficient to assume all values are
non-negative. Now, as a and b are coprime, then the Diophantine equation

bp− aq = 1 (2.1)

has an infinite number of solutions, by Bézout’s Lemma. In particular, it must
hold that any pair p and q which solve the equation must be coprime. Rewriting
the equation as

p(b− q)− q(a− p) = 1 (2.2)

it becomes clear that likewise b−q and a−p must also be coprime. But, it is clear
that equation (2.2) holds if and only if p

q and r
s = a−p

b−q are Farey neighbors. It
only remains to show that there exists a unique solution to (2.1) which satisfies
p and a−p having like sign, and that q and b−q are positive. Now, (2.1) implies
that any integer solution of p must satisfy

bp− 1 ≡ 0 mod a

or, as b has an inverse modulo a,

p ≡ b−1 mod a.

If we restrict p to the interval [0, a) then there is a unique solution to this
equivalence. From this choice, it must hold that p and a − p have like signs.
A quick check of cases against (2.2) proves that both q and b − q must be
positive.

Obviously, the Farey parents of a given rational number must live in lower
Farey levels than their mediant. As the next result shows, these levels are not
completely arbitrary.

Lemma 2.12. If p
q ∈ Ln for n ≥ 2 and if r/s, t/u are as in Lemma 2.11, so

that
p

q
=
r

s
⊕ t

u
,

then precisely one of rs ,
t
u is in Ln−1 and the other one is in Lk where k < n−1.

Additionally, the latter number must be a Farey parent of the former number.

Proof. Let p
q ∈ Ln and r

s ,
t
u be its Farey parents. By our method of construction

of the extended Stern-Brocot posets, it is clear that if neither r
s nor t

u were
members of Ln−1 then r

s ⊕
t
u ∈ Lk where k ≤ n−1, a contradiction. So at least

once of r
s and t

u is in Ln−1. As each subsequent extended Stern-Brocot poset
inserts new numbers between all existing numbers, it cannot hold that there are
Farey neighbors with equal level (as a consequence of Lemma 2.6). Hence, one of
r
s ,

t
u ∈ Ln−1 and the other must be an element of Lk where k < n−1. Without

loss of generality, r
s ∈ Ln−1. However, as r

s and t
u are Farey neighbors, then

they appear sequentially in Fn−1. In order for these two numbers to appear next
to each other, it must hold that there exists some v

w ∈ Fn−2, a Farey neighbor
of t

u , such that v
w ⊕

t
u = r

s .
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It is now possible to combine Lemmas 2.10 and 2.12 in order to reduce the
brute-force search of arbitrary geodesic paths to a binary search when one point
is assumed to be 1

0 .

Lemma 2.13. Every geodesic path from any vertex to the point at infinity must
strictly decrease level at each vertex along the path towards infinity.

Proof. We prove the result by induction. The result is vacuously true for the
trivial case where the vertex p/q = 1/0 and obvious for the case when p/q = 0/1.
Assume the result holds for all rational numbers up to level n−1. Now, suppose
that p/q ∈ Fn for n ≥ 2. By Lemma 2.10, we conclude that all geodesics from
p/q to 1/0 must live in Fn. Further, in the case that p/q ∈ Lk for k < n, then
the result holds trivially by the induction hypothesis. If p/q ∈ Ln, then in Fn,
p/q can only be Farey neighbors with its Farey parents. By Lemma 2.12 and
the inductive hypothesis, the result is clear.

2.3 Computing a Geodesic Path

By restricting one point to be at 1/0, we narrow the possible paths from each
vertex to only two choices. Unfortunately, for numbers in high levels of the
Farey complex, this search becomes exponentially difficult and computationally
expensive. The following theorem restricts this path further, and in fact provides
a definitive choice to construct a geodesic from any vertex to the point at infinity.
Further, this locally deterministic construction generalizes by use of Möbius
transformations in order to construct geodesics between arbitrary vertices.

Theorem 2.14. A geodesic between any p
q ∈ Q̂ and the point 1

0 is found by
starting at p

q and iteratively moving to the Farey neighbor with lowest level.

Proof. Given some p
q ∈ Ln, it is sufficient, by Lemma 2.10, to construct the

nth partial Farey complex. The result holds by strong induction on the level
n. The result is trivial for n = 0, as there is a zero-length path from 1

0 to
itself. Likewise, for n = 1, the only point in L1 is 0

1 , which has a length 1 path
directly to 1

0 . Similarly, one can exhaustively check that the result holds for
all vertices for n = 2. Now, suppose that for all k less than or equal to some
n, that any points in Lk have a geodesic defined by a path as described above.
Now, take any p

q ∈ Ln+1. We name the Farey parents r
s and t

u . Without loss of
generality, rs ∈ Ln and t

u ∈ Lk where k < n (by Lemma 2.12). By the inductive
hypothesis, a geodesic exists from t

u to the point at infinity by moving to the
Farey neighbor with lowest level. Let this distance be m. Similarly, a geodesic
path exists from r

s to the point at infinity. Suppose this distance were g < m.
Then, from t

u , we could create a path through r
s to infinity that had distance

g + 1 ≤ m. But, we know that r
s is in a level higher than t

u , so this contradicts
Lemma 2.13. Thus, the geodesic path from r

s to infinity is greater than or equal
to the geodesic path from t

u to infinity. Thus, it is clear that a geodesic path
from p

q must move through t
u in the lower level, as desired.
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Corollary 2.15. A geodesic in the Farey complex between two arbitrary points,
p/q and r/s, can be determined by applying a group element, A ∈ PSL2(Z),
which sends p/q to 1/0, constructing a path from A(r/s) to 1/0 by iteratively
moving to the Farey neighbor with lowest level, and then applying A−1 to the
elements of the path.

3 Continued Fractions

Given any rational number, there exists a finite simple continued fraction of the
form

p

q
= a0 +

1

a1 +
1

a2 +
1

. . . +
1
an

,

where a0 is an integer and for all i ≥ 1, ai is a positive integer. To condense the
notation for a simple continued fraction, we use the common shorthand

p

q
= [a0; a1, a2, . . . , an].

As there are precisely two ways to represent each rational number as a continued
fraction, namely

p

q
= [a0; a1, a2, . . . , an, 1] = [a0; a1, a2, . . . , an + 1],

we will assign the shorter expansion as the canonical form. For p/q ∈ Q,
we define pi/qi to be the (i − 1)st convergent of a continued fraction, that is
pi/qi := [a0; a1, a2, . . . , ai−1], with p0/q0 = 1/0. In this way pn+1/qn+1 = p/q.
Additionally, for all m > 0, if am > 1 we define “intermediate” values as follows:

km, ` :=
` · pm + pm−1

` · qm + qm−1
,

where 1 ≤ ` ≤ am − 1 and 1 ≤ j ≤ n. It is clear that an equivalent way of
defining these values inductively. If am > 1, then

km, 1 = pm/qm ⊕ pm−1/qm−1 (3.1)

and
km, ` = km, `−1 ⊕ pm/qm (3.2)

for 2 ≤ ` ≤ am − 1. From these definitions, it follows that the convergents,
pi/qi, can also be characterized by Farey addition. If am > 1 then

pm+1/qm+1 = km, am−1 ⊕ pm/qm (3.3)
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for all m > 0. Conversely, if am = 1, then there are no associated intermediate
km,` values, so

pm+1/qm+1 = pm−1/qm−1 ⊕ pm/qm, (3.4)

for all m > 0.
Given a rational number p/q = [a0; a1, . . . , an], we can use the sequence

(a0, a1, . . . , an) to build a subcomplex of F , called a Farey chain.

Definition 3.1. Given p/q = [a0; a1, . . . , an] ∈ Q, the Farey chain associated
to p/q is the subcomplex of F whose vertices are precisely

n⋃
k=1

{[a0; a1, . . . , ak−1], i : 1 ≤ i ≤ ak}.

We note that each vertex which correspond to a convergent, pi/qi, in the
continued fraction expansion is adjacent ai− 1 edges, which join pi/qi precisely
to each ki, j , for 1 ≤ j ≤ ai−1. This observation leads naturally to the following
definition.

Definition 3.2. The ith fan is the subcomplex of the Farey chain with vertices

{pi−1/qi−1, pi/qi, pi+1/qi+1} ∪ {ki, j : 1 ≤ j ≤ ai − 1}.

In particular Hatcher proves the following result which shows that Farey
chains are well-defined and consistent with the Farey complex [Hat1, page 15]:

Theorem 3.3. The convergents for the continued fraction p
q = [a0; a1, a2, . . . , an]

are the vertices along a zigzag path consisting of a finite sequence of edges in
the Farey diagram, starting at 1/0 and ending at p/q. The path starts along the
edge from 1/0 to a0/1, then turns left across a fan of a1 triangles, then right
across a fan of a2 triangles, etc., finally ending at p/q.

Hence, any path in a Farey chain has a corresponding path which exists in
F . For simplicity, we will represent the Farey chain in its geometric “canonical
form” as a straight strip of triangles, where the labels are inductively added
from left to right; starting with an edge connecting 1/0 and p1/q1 = a0, we
calculate successive labels and edges by (3.1), (3.2), (3.3), and (3.4), as well as
the values of the ai.

We present a Farey chain in canonical form below, where the fans are drawn,
however the ki, j are left out for clarity.

In particular, by the above observations, it is clear that every vertex in a
Farey chain is defined by Farey addition, with exception of the first convergent
p1/q1 = a0. By Lemmas 2.11, 2.12, and 2.13, it follows that the Farey chain
in fact must contain all geodesics between 1/0 and p/q. We state this formally
below.

Lemma 3.4. For any p/q ∈ Q, the associated Farey chain contains all geodesics
from 1/0 to p/q.
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Figure 2: The Farey chain associated to p/q in canonical form

We can now exploit the continued fraction expansion of a rational number
in order to calculate the length of any geodesic from said rational number to
1/0. Often, this distance is the length of the path constructed by the contin-
ued fraction convergents, pi/qi, however, some exceptional cases can provide a
more efficient path. The following theorem provides an exact formulation of the
distance in terms of the continued fraction expansion.

Definition 3.5. Given a continued fraction expansion p
q = [a0; a1, a2, . . . , an] ∈

Q, consider the string given by {a1, a2, . . . , an}. Reading left to right, we define
Ai to be the ith maximal subsequence of consecutive 1s. I.e.

Ai = {aj , aj+1, aj+2, . . . , ak}

where aj = · · · = ak = 1, aj−1 6= 1 (unless j = 1), and ak+1 6= 1.

Example 3.6. Consider 3588/2203 = [1; 1, 1, 1, 2, 3, 1, 1, 3, 1, 7]. We have the
following subsequences:

[1; 1, 1, 1︸ ︷︷ ︸
A1

, 2, 3, 1, 1︸︷︷︸
A2

, 3, 1︸︷︷︸
A3

, 7].

Theorem 3.7. Given p
q = [a0; a1, a2, . . . , an] ∈ Q, the Farey distance from p

q

to 1
0 is given by

n+ 1−
m∑
i=1

⌈
#Ai

2

⌉
where there are m distinct subsequences Ai.

Proof. Given some p/q ∈ Q, we construct its associated Farey chain. By Theo-
rem 2.14, it suffices to construct a path starting from p/q and iteratively moving
to the Farey neighbor of lowest level, where Lemma 3.4 implies that this geodesic
path exists in the Farey chain. We recall that there are exactly two possible
cases:

km, am−1 ⊕ pm/qm = pm+1/qm+1 (3.5)

or
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pm−1/qm−1 ⊕ pm/qm = pm+1/qm+1. (3.6)

By (3.1) and (3.2), it is clear that for any fixed m and any `, if km, ` ∈ Ln
then pm/qm ∈ Lk, where k < n. So, in the case of (3.5), the desired geodesic
path must pass from pm+1/qm+1 to pm/qm, by Theorem 2.14. Similarly, in the
case of (3.6), the path must pass from pm+1/qm+1 to pm−1/qm−1. We recall
that pm+1/qm+1 is a Farey neighbor to pm−1/qm−1 if and only if am = 1. So, if
it were the case that the continued fraction expansion lacked any ai = 1, then
the length of the geodesic path would exactly equal the length of the continued
fraction expansion. However, if there exists some m > 0 such that am = 1, then
Theorem 2.14 implies that the geodesic path moves from pm+1/qm+1 directly
to pm−1/qm−1, implying that the convergent pm/qm is never reached, so we can
subtract one from the total distance. However, if am−1 = 1 as well, then we
note that we cannot again subtract one from the total distance, since pm/qm is
not a part of the geodesic, and therefore the value of am−1 becomes irrelevant.
We conclude, then, that we only can take a shorter route past some pi/qi for
every odd 1 in a consecutive chain of 1s, with exception, of course, of the leading
integer term: if a0 = 1 then there is no sequential point to skip as a short cut.
As such, the Ai subsequences are defined for sequences of ones strictly after the
first term, and count only the odd numbered terms of the subsequence. This
holds for all distinct subsequences of 1s, which proves our result.

4 Number of Geodesics

The Farey complex is not a unique geodesic space, and as such it would be in-
teresting to calculate precisely how many geodesics exist between two arbitrary
rational numbers in F . From Corollary 2.15 it is sufficient to have a mecha-
nism to calculate the number of geodesics from arbitrary rational numbers to
1/0. Given an arbitrary rational number, p/q, Lemma 3.4 implies that it is
sufficient to simply study the Farey chain constructed from the continued frac-
tion expansion of p/q in order to construct all geodesic paths from p/q to 1/0.
In particular, we can consider p/q = [a0; a1, . . . , an] as some union of Farey
chains:

[a0; . . . , ai] ∪ [ai; ai+1, . . . , aj ] ∪ · · · ∪ [ak; . . . , an].

Here, we must repeat the indices between chains so as to maintain all informa-
tion. If we let G(p/q) count the number of geodesics from any p/q to 1/0, then
it is clear from the fundamental counting principle that

G(p/q) ≈ G([a0; . . . , ai])× · · · × G([ak; . . . , an]),

where some errors may arise from the choice of the subchains due to cases where
unions of geodesic paths are no longer geodesics or from instances of double-
counting paths. As such, our goal is to quantify how to precisely subdivide Farey
chains into fundamental strings without losing information in the process. To
facilitate understanding, we recognize that the geometry of the Farey chain
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provides all of the necessarily information to count geodesics. We recall that
a string of ais gives rise to a canonical Farey chain. Note that the first term
a0, of a continued fraction expansion does not have any effect on the number
of geodesics as it does not define any fans in the Farey chain. As such, we
adopt the convention that any string of [a1, . . . , an] in this section defines an
abstract Farey chain without values at the vertices and where each ai defines
the number of subdivisions in a given fan. That is, the following representations
are essentially equivalent:

[a0; a1, a2, . . . , an]⇔ [a1, a2, . . . , an],

where the use of a semi-colon denotes a simple continued fraction form and the
lack of a semi-colon implies a Farey chain without values attached.

Definition 4.1. We define the left extreme of a Farey chain as the vertex
with lowest Farey level, and analogously define right extreme as the vertex with
highest Farey level.

If we draw the Farey chain in the canonical form (as in Figure 3) then the left
extreme corresponds to the left-most vertex and the right extreme corresponds
to the right-most vertex, as expected. We will assume in this section that all
Farey chains and subchains (subcomplexes which are also Farey chains) are
always drawn in canonical form so that we can more readily discuss directions
without ambiguity. Also, we label the vertices as Pi and Ki, j to label the same
vertices as the pi/qi and ki, j , respectively, only without numeric value assigned.

Our first result considers an arbitrary Farey chain whose fans all have at
least 3 subdivisions.

Lemma 4.2. If [a1, a2, . . . , an] is a string where each ai > 2, then there is a
unique geodesic from the left extreme to the right extreme.

Proof. We prove this by induction on the length of the string, n. For n = 1, we
assume a1 > 2. Then, we claim that the path from P0 to P1 to P2 is minimal.
To see this, we observe that if we instead took a path from P0 to K1, 1 then the
next step would necessarily have to be to move to the right extreme, P2 in order
to be a geodesic. However, no edge exists from K1, 1 to P2 since a1 > 2. So the
original path is indeed minimal and unique. To prove the inductive step, assume
that the result holds for strings up to length n − 1. Then, consider a string of
length n where each ai > 2. By the inductive hypothesis, we know that if we
consider Pn to be the right extreme, then there exists a unique geodesic from
the left extreme to Pn. Now, clearly the edge from Pn to Pn+1 is the least path
so we can adjoin this path to the one constructed by the inductive hypothesis.
If another geodesic path existed, then it would have to clearly pass from Pn−1

to Pn+1 in two steps, however since an > 2 then, the n = 1 case implies that no
such geodesic exists, so the geodesic is indeed unique.

As Lemma 4.2 implies, then, it is sufficient to understand how Farey chains
with fans that have at most 2 subdivisions. We begin with the simple cases, in
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the following two lemmas. The first one deals with a Farey chain which has no
subdivisions, and the second one deals with Farey chains in which each fan has
exactly two subdivisions.

Lemma 4.3. If [a1 a2, . . . , an] is a string where each ai = 1, then there are
ψ(n) geodesics from the left extreme to the right extreme, where

ψ(n) =
{

n
2 + 1 : n ∈ 2N
1 : n ∈ 2N + 1

Proof. We prove this first for the case where n is odd. If n = 1 then it is clear
that the geodesic is unique. Given some n ∈ 2N + 1, suppose that the result
of unique geodesics holds for all odd integers less than n. Then, the inductive
hypothesis states that a unique geodesic exists from the left extreme to Pn−1.
Then, it is clear that the unique geodesic to Pn+1 is simply continued from Pn−1

to Pn+1 as any other path would necessarily be at least two units longer.
In the case that n is even, we can use a simple counting argument to quickly
reason that the function n

2 + 1 is correct. Given an even length string, we note
that there exist two “parallel” lines which are the line of connecting vertices of
the form P2k, and the line of connecting vertices of the form P2k+1. Then, it is
clear that in order to reach the right extreme from the left extreme in minimal
moves, one must travel from P0 to P2 to P4 and so on until at some vertex P2k

we move to P2k+1 and then continue to P2k+3 and so on until we reach the right
extreme. It is quick to see that any other path will be less efficient than this
family of paths. Clearly, the only free choice made is precisely the move from
P2k to P2k+1. As there are n triangles, it is easy to see that there are n

2 + 1
choices for geodesic paths.

We recall the Fibonacci sequence, defined recursively as follows:

Definition 4.4. The Fibonacci sequence, with nth term denoted fib(n), is
defined as

fib(0) = 1,

fib(1) = 1,

and
fib(n) = fib(n− 1) + fib(n− 2)

for n ≥ 2.

Lemma 4.5. If [a1, a2, . . . , an] is a string where each ai = 2, then there are
fib(n+ 1) geodesics from the left extreme to the right extreme.

Proof. As a note, we recall that from Theorem 3.7, the length of the geodesics
from left extreme to right extreme would be the distance from 1/0 to
[0; a1, a2, . . . , an]. This distance is clearly n+ 1, so we aim to find all paths of
length n+1. We prove the result by induction. Let n = 1. One can quickly check
that there are fib(2) = 2 minimal paths of length 2 from the left extreme to the
right extreme. Similarly, for n = 2, one can exhaustively check the paths and
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find that there are fib(3) = 3 minimal paths of length 3 from the left extreme to
the right extreme. So, suppose that the result holds for all k < n, where n ≥ 3.
Then, beginning from the left extreme, we have two cases: moving from P0 to
P1 or moving from P0 to K1,1. In the first case, we use the inductive hypothesis
on the string [a2, . . . , an], so from the point P1 to the right extreme to conclude
that there are fib(n) geodesics of length n. But, any of these geodesics unioned
with the single edge from P0 to P1 is a path of length n+1, and so is a geodesic.
Similarly, in the second case, if we move from P0 to K1,1 then moving from K1,1

to P1 would not lead to any geodesic path, so it must be the case that we move
from P0 to K1,1 to P2. Again, the inductive hypothesis implies that there are
fib(n − 1) geodesics of length n − 1 from P2 to the right extreme. Hence, the
union of any of these geodesics with the path from P0 to P2 through K1,1 must
be a path of length n + 1, and hence is a geodesic from left extreme to right
extreme. By our construction of cases, we have avoided any double-counting
but have been exhaustive. As such, there are fib(n− 1) + fib(n) = fib(n+ 1)
geodesics from the left extreme to the right extreme, as desired.

In order to combine the previous two lemmas, we recognize that the the
function used to determine the number of geodesics associated to a string of
ones has two very unrelated outputs. For simplicity, it turns out to be useful
to consider these cases individually, rather than in one large result. We first
consider the case when we have a a string of ones and twos, with an odd number
of ones in a row.

Lemma 4.6. If [a1, a2, . . . , an] is a string of odd length such that a1 = an = 2
and ai = 1 for all other i, then there is a unique geodesic from the left extreme
to the right extreme.

Proof. If we consider the substring of [a2, . . . , an−1], then Lemma 4.3 implies
that there is a unique geodesic from P1 to Pn. Then, we note that Theorem
3.7 implies that this path unioned with the edges from P0 to P1 and Pn to
Pn+1 is a geodesic from the left extreme to the right extreme. To see that it
is unique, then it is clear that a different path must, without loss of generality
(by symmetry) pass from P0 to P2, since if it did not, then it would contradict
Lemma 4.3. However, if at any point the path moves from P2k to P2k+1, for
k > 0, then it is clearly not a geodesic since a shorter path could be found to
P2k+1. If it never does so, then the path would be of the form

P0 → K1, 1 → P2 → P4 → · · · → Pn−1 → Kn−1, 1 → Pn+1.

But the length of this path is two greater than the length of the geodesic
previously constructed. Thus, the geodesic of this chain is unique.

Finally, we prove the most powerful result, which will encompass Lemmas
4.3 and 4.5. First, we introduce necessary notation.

Definition 4.7. Let [a1, a2, . . . , an] be a string which alternates between bun-
dles of 2’s and even length bundles of 1’s with a1 = 2. Then, b0 is the length
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of the maximal consecutive chain of 2’s starting from a1. That is, if i is the
minimal i such that ai = 1, then b0 = i − 1. Then, b1 is the length of the
maximal consecutive chain of 1’s starting from ab0+1. We continue this pattern
until we exhaust the entire string, so that

∑
bk = n.

Example 4.8. Consider the chain [2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1]. Then,

[2, 2, 2︸ ︷︷ ︸
b0

, 1, 1, 1, 1︸ ︷︷ ︸
b1

, 2, 2︸︷︷︸
b2

, 1, 1︸︷︷︸
b3

, 2︸︷︷︸
b4

, 1, 1, 1, 1︸ ︷︷ ︸
b5

],

so b0 = 3, b1 = 4, b2 = 2, b3 = 2, b4 = 1, b5 = 4.

Theorem 4.9. If [a1, a2, . . . , an] is a string with a1 = 2 which alternates be-
tween bundles of 2’s and even length bundles of 1’s, then there are Ki(b0, . . . , bi)
geodesics from the left extreme to the right extreme where Ki is defined recur-
sively as:

K0(b0) = fib(b0 + 1)

and

Ki(b0, . . . , bi) =



Ki−1(b0, . . . , bi−1)
+ψ(bi − 2) ·Ki−1(b0, . . . , bi−1 − 1) if i ∈ 2N + 1

Ki−1(b0, . . . , bi−1) ·K0(bi − 1)
+Ki−2(b0, . . . , bi−2 − 1) ·K0(bi − 2) if i ∈ 2N

(4.1)

Proof. We prove this by induction on the index i of Ki. For i = 0, the result
holds by Lemma 4.5. Then, we have two cases to check, whether i is even or
odd. In the case that i is odd, then assume that the recursion holds for all
m < i. Then, bi is some bundle of an even number of 1’s, and we will call
t0 the left extreme of this bundle, and label successive (from lowest levels to
highest levels, i.e. left to right) by successive tis. We consider two cases: either
the geodesic path passes through t1, or it does not. In the case that it does,
the inductive hypothesis states that there are Ki−1(b0, . . . , bi−1) geodesic paths
from P0 to the point t1. Then, it is clear that the path from t1 to the right
extreme is defined over an odd numbered list of 1’s, so Lemma 4.3 implies that
the geodesic from t1 to the right extreme is unique. To see that the union of
any of the Ki−1(b0, . . . , bi−1) geodesic paths with the unique geodesic from t1
to the right extreme is still a geodesic of the entire string, we note that the
geodesic constructed from Theorem 3.7 is contained in this set of geodesics,
and as all have equal length, they are all geodesics. Alternatively, it is possible
that a path is defined from t0 to t2. Again, by the inductive hypothesis, there
are Ki−1(b0, . . . , bi−1 − 1) geodesics from the left extreme to t0. We note the
special care to avoid double counting any paths from the first set of geodesics
already considered by forcing the path to travel from t0 to t2. In this case,
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we see that Lemma 4.3 implies that there are a total of ψ(bi − 2) geodesics
from t2 to the right extreme. Again, the union of any geodesic defined by the
Ki−1(b0, . . . , bi−1 − 1) term to any of the ψ(bi − 2) geodesics is a geodesic of
the full string since one quickly reasons that the length of any of these strings is
equal to the length of the geodesics defined in the first case of the proof. These
cases are disjoint and exhaustive, and as such we conclude that there are a total
of Ki−1(b0, . . . , bi−1) + ψ(bi − 2) ·Ki−1(b0, . . . , bi−1 − 1) geodesics as desired.

In the case that i is even, again assume that the recursion holds for all m < i.
Then, bi is some bundle of 2’s, and we will call t0 the left extreme of this bundle,
and label the following vertices similarly as above. We consider the following
two cases: either the path passes through t1 or it does not. In the case that the
path passes through t1 we see that there are fib(bi) = K0(bi−1) geodesic paths
from t1 to the right extreme. Then, there are, by the inductive hypothesis,
Ki−1(b0, . . . , bi−1) geodesics from the left extreme to t1. We note that the
geodesic as constructed by Theorem 3.7 is included in this set, and so as all paths
have the same length, they must all be geodesics. In the case that we do not pass
through t1 then we conclude that we pass from t0 to k1,0 to t2. We see that there
are fib(bi−1) = K0(bi−2) geodesics from the right extreme to t0 in this manner.
But, then a geodesic from t0 to the left extreme has a bundle of an odd number
of 1’s, so Lemma 4.3 and Lemma 4.6 imply that there is a unique geodesic from
t0 past the bundle of 1’s to a bundle of 2’s. But, Lemma 4.6 implies that the
final 2 in this bundle cannot contribute any new geodesics, so as such there are
in fact Ki−2(b0, . . . , bi−2 − 1) geodesics from the left extreme to t0. Again, the
union of these geodesics has the same length as any of the geodesics which pass
through t1, and so each is a new geodesic. So, in total we have constructed
exhaustively Ki−1(b0, . . . , bi−1) ·K0(bi−1)+Ki−2(b0, . . . , bi−2−1) ·K0(bi−2)
geodesics. This completes the inductive step and so the result holds for all i.

Remark 4.10. In the case that [a1, . . . , an] is a string with a1 = 1 which al-
ternates between even length bundles of 1’s and bundles of 2’s, then one can
quickly reason that we simply take b0 = 0 and apply the theorem above simi-
larly. Also, one can check that the result does not alter for seemingly degenerate
cases where bi = 1 or bi = 2, since fib(0) = fib(1) = 1.

With the results of Theorem 4.9 and Lemmas 4.2 and 4.3, it is now possible
to calculate the number of geodesics from p/q to 1/0. If p/q = [a0; a1, . . . , an],
then the number of geodesics to 1/0 is given by the number of geodesics from
left extreme to right extreme of the abstract Farey chain [a1, . . . , an]. Starting
from a1, if a1 > 2, then construct the maximal substring [a1, . . . , ai] where
ak > 2 for all k ≤ i. If a1 ≤ 2, then create a maximal substring of the form
in Lemma 4.6 or Theorem 4.9. In the case that the string of 2s, [a1, . . . , am]
is followed by an odd number of ones, we simply recall that Lemma 4.2 implies
that we can only consider the string [an, . . . , am−1] as a maximal string of 2s.

We continue this pattern until the entire string [a1, . . . , an] is divided into
fundamental chains. Underlying these choices of partitions are the vertices
which are unavoidable by any geodesic path, as determined by Lemmas 4.2, 4.3,
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and 4.6. As such, these choices of subchains are exhaustive and non-repetitive.
Symbolically:

G(p/q) = G([a0; a1, . . . , ai])× G([ai; ai+1, . . . , aj ])
× · · · × G([ak−1; ak, ak+1, . . . , an])

= G([a1, . . . , ai])× G([ai+1, . . . , aj ])× · · · × G([ak, ak+1, . . . , an])

=
∏

K`,

since G([am, . . . , an]) 6= 1 if and only if [am, . . . , an] is of the form given by
Theorem 4.9.

5 Further Investigations

5.1 Diameter of Fn

An interesting question involves calculating the asymptotic behavior of the Fn;
we are particularly interested in calculating the diameter of a given Fn as a
function of n. For simplicity of notation, we write dF to be the combinatorial
metric on F . We recall the following definition:

Definition 5.1. The diameter of Fn is denoted diam(Fn) and defined as

diam(Fn) = max{dF (x, y) : x, y ∈ Fn}.

Intuitively, given some non-trivial Fn, if x, y ∈ Fn satisfy dF (x, y) = diam(Fn),
then it should hold that x, y ∈ Ln. The converse, however, may not necessarily
be true. As such, a characterization of vertices which are inherently far apart
would be very useful. Given some p/q, its negative reciprocal −q/p should be
one of the furthest points from p/q. It turns out that there will always exist
some p/q satisfying the condition that dF (p/q,−q/p) = diam(Fn). The follow-
ing lemma constructs these points inductively.

Definition 5.2. We call p/q an nth level Farey reciprocal if

dF (p/q, −q/p) = n.

Proposition 5.3. For all n ≥ 2, there exists an nth level Farey reciprocal
p ∈ Ln such that

p = r ⊕ t
where r ∈ Ln−1 and t ∈ Ln−2 are an n − 1st level Farey reciprocal an n − 2nd
level Farey reciprocal, respectively. In particular, diam(Fn) = n.

Proof. We let x∗ represent the negative reciprocal of x, in this proof. The result
holds for our base cases of n = 2 and n = 3. Assume the result holds up to
some n− 1, and let r ∈ Ln−1 be such that dF (r, r∗) = n− 1 and

r = t⊕ u
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where t ∈ Ln−2 and u ∈ Ln−3 are an n− 1st level Farey reciprocal an n− 2nd
level Farey reciprocal, respectively. Then, we claim that

p := r ⊕ t ∈ Ln

is an nth level Farey reciprocal. Now, we know that dF (r, r∗) = n − 1 and
dF (t, t∗) = n − 2 by construction. As all geodesics between p and p∗ live
in Fn, then Lemmas 2.10 and 2.6 imply that every geodesic path from p to
p∗ must travel through some combination of r, r∗, t, and t∗. It is clear that
dF (r, t∗) ≥ n − 2 (and similarly dF (r∗, t) ≥ n − 2), since if it were not, then
we would be able to construct a path of length less than n − 1 from r to r∗, a
contradiction. So, if we consider the four possible cases through which a path
can pass from p to p∗, then it is clear that a minimal path will be achieved by

p→ t→ · · · → t∗ → p∗,

since dF (t, t∗) = n− 2. We conclude that p is an n level Farey reciprocal.
It remains to show that diam(Fn) = n. From the work above, diam(Fn) ≥ n.

Suppose, without loss of generality, that diam(Fn) = n+ 1. Then, there would
exist some p, q ∈ Fn such that dF (p, q) = n+ 1. Consider

p = r ⊕ t

and
q = u⊕ v.

Then, r, t, u, v ∈ Fn−1. So, the inductive hypothesis implies that the distance
between any of the four points must be at most n − 1. At most, two of the
four points can live in Ln−1, say r, u ∈ Ln−1, by Lemma 2.12. In the worst
case, we assume without loss of generality that dF (r, u) = n − 1. But as
t, v 6∈ Ln−1, then the inductive hypothesis on these two points implies that
dF (t, v) < dF (r, u). So, by constructing a path from p to t to v to q, we
conclude that dF (p, q) ≤ dF (t, v) + 2 < n + 1. This is a contradiction; we
conclude that diam(Fn) = n.

5.2 Alternative Geodesic Algorithm

Theorem 2.14 is convenient because it requires only local information to prop-
agate the geodesic path to 1/0. The specific path choice and distance, however
is dependent on calculating the Farey parents and determining which parent
has lower level. Likewise, Theorem 3.7 requires calculating the entire contin-
ued fraction expansion. Although such calculations are possible, a continued
fraction expansion, for example, could be arbitrarily long, costing an unreason-
able amount computational memory. We would like to construct a path whose
construction is computationally cheaper and without the need of any oracle
machine to compute Farey parents. First note the following inherent symmetry
in a Farey chain: given some chain of fans, we can simply rotate or reflect it
so as to map the vertex of p/q to 1/0 and 1/0 to p/q. In this way, although
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the convergents’ values are lost, we recognize that every geodesic in the original
Farey chain maps to a geodesic in the transformed Farey chain. As the proof
of Theorem 3.7 implies, the shape (specifically the subdivisions) of the Farey
chain determines the geodesic paths, and not the values of the vertices. Hence,
given a geodesic of the Farey chain, we can apply a rotation/reflection in or-
der to construct a geodesic in the new, rotated/reflected Farey chain. These
observations are summarized in the following lemma:

Lemma 5.4. Given p/q = [a0; a1, a2, . . . , an] ∈ Q, the distance from 1/0 to
p/q is equal to the distance from 1/0 to r/s := [b0; an, . . . , a2, a1], where b0 ∈ Z.
Further, all geodesics from 1/0 to p/q are in bijection with all geodesics from
1/0 to r/s by reflection/rotation of the associated Farey chains.

Further, we aim to construct a geodesic which is propagated from 1/0 to p/q.
We use Lemma 5.4 to do so. So, given p/q = [a0; a1, a2, . . . , an], we simply
rotate/reflect the associated Farey chain, and use Theorem 3.7 to construct a
geodesic from the geometric properties of the Farey chain. Then, we can perform
the same rotation/reflection as the beginning in order to retain our original
Farey chain with correct labels. Encoding this conjugation action allows us to
simply determine a new geometric rule for construction a geodesic from 1/0 to
p/q using only local information.

To do so, we recall that the continued fraction expansion can be recovered
from the Euclidean algorithm. Specifically, given p/q ∈ Q, then the first term
of the continued fraction expansion, a0, satisfies

p = a0 · q + r0,

where r0 < q by the division algorithm. The next iteration is as follows:

q = a1 · q1 + r1,

where r1 < q1 by the division algorithm. So, following the iterative process of
the Euclidean algorithm will satisfy the following property:

qi = ai+1 · qi+1 + ri+1,

where we continue the process until rj = 0 for some j. Stripping the sequence of
ai terms from these calculations reconstructs the continued fraction expansion
of p/q. It is important to note that computing some aj term only requires
information from the calculation of the aj−1 term in order to calculate the value
of aj+1. This observation, along with the fact that we can construct geodesics
geometrically by conjugation, immediately yields the following algorithm to
construct geodesic paths. This process only requires a fixed number of values
to be stored to memory at any given time, which greatly improves the previous
results.

Proposition 5.5. Given p/q ∈ Q, a geodesic path from 1/0 to p/q in F can
be found by iterating steps of the Euclidean algorithm (beginning on p, q and
iteratively on their quotients and remainders) and following this algorithm:
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1. First, simply record a0 and start the path at 1/0 =: p0/q0.

• If a1 > 1 then continue the path to a0/1 =: p1/q1, and continue the
algorithm by checking a2.

• If a1 = 1 then continue the path to a0+1
1 =: p1/q1, and continue the

algorithm by checking a3.

2. In general:

• If the remainder of the Euclidean algorithm computation of ai is 0,
then terminate after the ith loop completes.

• If ai > 1 then continue the path from pi/qi to ai+1pi+pi−1
ai+1qi+qi−1

, and con-
tinue the algorithm by checking ai+1.

• If ai = 1, then continue the path to pi−1+pi−2
qi−1+qi−2

, and continue the
algorithm by checking ai+2.

6 Programs

6.1 Height Function

It turns out that computing the Farey level of a rational number is quite difficult,
as it requires computing successive Fn until said rational number is constructed.
However, most of our results do not require the specific Farey level of a rational
number so much as a comparison of Farey levels between two numbers. As such,
we recall the following measure of complexity of a rational number, as defined
by Silverman and Tate, and explore its relation to Farey levels.

Definition 6.1 ([ST1] ). The height of a rational number, p
q , is given by the

function H : Q̂→ Z defined by

H

(
p

q

)
= max{|p|, |q|}.

Lemma 6.2. If a
b ∈ Q \

{
0
1 ,
±1
1

}
has Farey parents p

q and r
s , then

H
(a
b

)
> max

{
H

(
p

q

)
, H

(r
s

)}
,

and furthermore

H

(
p

q

)
6= H

(r
s

)
.

Proof. As p
q and r

s are Farey neighbors, by Lemma 2.4 they must necessarily
have like sign, which implies that

|p+ r| = |p|+ |r|
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and
|q + s| = |q|+ |s|.

Also, since 0
0 6∈ Q̂, we deduce that H(m) must be strictly positive for any m ∈ Q̂.

Now, it is clear that

H
(a
b

)
= max{|p+ r|, |q + s|} = max{|p|+ |r|, |q|+ |s|} ≥ |p|+ |r| ≥ |p|.

Similarly, one can show that H
(
a
b

)
is greater than or equal to any of |r|, |q|, or

|s|. So, it must hold that

H
(a
b

)
≥ H

(
p

q

)
and

H
(a
b

)
≥ H

(r
s

)
.

Suppose that there were equality in either case. Without loss of generality, we
assume that

H
(a
b

)
= H

(
p

q

)
= |p|.

So
∣∣∣pq ∣∣∣ > 1

1 and |p| = H
(
a
b

)
= |p + r| = |p| + |r|, so |r| = 0. But, this implies

that r
s = 0

1 . But this is impossible since p
q and r

s are Farey neighbors, and it
cannot hold that r

s is a Farey neighbor with a number greater than 1
1 . So, the

inequality must be strict in this case. The other case follows similarly if we
assume

H
(a
b

)
= H

(
p

q

)
= |q|.

This leads to a similar contradiction where r
s = 1

0 and p
q <

1
1 . This proves the

first part of the claim. To prove that H
(
p
q

)
6= H

(
r
s

)
it is necessary to consider

p
q and r

s as elements in levels of the Farey complex. Lemma 2.12 implies that
the two numbers cannot be in the same level of the Farey complex. Thus p

q is a
Farey parent of r

s or vice versa. We assume, without loss of generality, that p
q

is a Farey parent of r
s . So, there exists a Farey neighbor to p

q , say p′

q′ , such that

r

s
=
p

q
⊕ p′

q′
.

But, the work from the first part of the claim implies that

H

(
p

q

)
> H

(r
s

)
,

so the claim is established.

Lemma 2.12 and Lemma 6.2 together immediately lead to the following
equivalence:
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Proposition 6.3. If p
q and r

s are Farey neighbors, then H
(
p
q

)
< H

(
r
s

)
if and

only if p
q is in a lower level than r

s .

6.2 Maple Code

The following are a series of procedures written in Maple code which act in
two classes. The first class of programs forms the first method of computation
of Farey distance utilizing the results of Theorem 2.14. In this method, the
computational time is longer, but for small calculations, it is more beneficial
because it also includes a list containing the vertices of the path. Of course, the
program could be made faster by not incorporating this list, however it would
still be less efficient than the second class of programs. This second class of
programs only returns a single number which is the Farey distance between two
points. It is much faster and relies on the results of Theorem 3.7.

6.2.1 Method 1

LinfFarey := proc (r)::list;
local d, f, i, p1, p2, q;
description "Creates a list of points along the geodesic

path from r to infinity";
q := r; d := [ ]; f := 1;
if q < 0 then

q := -q;
f := -1;

end if;
do
if q = infinity then

if f = -1 then
for i to nops(d) do

d[i] := -d[i];
end do;

end if;
break;
elif q = 0 then

d := [op(d), 0];
if f = -1 then

for i to nops(d) do
d[i] := -d[i];

end do;
end if;

break;
elif q = 1 then

d := [op(d), 1];
if f = -1 then

for i to nops(d) do
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d[i] := -d[i];
end do;

end if;
break;
elif numer(q) = 1 then

d := [op(d), q];
d := [op(d), 0];
if f = -1 then

for i to nops(d) do
d[i] := -d[i];

end do;
end if;

break;
elif denom(q) = 1 then

d := [op(d), q];
if f = -1 then

for i to nops(d) do
d[i] := -d[i];

end do;
end if;

break;
else

d := [op(d), q];
igcdex(numer(q), denom(q), ’x’, ’y’);
p1 := -y/x; p2 := (numer(q)+y)/(denom(q)-x);
if abs(-y)+abs(x) < abs(numer(q)+y)+abs(denom(q)-x) then

q := p1;
else q := p2;
end if;

end if;
end do;
return d;
end proc;

LFarey := proc (t, r)::list;
local dis, i;
description "Creates a list of points along the geodesic from

t to r"
if t = infinity then

dis := Reverse([op(LinfFarey(r)), t]);
elif r = infinity then

dis := [op(LinfFarey(t)), r];
else

igcdex(numer(r), denom(r), ’a’, ’b’);
dis := LinfFarey((a*t+b)/(denom(r)*t-numer(r)));
for i to nops(dis) do
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dis[i] := (numer(r)*dis[i]+b)/(denom(r)*dis[i]-a);
end do;
dis := [op(dis), r];

end if;
return dis;
end proc;

6.2.2 Method 2

countones := proc (mylist::list, b::integer)::integer;
local c, i;
description "Counts the number of consecutive ones in a list

starting from a given index";
c := 0;
for i from b to nops(mylist) do

if mylist[i] = 1 then
c := c+1

else
break;

end if;
end do;
return c;
end proc;

infFarey := proc (q::rational)::integer;
local dis, ct, clist, k, i;
description "Computes the distance from an arbitrary rational number to 1/0";
if abs(q) = 1 then

dis := 1;
return dis;
break;

end if;
clist := cfrac(abs(q), quotients);
dis := nops(clist);
clist := clist[2 .. ];
while member(1, clist, ’k’) do

ct := countones(clist, k);
dis := dis-ceil((1/2)*ct);
clist := clist[k+ct .. ]

end do;
return dis;
end proc;

Farey := proc (q, r)::integer;
local dis;
description "Finds the Farey distance between two arbitrary rational numbers";
if (q = r) or (q=infinity and r=-infinity) or (q=-infinity and r=infinity) then
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dis := 0;
elif q = infinity then

dis := infFarey(r);
elif r = infinity then

dis := infFarey(q);
else

igcdex(numer(q), denom(q), ’x’, ’y’);
dis := infFarey((-x*r-y)/(denom(q)*r-numer(q)));

end if;
return dis;
end proc;
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Combinatorial Expansion Factors

Rachel Moger-Reischer

1 Introduction

Consider the two-sphere S2 described as in [1] as a square pillowcase.

Definition 1.1. A square pillowcase is the 2-sphere obtained by gluing two
square tiles by a homeomorphism of their edges.

Figure 1: A square pillowcase

We call this cell complex Q0. We will discuss our own subdivision rule
shortly, but first we consider the motivation for our project; namely, some other,
simpler examples of cell complexes that develop as a result of subdivision rules.

The idea of having a cell structure on a square pillowcase is one that has been
seen before, most notably in the Lattés examples. As with the Lattés examples,
we will look at a subdivision rule iterated repeatedly, where our definition of a
subdivision rule is that of Cannon, Floyd, Kenyon, and Parry in [1].

Definition 1.2. (Cannon, Floyd, Kenyon, & Parry) A finite subdivision rule
consists of:

1. a finite two-dimensional cell complex SR (called the model subdivision
complex);

2. a subdivision R(SR);

3. a continuous cellular map σR : R(SR)→ SR (called the subdivision map),
which restricts to a homeomorphism on each open cell of R(SR).

A number of variations on the Lattés subdivision rule are given on [2]. In
looking at any particular example, we can consider the combinatorial distance
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across the cell complex at a fixed level n, where n is the number of iterations of
the subdivision rule. By combinatorial distance, we simply mean the number
of tiles one must cross in getting from one side to the other. Complex though
some of these variations are, nonetheless a minimal path across each example
crosses 2n tiles.

Figure 2: Q0

Figure 3: Q1

Thinking that it might be interesting to look for a subdivision rule that does
not have this property, we developed the subdivision rule and the corresponding
series of cell complexes that are the topic of this paper. We call the cell complex
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after n iterations of the subdivision rule Qn. We sought a more complicated cell
complex that might have minimal combinatorial distance less than 2n. Thus,
rather than having the two faces of the square pillowcase be squares, we let
them be hexagons where the six edges are labeled a, b, c, d, e, f and the vertices
are placed as in fig: 2. The set of all edges at level n is denoted E(Qn) and the
set of all vertices at level n is denoted V (Qn). We note that the definition of
square pillowcase preserves all labels and orientations of edges.

Figure 4: Q2

Our subdivision rule is one which maps edges of Qn to edges of Qn+1 as
follows:

• a 7→ a, b

• b 7→ c

• c 7→ c, b, a

• d 7→ f, f, a

• e 7→ b, c, c, b, a

• f 7→ f, f

where the order of the labels of the new edges reflects their order with respect
to the orientation of the original edges.

We then draw two additional edges—one from the vertex that is between
what were the b and c edges of the previous iteration to the new vertex between
the two new c edges on what was the e edge of the previous iteration and the
other from the new vertex between the two f edges created from what was the
f edge of the previous iteration to the new vertex between the two f edges that
were created from what was a d edge the previous iteration. These two new
edges intersect at a vertex. The first becomes two new d edges and the second
becomes two new e edges.
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Figure 5: Q3

Our subdivision rule is a member of the one parameter family that is formally
defined and shown to exist in [3].

Iterating this subdivision rule yields the cell complexes depicted in fig: 3,
fig: 4, fig: 5, and fig: 6.

What interests us, then, is the growth rate of the minimal distance D(n)
from one side of Qn to an opposite side. This can be articulated in terms of the
limit lim

n→∞
D(n)

1
n , which we know to exist by previous work in the area. Because

the faces of Q0 are hexagons, what is meant by opposite sides is non-obvious.

Definition 1.3. We say that two sides of Q0 are opposite if they share no
vertices. We define a side of Qn to be union of the edges between two of the
vertices at level n that were vertices of Q0. Sides of Qn are opposite if the
corresponding sides of Q0 were opposite.

2 Paths, Bands, and Shortcuts

As we iterate our subdivision rule, we often find it convenient to look at partic-
ular subsets of Qn. Let ti be some tile of Qn. By E(ti) we denote the set of all
edges of ti and by V (ti) we denote the set of all vertices of ti.

Definition 2.1. We define a path β at level n, denoted βn,to be a sequence of
tiles such that for any two tiles ti and ti+1, V (ti) ∩ V (ti+1) 6= ∅.

Definition 2.2. We define a band to be a sequence of connected tiles, where by
connected we mean that the tiles ti and ti+1 are such that E(ti)∩E(ti+1) 6= ∅.

The distinction, then, between bands and paths is this: while successive tiles
in a band must share an edge, successive tiles in a path need only share a vertex.
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Figure 6: Q4

Thus, it is clear that the set of all bands on Qn is a proper subset of the set of
all paths.

Let Aβ be the set of all a edges traversed by a path β. We define Bβ , Cβ ,
Dβ , Eβ , and Fβ similarly. Let A be the set of all a edges in Qn, B the set of
all b edges, and so forth.

Definition 2.3. We say that a band is horizontal if for all tiles ti and ti+1 we
have that (E(ti) ∩ E(ti+1)) ∩ (D ∪ F ) 6= ∅.

This is to say that a band is horizontal if every pair of adjacent tiles shares
either a d edge or an f edge.

Definition 2.4. A path βn is called horizontal if βn ⊆ bn, where bn is a hori-
zontal band.

As may be observed in fig: 6, unlike with the Lattés examples, it is possible
from one side of Qn to an opposite side while crossing less than 2n tiles. Notice
that the point at the very center of the complex, call it P , has valence strictly
greater than 4.

Definition 2.5. We say that a point p has valence m at level n if p ∈ V (Qn)
and the number of edges that have p as a vertex is equal to m.
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Points with valence greater than 4 the observed warping, which we’ll call a
shortcut, at the center of Q4. This leads us to formally define the concept.

Definition 2.6. A path βn has shortcut at point pl and stage i, denoted scpl,i,
if

1. scpl,i is a horizontal subpath of βn;

2. for any two tiles tj and tj+1 with the property that E(tj) ∪ E(tj+1) =
{f, a, b, c}, we have tj 6∈ βn and tj+1 6∈ βn;

3. pl ∈ V (tj) for some tile tj ∈ βn;

4. at level n, p has valence strictly greater than 4;

5. pl ∈ V (Qk), where k is the minimum level such that valk(pl) > 4;

6. the stage i is given by i = n− k.

We note that pl ∈ V (cl), where cl is some subcomplex of Qn containing
scp1,i. Thus, the point pl serves to locate the shortcut on the cell complex.

Definition 2.7. We call the point pl in a shortcut scpl,i the central point of
scpl,i.

3 Finding the Minimal Distance

In this section, we will first look at some special paths and the distance along
them. We conjecture that these paths are minimal on Qn.

3.1 Calculating the Distance Along Some Special Paths

Here we will calculate the distance along a special set of paths, for any n = 4m,
where m ∈ N.. We note that, since we are concerned with the limit as n
approaches infinity of this minimal distance, it will suffice to look at this distance
for all multiples of 4.

By dd,f (βni) we denote the distance from an edge d to an edge f along a
subpath βni of a path βn through a subcomplex ci. We will denote the minimal
distance across ci in the d, f direction Dd,f (ci).

Let the central point of the shortcut that develops at level n = 4 be denoted
P . Let U,L ⊂ Q4 be such that U and L are horizontal bands and scP,1 ⊆ U ∪L.
Note that under subdivision U and L are subcomplexes of Qn. We define a set
of paths Γn on for n = 4m, where m ∈ N, recursively as follows:

1. Γ4 is the set of paths on Q4 with the following properties:

(a) γ4 ⊂ U ∪ L;

(b) the central point P is a vertex of t7 and of t8;
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(c) γ4 uses the shortcut scP,1;

(d) E(t14 ∩D 6= ∅.

We note that each tile of γ4 is a copy of Q0. Under subdivision it will
form a subcomplex of Qn, which, after an additional four subdivisions
when n = 8, the subcomplex will be a copy of all of Q4. In general, at
level n these subcomplexes will be copies of Qn−4.

2. Γn is the set of paths on Qn with the following properties:

(a) γn ⊆ γn−4;

(b) the subpath γnj of γn contained in each subcomplex cj of Qn that
was a tile tj ∈ γn−4 follows a path that replicates the path γn−4

traverses across all of Qn−4 unless the subcomplex cj ⊆ scP,i at level
n, in which case the tile tj at level n − 4 behaves in four possible
distinct ways with regard to the tiles tj−1 and tj+1. Namely:

i. the tile tj shares an edge with tj−1 and an edge with tj+1;
ii. the tile tj shares an edge with tj−1, but only a vertex with tj+1;
iii. tj shares a vertex only with tj−1, but shares an edge with tj+1;
iv. tj shares vertices only with tj−1 and tj+1.

The behavior of tj at level n − 4 determines the behavior of the
subpath γnj at level n. If (i), then γnj replicates γn−4. If (ii), then let
γnj replicate γn until the central point pj of the central shortcut scpj ,i
is reached at which time continue diagonally to the vertex shared with
cj+1. If (iii), then let γnj proceed diagonally from the vertex shared
with cj−1 to the central point pj of the central shortcut scpj ,i of
the subcomplex cj and then replicate γn−4. If (iv), let γnj cross cj
strictly diagonally, crossing 16 tiles.

We believe that the minimal distance is realized by following any path γn ∈
Γn through the cell complexes that develop within the two central horizontal
bands of Q4, namely U and L, under subdivision.

Theorem 3.1. Let γn ∈ Γn be arbitrary. If the number of subdivisions n is
such that n = 4m for some m ∈ N, then the distance along any path γn is equal
to X(n), where X(n) is defined recursively by

X(4) = 14 and

X(n) = 13 ·X(n− 1) + 2(n−4).

Proof. We will use induction on m. Let γn be defined as in our claim and
let γni ⊆ γn denote the sub-path of γn that is contained in a subcomplex ci.
Counting gives the length of γ4 to be 14.

Consider m = 2. We note that every tile, ti, along the middle horizontal
edge of Q4 is a copy of Q0. Thus, after another 4 subdivisions, that is when
m = 2, each of these subcomplexes is a copy of Q4. Hence for each subcomplex
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ci 6∈ sc4, we have dd,f (γ4i) = 14. Since there are 12 subcomplexes ci 6∈ sc4, we
have a total distance of 12 · 14.

Now consider the subcomplexes within the shortcut itself. Notice that if we
are to use the shortcut scP,4 our path must cut through the point at the center of
the shortcut complex. But since the subcomplexes within scP,4 are themselves
copies of Q4, each contains a shortcut scp,1. So our path must pass through the
central point of these shortcut complexes as well. Hence, we traverse a path
that is just like those for the subcomplexes not in sc4 until we reach this center
point of scp,1, crossing through 7 tiles. We then cut diagonally to the center
point of scP,4. Since shortcuts only exist in the d, f direction, we cross 8 more
tiles. The other subcomplex in sc4 is the mirror image of the first, so crossing
it, we cross 8 tiles diagonally to get to the center point of this subcomplex’s
scp,1 and then cross another 7 tiles. Thus, dd,f (γnsc4 ) = 14 + 16 = 14 + 24.

Adding the distances across the subcomplexes ci 6∈ sc4 and those ci ∈ sc4,
we have dd,f (γ8) = 12 · 14 + 14 + 24 = 13 · 14 + 28−4 = X(8). Hence, the base
case holds.

Now suppose that our claim is satisfied after n− 4 = 4(m− 1) subdivisions.
Since each of the 12 tiles along the middle horizontal edge of Q4 is a copy of
Q0, in Qn these subcomplexes are copies of Qn−4. Hence, for each subcomplex
cj 6∈ scP,n−4, we have dd, f(cj) = dd,f (n − 4). Thus, the total distance across
the subcomplexes cj 6∈ scP,n−4 is 12 · dd,f (n− 4).

Next consider the subcomplexes inside the shortcut scP,n−4. Noting that,
as with the n = 8 case, we wish our path to pass through the center point
of scP,n−4, we cut across the first subcomplex, call it cm where m ∈ N is
fixed, as for the other subcomplexes cj 6∈ scP,n−4 until we reach the central
point of cm, crossing dd,f (n−4)

2 tiles. We then cut diagonally to the center
point of scP,n−4. Since short cuts exist only in the d, f direction, this is just
like cutting diagonally across a grid. We note that cm has width equal to
1
16 of Qn. Thus, this diagonal distance is 2n

25 . Because the other subcomplex
within scP,n−4 is the reflection of cm, we have a total distance across scP,n−4 of
2(Dd,f (n−4)

2 + 2n−5) = Dd,f (n− 4) + 2n−4.
Therefore, the total distance dd,f (γn) = X(n) for all n = 4m, as desired.

3.2 The Limit

The recursive function that gives the distance along a path γn ∈ Γn may be
written explicitly. Although the explicit formulation fails to capture the direct
behavior of γn, it makes the behavior of the limit lim

n→∞
(D(n))

1
n clear.

Proposition 3.2. Let n = 4m for m ∈ N and recall the expression X(n)
defined recursively by

X(4) = 14 and

X(n) = 13 ·X(n− 1) + 2(n−4).

If we let ym = X(4m), this may be stated explicitly as ym = 2
3 · 13m + 1

3 · 2
4m.
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Proof. We note thatX(n+4) = 13·X(n)+2n, which we rewrite asX(4(m+1)) =
13 ·X(4m) + 24m. Let ym = X(4m). Then ym+1 = 13ym + 24m = 13ym + 16m

with y1 = 14. Since ym+1 is the sum of homogeneous part yhm+1 = 13ym and
non-homogeneous part ypm+1 = 16m, we can deal with these two parts separately.
We note that yhm+1 has general solution yhm = C · 13m for some constant C. We
may write ypm = A · 24m. Plugging this into the original equation for ym+1 we
obtain A · 16m+1 = 13(A · 16m) + 16m. Dividing through by the 16m term,
we get A · 16 = 13A + 1. Equivalently, A = 1

3 . Thus, the general solution to
ym+1 is given by ym = C · 13m + 1

3 · 16m. Plugging in our initial condition gives
14 = C ·13+ 1

3 ·16. Solving for C we find C = 2
3 . Therefore, ym = 2

3 ·13m+ 1
3 ·2

4m,
as desired.

Now that we have the distance formula in a form that we can comfortably
manage, we proceed to find the limit.

Theorem 3.3. Given ym = 2
3 · 13m + 1

3 · 16m, we have lim
m→∞

(ym)
1
m = 16.

Proof. Consider that(
2
3
· 13m +

1
3
· 16m

) 1
m

=
(

16m
(

2
3
·
(

13
16

)m
+

1
3

)) 1
m

= 16
(

2
3
·
(

13
16

)m
+

1
3

) 1
m

,

so lim
m→∞

(
2
3
· 13m +

1
3
· 16m

) 1
m

= 16 lim
m→∞

(
2
3
·
(

13
16

)m
+

1
3

) 1
m

. Now con-

sider that for all m: (
13
16

)m
< 1

2
3

(
13
16

)m
<

2
3

2
3

(
13
16

)m
+

1
3
< 1.

Also, clearly 1
3 < 2

3

(
13
16

)m + 1
3 . Since lim

m→∞

(
1
3

) 1
m

= 1 and lim
m→∞

1
1
m = 1,

we have lim
m→∞

(
2
3
·
(

13
16

) 1
m

+
1
3

) 1
m

= 1, by the Squeeze Theorem. Hence,

lim
m→∞

(
2
3
· 13m +

1
3
· 16m

) 1
m

= 16, as desired.
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3.3 Relevant Linear Algebra

We will next show that the paths γn ∈ Γn are minimal. We will use an argument
from linear algebra, so we introduce some concepts here.

Definition 3.4. We say that a matrix A is non-negative, and write A ≥ 0, if
the entry ai,j ≥ 0,∀i, j.

We can consider vectors in a similar vein.

Definition 3.5. Let v be some vector in an arbitrary vector space V . We define
v to be non-negative, and write v ≥ 0, if wi ≥ 0,∀i.

This allows us to order both matrices and vectors with the ordinary partial
order. That is, it follows directly from the definitions that, for n×m matrices A
and B, we have A ≤ B if and only if B−A ≥ 0. Similarly, for vectors v, w ∈ V ,
we have v ≤ w if and only if w − v ≥ 0.

Lemma 3.6. Let A and B be n × m matrices such that A,B ≥ 0 and let
v, w ∈ V , where V is an n-dimensional vector space, with v, w ≥ 0. If A ≤ B
and v ≤ w, then Av ≤ Bw.

Proof. We note that A,B non-negative implies that ai,j , bi,j ≥ 0,∀i, j and v, w
non-negative implies that vi, wi ≥ 0,∀i. Since A ≤ B, we have ai,j ≤ bi,j ,∀i, j
and, similarly, v ≤ w gives vi ≤ wi,∀i. Thus, ai,jvi ≤ bi,jwi,∀i, j. Hence,

m∑
j=1

ai,jvi ≤
m∑
j=1

bi,jwi,∀i.

This is equivalent to Av ≤ Bw, by definition.

A similar result holds for powers of non-negative square matrices.

Corollary 3.7. Let A and B be n × n matrices such that A,B ≥ 0 and let
v, w ∈ V , where V is an n-dimensional vector space, with v, w ≥ 0. If A ≤ B
and v ≤ w, then Anv ≤ Bnw.

Proof. Note that for any non-negative square matrix M and any n ∈ N we
have that Mn is also non-negative. The result now follows directly from our
lemma.

3.4 The Minimal Distance

Before continuing to the main result, we remind the reader that previous results
have shown that the combinatorial distance on a cell complex such as Qn is
proportionally the same whether we count tiles or edges. In this argument, we
find it more convenient to count edges.
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Since the edges that γn ∈ Γn traverses are all a, b, or c edges, we look at
these edges under our subdivision rule to obtain the transition matrix

A =

 1 0 1
1 0 1
0 1 1

 .
Note that A ≥ 0.

Let a vector vβn be associated to each path βn. Define vβn as vβn =

 aβn
bβn
cβn

,

where aβn = |Aβn |, bβn = |Bβn |, and cβn = |Cβn |. We note that 0 ≤ vγ4 = 14
14
14

 for any path γ4 ∈ Γ4.

Theorem 3.8. A path γn ∈ Γn is minimal for all n ≥ 4.

Proof. Given any path from the original f side of Q0 to the original d side of
Q0, either it reaches the d side on the top of Qn or on the right hand side of
Qn. Call the set of all paths that reach d on the top An and call the set of paths
that reach d on the right hand side Bn.

First consider the paths αn ∈ An. In particular, we will show that our result
holds for all such paths. Let the path through the topmost horizontal band of
Qn through the vertex separating the sides d and e of Q0 be called α′n. Notice
that, when n = 4, dd,f (α′4) = 14 = dd,f (γ4). Further, this distance the minimum
distance for all paths α4 ∈ A4. Equivalently, vα′4 < vα4 for all α4 ∈ A4 such
that α4 6= α′4. By the definition of a transition matrix, vαn = An−4vα4 for all
n > 4, where we remember that

A =

 1 0 1
1 0 1
0 1 1

 .
Thus, vα′n = An−4vα′4 < An−4vα4 = vαn for all αn 6= α′n and all n > 4, by 3.7
to 3.6. Hence, it is sufficient to show that vγn ≤ vα′n . But this is already clear
from the fact that vα′4 = vγ4 and from 3.7.

Now consider the paths βn ∈ Bn. Note that 0 ≤

 14
14
16

 ≤ vβ4 for all

such paths β4 6∈ Γ4, so vγ4 < vβ4 for all β4 6∈ Γ4. By the definition of a
transition matrix, we have vγn = An−4vγ4 for all n > 4. Since A ≥ 0, we have
An−4 ≥ 0 for all n > 4. Thus, vγn = An−4vγ4 < An−4vβ4 = vβn , where βn is
any path satisfying βn 6∈ Γn. In other words, the distance along γn is minimal,
as desired.
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Statistical Consistency of the Method of

Maximum Parsimony

Frederick Robinson and Elizabeth Ann Housworth

Abstract

We record our progress to date on the second parsimony conjecture
of Mike Steel. That conjecture states that if binary characters have the
same probability, p, of changing on each branch of a phylogeny, then for
p sufficiently small and independent of the number of taxa related by
the phylogeny, maximum parsimony is statistically consistent. That is,
maximum parsimony will return the correct phylogeny with probability
increasing to one as the amount of data observed on the extant taxa
increases to infinity.

Introduction

Phylogenetics is the study of how different species are related. An important
question in phylogenetics is how to recover a tree (phylogeny) describing how
species are related, given characteristics (characters) of all the species involved.
Throughout this paper, we will be concerned only with binary (0/1) characters.

The phylogeny estimation method with which we are concerned is maximum
parsimony. It selects the phylogeny(ies) which involve the fewest number of
changes in the character states needed to explain the observed species data – the
most parsimonious ones. It is well-known that a phenomenon called long branch
attraction (see [3] can cause maximum parsimony to return incorrect phylogenies
no matter how many characters are observed at the species tips, leading to
the method of maximum parsimony being inconsistent in some circumstances.
However, any method, including the method of maximum likelihood, can be
inconsistent if the data do not conform to the model assumptions (see [2], for
instance). Our goal is to describe the assumptions under which the method of
maximum parsimony is guaranteed to recover the original phylogenetic. It is
already known that given a fixed number n of species on a phylogeny, there is a
corresponding probability of character change, pn, so that if the true probability
of change, p, satisfies 0 < p < pn, then maximum parsimony is a consistent
method for estimating the phylogeny.

Our goal is to show that there is a p0 independent of the number of species
related by the phylogeny, so that if the probability of change, p, satisfies 0 <
p < p0, maximum parsimony is consistent, thus proving a conjecture of Steel
[6].
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Main Result

Our goal is to prove the following conjecture of Steel [6].

Conjecture: Consider taxa character sequences generated on a phylogeny with
all branches having equal length, p, signifying the probability a binary character
changes on the branch. If p < 0.01, then the method of maximum parsimony
on the resulting taxon data is statistically consistent; i.e. maximum parsimony
returns the correct phylogeny with probability tending to one as the number of
characters observed increases to infinity.

To prove this result, we have created a probabilistic version of the definition
of a one-clustering introduced in Chai and Housworth (2011) [1]. Before we
define a one-clustering, we will clarify the other terminology we will use in this
work. There are multiple trees involved in this work. One is the real, or true,
tree on which the data, or random variables, are created by randomly flipping
bits (0 to 1 or 1 to 0) on each edge, independently, with probability p. The
result of this process is character sequences or random variables on the species
tips of the tree which are observable.

The phylogeny we recreate using the method of maximum parsimony is a
second tree which cannot agree with the real tree in the sense that the recon-
struction of the sequences or random variables at the interior nodes cannot fully
agree with their real counterparts. However, we will say that the maximum par-
simony tree is equivalent to the real tree if both trees have the same collection of
splits. A third tree will replace the most parsimonious resolutions at the interior
nodes with close approximations to those and will be defined further below.

We now give some more formal definitions. We will view nodes in these trees
as random variables. Again, there are the random variables on the real tree
generated by the probabilistic process and random variables on the most parsi-
monious tree generated as the most parsimonious reconstruction of the random
variables at the tips. We will identify vertices in trees by their corresponding
random variables.

Definition 0.9 (degree). The degree of a vertex a in a tree T is the number of
edges connected to a and will be denoted degT (a).

Definition 0.10 (edge weight). The weight of an edge connecting two vertices
a and b is the expected distance between a and b: d(a, b) = E(|a− b|).
Definition 0.11 (score). The expected score of a tree T is the sum of the
weights of the edges in T and is denoted by score(T ).

Definition 0.12 (depth). The depth of a vertex a in a tree T is the minimum
over degree 1 vertices b of the number of edges in the path from a to b and is
denoted depthT (a). The degree 1 vertices themselves have depth 0.

Definition 0.13 (cherry). A cherry in a tree T consists of two vertices a and
b each connected by an edge to a common vertex q. The vertex q = q(a, b) is
called the root of the cherry.
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a b

c

q(a,b)ˆ
r

a b c d

q(a,b)ˆ q(c,d)ˆr

Figure 1: Two cases: the asymmetric case on the left with a cherry attached to
an observed leaf sequence and the symmetric case on the right with two cherries
attached together.

Definition 0.14 (external cherry). An external cherry in a tree T consists of
two degree 1 vertices a and b each connected by an edge to a common vertex
q = q(a, b). The only distinction between a cherry and an external cherry is
that, for a cherry, a and b need not be leaves in T . This is a non-standard use
of the term.

Definition 0.15 (approximate cherry root). If vertices a and b form a cherry
with root q = q(a, b), then any other sequence q̂ = q̂(a, b) which is within 5p2 of
q = q(a, b) is an approximate cherry root.

Definition 0.16 (properly fully resolved). A spanning tree T of N taxa se-
quences is properly fully resolved if the vertex associated with each taxon has
degree 1 and all other vertices have degree 3.

We now explore the joint distribution that two parsimonious assignments
that form a cherry in T equal or do not equal the real value at the cherry root.
We proceed using an iterative argument.

In the initial case, considering the depth 1 vertices, we see that T has one of
the following two structures. Call a pair of cherries the symmetric case and the
cherry attached to a leaf as the asymmetric case. Note that the leaf vertex in
the asymmetric case even when iterating is always an observed taxon sequence
(our iterative process always leaves cherries behind.)

The process of constructing the most parsimonious sequences at each inte-
rior node requires a forward looking process followed by a backward looking
process. We can give approximate parsimony values by just looking in a small
neighborhood of a node. We prove further below that these roots are, in fact,
approximate parsimony roots as defined above.
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In the asymmetric case, an approximate parsimony root is

q̂(a, b) =

{
a if a = b

c if a 6= b

In the symmetric case, an approximate parsimony root for a and b is

q̂(a, b) =

{
a if a = b or (a 6= b and c 6= d)
c if a 6= b and c = d

Similarly, an approximate parsimony root for c and d is

q̂(c, d) =

{
c if c = d or (a 6= b and c 6= d)
a if c 6= d and a = b

To prove that these are indeed approximate parsimony roots and are close
to the real random variables, we consider the joint distribution of the random
variables indicating whether, in the asymmetric case, q̂(a, b) = r and c = r, and
in the symmetric case, q̂(a, b) = r and q̂(c, d) = r. Since we need to be able
to iterate this argument we go ahead and give the general iteration formulas.
These are quite complicated looking but are relatively straightforward to obtain
by conditioning on whether the real roots above r are equal to r or to 1 − r.
We let superscripts (1) denote the previous iteration of this joint distribution
on the left and (2) denote the previous iteration of this joint distribution on
the right in the symmetric case. The joint distribution without superscripts is
the current distribution. The subscripts indicate whether the random variables
agree with r or disagree with r.

In the asymmetric case, these iterative formulas are based on two cases:
whether r(a, b) = r or r(a, b) = 1 − r, where r(a, b) is the real (probabilistic)
outcome at cherry root of a and b.

Pr,r = (1− p)2
[
P (1)
r,r + P

(1)
r,(1−r) + P

(1)
(1−r),r

]
(A1)

+ p(1− p)
[
P

(1)
(1−r),(1−r) + P

(1)
r,(1−r) + P

(1)
(1−r),r

]
= P (q̂(a, b) = r, c = r)

Pr,(1−r) = p(1− p)
[
P (1)
r,r

]
+ p2

[
P

(1)
(1−r),(1−r)

]
(A2)

= P (q̂(a, b) = r, c = 1− r)

P(1−r),r = (1− p)2
[
P

(1)
(1−r),(1−r)

]
+ p(1− p)

[
P (1)
r,r

]
(A3)

= P (q̂(a, b) = 1− r, c = r)
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P(1−r),(1−r) = (1− p)p
[
P

(1)
(1−r),(1−r) + P

(1)
r,(1−r) + P

(1)
(1−r),r

]
(A4)

+ p2
[
P (1)
r,r + P

(1)
r,(1−r) + P

(1)
(1−r),r

]
= P (q̂(a, b) = 1− r, c = 1− r)

In the symmetric case, these iterative formulas are:

Pr,r = (1− p)2
[
P (1)
r,r P

(2)
r,r + P (1)

r,r

(
P

(2)
r,(1−r) + P

(2)
(1−r),r

)
(S1)

+
(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P (2)
r,r + P

(1)
r,(1−r)P

(2)
r,(1−r)

]
(r(a, b) = r(c, d) = r)

+ p(1− p)
[
P (1)
r,r P

(2)
(1−r),(1−r) + P (1)

r,r

(
P

(2)
r,(1−r) + P

(2)
(1−r),r

)
+
(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P

(2)
(1−r),(1−r) + P

(1)
r,(1−r)P

(2)
(1−r),r

]
(r(a, b) = r, r(c, d) 6= r)

+ p(1− p)
[
P

(1)
(1−r),(1−r)P

(2)
r,r +

(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P (2)
r,r

+ P
(1)
(1−r),(1−r)

(
P

(2)
r,(1−r) + P

(2)
(1−r),r

)
+ P

(1)
(1−r),rP

(2)
r,(1−r)

]
(r(a, b) 6= r, r(c, d) = r)

+ p2
[
P

(1)
(1−r),(1−r)P

(2)
(1−r),(1−r) +

(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P

(2)
(1−r),(1−r)

+ P
(1)
(1−r),(1−r)

(
P

(2)
r,(1−r) + P

(2)
(1−r),r

)
+ P

(1)
(1−r),rP

(2)
(1−r),r

]
(r(a, b) 6= r, r(c, d) 6= r)

= P (q̂(a, b) = r, q̂(c, d) = r)

Pr,(1−r) = (1− p)2
[
P (1)
r,r P

(2)
(1−r),(1−r) + P

(1)
r,(1−r)P

(2)
(1−r),r

]
(S2)

+ p(1− p)
[
P (1)
r,r P

(2)
r,r + P

(1)
r,(1−r)P

(2)
r,(1−r)

]
(r(a, b) = r, r(c, d) 6= r)

+ p(1− p)
[
P

(1)
(1−r),(1−r)P

(2)
(1−r),(1−r) + P

(1)
(1−r),rP

(2)
(1−r),r

]
(r(a, b) 6= r, r(c, d) = r)

+ p2
[
P

(1)
(1−r),(1−r)P

(2)
r,r + P

(1)
(1−r),rP

(2)
r,(1−r)

]
(r(a, b) 6= r, r(c, d) 6= r)

= P (q̂(a, b) = r, q̂(c, d) = 1− r)
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P(1−r),r = (1− p)2
[
P

(1)
(1−r),(1−r)P

(2)
r,r + P

(1)
(1−r),rP

(2)
r,(1−r)

]
(S3)

+ p(1− p)
[
P

(1)
(1−r),(1−r)P

(2)
(1−r),(1−r) + P

(1)
(1−r),rP

(2)
(1−r),r

]
(r(a, b) = r, r(c, d) 6= r)

+ p(1− p)
[
P (1)
r,r P

(2)
r,r + P

(1)
r,(1−r)P

(2)
r,(1−r)

]
(r(a, b) 6= r, r(c, d) = r)

+ p2
[
P (1)
r,r P

(2)
(1−r),(1−r) + P

(1)
r,(1−r)P

(2)
(1−r),r

]
(r(a, b) 6= r, r(c, d) 6= r)

= P (q̂(a, b) = 1− r, q̂(c, d) = r)

P(1−r),(1−r) = (1− p)2
[
P

(1)
(1−r),(1−r)P

(2)
(1−r),(1−r) + P

(1)
(1−r),(1−r)

(
P

(2)
r,(1−r) + P

(2)
(1−r),r

)
(S4)

+
(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P

(2)
(1−r),(1−r) + P

(1)
(1−r),rP

(2)
(1−r),r

]
(r(a, b) = r(c, d) = r)

+ p(1− p)
[
P

(1)
(1−r),(1−r)P

(2)
r,r +

(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P (2)
r,r

+ P
(1)
(1−r),(1−r)

(
P

(2)
r,(1−r) + P

(2)
(1−r),r

)
+ P

(1)
r,(1−r)P

(2)
(1−r),r

]
(r(a, b) = r, r(c, d) 6= r)

+ p(1− p)
[
P (1)
r,r P

(2)
(1−r),(1−r) + P (1)

r,r

(
P

(2)
r,(1−r) + P

(2)
(1−r),r

)
+
(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P

(2)
(1−r),(1−r) + P

(1)
(1−r),rP

(2)
r,(1−r)

]
(r(a, b) 6= r, r(c, d) = r)

+ p2
[
P (1)
r,r P

(2)
r,r +

(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P (2)
r,r

+ P (1)
r,r

(
P

(2)
r,(1−r) + P

(2)
(1−r),r

)
+ P

(1)
r,(1−r)P

(2)
r,(1−r)

]
(r(a, b) 6= r, r(c, d) 6= r)

= P (q̂(a, b) = 1− r, q̂(c, d) = 1− r)

Note that initially, the probability two observed tips equal the true root
value is (1 − p)2, the probability a specific one equals the true root value and
the other one does not is p(1 − p) and the probability neither equals the true
root value is p2. Plugging this into the formulas above gives the following first
set of joint distributions in the asymmetric and symmetric cases.

(q̂(a, b)\c r 1− r
r 1− 2p(1− p)− p3 p(1− 3p(1− p))
1− r p(1− p)2 3p2(1− p)

)
and

132



(q̂(a, b)\q̂(c, d) r 1− r
r 1− 2p(1− p)− 2p2(1− p)2 p(1− p)− 2p2(1− p)2

1− r p(1− p)− 2p2(1− p)2 6p2(1− p)2

)

We prove several inequalities:

Theorem 0.17. For p < 0.01,

• 2p2 ≤ P(1−r),(1−r) ≤ 7p2

• p− 4p2 ≤ min
(
P(1−r),r, Pr,(1−r)

)
≤ max

(
P(1−r),r, Pr,(1−r)

)
≤ p+ 4p2

• 1− 2p− 15p2 ≤ Pr,r ≤ 1− 2p+ 6p2

Proof. Note that the initial joint distributions satisfy these inequalities. Pro-
ceeding by induction, we will show that after each iteration described above the
resulting joint distribution still satisfies these inequalities.

In the asymmetric case, the lower and upper bounds on P(1−r),(1−r) are
obtained by plugging in the relevant lower and upper bounds (assumed true by
induction) into (A4):

2p2 ≤ 3p2 − 10p3 − 15p4 ≤ P(1−r),(1−r) ≤ 3p2 + 13p3 + 3p4 ≤ 7p2

which is true for p < .088.
Similarly, lower and upper bounds for P(1−r),r and Pr,(1−r) are obtained by

plugging in the relevant lower and upper bounds (assumed true by induction)
into (A3) and (A2):

p− 4p2 ≤ p− p2 − 15p3 + 15p4 ≤ P(1−r),r ≤ p+ 4p2 − 2p3 − 3p4 ≤ p+ 4p2

which is true for p < .27 and

p− 4p2 ≤ p− 3p2 − 11p3 + 15p4 ≤ Pr,(1−r) ≤ p− 3p2 + 12p3 − 3p4 ≤ p+ 4p2

which is true for p < .10.
Finally, lower and upper bounds for Pr,r are obtained via the lower and

upper bounds for P(1−r),(1−r), P(1−r),r, and Pr,(1−r) obtained for this iteration
just above:

1− 2p− 15p2 ≤ Pr,r ≤ 1− 2p+ 6p2

Similarly, in the symmetric case, he lower and upper bounds on P(1−r),(1−r)
are obtained by plugging in the relevant lower and upper bounds (assumed true
by induction) into (S4):
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2p2 ≤ 6p2 − 30p3 − 65p4 + 300p5 + 225p6

≤ P(1−r),(1−r)

≤ 6p2 + 54p3 + 139p4 + 78p5 + 9p6 ≤ 7p2

for p < .01.
We omit demonstrating the bounds on P(1−r),r) as it is identical to Pr,(1−r).

Using (S2) we see that

p− 4p2 ≤ p− 3p2 − 36p3 + 85p4 + 165p5 − 225p6

≤ Pr,(1−r)
≤ p+ 3p2 + 8p3 + 64p4 + 21p5 − 9p6 ≤ p+ 4p2

for p < .03.
Again, using the bounds just obtained, we obtain the following bounds on

Pr,r:

1− 2p− 15p2 ≤ Pr,r ≤ 1− 2p+ 6p2

Proposition 0.18. The approximate cherry root q̂(a, b) is an approximate par-
simony root

Proof. Note, that in the asymmetric case, our choice of q̂(a, b) is one of at most
two equally parsimonious choices. Thus, up to ambiguity in the choice of the
most parsimonious value, our choice gives no error. In the symmetric case, our
choice for q̂(a, b) can be wrong, but only in the case where both the left and right
cherries contain one left zero and one left one. The joint distribution calculation
above gives that this happens with probability less than 4(p + 4p2)2 ≤ 5p2 if
p < 0.01.

Proposition 0.19. We also claim that d(q̂(a, b), r(a, b)) ≤ 16p2.

Proof. To see this, condition when necessary on the outcome of r(a, b) and
r(c, d):
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P (q̂(a, b) 6= r(a, b)) = P
(1)
(1−r),(1−r) + P

(1)
(1−r),r

(
P

(2)
r,(1−r) + P

(2)
(1−r),r

)
+ (1− p)2

(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P

(2)
(1−r),(1−r)

(r(a, b) = r(c, d) = r))

+ p(1− p)
(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P (2)
r,r

(r(a, b) = r, r(c, d) 6= r)

+ p(1− p)
(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P (2)
r,r

(r(a, b) 6= r, r(c, d) = r))

+ p2
(
P

(1)
r,(1−r) + P

(1)
(1−r),r

)
P

(2)
(1−r),(1−r)

(r(a, b) 6= r, r(c, d) 6= r)

≤ 15p2 + 32p3 + 20p4 + 72p5 − 32p6

≤ 16p2

for p < 0.01.
In the asymmetric case, the calculation is simpler:

P (q̂(a, b) 6= r(a, b)) = P
(1)
(1−r),(1−r) +

(
P

(1)
(1−r),r + P

(1)
r,(1−r)

)
P (c 6= r(a, b))

= P
(1)
(1−r),(1−r) +

(
P

(1)
(1−r),r + P

(1)
r,(1−r)

)
2p(1− p)

≤ 11p2 + 12p3 − 16p4

≤ 16p2

for all p ≤ 1.
Thus, our approximate parsimony roots are within 5p2 of one of the choices

for their most parsimonious counterparts and also within 16p2 of the roots
generated by the real (probabilistic) process when p < 0.01. The fact that the
most parsimonious roots are close to the real, probabilistic, roots, gives that the
most parsimonious phylogeny is a probabilistic one-clustering.

Conjecture: Any connected, fully resolved one-clustering on 3 or more taxa
gives the corresponding fully resolved phylogeny as the unique most parsimo-
nious phylogeny with the ancestral sequences uniquely determined by the one-
clustering.
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Summary and Conclusions

In the discrete case considered by Housworth and Chai [1], the notion of one
clustering allows for a peeling argument where the true tree T , and the test tree
T ′ are simultaneously broken down (peeled) while keeping track of the score of
the removed branches. The argument shows that the total score of T ′ is always
greater than that of T , unless T ′ = T . This approach is likely adaptable to
the problem at hand, and will lead to a proof of the conjecture. We hope to
refine our notion of probabilistic one clustering to allow an adaptation of this
argument to the current problem.

We have a partial proof that maximum parsimony is consistent. It remains
to adapt the pealing argument used in a similar, discrete problem to work in
the probabilistic realm.
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