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Preface

During the summer of 2010 eight students participated in the Research Experi-
ences for Undergraduates program in Mathematics at Indiana University. The
program ran for eight weeks, from June 21 through August 13, 2010. Six fac-
ulty served as research advisers. Two faculty members oversaw a pair of related
projects; all other faculty advised one student each.

The program opened with an introductory pizza party. On the following
morning, students began meeting with their faculty mentors; these meetings
continued regularly throughout the first few weeks. During week one, there
were short presentations by faculty mentors briefly introducing the problem to
be investigated. The week concluded with a formal reception at the IMU for
REU students and mentors from around the campus. Several other IU faculty
gave talks on their favorite topics during the first half of the program. Students
also received orientations to the mathematics library and to our computing fa-
cilities. In week three, students gave short, informal presentations to each other
on the status of work on the project. Brief training sessions on using LATEXwere
given during week four; the campus SUR program also hosted a two-day GRE
preparation workshop, in which five of our students participated. Housed in
a common dorm, the students themselves organized a barbecue and a trip to
the Slocum puzzle collection. In week five, they received a personal tour of
the cyclotron facility. During week six, we hosted the Indiana Mathematics
Undergraduate Research conference, which featured 25 lectures by 44 students
from Rose-Hulman Institute of Technology, Wabash College, Purdue Univer-
sity, and Indiana University, and ended with an hourlong panel discussion on
graduate school. The next week ended with a picnic at Bryan Park. The pro-
gram concluded with the students giving formal, hourlong presentations to the
REU students and faculty, and the submission of final reports, contained in this
volume.

It took the help and support of many different groups and individuals to
make the program a success.

We thank the National Science Foundation for major financial support through
the REU program through grants DMS-0453309 and DMS-0851852. We also
thank Indiana University’s Vice President for Diversity, Equity, and Multicul-
tural Affairs, Dr. Edwin Marshall, and Vicki Roberts, Associate Vice President
for Administration and Culture, for additional funding. We thank Indiana Uni-
versity for the use of facilities, including library, computers, and recreational
facilities. We thank the staff of the Department of Mathematics for support,
especially Mandie McCarty for coordinating the complex logistical arrangments
(housing, paychecks, information packets, meal plans, frequent shopping for
snacks and gluten-free items) and Cheryl Miller for her assistance in coordinat-
ing the application process. We thank Indiana graduate student Brent Stephens
for serving as LATEXconsultant and for compiling this volume.

Thanks to mathematics faculty Russell Lyons, Allan Edmonds, Michael
Jolly, Elizabeth Housworth, and Bruce Solomon for giving lectures to our group.
We also thank Professor Paul Kirk and Professor Carl Cowen (of Purdue Uni-
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versity and IUPUI) and graduate students Kate Kearney and Steven Morrow
for serving on the graduate school conference panel. Thanks to David Baxter
of the Center for Exploration of Energy and Matter (nee IU cyclotron facility)
for his personal tour.

This program could not exist without the faculty mentors, whose expertise
and generous donation of time and energy enabled our participants to have
a truly exceptional experience. A special thanks to the professors who led
research projects: from Mathematics, Hari Bercovici, Chris Connell (two stu-
dents), Larry Moss, Kevin Pilgrim, and Matthias Weber. This year marked the
second in a row with projects in biology. We thank Distinguished Professor of
Biology Michael Lynch (mentor for two students) and math graduate student
JuanJuan Chai for serving as a consultant.

KMP
August, 2010
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Figure 1: REU Participants, from left to right:Garrett Proffitt, Hayley Miles-
Leighton, Michael Anselmi, Nathan Dowlin, Hamza Ghadyali, Linh Truong,
Elizabeth Kammer, Komi Messan
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Evolution of mutation rates in a

population

Michael Anselmi

1 Introduction

Population genetics is a field of biology that concerns itself with the genetic
basis of evolution, and differs from many other biological fields in that most of
its insights are theoretical and neither observational nor experimental. [1] Just
as different branches of mathematics have different central objects of study—
homeomorphisms in topology; groups, rings and fields in abstract algebra—so
too do the various fields of biology. In population genetics, the primary objects
of study are the frequencies and fitnesses of genotypes in populations.

As far as population genetics is concerned, evolution is the change in geno-
type frequencies in a population over time. Unfortunately, it is impossible to
observe these changes directly as the time scale of evolution can be on the order
of millions of years. Consequently, we may observe the state of a population at
any given point in time, but we cannot directly track how a population evolves.
Fortunately all hope is not lost. In order to gain insight into how a popula-
tion evolves, one constructs mathematical models and studies their behavior,
checking to see if the model predicts the state or states in which we expect the
population to be under certain circumstances.

In the context of population genetics, the question “how does evolution
proceed?” would be expressed as “how do allele frequencies change over time?”
In this paper, we attempt to model the interaction of deleterious mutations and
variable mutation rates in an idealized population. We would like to gain insight
into how mutational forces can steer evolution over large time scales. To this
end we begin to develop an iterative model that, when supplied with biologically
meaningful parameters, will yield data that reveal the distribution of mutation
rates throughout any and all of a population’s equilibrium states. Additionally,
we would like this data to suggest a closed-form description of those equilibria.

Why is such a pursuit of interest to us? An example: many strains of bac-
teria are harmless to humans; in fact, the human gut is teeming with bacteria.
However, for certain species of bacteria it is believed that strains which ac-
crue mutations more quickly than the wild-type strain are largely responsible
for the emergence of antibiotic resistance in the species. [2] Understanding the
conditions necessary for the development of mutator strains may augment our
understanding of such emergences.
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Figure 1: A snippet of DNA with no base-substitution mutations

2 Background

Mutation is the ultimate source of genetic variation. Therefore, understand-
ing the mechanisms driving evolution requires understanding the mechanisms
driving mutation. We now make precise what we mean by “mutation” in this
paper.

Throughout DNA we find the traditional Watson-Crick bases: adenine,
thymine, cytosine, and guanine. Normally, as is depicted in Figure 1, adenine
is paired with thymine and cytosine is paired with guanine. However, when we
encounter what is known as a single base-substitution (henceforth referred to
as a mutation), a single base mutates to another base, resulting in a mismatch.
Here we assume that any given mutation leads to exactly one of two possible
outcomes. Suppose the thymine in Figure 1 mutates to the guanine in Figure
2. This base pair mismatch may alter the individual’s fitness (reproductive via-
bility). The individual’s fitness could increase, decrease, or remain unchanged.
However, since most mutations that do alter fitness do so deleteriously, we as-
sume that each mutation to fitness results in a reduction of fitness. We call such
a mutation a type 1 mutation.

DNA-based life has a genetic repair system called mismatch repair that
corrects errors like those caused by type 1 and type 2 mutations. However,
if we develop a mutation at a locus responsible for the proper functioning of
mismatch repair, the performance and reliability of mismatch repair is expected
to decrease. This does not directly decrease an individual’s fitness, but it leads
to an increased rate of accrual of both type 1 and type 2 mutations in the
future. A mutation of this kind is a type 2 mutation. We assume that each type
2 mutation increases an individual’s mutation rate.

In short, a type 1 mutation decreases an individual’s fitness but does not
alter his mutation rate. A type 2 mutation does not decrease an individual’s
fitness but instead increases his mutation rate.

3 Model

Before we can begin developing our model, we must explicitly define our pop-
ulation to be modeled. We must make a number of assumptions about our
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Figure 2: One of each type of mutation has occurred

population in order to develop a reasonably simple model. First, we assume
that our population is isolated and is not affected by any forces not accounted
for by our model. Second, our population is asexual in the sense that offspring
are the product of exactly one parent. Additionally, every individual produces
exactly one child and generations do not overlap. Consequently the popula-
tion size remains fixed. We envision N individuals reproducing, generating N
offspring, and then dying immediately afterward. Finally we assume that the
population size is infinite for reasons that will become apparent later, particu-
larly in section 4.

Every individual in our population is completely specified by two parameters
x and y, which denote the number of type 1 mutations and the number of type 2
mutations an individual has, respectively. We denote the density of individuals
at time t (generation t) with x number of type 1 mutations and y number of
type 2 mutations by D(t)x,y. Additionally, we say that an (x, y) individual has
fitness w(x) and genomic mutation rate U(y), where w is a strictly decreasing
function of x and U is a strictly increasing function of y.

An example fitness function w is w(x) = (1 − s)x, where w maps Z≥ (the
nonnegative integers) to the half-open interval (0, 1] and s is fixed in (0, 1). Here,
1 is chosen to be peak fitness, with fitness decreasing toward zero as additional
type 1 mutations are accumulated. In population genetics, s is referred to as
the selection coefficient, a value which quantifies the deleterious effect (selec-
tive disadvantage) of a single type 1 mutation. This particular fitness function
implies multiplicative epistasis of type 1 mutations, by which we mean the fol-
lowing: if two type 1 mutations taken individually each confer a 1/2 probability
of survival, then taken together they confer a (1/2) · (1/2) = 1/4 probability
of survival. That is to say, the effects on the probability of survival of individ-
ual type 1 mutations are independent. [1] This function can be modified to be
more biologically accurate by mapping to zero after sufficiently many type 1
mutations have been accumulated.

The mutation rate function U should map Z≥ to the interval [Umin,∞)
or [Umin, Umax] and should be strictly increasing. We are not yet sure what
U should be, but for the time being we have assumed an exponential growth
pattern and chosen U to be defined by U(y) = eky + c, with k, c > 0 fixed. Here
we have a minimum mutation rate of Umin = 1 + c. Biologically speaking, a
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positive minimum mutation rate is necessary because no life has or can have
a mutation rate of zero. Mathematically speaking, if Umin were to equal zero,
then (x, 0) would be an absorbing state for all x.

We wish to calculate D(t+ 1)x′,y′ given that D(t)x,y is known for all x and
y. D(t+ 1)x′,y′ is determined in three consecutive steps:

D′(t)x,y = D(t)x,y ·
w(x)
w̄

, (1)

D(t+ 1)x′,y′|x,y = D′(t)x,y · Tx,y,x′,y′ , (2)

D(t+ 1)x′,y′ =
∑
x

∑
y

D(t+ 1)x′,y′|x,y. (3)

Steps (1) and (2) correspond to natural selection and mutation, respectively.
Before a generation reproduces, we must adjust the densities of individuals
according to their fitnesses and then normalize by that generation’s mean fitness.
In the above notation, D(t)x,y is adjusted to D′(t)x,y according to fitness. Next,
we determine the density of (x, y) individuals whose offspring are of type (x′, y′).
That is, we calculate D(t+1)x′,y′|x,y from D′(t)x,y and a four-dimensional array
T of transition probabilities, where Tx,y,x′,y′ denotes the probability that an
(x, y) parent produces an (x′, y′) child. Finally, in step (3) we calculate D(t +
1)x′,y′ by summing over the conditional densities of type (x′, y′).

We describe steps (1) and (2) in detail, beginning with step (1). We start
at time 0 and initialize the population by defining various D(0)x,y as we please.
For example, we typically set D(0)0,0 = 1 and D(0)x,y = 0 for x > 0 and y > 0.
The term w(x)/w̄ accounts for the effect of type 1 mutations on reproductive
output, decreasing D(t)x,y if w(x) < w̄ and increasing D(t)x,y if w(x) > w̄.

Step (2) is easily the most complicated iteration step, with the complexity
lying entirely with Tx,y,x′,y′ . In probability notation, we have that

Tx,y,x′,y′ = Pr{child (x′, y′)| parent (x, y)}. (4)

Assuming an infinite genome size, x′ and y′ become mutually independent, so
we rewrite

= Pr{child x′| parent (x, y)} · Pr{child y′| parent (x, y)}. (5)

However, the number of and the rate of arrival of additional type 2 mutations
are independent of type 1 mutations, so finally we have

Tx,y,x′,y′ = Pr{child x′| parent (x, y)}︸ ︷︷ ︸
P1

·Pr{child y′| parent y}︸ ︷︷ ︸
P2

, (6)

denoting the first and second terms on the right-hand side of (6) by P1 and
P2, respectively. It is here that the assumption of infinite population size is
necessary; (2) would not be valid otherwise, as this process would lose its de-
terminicity and become stochastic due to binomial sampling. All that remains
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to be done is model P1 and P2. Before continuing, we note that type 1 muta-
tions are assumed not to back-mutate, while type 2 mutations are allowed to
back-mutate with a rate independent of the forward mutation rate.

An (x′, y′) child of an (x, y) parent develops exactly x′−x type 1 mutations
not found in the parent, and inherits the remaining x type 1 mutations from
the parent. Let k = x′ − x and let W be a random variable such that Pr{W =
k} = Pr{child x′| parent (x, y)} = P1. Because mutations are rare events and
since we are assuming an infinite genome size, W is well-approximated by a
Poisson random variable with parameter λ. Here, λ = U(y) · f , where f is fixed
in (0, 1) and denotes the proportion of incoming mutations U that will be of
type 1. (Consequently, (1 − f) denotes the proportion of incoming mutational
events of type 2.) λ was so chosen because we require that E[W ] = U(y) · f ,
and the expected value of any Poisson random variable is its λ parameter. We
now have that

P1 = m(k) = Pr{W = k} =

{
λk

k! · e
−λ, k = 0, 1, 2, · · ·

0, k = −1,−2,−3, · · · .
(7)

Modeling P2 is a more difficult task. A y′ child of a y parent accrues i
additional type 2 mutations absent from the parent, and j ≤ y of the parent’s
type 2 mutations back-mutate in the child such that i− j = y′ − y. Let X and
Y be random variables denoting the incoming number of forward and backward
type 2 mutations, respectively. We have

E[X + Y ] = U(y) · (1− f), (8)

where (1−f) is the proportion of incoming mutations of type 2 (including both
forward and back mutation). Thus the random variable Z := X − Y is such
that Pr{Z = k} = P2, where k = y′ − y. Unfortunately it is not possible to
let X be a Poisson random variable and Y be a binomial random variable, for
then (8) forces the forward and backward type 2 mutation rates to be mutually
dependent. We have not yet identified a model for P2 suitable for the infinite
genome size model. However, should a suitable probability mass function n(k)
of Z be found, then our model would be complete.

Finally, we halt the iteration of the system once an equilibrium state is
encountered, which is when the population’s various x and y densities no longer
change.

4 Future work

After choosing a satisfactory model for P2, we will then relax the assumption of
infinite population size. A finite population size introduces a stochastic element
called genetic drift, an unbiased (with respect to selection) dispersive evolution-
ary force that removes genetic variation from the population; it is mutation’s
counter-force. [1]
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Figure 3: Allele frequency fluctuations due to genetic drift

To conceptualize how genetic drift acts on a population, consider a randomly
mating diploid population of N individuals. For the purposes of genetic drift,
it is equivalent to consider this population as a population of 2N alleles of a
certain gene. Assuming no evolutionary forces other than genetic drift, the
reproductive process is the following:

1. Randomly select one of the 2N alleles from the parent generation.

2. Duplicate the selected allele.

3. Place the duplicate in the new generation. [1]

Suppose our gene under consideration has two mutually exclusive alleles: A and
B. Further suppose that our population consists of 100 alleles and that the
initial frequencies of A and B are 99/100 and 1/100, respectively. Then there
will be a (1 − 1/100)100 ≈ 37% chance that the B allele with vanish from the
population in only one generation. However it is also possible that genetic drift
can elevate a new allele to fixation. In Figure 3 we see the effects of drift on the
B allele frequency in several populations, each of which consists of 100 alleles
and has B’s initial frequency set to 1/100.

5 Acknowledgments
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Torsion Subgroups of CAT(0) Groups

Nathan Dowlin Hamza Ghadyali

Abstract

Given a CAT(0) group G acting geometrically on a proper CAT(0)
space, we attempt to demonstrate that any torsion subgroup of G has
finite cardinality.

1 Introduction

Euclid’s fifth postulate, commonly referred to as the parallel postulate, states
that given a line ` and a point p not on ` there is exactly one line through p
that does not intersect `. When this postulate is removed, we allow for a much
larger class of metric spaces which can have peculiar properties. For example,
in hyperbolic geometry there are infinitely many lines through p that do not
intersect `. Furthermore, in elliptic geometry no such line exists since every line
through p will intersect `. Indeed, these are salient features of Hn, hyperbolic n-
space, and Sn, the n-sphere, respectively. Together, Hn, Sn, and En (Euclidean
n-space), are the model spaces of constant negative, positive, and 0 curvature,
respectively.

CAT(0) spaces are of particular interest because while they are incredibly
general, the lack of positive curvature provides us with many powerful tools. In
this paper, we are primarily concerned with CAT(0) groups, or groups which act
geometrically on proper CAT(0) spaces. More precisely, a CAT(0) group is a
subgroup of the group of isometries of a proper CAT(0) space that acts properly
discontinuously and cocompactly on the space. In studying these groups, one
natural question that arises is whether there can exist an infinite subgroup
consisting entirely of torsion (finite order) elements. Not only is this question
interesting in its own right, but an important cut point theorem by Eric Swenson
requires this to be true in order to complete his proof. For En, Bieberbach has
shown that no such infinite torsion subgroup can exist, and the same result
has been shown for δ-hyperbolic groups; we studied Olshanskii’s proof of this
theorem in great depth. CAT(0) spaces lie somewhere in between these two,
and a similar result is expected for CAT(0) groups.

We use various geometric approaches to arrive at a proof of this result. At
first, since the CAT(0) case most closely resembles the situation in δ-hyperbolic
groups, we attempted to follow Olshanskii’s proof substituting CAT(0) groups
for δ-hyperbolic groups. However, without word-hyperbolicity, word-processing
in the CAT(0) group became incredibly complicated very quickly. Instead, we
resorted to the geometry of CAT(0) spaces and examined how it must restrict
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the groups acting on them. Because Swenson’s proof requires only that torsion
subgroups fixing a point in the boundary at infinity to be finite, we assume
that our torsion subgroups do in fact have a fixed point in the boundary. Using
this assumption, we have derived many characteristics regarding the manner in
which torsion groups act on horospheres. While we have been unable to prove
the theorem in general, these characteristics have allowed us to show something
weaker about a torsion group T fixing a point c in the boundary at infinity. We
proved that if the boundary at infinity of the horosphere at c consists only of
the point c, the torsion subgroup can only be infinite if there exists an infinite
torsion group with a finite number of conjugacy classes, which is currently a
major open question in group theory.

2 Background

We provide the basic definitions that recur throughout this paper here.

Definition 2.1. Let (X, dx) and (Y, dy) be a metric spaces. An isometry
between X and Y is a map φ : X → Y such that ∀x, x′ ∈ X, dx(x, x′) =
dy(φ(x), φ(x′)). A (unit speed) geodesic in X is an isometry γ : I → X where I is
a connected subset of R. If I = [a, b], I = [a,∞), or I = R, then γ is a geodesic
segment, ray, or line, respectively.

Definition 2.2. Let X be a metric space. We call X a geodesic metric space if
∀x, x′ ∈ X there is a geodesic segment between x and x′, (ie ∃γ : [0, a]→ X such
that γ(0) = x and γ(a) = x′). If ∀x, x′ ∈ X this geodesic segment is unique, X
is a unique geodesic metric space.

The definition below for a CAT(0) space comes from [Ru].

Definition 2.3. Let (X, d) be a metric space. X is proper if closed metric balls
are compact. Let (X, d) be a proper complete geodesic metric space. If 4abc
is a geodesic triangle in X, then we consider 4āb̄c̄ in E2, a triangle with the
same side lengths, and call this a comparison triangle. Let 4abc be a geodesic
triangle in X. Then 4abc satisfies the CAT(0) inequality if for any comparison
triangle and any two points p, q on 4abc, the corresponding points p̄, q̄ on the
comparison triangle satisfy

d(p, q) ≤ dE2(p̄, q̄)

If every geodesic triangle in X satisfies the CAT(0) inequality, then we say X
is a CAT(0) space.

Remark 2.4. If (X, d) is a CAT(0) space, then the following hold:

(a) The distance function d : X ×X → R is convex.

(b) X is a unique geodesic metric space.

(c) X is contractible.
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Definition 2.5. G is a CAT(0) group if there exists a CAT(0) space X such
that G is a subgroup of the group of isometries of X and G acts both properly
discontinuously and cocompactly on X. (G acts cocompactly if the fundamental
domain is compact.)

Example 2.6. A simple example of a CAT(0) group is Z2 with the action on R2

by translations.

Definition 2.7. Let G be a CAT(0) group, and let L be a proper subgroup.
Let S be a set of generators such that < S >= L. If g ∈ G \ L, then the group
< S ∪ g > will be called the extension of L by g. For notational convenience,
this group will be written as Ext(L, g).

Definition 2.8. Let G be a CAT(0) group, and let T be a torsion subgroup.
We say that T is a maximal torsion subgroup of G if ∀g ∈ G \ T , the group
Ext(T, g) is not a torsion group (i.e. it contains a translation).

Definition 2.9. Two geodesic rays γ, γ′ : [0,∞)→ X are said to be asymptotic
if there exists a constant K such that d(γ(t), γ′(t)) ≤ K for all t ≥ 0. This gives
an equivalence relation. The set of all equivalence classes forms the boundary
at infinity of X, denoted ∂∞X. If γ is in the equivalence class c, we say γ goes
to c or γ approaches c.

The action of an isometry on X has a natural extension to ∂∞X. Let
g ∈ Isom(X), where Isom(X) is the group of all isometries from the metric
space X to itself. Given two geodesic rays γ, γ′ : [0,∞) → X, if there exists
K such that d(γ(t), γ′(t)) ≤ K for all t ≥ 0, then d(g(γ(t)), g(γ′(t))) ≤ K for
all t ≥ 0. Therefore, g ◦ γ and g ◦ γ′ are in the same equivalence class, so g
preserves equivalence classes of geodesic rays and hence extends to a map on
the boundary.

Example 2.10. It is easy to see that both ∂∞E2 and ∂∞H2 is S1.

Definition 2.11. Let B(p, r) denote the ball centered at p of radius r. Let
γ : [0,∞) → X with γ(0) = x0 be a geodesic ray emanating from x0 in the
equivalence class c. We define the horoball at c determined by γ to be

Bc,γ =
⋃

t∈[0,∞)

B(γ(t), d(γ(t), x0))

Since γ(0) = x0 and γ a geodesic, d(γ(t), x0)) = t. The definition can then
be written more concisely as

Bc,γ =
⋃

t∈[0,∞)

B(γ(t), t)

The corresponding horosphere at c determined by γ denoted by Hc,γ is the
boundary of the horoball Bc,γ . With this notation, the geodesic ray γ is required
to be in the equivalence class c. When the context is clear or we are referring
to any horosphere at c, we will drop the second subscript.
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Definition 2.12. Equivalently, we can define the horosphere using the Buse-
mann function. Let γ be a geodesic ray defined as in the previous definition.
Given a point y ∈ X we define the Busemann function with respect to γ

bγ(y) = lim
t→∞

(d(γ(t), y)− t)

The horosphere is then the level set Hc,γ = b−1
γ (0), and similarly the horoball

is Bc,γ = b−1
γ ((−∞, 0]).

Definition 2.13. We extend the notion of boundary at infinity to horoballs
and horospheres as follows. If Bc is a horoball at c and Hc is the corresponding
horosphere, then we will denote the boundary at infinity of these sets by ∂∞Bc
and ∂∞Hc respectively.

∂∞Bc is defined to be the set of equivalence classes of all geodesic rays γ
which, if γ(0) ∈ Bc, then γ(t) ∈ Bc for all t ∈ [0,∞). ∂∞Hc is naturally the
boundary of ∂∞Bc as a subset of ∂∞X.

3 Results

The main theorems we use regarding properties of CAT(0) groups and their
torsion subgroups can be found in [BH]. These results will be stated without
proof. Throughout this section, G refers to a CAT(0) group acting on a CAT(0)
space X properly discontinuously and cocompactly, and T denotes a subgroup of
G consisting of only torsion elements. We will make the assumption throughout
that T fixes a point in the boundary at infinity, and we will call this point c.

Lemma 3.1. Every torsion element t fixes a point pt ∈ X

Proof. Let t ∈ G be a torsion element and define F =< t >. Let x ∈ X and let
Fx be the orbit of x under F . Since F is finite, this is a bounded set. Therefore,
C(Fx) is a compact, convex set, where C(Fx) denotes the convex hull of the set
Fx. Moreover, t(Fx) = Fx , so t(C(Fx)) = C(Fx). Applying the Schauder
Fixed Point Theorem, t fixes a point in C(Fx).

Remark 3.2. Since each torsion element t fixes a point pt ∈ X, it also fixes the
geodesic ray emanating from pt in the equivalence class c.

Lemma 3.3. CAT(0) groups have finitely many conjugacy classes of finite sub-
groups.

Lemma 3.3 implies directly that CAT(0) groups have finitely many conjugacy
classes of finite order elements. Therefore, given a torsion group T ⊆ G, the
equivalence relation t1 ∼ t2 if ∃g ∈ G such that t1 = gt2g

−1 divides T into
a finite number of equivalence classes. We will call these equivalence classes
conjugacy classes of T over G.

Lemma 3.4. Let Hc,γ be a horosphere at c. If g ∈ T , then g stabilizes Hc,γ .
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Proof. Let Hc,γ be the horosphere at c determined by the geodesic ray γ. Define
x ∈ Hc,γ by x = γ(0). Let g ∈ T , and let y ∈ X be a fixed point for g. Then g
fixes α, where α is the geodesic ray from y to c. Let a ∈ Hc,α.

bα(ga) = lim
t→∞

(d(α(t), ga)− t)

Since g−1 is an isometry,

d(α(t), ga) = (d(g−1(α(t)), a)

and
bα(ga) = lim

t→∞
(d(g−1(α(t)), a)− t)

But for all t, g−1(α(t)) = α(t), so bα(ga) = limt→∞(d(α(t), a)− t) = bα(a) = 0.
This is true for all a in H′c, so g(Hc,α) = Hc,α. The geodesic ray α intersects
all horospheres inside Hc,α, and this intersection is fixed by g, so the same
argument applies to all horospheres inside H′c. Therefore, if Hc ⊂ Bc,α, then
Hc,γ is stabilized by g.

Assume Hc,α lies outside Hc,α. Then γ intersects Hc,α; let z = γ(t0) be
the point at which they intersect. Note that d(x, z) = t0, so Hc,γ is the unique
horosphere a distance t0 outside of Hc,α.

Let b ∈ Hc. As before,

bγ(gb) = lim
t→∞

(d(γ(t), gb)− t) = lim
t→∞

(d(g−1(γ(t)), b)− t)

Since g−1 fixes c, g−1(γ) is also a geodesic ray going to c. Therefore, g maps
Hc to another horosphere at c. Additionally, we have

d(x, z) = t0 = d(g−1(x), g−1(z))

and g−1 stabilizes H′c, so g−1(z)) ∈ H′c. Combining this with the fact that
g−1(x) and g−1(z) lie on a geodesic ray going to c, we see that g−1(Hc) is either
the horosphere t0 inside H′c or the horosphere t0 outside H′c. But if g−1(Hc) is
inside H′c, then so is g(g−1(Hc)), which contradicts our assumption that Hc lies
outside H′c. g−1(Hc) must then be the horosphere t0 outside H′c, which is Hc.
Hence, g stabilizes the horosphere Hc.

Lemma 3.5. Given a horosphere Hc, if there exists a geodesic line γ such that
γ ⊆ Hc, then ∂∞Hc contains at least two points.

Proof. Define α, β : [0,∞) → X by α(t) = γ(t) and β(t) = γ(−t). Then α and
β are geodesic rays in Hc. Assume ∂∞Hc consists of only c. Then α and β
are geodesic rays from γ(0) to c, so by uniqueness of geodesics, α = β. But
if γ(−1) = γ(1), then the geodesic segment γ([−1, 1]) is a loop, which is a
contradiction. Therefore, ∂∞Hc contains at least two points.
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Lemma 3.6. Let x ∈ X be a translation, and let a, b ∈ ∂∞X be endpoints of
the axis of x. If there exists c ∈ ∂∞X such that xc = c and a 6= c 6= b, then the
axis of x is contained in a horosphere at c.

Proof. Let γ : [0,∞) → X denote the axis of h, and let r be the distance that
h translates points on the axis. Note that since γ is the axis of a translation, it
is also a geodesic line. Assume γ is not contained in any horosphere at c.

Let Hc be a horosphere at c such that Hc ∩ γ consists of exactly two points
at least r apart (we can do this because horospheres are convex; we just have
to choose one large enough). Call these two points u and v, with

d(u, v) = d(xu, v) + r

Then hv and h−1u are inside the horosphere Hc and hu and h−1v lie outside
Hc.

Let α : [0,∞) → X be the geodesic ray from u to c. Then Hc = b−1
α (0). h

fixes c, so h(α) and h−1(α) are geodesics going to c. Let x ∈ Hc. Then

bα(hx) = lim
t→∞

(d(α(t), hx)− t) = lim
t→∞

(d(h−1(α(t)), x)− t) = bh−1α(x)

This is the same for any x in Hc, so h maps Hc to another horosphere at c. Call
this horosphere H′c.

So we have that h(Hc) = H′c. But h(u) lies outside the horosphere Hc and
h(v) lies inside, so they can not lie on the same horosphere at c, so we have
reached a contradiction. Therefore, γ is contained in some horosphere at c.

Proposition 3.7. Let Hc be a horosphere at c, where c ∈ ∂∞X. If there exists
c′ ∈ ∂∞X and a horosphere Hc′ at c′ such that c ∈ ∂∞Hc′ , then c′ ∈ ∂∞Hc.

Lemma 3.8. Let C be an infinite conjugacy class of T (over G), and let m ∈ C.
Then C = {ximx−1

i }∞i=1, where xi ∈ G. Suppose each xi a translation. Let
ai ∈ ∂∞X be the point farthest from c which is fixed by ximx

−1
i and let ci be

the point at infinity towards which xi translates. If limi→∞ xic = limi→∞ ai = c
and limi→∞ ci = c, then limi→∞ | < ximx

−1
i m−1 > | = ∞. In particular, if x

is a translation towards c, then | < xmx−1m−1 > | =∞.

Proof. Sketch of proof.
We will begin with the particular case, when x is a translation towards c.

Let γ : (−∞,∞)→ X be the axis of x oriented such that γ(∞) = c, and r be the
distance that x maps points on the axis. Define α : [0,∞)→ X by α(t) = γ(t).
Then x maps the horosphere Hc,α to the horosphere Hc,β , where β(t) = γ(t+r).
Geometrically, x maps a horosphere at c to the unique horosphere a distance r
inside it.

Now examine xmx−1. Since x−1 maps horospheres at c outward by r, it
acts as a contraction on geodesics going to c centered at γ, so it can be thought
of as contracting the horosphere as it moves it outwards. The torsion element
m acts as a rotation or reflection about some fixed set in the horosphere, so the
contraction has very little effect on the action of m except that it can translate
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this fixed set, so m is rotating or reflecting about a different point or set. x
then maps this horosphere back to the original horosphere by a dilation about
γ. The element xmx−1 therefore acts in the same way as m, but centered at a
different point on the horosphere. We believe that this implies xmx−1m−1 is a
translation, and we get our intuition from the manifold case. A simple example
is rotations in the Euclidean plane: if a is a rotation by θ centered at p and b is
a rotation by θ centered at q, then ab−1 is a translation.

In the more more general part of our lemma, we have an infinite conjugacy
class C = {ximx−1

i }∞i=1. Let xi and ti have the properties assumed in the
lemma. Then the sequence limi→∞ ximx

−1
i m−1 is limiting to the above case,

so it is limiting to a translation. Therefore, the order must approach infinity. If
we were to compare this to Euclidean case mentioned previously, this sequence
is analogous to a sequence ab−1

i . As before, a is a rotation by θ centered at
p, and we define bi to be a rotation by θi centered at qi. If limi→∞ θi = θ
and if limi→∞ qi = q, then the element ab−1

i is a rotation by an angle φi, with
limi→∞ φi = 0. Thus, limi→∞ | < ab−1

i > | =∞.

Theorem 3.9 (Main Theorem). Let T be a maximal torsion subgroup of G,
and let c ∈ ∂∞X be fixed by T. If ∂∞Hc = {c}, then T has a finite number of
conjugacy classes.

Proof. We have that ∀t ∈ T , tc = c. Let W ⊆ T be the subset consisting of all
elements that fix at least one other point in the boundary (i.e. t ∈ W if t ∈ T
and ∃ct ∈ ∂∞X such that ct 6= c and tct = ct).

Assume W is a finite set. Recall that G has a finite number of conjugacy
classes of finite order elements, so T has a finite number of conjugacy classes
over G. Let C be one such conjugacy class, and let m ∈ C. Each t ∈ C can
then be written as xmx−1 for some x ∈ G. But t(xc) = xmx−1(xc) = xm(c).
Since m ∈ T , mc = c, and t(xc) = xc. Therefore, xc is a fixed point for t.
We assumed that W is finite, so this tells us that if Gc ⊂ G is the stabilizer
subgroup of G fixing c, then T has a finite number of conjugacy classes over Gc.
Let C1, C2, ...Cn be the conjugacy classes of T over Gc, and let mi ∈ Ci. Each
element t ∈ T can be written xmjx

−1, where t ∈ Cj and x ∈ Gc.
Case 1: ∀t ∈ T, ∃x ∈ Gc such that x is torsion and t = xmjx

−1 for some j.
All such x’s fix c, and T is maximal, so either every such x is an element of T ,
or ∃x such that the group extension of T by x is not a torsion group.

In the latter case, there must be some element z ∈ Ext(T, x) such that
| < z > | =∞. But T and x both stabilize horospheres at c, so z must as well.
Let a and b be the endpoints of the axis of z. Let Hc be a horosphere at c,
and let p ∈ Hc. Then ∀n ∈ Z, zn(p) ∈ Hc, so limn→∞ zn(p) = a ∈ ∂∞Hc and
limn→−∞ zn(p) = b ∈ ∂∞Hc. Since a 6= b, this violates ∂∞Hc = {c}.

Therefore, every such x is an element of T , so T has a finite number of
conjugacy classes.

Case 2: There exists t ∈ Cj such that t = xmjx
−1 and x a translation fixing

c. If c is an endpoint for the axis of x, then by Lemma 3.8 | < tm−1 > | = ∞,
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which violates T being a torsion group. If c is not an endpoint for the axis of
x, then by Lemma 3.6 the axis of x is contained in a horosphere at c. The axis
is a geodesic, so Lemma 3.5 tells us that ∂∞Hc contains at least two points, so
∂∞Hc 6= {c}.

Therefore, whenever W is finite, T has a finite number of conjugacy classes.
Assume now that W is infinite. Since T has a finite number of conjugacy

classes over G, at least one of these conjugacy classes must contain an infinite
subset of W . Let C be one such conjugacy class, and let m ∈ W ∩ C. Let
S ⊂ ∂∞X be the set of points at infinity fixed by m. Since m ∈ W , S consists
of at least two points.

Each element t ∈ C can be written as xmx−1 for some x in G. Let a ∈ S.

t(xa) = (xmx−1)(xa) = xm(a) = xa

Therefore, if t = xmx−1, then t fixes the set xS. We will now enumerate
elements of C as {ximx−1

i }∞i=1, and define ti = ximx
−1
i . Each ti fixes xiS; let

ci be the point in xiS farthest from c. Each ti fixes both c and ci, so applying
Lemma 3.4, ti stabilizes Hc ∩ Hci , where Hc and Hci are any two horospheres
at c and ci, respectively.

Pick a point p in X. Let γ be the geodesic ray from p to c, and let αi be the
geodesic ray from p to ci. The sequence {tip}∞i=1 is infinite, so by discreteness it
must approach infinity. For all integers i, p ∈ Hc,γ∩Hci,αi , so tip ∈ Hc,γ∩Hci,αi .
Therefore, in the limit as i goes to infinity, the intersection Hc,γ ∩ Hci,αi must
also approach infinity.

Now let us examine the sequence {ci}∞i=1. Since ∂∞X is sequentially com-
pact, there is a convergent subsequence {cij}∞j=1.

Case 1: There exists a convergent subsequence {cij}∞j=1 that converges to a
point a 6= c. Let β be the geodesic ray from p to a. The sequence of intersections
Hc,γ ∩Hcij

,αij
must then approach c, so c must be in the boundary at infinity

of limj→∞Hcij
,αij

which equals Ha,β . Therefore, c ∈ ∂∞Ha,β . By Proposition
3.7, a ∈ ∂∞Hc,γ . Since a 6= c, this contradicts our assumption that ∂∞Hc = {c}.

Case 2: Every subsequence {cij}∞j=1 converges to c. Then the sequence itself
must converge to c.

lim
i→∞

ci = c

Recall that ci is the farthest fixed point from c for a given ti. Therefore,
limi→∞ xiS = c. Since S contains at least two points, it has non-zero diameter.
Hence, the elements xi must be acting as contractions on ∂∞X near c, with
the fixed point of these contractions limiting to c. The only isometries that be-
have in this way on the boundary are translations towards points approaching
c. Therefore, we can apply Lemma 3.8 to derive our contradiction.

limi→∞| < tim
−1 > | =∞

This implies that either there exists an infinite order element, in which case
T is not torsion, or there is no bound on the order of elements in T , which
violates Lemma 3.3.

This completes the proof.

19



4 Conclusion and Future Research

We have yet to prove the general theorem that torsion subgroups of CAT(0)
groups are finite. However, we have shown that in a particular case, the question
can be reduced to a major open question regarding torsion groups. Many believe
that infinite torsion groups with a finite number of conjugacy classes do not exist,
and if this turns out to be true, then our case would be proved.

The one problem with our proof is that we have been unable to rigorously
prove Lemma 3.9, which is essential for our proof. We will keep working on
this part of the paper, and if a proof continues to elude us then we will try
other approaches for the subcases requiring this lemma. Once this section is
complete, we have a few ideas which may be applied to proving the theorem in
general. In the case we proved, we assumed that Hc has only one point in its
boundary at infinity, and we often derived our contradiction by showing that
there was a geodesic in the horosphere Hc. Even without our assumption, this
information may be useful. A geodesic line in the horosphere Hc may imply
that the CAT(0) space X is equal to the product R× Y , where Y is a CAT(0)
space. If the CAT(0) group G acting on X has an infinite torsion subgroup, then
perhaps we can construct a CAT(0) group G′ which acts on Y geometrically
and contains an infinite torsion subgroup T ′. By induction, this would imply
that X is infinite dimensional, so it cannot be proper. These are the potential
directions in which we may take this research project in the coming months.
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Systems of Natural Logic with

Adjectives and Their Completeness

Elizabeth Kammer

Abstract

In natural logic, the goal is to create a system of logic that is as sim-
ilar to natural language as possible. In order to build a natural logic,
simple sentence forms are considered, slowly incorporating more language
throughout time. As background, we first consider the fragments of the
form All X are Y and then add No X are Y , where X and Y are nouns.
We will look at the rules of logic and completeness of their proof sys-
tems. Next, we will introduce the idea of intersecting adjectives which
are adjectives with meaning separate from the noun being modifying. For
example, the plural noun red cars means the intersection of everything
red and everything that is a car. This paper will then present versions
of the simple systems that contain intersecting adjectives and will discuss
their completeness.

1 Introduction

Natural logic is concerned with fragments of natural language and the logic de-
rived from systems using only these sentences. In particular, we are interested
in the completeness of these systems of logic. We will begin with a language
consisting of one sentence and slowly adding more phrases and looking at their
completeness theorems as background. Then we will move on to systems in-
cluding intersecting adjectives and discuss the completeness of their system.

Historically, logic was largely a study of syllogisms. The classic example of
a syllogism is as follows:

All men are mortal.
Socrates is a man.
Socrates is mortal.

In this syllogism, whatever makes the two statements above the line true will
also make the statement below the line true. It is also important to notice that
if we have any three sentences of these particular forms, models which make the
first two true will also make the third sentence true. We can show this as:

All m are n.
S is a m.
S is n.
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We explore this type of idea within our systems of natural logic. We look at
simple sentence forms with variables as placeholders for nouns. We create a
system of rules based on what can be derived using only these sentences, and
study the completeness of these rules.

First we look at the simple systems as done by Larry Moss[1]. These sys-
tems initially contain only the fragments of the form All X are Y and then
add those like No X are Y , where X and Y are nouns. We consider at the
rules of logic and completeness of their proof systems. The following systems of
logic involve intersecting adjectives. This type of adjective includes those which
have meanings separate from the nouns they modify. For example, it Jane is
a female student, and Jane is an athlete, we can deduce that Jane is a female
athlete. Intersecting adjectives include things such as colors, but does not in-
clude adjectives such as tall or short. For intersecting adjectives, we assume
that the adjectives and nouns are sets of things described by that particular
word, and an intersecting adjectives is the set of things in the intersection of the
adjectives and nouns. Intersecting adjectives include things such as colors, but
does not include adjectives such as tall or short. If an object is a red car, we
take the intersection of things that are red and things that are cars; however,
if something is a short child, this is not the intersection of all short things and
children because a short five year old is very different from a short twelve year
old. Also note that we can add adjectives productively, meaning that a noun
could have multiple adjectives modifying it. An example of this would be that
many countries have red, white, and blue flags. We will allow finitely many
adjectives to modify a noun in our system. After looking at some systems for
background, we will look at those including adjectives and their completeness.

2 Background

Before looking at a particular system, there are two concepts, syntax and se-
mantics, which we have in all systems. The work presented in the background
is not original, but will help develop an understanding of the systems which
we are considering. We will discuss ideas within each of these that we will use
throughout the rest of the paper. Then we will begin to look at systems done by
Larry Moss[1], building up from the simplest to the more complicated systems.

For the first idea, syntax, we have narrow forms that sentences can take.
When working with basic nouns we use X,Y, ... to represent nouns and when
dealing with adjectives we denote the intersecting adjectives either by red or
when used productively as c1, c2, ..., ck. When representing nouns, possibly with
or without adjectives, attached we use the variables m,n. In any of our systems
Γ denotes a sets of statements in that particular logic that can take the form
of the sentences in our syntax. In the syntax for our system, we also deal
with sentences of the forms All X(n) are Y (m), No X(n) are Y (m), and Some
X(n) are Y (m), using only some of these sentences depending on our particular
system. In the syntax, Γ ` S means that there is a proof tree with leaves from
Γ and has the root S that only follows the rules of our system.
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When looking at the semantics of a system, we first create a modelM(M, [[ ]]),
which contains a set M , and a subset [[X]] ⊆ M for each variable X and [[red]]
⊆M for each adjective. In semantics, we get the following:

M |= All X are Y iff [[X]] ⊆ [[Y ]]
M |= Some X are Y iff [[X]] ∩ [[Y ]] 6= ∅
M |= No X are Y iff [[X]] ∩ [[Y ]] = ∅

We allow [[X]] to be empty, and in this case, M |= All X are Y vacuously. For
a Γ, we use M |= Γ to mean that M |= S for all S ∈ Γ. Additionally, we have
the following semantic meaning in our systems with adjectives:

[[c1c2...ckX]] = [[c1]] ∩ [[c2]] ∩ ... ∩ [[ck]] ∩ [[X]]

For our final semantic definition, we write Γ |= S to mean that every model
with makes all sentences in Γ true also make S true.

Next we present the idea of the Soundness of our systems.

Lemma 2.1 (Soundness). If Γ ` S, then Γ |= S.

For a proof, see work by Larry Moss[1]. That all of our systems are sound
tells us that anything we can prove in our systems, will also be true semantically.
This guarantees that our systems do not produce nonsensical results. We would
also like the converse of this statement to be true.

Theorem 2.2 (Completeness). If Γ |= S, then Γ ` S.

Completeness guarantees that any result we can prove semantically, will also
be provable in our system. We leave the proofs of completeness to the individual
systems.

2.1 All

We begin with the simplest system, L(all), which utilizes only sentences of the
form All X are Y . The rules of logic for this system are shown in Figure 1.
And present a proof of completeness. First, we present an example to display
the difference between semantics and syntactical proofs.

Example 2.3. Let Γ = All A are B, All B are C, All C are D.
Claim 1: Γ |= All A are D.
From Γ, we have the following

[[A]] ⊆ [[B]], [[B]] ⊆ [[C]], [[C]] ⊆ [[D]].

So, we have
[[A]] ⊆ [[D]].

Claim 2: Γ ` All A are D.

All A are B All B are C
All A are C All C are D

All A are D
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All X are Y
All Y are Z All X are Z

All X are Y

Figure 1: The Rules of Logic for L(all).

And now we turn to the completeness of L(all).

Theorem 2.4. The logic of L(all) is complete.

Proof. Suppose Γ |= S and let S be All X are Y . We begin by making a model
M(Γ). Let

M = all variables in Γ

and we set the semantics of any variable be

[[V ]] = {W : Γ ` All W are V }

Claim: M |= Γ Let All A are B ∈ Γ. We must show [[A]] ⊆ [[C]]. Let
P ∈ [[A]]. Then we have that Γ `All P are A. And we can get the following
proof tree ....

All P are A All A are B
All P are B

Since Γ ` All P are B, B ⊆ [[*B* ]]. From this we can conclude that [[A]] ⊆ [[C]].
SinceM |= Γ and Γ |= All X are Y ,M |= All X are Y . Therefore, we have

[[X]] ⊆ [[Y ]]. Since we have
All X are Y

we know that X ∈ [[X]] and X ∈ [[Y ]]. Therefore, Γ ` All X are Y .

Thus we have the completeness of L(all) of our simplest proof system. From
here, we move on to systems that add complexity to this system.

2.2 All and No

We expand our language to also contain sentences of the form No X are Y .
Note that No X are X means that there are no X. And, in addition to the
rules of L(all), the system L(all, no) also contains the rules listed in Figure 2.
Again, we are interested in the completeness of the system.

Theorem 2.5. The logic of L(all, no) is complete.

Proof. Let Γ be a set of sentences in L(all, no) Suppose Γ |= S. We consider
the model M(Γ) where M = set of sets a such that the following are true

if V ∈ a and Γ ` All V are W , then W ∈ a
if V,W ∈ a, then Γ 6` No V are W
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we set the semantics of any variable to be

[[Z]] = {a ∈M : Z ∈ a}

We claim that M |= Γ. By our first condition, we have that if All X are Y
belongs to Γ, then [[X]] ⊆ [[Y ]]. If No X are Y belongs to Γ, then let a ∈ [[X]],
so X ∈ a. By the second condition, Y 6∈ a and therefore, a 6∈ [[Y ]]. Which shows
that [[X]] ∩ [[Y ]] = ∅. So we have that M |= Γ.

Since we have that M |= Γ and Γ |= S, we have M |= S. First we consider
the case where S is All X are Y . Let

a = {V : Γ ` All X are V }

Case I: a 6∈ M Then there must be some A,B ∈ a such that Γ ` No A are
B. Then we get the following proof tree

....
All X are B

....
All X are A

....
No A are B

No X are B
No B are X

No X are X
All X are Y

Case II: a ∈ M. Then since a ∈ [[X]], we have a ∈ [[Y ]]. Therefore, Y ∈ a,
and Γ ` All X are Y .

Next we consider the case when S is No X are Y . Here, we let

a = {V : Γ ` All X are V orΓ ` All Y are V }

Notice that X,Y ∈ a. We claim that a 6∈ M. To see this notice that if a ∈ M,
we have that a ∈ [[X]]∩[[Y ]] . Which implies that [[X]]∩[[Y ]] 6= ∅ which contradicts
M |= No X are Y . So we do in fact have that a 6∈ M, implying that there
are some V,W ∈ a such that Γ ` No V are W . There are four possible cases,
depending on if Γ ` All X are V or Γ ` All Y are V and Γ ` All X are W or
Γ ` All Y are W . We first explore the case where Γ ` All Y are V and Γ ` All
X are W .

....
All X are W

....
All Y are V

....
No V are W

No Y are W
No W are Y

No X are Y

The proof tree for Γ ` All X are V and Γ ` All Y are W is similar. Next
we consider the case where Γ ` All X are V and Γ ` All X are W .
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All X are Y No Y are Z
No X are Z

No X are Y
No Y are X

No X are X
All X are Y

Figure 2: The rules logic of L(all, no) when combined with the rules of logic for
L(all).

....
All X are W

....
All X are V

....
No V are W

No X are W
No W are X

No X are X
All X are Y

....
No X are X

No X are Y

The case where Γ ` All Y are V and Γ ` All Y are W follows similarly.
Therefore, we have that Γ ` S.

We also have know that L(all, no) is complete.

2.3 All and Intersecting Adjectives

In this section, we look at the simplest logic including adjectives. There are
many similarities between this case and L(all); however, we add a few rules
concerning adjectives that are not derivable from the our original logic. Addi-
tionally, the proof of completeness of L(all, adjectives) is similar to that of our
first completeness proof.

Theorem 2.6. The logic of L(all, adjectives) is complete.

Proof. Suppose Γ |= S and let S be All n are m. We begin by making a model
M(Γ). Let

M = all nouns in Γ

and we set the semantics of any variable be

[[V ]] = {n : Γ ` All n are V }

[[red]] = {m : Γ ` All n are red p for some p ∈M}

Claim: M |= Γ Let All n are m ∈ Γ. There are a number of cases, dependent
on n,m, but we will only explore a few as others are similar.

Case I: n = X,m = red Y We must show [[X]] ⊆ [[red]] ∩ [[Y ]]. Let p ∈ [[X]].
Then we have that Γ `All p are X. And we can get the following proof trees

....
All p are X All A are red Y

All p are red Y
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All n are m
All m are l All n are l

All n are m

All red n are n
All n are m All n are red m

All n are red l

Figure 3: The rules of logic for L(all, adjectives).

....
All p are red Y All red Y are Y

All p are Y

It follows that p ∈ [[red]] and p ∈ [[Y ]]. So we have that [[X]] ⊆ [[red]] ∩ [[Y ]].
Case II: n = red blue X,m = green Y We must show [[red]]∩ [[blue]]∩ [[X]] ⊆

[[green]] ∩ [[Y ]]. Let p ∈ [[red]] ∩ [[blue]] ∩ [[X]], then p ∈ [[red]], p ∈ [[blue]], and
p ∈ [[X]], so Γ ` All p are red a, Γ ` All p are blue b, and Γ ` All p are X. And
get the following trees

....
All p are red a

....
All p are blue b

....
All p are X

All p are blue X
All p are red blue X All red blue X are green Y

All p are green Y

....
All p are green Y All green Y are Y

All p are Y

Other cases are done similarly. It follows that M |= Γ.
SinceM |= Γ and Γ |= All n are m,M |= All n are m. Here again, we have

many cases, but will look at one to understand the general method.
n = red X,m = blue green Y Therefore we have [[red]] ∩ [[X]] ⊆ [[blue]] ∩

[[green]]∩[[Y ]]. We know that red X ⊂ [[red]]∩[[X]] because we have the following
trees

All red X are red X

All red X are X

we know that X ∈ [[red]] ∩ [[X]] and X ∈ [[blue]] ∩ [[green]] ∩ [[Y ]]. Therefore, Γ `
All red X are blue green Y .

The proof of the completeness of L(all, adjectives) concludes our introduc-
tion to systems of logic their completeness.
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All n are m No m are l
No n are l

No n are m
No m are n

No n are n
All n are m

No n are red m
No m are red n

Figure 4: The rules logic of L(all, adjectives, no) when combined with the rules
of logic for L(all, adjectives).

3 All, No, and Adjectives

Next we look at the combination of sentences of the forms All n are m and No n
are m, where n and m are nouns with or without adjectives. The rules for this
system can be found in Figure 4, in addition to those rules for L(all, adjectives).
We claim that L(all, no, adjectives) is also complete.

Theorem 3.1. The logic of L(all, no, adjectives) is complete.

Proof. Let Γ be a set of sentences in L(all, no) Suppose Γ |= S. We consider
the model M(Γ) where M = set of sets a such that the following are true

if n ∈ a and Γ ` All n are m, then m ∈ a
if n,m ∈ a, then Γ 6` No V are W
if n, red m ∈ a, then red n ∈ a

and we set the semantics of any variable and adjective to be

[[Z]] = {a ∈M : Z ∈ a}

[[red]] = {b ∈M : red p ∈ a, p some noun ∈ Γ}
We claim that M |= Γ.
Case I: All n are m ∈ Γ It should be noted that in the case where All X are

Y belongs to Γ, then by the same argument used from L(all, no) that [[X]] ⊆
[[Y ]]. Now we look at the general case with finitely many colors. If All c1...cjX
are d1...dkY ∈ Γ, we must show that

[[c1]] ∩ [[c2]] ∩ ... ∩ [[cj ]] ∩ [[X]] ⊆ [[d1]] ∩ [[d2]] ∩ ... ∩ [[dk]] ∩ [[Y ]]

Let a ∈ [[c1]] ∩ [[c2]] ∩ ... ∩ [[cj ]] ∩ [[X]]. Then c1p1, ..., cjpj , X ∈ a. By our third
condition since cjpj ∈ a and X ∈ a, it follows that cjX ∈ a. Repeating this
arguement j − 1 more times, we hae that c1...cjX ∈ a. Since Γ ` All c1...cjX
are d1...dkY , we know d1...dkY ∈ a. And therefore a ∈ [[d1]]. And we can get
the following proof tree

All d1...dkY are d2...dkY

Which tells us that d2...dkY ∈ a. Repeating this argument, we find that a ∈
[[d1]] ∩ [[d2]] ∩ ... ∩ [[dk]] ∩ [[Y ]]. And therefore we have

[[c1]] ∩ [[c2]] ∩ ... ∩ [[cj ]] ∩ [[X]] ⊆ [[d1]] ∩ [[d2]] ∩ ... ∩ [[dk]] ∩ [[Y ]]
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Case II: No n are m belongs to Γ. Notice that in this case, if No X are Y
∈ Γ, the proof from L(all, no) shows that that [[X]] ∩ [[Y ]] = ∅. We look at No
c1...cjX are d1...dkY ∈ Γ, we must show that

[[c1]] ∩ [[c2]] ∩ ... ∩ [[cj ]] ∩ [[X]] ∩ [[d1]] ∩ [[d2]] ∩ ... ∩ [[dk]] ∩ [[Y ]] = ∅

Suppose not, and let a ∈ [[c1]]∩ [[c2]]∩ ...∩ [[cj ]]∩ [[X]]∩ [[d1]]∩ [[d2]]∩ ...∩ [[dk]]∩ [[Y ]],
then by our previous arguments c1...cjX ∈ a, d1...dkY ∈ a and a ∈ M. But
By our third condition, since blue q and X ∈ a, blue X ∈ a. Similarly since
red p and blue X ∈ a, we have red blue X ∈ a. By the same argument, we
can conlude that green yellow Y ∈ a. But we have that Γ ` No c1...cjX are
d1...dkY , which contradicts the second condition for a ∈ M. So we have that
[[c1]]∩ [[c2]]∩ ...∩ [[cj ]]∩ [[X]]∩ [[d1]]∩ [[d2]]∩ ...∩ [[dk]]∩ [[Y ]] = ∅ and therefore also
that M |= Γ.

Since we have that M |= Γ and Γ |= S, we have M |= S. First we consider
the case where S is of the form All n are m. Here we consider the general case
where S is All c1...cjX are d1...dkY . Let

a = {n : Γ ` All c1...cjX are n}

Case I: a 6∈ M Then there must be some m, l ∈ a such that Γ ` No m are l.
Then we get the following proof tree

....
All c1...cjX are l

....
All c1...cjX are m

....
No m are l

No c1...cjX are l
No l are c1...cjX

No c1...cjX are c1...cjX
All c1...cjX are d1...dkY

So we have that Γ ` All c1...cjX are d1...dkY .
Case II: a ∈ M. Then since a ∈ [[c1]] ∩ ... ∩ [[cj ]] ∩ [[X]], we have a ∈

[[d1]]∩ ...∩ [[dk]]∩ [[Y ]]. Therefore, d1p1, ..., dkdk, Y ∈ a. Using previous arguments
we have that d1...dkY ∈ a, so Γ ` All c1...cjX are d1...dkY .

Next we consider the case when S is of the form No n are m. Specifically
we will consider No c1...cjX are d1...dkY . Here, we let

a = {n : Γ ` All c1...cjX are norΓ ` All d1...dkY are n}

Notice that c1...cjX, d1...dkY ∈ a. We claim that a 6∈ M. To see this notice
that if a ∈M, we have that a ∈ [[c1]] ∩ ... ∩ [[cj ]] ∩ [[X]] ∩ [[d1]] ∩ ... ∩ [[dk]] ∩ [[Y ]] .
Which implies that [[c1]] ∩ ... ∩ [[cj ]] ∩ [[X]] ∩ [[d1]] ∩ ... ∩ [[dk]] ∩ [[Y ]] 6= ∅. So we do
in fact have that a 6∈ M, implying that there are some n,m ∈ a such that Γ `
No n are m. There are four possible cases, depending on if Γ ` All c1...cjX are
n or Γ ` All d1...dkY are n and Γ ` All c1...cjX are m or Γ ` All d1...dkY are
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All n are m Some n are l
Some m are l

Some n are m
Some m are n

Some n are m
Some n are n

Some n are red m
Some m are red n

Figure 5: The rules logic of L(all, some, adjectives) when combined with the
rules of logic for L(all, adjectives).

m. We first explore the case where Γ ` All d1...dkY are n and Γ ` All c1...cjX
are m.

....
All c1...cjX are m

....
All d1...dkY are n

....
No n are m

No d1...dkY are m
No m are d1...dkY

No c1...cjX are d1...dkY

We also have the case where Γ ` All blue green Y are m and Γ ` All red X
are n which has a similar proof tree. Next we explore the case where Γ ` All
c1...cjX are n andΓ ` All c1...cjX are m.

....
All c1...cjX are m

....
All c1...cjX are n

....
No n are m

No c1...cjX are m
No m are c1...cjX

No c1...cjX are c1...cjX
All c1...cjX are d1...dkY

....
No c1...cjX are c1...cjX

No c1...cjX are d1...dkY

Similarly, we have the case where All d1...dkY are n and All d1...dkY are n.
Therefore, we know that Γ ` S.

We concluded with the completeness of the combinations of systems we have
thus far discussed.

4 All, Some, Adjectives

As discussed by Moss[1], there is also a language which combines sentences of
the form All X are Y and Some X are Y . A direction that we began to explore
but can be continued is to add adjectives to L(all, some). We present here what
we believe to be the complete rules of logic for L(all, some, adjectives).
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Average time until fixation of a mutant

allele in a given population

KOMI MESSAN

Abstract

One of the important problems in population genetics is how long it
takes for a gene to go to fixation (become established). A mutant gene
in a given population will eventually be lost or established. The particu-
lar interest of this research is to know the mean time for a mutant gene
to become fixed in a population, and we will exclude the case when this
gene is lost. A diploid population of N individuals will be considered
with a forward and backward mutation of u and v respectively per basis.
Using a set of nonlinear equations, we will first calculate the genotype
frequencies which will allow us to find the equilibrium points for the infi-
nite population. With the diffusion theory, we will approximate the time
to fixation for finite populations. We will then proceed with a numerical
approximation using C++ to see a close result for the problem.

1 Introduction

The main idea in population genetics is evolution. Evolution is much differ-
ent from most studies in biology for the fact that its insights are theoretical
rather than observational or experimental. Most evolutionary studies concern
the frequencies or the fitnesses of genotype in a given population. Evolution is
the change in the frequencies of genotype through time, perhaps due to their
differences in fitness (Gillespie 2004). Evolution can also be explained by two
forces: forces that introduce variation in phenotypic character such as eye col-
ors, height or certain behaviors and forces that make some traits become rare
or more common. The main cause of variation is mutation, which changes the
sequence of a gene (Strickberger 2000). In other words, mutation is a change in
the DNA sequence of Cell’s genome.

The forces that make traits to become common or rare are caused by two
main processes. One of these processes is natural selection which is a key term
used in genetic evolution (Strickberger 2000). Natural selection is the differential
reproductive success of a any given organism. Very often, organisms produce
more offspring than their environment can support; because of this, not every
individual in a population survives in the generation and this can be one of
the main cause of natural selection. Over many generations mutation produces
random changes in traits, which are then filtered by natural selection and the
beneficial traits retained (Gillespie 2004). Another cause of evolution is genetic
drift, which is a change in the relative frequencies in which gene variant occurs
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in a population due to random sampling and chance. These random changes
affect evolution in two important ways. First, a dispersive force that removes
genetic variations from population. Let us note that the rate of removal is very
weak since it is inversely proportional to the population size. Tahe other is the
effect of drift on the probability of survival of a new mutation (Gillespie 2004).

Another evolutionary process we will see later in this paper is genetic recom-
bination. In this process, the DNA or sometimes the RNA molecule breaks and
then joins another DNA molecule. Recombination can also have a big impact on
the evolutionary processes and this was shown by Paul G. Higgs (Higgs 1997).
We will take the same approach to show this but in a higher dimension.

2 Background

We will consider a diploid population consisting of N individuals and having
the variance effective number Ne. Let us note that Ne may be different than N
and a good explanation of Ne can be found in ”KIMURA and CROW 1963”.
Throughout this paper, we will develop a model that has been introduced by
Paul G. Higgs (Higgs 1997) and some other authors (Michalakis and Slatkin,
1996; Phillips, 1996; Stephan, 1996). Most of these authors develop a model in
which mutation is irreversible but we will consider a reversible mutation in this
paper using the same model.

Our model will involve 2 loci, each with two alleles. The two alleles will
be labeled A and a at one locus and B and b at the other. We will therefore
have four genotypes: ab, Ab, aB, and AB. The frequencies of ab and AB will
respectively be denoted x0 and x2. Both the double mutant genotypes have a
frequency denoted x1. We are therefore assuming these double mutant genotype
have the same fitness.T genotype ab has fitness 1 and AB has fitness 1 − s2.
However, the double mutant genotypes have fitness 1 − s1. Let us note that
x0 + 2x1 + x2 = 1.

Throughout this paper, we will assume both u and v are < 10−6, and both
s1 and s2 will be in the range 0.01 to 0.005. For different values of selection,
mutations (forward and backward mutations), computer simulation will be used
to approximate the time at which the first allele will arrive at genotype AB.
Consider it starts from the genotype ab.

3 Equilibrium points of the infinite population

Prior to looking at the changes in the finite population, we will first look at
the genotype frequencies in the infinite population. If we call x0, x1, andx2

the frequencies at generation t then the frequencies at generation t + 1 will be
denoted X∗0 , X

∗
1 , andX

∗
2 . Considering all our parameters are different from zero,

we obtain the following set of nonlinear equations:

(X0) ∗ = (1− 2u)x0 + 2vx1 + 2s1x0x1 − r
(
−x2

1 + x0x2

)
(1)
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(X1) ∗ = 2ux0 + (2− 2u− 2v)x1 − 2s1x0x1

+ 2vx2 + 2 (−s1 + s2)x1x2 + 2r
(
−x2

1 + x0x2

)
(2)

(X2) ∗ = 2ux1 + (1− 2v)x2 − 2 (−s1 + s2)x1x2 − r
(
−x2

1 + x0x2

)
(3)

Because of the complexity of the equations, we will try to simplify the equa-
tions by setting recombination to be zero. Doing so, we get these following set
of equations:

(X0) ∗ = (1− 2u)x0 + 2vx1 + 2s1x0x1 (4)

(X1) ∗ = 2ux0 + (2 − 2u − 2v)x1 − 2s1x0x1 + 2vx2 + 2 (−s1 + s2)x1x2 (5)

(X2) ∗ = 2ux1 + (1− 2v)x2 − 2 (−s1 + s2)x1x2 (6)

At the fixed position, X∗0 = x0, X
∗
1 = x1, andX

∗
2 = x2 (Higgs 1997). Hence

solving for all the three variables (x0, x1, andx2), we get the following equilib-
rium frequencies:

x0 = − v

s1
− 2uv
s12

(7)

x1 =
1
2
− u

2s2
+

v

2s1
+
uv

s12
+

5s14uv

s26
+
− s1u2 + uv

s22

+
− s1

2u
2 + 2s1uv
s23

+
− s1

3u
2 + 3s12uv

s24
+
− s1

4u
2 + 4s13uv

s25
(8)

x2 = −37s14

s24
+

7s13

s23
− s1

2

s22
+
s1
s2

(9)

Now because we assumed u2 = 0 and v2 = 0 then we can say that u2 ≈ v2

≈ uv. The equations (7), (8), and (9) hence become

x0= −
v

s1
(10)

x1 =
1
2

+
v

2s1
− us41

2s52
− us31

2s42
− us21

2s32
− us1

2s22
− u

2s2
(11)

x2= −
37s14

s24
+

7s13

s23
− s1

2

s22
+
s1
s2

(12)
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We can clearly see that equations (9) and (12) are the same. This is because
the frequency x2 does not depend on any mutation rate after simplification of
the original solutions. In the above solutions, Both u and v are less than s1 and
s2. These are the simplified version of the original solutions. We also obtain
a number of complex solutions, but we are only interested in the real solution
as written above. Here we assumed that all mutations (u and v) to the power
≥ 2 are equal to zero since since u < 10−6 and v < 10−6. Also because the
selection coefficients are very low ( between 0.01 and 0.005), we assumed sn1 = 0
and sn2 = 0 whenever n ≥ 5.

4 Dynamics of finite populations

Now we will look into the change in the finite population. Let’s remember there
are four genotype and their frequencies must be equal to 1 (x0 + 2x1 + x2 = 1).
Hence there are four independent frequency variables, but we are assuming the
two single mutants (Ab and aB) are the same and have the same fitnesses of
1 − s1. This assumption leads us to work with a three dimensional system.
Since we know that the total frequency is 1, it will be easier to work only with
two variables and once we get the results, we can find the third variable in
term of the others. Our system is therefore reduce to a two dimensional system.
Previously Kimura and Ohta (1968) have developed a 1 dimensional model using
the diffusion models. Higgs (1997) has also shown that it is possible to solve a
1D system with the diffusion models. We will also use the same model to solve
our problem.

Here, because of the mutation and selection forces, we need a drift term
which we will call m(x). The m(x) or the infinitesimal mean is the change of
frequency in one generation. m(x) can also be called the expected mean change
in our variable of interest. A variance and covariance will be needed since they
follow a multinomial distribution. Our variance and covariance will respectively
be denoted v(xi, xi) and cov(xi, xj) since we are working in 2 dimensional sys-
tem. From Lynch’s appendix (2008), we see that

v(xi, xi) =
xi ∗ (1− xi)

2 ∗Ne
(13)

cov(xi, xj) =
xi ∗ xj
2 ∗Ne

(14)

We could use the Kolmogorov forward equation (or KFE) as described by
Kimura and Ohta (1968), but since our system is two dimensional this diffusion
model will not work for us. We will instead use the extended KFE shown by
Lynch in his appendix (2008)
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∂[ρ(x, p, t)]
∂t

=
1
2

k−1∑
i=1

∂2

∂x2
i

[ρ(x, p, t)
xi(1− xi)

Ne
]

−
∑
i<j

∂2

∂xi∂xj
[ρ(x, p, t)

xixj
Ne

]−
k−1∑
i=1

∂m(x)ρ(x, p, t)
∂xi

(15)

where the first part of the equation (15) is the allele-frequency variances, the
second part involves the covariances between allele frequencies, and the third
involves the change of frequency in generation or the mean. In this equation
(15) ρ(x, p, t) denotes the density function with x being the vector of allele
frequencies, p the vector of their starting values, and t the time (Lynch appendix
2008). Applying this extended KFE (15) to our specific model, we get
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∂[ρ(x0, x2, t)]
∂t

= [
1
2
∂2

∂2x0
(ρ(x, p, t)

x0(1− x0)
2Ne

)

+
1
2
∂2

∂2x2
(ρ(x, p, t)

x2(1− x2)
2Ne

)]− [
∂2

∂x0∂x2
(ρ(x, p, t)

x0x2

2Ne
)]

− [
∂ρ(x, p, t)(−2ux0 + 2vx1 + 2s1x0x1)

∂x0

+
∂ρ(x, p, t)(2ux1 − 2vx2 − 2(s2 − s1)x1x2)

∂x2
] (16)

As it was shown in equation (15), the first part of (15) involves the alleles-
frequency variances, the second part involves the covariances between allele
frequencies, and the third part is the mean. We are using 2Ne in (16) instead
of Ne because we are now considering diploid population. ρ(x0, x2, t) is the
probability distribution for the random variables x0 and x2 at time t. Solving
for our probability distribution, we can see the changes in frequencies throughout
our generation and for x0 = 0 and x2 = 0, we will be able to see the time to
fixation which is the main purpose of this research.

5 Discussion and conclusions

Our study here is an extended version of what Higgs (1997) has done. In his
model, Higgs assumes reversible mutation with 2 loci, each with two alleles.
The two alleles are labels as in our model but in his study, Higgs assumes both
the AB genotype and double mutant ab to have fitness 1, while the two single
mutants Ab and aB have a reduced fitness 1-s. Let us remember that we are
working in discrete generation for both our model and Higgs’ model. Prior to
do any modification of Higgs’ model, we will first look at this model.
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ab AB

Ab

aB

x0

x1

x1

x2

1 1-s
1

u
u

u
u

u

u

u

u

Figure 1: Higgs general model for the infinite population with reversible muta-
tion where u=v and s2 = 0

X0 = (1− 2u+ 2sx1)x0 + 2ux1 − r(x0x2 − x2
1) (17)

X1 = (1− 2u− s+ 2sx1)x1 + u(x0 + x2) + r(x0x2 − x2
1) (18)

X2 = (1− 2u+ 2sx1)x2 + 2ux1 − r(x0x2 − x2
1) (19)

From this set of equations, and considering we do not have recombination, Higgs
got the following set of solutions

x0 = x2 =
1
2
− u

s
(20)

x1 =
u

s
(21)

and the second solutions are

x0 = x2 =
1
2
− 2u

s
(22)

x1 =
u

s
(23)
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In the equations (17), (18), and (19), we have reversible mutation but the
forward and backward mutation rates are equal (u=v). Also the fitnesses of
the double mutant genotypes ab and AB are equal (1), and this is the same
for the single mutant genotype aB and Ab (1-s). Now we will make the first
step assumption by assuming u 6= v, but the fitnesses of the double mutant
genotypes are still equal. Our model will become

X0 = (1− 2u+ 2sx1)x0 + 2vx1 − r(x0x2 − x2
1) (24)

X1 = 2(1− u− v − sx0 − sx2)x1 + 2ux0 + 2vx2 + 2r(x0x2 − x2
1) (25)

X2 = (1− 2v + 2sx1)x2 + 2ux1 − r(x0x2 − x2
1) (26)

and from here, we get the following solutions

x0 = x2 =
−v
s

(27)

x1 =
1
2

+
u+ v

2s
(28)

Now we will go on with our last assumption which is the main solution we
are interested in. We will assume u 6= v and also the double mutant genotype
with different fitnesses; ab (1) and AB (1− s2), but the single mutant genotype
still have the same fitnesses (1 − s1). From here we get the equations (1), (2),
and (3) with their respective solutions (10),(11), and (12).
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The Links Between Smale’s Mean Value

Conjecture and Complex Dynamics
Hayley Miles-Leighton, UC San Diego

Abstract
In this paper we study the links between Smale’s Mean Value Conjec-

ture (SMVC) and the convergence of critical points under iteration. We
begin by introducing SMVC and discussing what progress has been made
towards proving this conjecture. From there we give a brief introduction
to a few concepts in Complex Dynamics and Complex Analysis including
conjugacy, conjugations by 1/z, and orbits. We then show that conjugacy
conserves SMVC. At this point, we go through the quadratic case to show
the patterns that we are looking for as well as to show a basic structure of
how this problem is being looked at. From there we look at the cubic case,
going through SMVC for the cubic polynomial. We then introduce the
Petal Theorem and show how it is used for the cubic case specifically. We
conclude with the connections between the SMVC in the cubic case and
the convergence of the same critical points explained and discuss future
work.

1 Introduction and Background

Complex Dynamics is the study of complex functions under iteration. We are
specifically interested in where certain points in the complex plane converge to
the origin and to infinity. It is this idea that we kept in mind when we looked
at Smale’s Mean Value Conjecture (SMVC) which states [7]:

Conjecture 1.1. Let f(z) = z +
∑n
i=2 aiz

i be a complex valued polynomial of
degree n ≥ 2 for which f(0) = 0 and f ′(0) = 1. Then, there exists a critical
point c of this polynomial that satisfies the following statement:

|f(c)
c
| ≤ 1

A variation of this conjecture has been announced for all polynomials of
degree 10 or less by Sendov and Marinov [6]. This variation replaces 1 with an
even better bound of (d−1)/d. However, their paper has no proofs to show this
result. Several other papers use another variation on this conjecture. Namely,
this following proposition:

Proposition 1.2. Let p be a polynomial of degree N ≥ 2 over C, and supposed
that x ∈ C is not a critical point of p. Then there exists a critical point ζ of p
such that

|p(ζ)− p(x)
ζ − x

| ≤ 4|p′(x)|. (1)
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In a paper written by E. Crane [2], he shows that there can be a better
bound than the bound of 4 that was proven by S. Smale in 1981 [7] in the
proposition given above. He proves that for all polynomials of degree 8 and
higher, K(d) < 4 − 2.263√

d
where d is the degree of the polynomial and K(d) =

sup{S(p, x) : deg(p) = d, p′(x) 6= 0} (S(p, x) = min(| p(ζ)−p(x)(ζ−x)p′(x) | : p′(ζ) = 0)).

For 2 ≤ d ≤ 7, Schmeisser [5] proved that we can have K(d) ≤ 2d−(d+1)
d(d−1) which

is a better bound than what Crane would have for those values of d. In 2003,
T.W. Ng proved that this original bound could be further reduced to 2 for all
nonlinear odd polynomials with a nonzero linear term [3].

Although there have been many papers published on the possibility of this
conjecture (and its variations) being true, none have been able to prove it com-
pletely. The goal of this paper is not to prove the conjecture, however. This
paper will look into possible connections between SMVC and Complex Dynam-
ics. SMVC says nothing about which critical point or points satisfy the bound.
It only states that there is one. On the other hand, complex dynamics says
that given a polynomial f(z) = z +

∑n
i=2 aiz

1, there must exist a critical point
tending to the origin under iteration (this fact is presented formally in Propo-
sition 1.8). We hope to combine these two thoughts to see if there is a relation
between them. Specifically, we will prove the following main theorem:

Theorem 1.3. For any cubic of the form p(z) = z + a2z
2 + a3z

3, there is a
critical point satisfying the SMVC bound and converging to the origin.

To begin with, we will be wanting to show that this works in general. It is
generally nice to be able to work with one form instead of many so to do this
we will use the idea of conjugacy:

Definition 1.4. If there exists a function φ(z) that is either a linear fractional
transformation (such as 1/z) or a so called afine map (such as Az + B), then
two functions are conjugate if φ ◦ f = g ◦ φ.

Below is an example of this concept:
Example 1.5. Let f(z) = z2 − z and φ(z) = αz + β. We want to find out if this
form is conjugate to g(w) = w2 + c where c is some constant. To find out if
these two are conjugate, we will follow this chart:

Z
z2−z−→ C

φ ↓ ↓ φ
W

w2+c−→ C

Following the chart, we see that we get α(z2 − z) + β = (αz + β)2 + c ⇒
αz2 − αz + β = α2z2 + 2αβz + β2 + c. For two polynomials to be equal to one
another, all of the coefficients must equal one another. With this in mind, we
find that α = α2,−α = 2αβ, β = β2 + c ⇒ α = 1, β = −1/2, c = −3/4. Since
there exists an α and β that makes this true, we know that these two polynomials
are conjugate for c = −3/4. This means that if we let φ(z) = αz + β, we have
that φ ◦ f = g ◦ φ.
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From here, we need to show that we can use the conjugated form to look at
SMVC. Below is a lemma that shows this for φ(z) = αz.

Lemma 1.6. If p(z) = z + h.o.t. satisfies SMVC and if q = A ◦ p ◦ A−1 where
A(z) = αz (α 6= 0), then q also satisfies SMVC.

Proof. Suppose that c is a critical point of p(z) and that it satisfies |p(c)/c| ≤ 1.
Since they are conjugate via multiplication by α, the point x = αc is a critical
point of q. Since q = A ◦ p ◦ A−1 we can see that |q(x)/x| = |q(αc)/(αc)| =
|α(p((αc)/α))

αc | = |p(c)/c| ≤ 1. Hence, if p(z) satisfies SMVC and if q = A◦p◦A−1

where A(z) = αz (α 6= 0), then q(z) will also satisfy SMVC.

At this point, I need to introduce the concept of an orbit and a general
proposition that uses this concept as well as talk about the conjugacy of 1/z
which will be used in the cubic case.

Definition 1.7. Suppose X is any set and f : X 7→ X is any function. Let
x0 ∈ X. Then, the orbit of x0 is defined as x0, f(x0), f(f(x0)), ...

This concept is used in the following proposition:

Proposition 1.8. There exists a critical point ci such that the orbit of ci con-
verges to the origin.

From here, I will introduce the conjugacy of 1/z. In general, 1/z maps
”circles” to ”circles.” When I say ”circles” I mean that they can fit into this
general form: A(x2 + y2) + Bx + Cy + D = 0. At this point, we want to see
what x and y are equal to in terms of the new coordinates u and v. After
some computations, we see that x = u

u2+v2 and y = −v
u2+v2 . After we use

these to substitute into the general form, we find that in the new plane we
get D(u2 + v2) + Bu − Cv + A = 0. So, lines become circles, circles become
circles, and circles can sometimes become lines. If we are mapping a circle that
is around the origin, then everything inside goes outside and vice versa. This is
because the origin goes to ∞ and ∞ goes to 0. This is the method that I will
use in the future.

Now that we have a basic background in Complex Analysis as well as Com-
plex Dynamics, we can look into the quadratic case as an example.

2 The Quadratic Case

To begin with, we will go through the quadratic case. The following Theorem
describes what we are planning to prove in this section:

Theorem 2.1. For each quadratic polynomial f(z) = z+ a2z
2, there is exactly

one critical point. It satisfies the bound in SMVC and it converges to the origin

Proof. The form that we use is a very general form of the quadratic polynomials.
However, we want to use a simpler version by conjugating this polynomial by
φ(z) = αz using the process explained in the previous section.
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Z
z+a2z

2

−→ C∞
φ(z) ↓ ↓ φ(z)

Z ′
z−z2−→ C∞

This means that we need α(z + a2z
2) = αz −α2z2 ⇒ z + a2z

2 = z −αz2 ⇒
α = −a2. So, we can now do all of our calculations using f(z) = z − z2. First,
we need to find its critical point: f ′(z) = 1− 2z = 0⇒ z = 1/2. Referring back
to SMVC, we see that | f(1/2)

1/2 | = |
1
4 · 2| = |

1
2 | ≤ 1. Hence, SMVC is satisfied by

all quadratic polynomials of this form.
Now, we want to look at where this critical point converges to the origin.

To get an idea of this, we will refer back to Proposition 1.8. In this case,
i = 1. So, since there is only one critical point, this point must converge to the
origin. Hence, this one critical point both satisfies SMVC and converges to the
origin.

At this point, we want to see if this pattern continues for the cubic case.

3 The Cubic Case

In this section, we plan to prove the main theorem (Theorem 1.3). We will do
this both indirectly and directly. The indirect approach will use Proposition 1.8
and handles ”areas” or ”regions.” The direct approach will use Beardon’s Petal
Theorem which will be introduced later on. To begin with, we will be looking
at the following general form of cubic polynomials that satisfy the conditions in
SMVC:

p(z) = z + az2 + bz3 (2)

However, we would like this in a more useful form. To do this, we will
conjugate this polynomial by φ(z) = αz:

Z
z+az2+bz3−→ C

φ ↓ ↓ φ

Z
z− 1

2 (c+ 1
c )z2+ 1

3 z
3

−→ C
Following the same process described in example 1.5, we see that we have

z + az2 + bz3 = z − α
2 (c+ 1

c )z2 + α2

3 z
3. For two polynomials to be equal, their

coefficients must be equal: a = −α2 (c + 1/c) and b = α2

3 . Hence, α = − 2a
c+1/c .

Since there exists an α we know that these two polynomials are conjugate and
we can continue with the following cubic:

fc(z) = z − 1
2

(c+
1
c

)z2 +
1
3
z3 (3)

After taking the derivative, it is easy to see the two critical points: c1 = c
and c2 = 1/c. These two critical points are nice to work with since they create
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the same map. In other words, fc(z) = f1/c(z). This means that by looking at
one of the critical points, we have a way of looking at the other. For example, if
we can show for one critical point that fonc (c1(c)) → ∞ ⇔ fon1/c(c1(c)) → ∞ ⇔
fon1/c(c2(1/c)) → ∞ then we see that in an area that is 1/c we have the same
thing for the other critical point. So, we will look at what happens to c1 to get
an idea what happens to c2 as well. At this point, we need to look at where c1
and c2 satisfy SMVC:

fc(c) = c− 1
2

(c+
1
c

)c2 +
1
3
c3 =

3c− c3

6
⇒ |fc(c)

c
| = |3− c

2

6
| ≤ 1⇒ |3− c2| ≤ 6

fc(
1
c

) =
1
c
−1

2
(c+

1
c

)
1
c2

+
1

3c3
=

3c2 − 1
6c3

⇒ |
fc( 1

c )
1
c

| = |3c
2 − 1
6c2

| ≤ 1⇒ |3− 1
c2
| ≤ 6

I claim that with these two graphs combined, we see that SMVC is satisfied
for any c throughout the parameter plane. Below is a figure that shows this
fact.

.. -3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 1: The smallest area is where only c1 satisfies SMVC, the darkest area
shows where both critical points satisfy SMVC, and the area outside the larger
curve shows where only c2 satisfies SMVC. Put together, they cover the entire
complex plane.

At this point, we want to look at areas of convergence to infinity. For c1 = c,
we will prove the following lemma to show where it converges to infinity:

Lemma 3.1. Let δ = 3
4

√
30. If |c| > δ and |z| > |c|3/6 then |fc(z)| > |z| and,

under iteration of f , z converges to infinity.

Proof. We know that |fc(z)| = |z||1− 1
2 (c+1/c)z+ 1

3z
2| and that we want |z||1−

1
2 (c+1/c)z+ 1

3z
2| > |z|. So, proving that |1− 1

2 (c+1/c)z+ 1
3z

2| > 1 will imply the
previous inequality. However, if we prove that |− 1

2 (c+1/c)z+ 1
3z

2| > 2 then the
previous inequality will be true. We can rewrite this as |z||− 1

2 (c+1/c)+ 1
3z| > 2,

which can be implied by the following: |− 1
2 (c+1/c)+ 1

3z| > 2/|z| > 2/(|c|3/6) >

44



0.17. Using the triangle inequality we see that | − 1
2 (c + 1/c) + 1

3z| ≥ ||
1
2 (c +

1/c)| − 1
3 |z|| = |

1
3 |z| − |

1
2 (c+ 1/c)|| > | |c|

3

18 − |
1
2 (c+ 1/c)|| ≥ | |c|

3

18 −
1
2 (|c|+ |1/c|)|.

This function is monotonically increasing as a function of |c|. So, we can re-write
it as |c|

3

18 −
1
2 (|c|+ |1/c|) > 1.67. Since 1.67 > 0.17 we see that all of the previous

inequalities hold. Hence, under iteration of f , z converges to infinity.

This means that for all values of |c| greater than 3
√

30
4 , c1 will converge to

infinity. Based on the earlier explanation, we know that c2 will also converge
to infinity in the circle of |c| > 3

4

√
30 mapped by 1/c in the parameter plane.

This will give us the area where c2 converges to infinity. This circle will be
|c| < 4

3
√

30
. Now that we have two areas where c1 and c2 converge to infinity,

we want to refer back to Proposition 1.8. In this case, i = 2. This means that,
for example, in the area where c1 converges to infinity, we know that c2 must
converge to the origin under iteration. The same happens in the area where c2
converges to infinity. From here we can combine these circles with Figure 1 to
create five distinct areas:

..

Figure 2: There are five different points representing the five different areas
created by four graphs.

We are interested in what happens within each of those areas. Below are
five charts that give us an idea of what is going on:

Region a c1 c2
SMVC y n
→ 0 y n

Region b c1 c2
SMVC y n
→ 0 ? ?

Region c c1 c2
SMVC y y
→ 0 ? ?

Region d c1 c2
SMVC n y
→ 0 ? ?

Region e c1 c2
SMVC n y
→ 0 n y

As you can see, only regions a and e have full charts. We can see that each
of those have a column of yeses. This is the pattern that we are looking for.
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This means that the chart for region c does satisfy this pattern automatically
based on Proposition 1.8. Since in this area both c1 and c2 satisfy SMVC
and we know that one of those critical points will converge to the origin under
iteration, we know that we will have a column of yeses. Hence, the two regions
that we are interested in are b and d. However, since our critical points have
the same map, we can study the area that contains point d and be able to have
an understanding of the area that contains point b. To be able to get a good
understanding of what is happening in region d, we will need to look at the
annulus 1.75 ≤ |c| ≤ 4.11 which encompasses the entire region of d. In this
annulus, we will be looking at the following theorem:

..

Figure 3: This shows what is meant in the following theorem by ”petal.” In our
specific case, we will only have one petal.

Theorem 3.2. (The Petal Theorem) Suppose that the analytic map f has a
Taylor Expansion

f(z) = z − zp+1 +O(z2p+1) (4)

at the origin. Then for all sufficiently small t:

1. f maps each petal Πk(t) into itself;

2. fn(z)→ 0 uniformly on each petal as n→∞;

3. argfn(z)→ 2kπ/p locally uniformly on Πkasn→∞;

4. |f(z)| < |z| on a neighborhood of the axis of each petal;

5. f : Πk(t)→ Πk(t) is conjugate to a translation. [1]

Since our fc(z) is not in the form that is needed to be able to use this
theorem, we will need to conjugate it to create the form that is needed:
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Z
z− 1

2 (c+ 1
c )z2+ 1

3 z
3

−→ C
φ ↓ ↓ φ
Z

z−z2+c′z3−→ C

where φ(z) = αz. This shows that we need to find what α is as well as c′:

α(z−1
2

(c+
1
c

)z2+
1
3
z3) = αz−α2z2+c′α3z3 ⇒ z−1

2
(c+

1
c

)z2+
1
3
z3 = z−αz2+c′′α2z3

So, for two polynomials to be equal, their coefficients must be equal. This
means that α = 1

2 (c + 1
c ) and that 1

3 = c′( 1
2 (c + 1

c ))2. So, we now know that
α = 1

2 (c + 1
c ) and c′ = 1

3 ( 2c
c2+1 )2. Since we are now working in a new plane,

which we will call the u-plane, we need to convert our annulus into the new
coordinates. The following lemma shows this:

Lemma 3.3. Let R = {c : 1.75 ≤ |c| ≤ 0.96} and let R′ = {c′ : 0.07 < |c′| <
0.96}. Then c ∈ R⇒ c′ ∈ R′.

Proof. To show this, we need to reduce c′ to a more useful form: |c′| = | 13 ( c2
c2+1 )2| =

4
3 |

1
c+1/c |

2. To begin with, we want to look at the denominator of the main frac-
tion. Using the triangle inequality, we see that |c + 1

c | ≥ ||c| −
1
|c| |. To be

able to get a better bound on this, we need to show that |c| − 1
|c| is monotoni-

cally increasing as a function of |c|. To do this, we want to make sure that the
derivative is always positive for values between 1.75 and 4.11: 1 + 1

|c|2 is always
positive. This means that the smallest value will happen at the bound. So, we
have that ||c| − 1

|c| ≥ |
7
4 −

4
7 | = |

33
28 |. This means that 1

|c+1/c| ≤ |
28
33 |. Combining

this with the rest of the function, we get an upper bound: |c′| ≤ 4
3 |

28
33 |

2 < 0.96.
For the lower bound, we will follow a similar process. By the triangle in-

equality, we see that |c + 1
c | ≤ |c| +

1
|c| . Before we can continue, we need to

show that this function is monotonically increasing as a function of |c|. The
derivative is 1 − 1

|c|2 which is always positive between 1.75 and 4.11. This
means that the greatest value will happen at the boundary. So, we have that
|c|+ 1

|c| ≤ 4.11 + 1
4.11 < 4.35. Putting this into the rest of the function, we find

that the lower bound is |c′| > 0.07.

Now that we have bounds in our new coordinate system, we want to go back
to the Petal Theorem. We will show that this theorem works for our case which
means that p = 1 and k = 0 (assuming that we are ignoring the points c = ±i).
To do this, we want to prove the following lemma:

Lemma 3.4. Given z in the dynamical plane of fc, let z′ = (1/2)(c+ 1/c)z be
the corresponding point in the dynamical plane, and put w = 1/z′. If c ∈ R and
Re(w) > 4.36 then under iteration of fc, the point z converges to the origin.
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Proof. To begin with, we want to conjugate p(z) = z− z2 + c′z3 to the w-plane
by the conjugation σ : z 7→ 1/z. First, we will look at what 1/p(z) is. Using
polynomial division, we find:

1
z − z2 + c′z3

=
1
z

+ 1 +Az + ν(z), (5)

where A = 1− c′ and |ν(z)| = | (1−2c′)z2−c′(1−c′)z3
1−z+c′z2 | ≤ B|z|2, B > 0.

At this point we need to find bounds on both B and A by proving this
corollary:

Corollary 3.5. If c′ ∈ R′ and |z| < 0.23 then |A| < 1.96 and |ν(z)| ≤ B|z|2
where B = 4.66.

Proof. First, we will look at finding a bound on A. We know that A = 1− c′ so
|A| = |1− c′|. Using the triangle inequality, we see that |A| = |1− c′| ≤ 1 + |c′|.
Since c′ ∈ R′, we know that |c′| < 0.96. So, 1+ |c′| < 1.96 and hence |A| < 1.96.

Now we want to find B and so we need a bound on ν(z). By definition, |z| <
0.23. This choice will be explained later. First, we will look at the denominator
of ν(z). By the triangle inequality, we see that |1−z+c′z2| ≥ ||1−z|− |c′z2|| =
|1− z| − |c′||z|2 ≥ 1− |z| − |c′||z|2 ≥ 1− 0.23− (0.96)(0.23)2 ≈ 0.719.

Now that we have a bound on the denominator of ν(z), we can continue to
get a bound on the full function which will become our B. To do this, let’s
first look at the numerator separately: |(1− 2c′)z2 − c′(1− c′)z3| = |z|2 · |(1−
2c′)− c′(1− c′)z|. Since the bound on |ν(z)| is B|z|2, we can disregard the |z|2
term. Using the triangle inequality and the fact that |z| < 0.23 we see that
|(1 − 2c′) − c′(1 − c′)z| ≤ |1 − 2c′| + |c′(1 − c′)||z| < |1 − 2c′| + 0.23|c′(1 − c′)|.
Earlier we were able to find a bound on the denominator, so if we let B =
|1−2c′|+0.23|c′(1−c′)|

0.719 , we can guarantee that |ν(z)| ≤ B|z|2.
At this point,we want to find a bound on B. Since B = |1−2c′|+0.23|c′(1−c′)|

0.719 ,
we know by the triangle inequality that |1−2c′|+0.23|c′(1−c′)|

0.719 ≤ 1+2|c′|+0.23|c′|(1−|c′|)
0.719 .

Using the fact that |c′| < 0.96 since c′ ∈ R′, we have that 1+2|c′|+0.23|c′|(1−|c′|)
0.719 <

4.66.

At this point we want to complete the proof by showing the following corol-
lary:

Corollary 3.6. Given c in R, the critical point c2 = 1/c converges to the origin.

Proof. I claim that we can show that c2 converges by using the second iterate.
If we can show that the second iterate converges to the origin, then we can
conclude that c2 converges to the origin as well. Recall that fc(c2) = 3c2−1

6c3 .
Iterating one more time, we find that

fc(fc(c2)) =
6c(6c3)2(3c2 − 1)− 3c2(6c3)(3c2 − 1)2 − 3(6c3)(3c2 − 1)2 + 2c(3c2 − 1)3

6c(6c3)3
.
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We need to convert this into the new coordinate system. To do this, multiply the
above function by α = c2+1

2c . After working through the computation, the result
is 5

48c2 −
5

72c4 + 1
72c6 −

1
1296c8 −

1
1296c10 + 3

16 . From here, we want an upper bound
on 5

48c2−
5

72c4 + 1
72c6−

1
1296c8−

1
1296c10 to create a circle whose radius is that upper

bound, centered at 3
16 . To get an upper bound on this, we will use the triangle

inequality: | 5
48c2−

5
72c4 + 1

72c6−
1

1296c8−
1

1296c10 | ≤ |
5

48c2 |+|
5

72c4 |+|
1

72c6 |+|
1

1296c8 |+
| 1
1296c10 | ≤ |

5
48(7/4)2 |+ |

5
72(7/4)4 |+ |

1
72(7/4)6 |+ |

1
1296(7/4)8 |+ |

1
1296(7/4)10 | ≈ 0.042.
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Figure 4: The graph on the left shows the areas where the denominator of ν(z)
does not vanish and the values of the second image of c2. The graph on the
right are these same graphs but mapped by 1/z. The half-plane in the right
hand graph is the half-plane that we want to show is forward invariant.

Now that we have most of our information, we can continue with the mapping
by finding g(z) in the w-plane. To do this, we can take what we have for the
1/p(z) function and replace z with w = 1/z. This creates g(w) = w+1+A

w+θ(w)
where |θ(w)| = |ν(σ−1(w))| ≤ B|σ−1(w)|2 ≤ B

|w|2 and B and A are the same as
earlier. Figure 4 shows where all the values of the second iterate of c2 go under
the mapping of 1/z as well as where the circle of |z| < 0.23 goes under the same
mapping. There is also a half-plane at Re(w) > 4.36. We want to show that
this half-plane is forward invariant. To do this, we need to make sure that when
we move the real values of w by w 7→ w + 1 + A

w + θ(w), it moves forward. To
do this, we need the most negative vales that A and θ(w) can take.

Recall that |A| < 1.96. This means that the most negative A can be is -1.96.
Hence, the most negative A

w can be is about -0.45 since w = 4.36. Now, we
know that |θ(w)| ≤ B

|w|2 which means that −|θ(w)| ≥ − B
|w|2 . Earlier, we also

showed that B < 4.66 hence −B > −4.66. This means that since 1
|w| = 0.23,

the most negative θ(w) can be is -0.25. Combining all of these together, we
see that 4.36 7→ 4.36 + 1 − 0.45 − 0.25 = 4.66. This leads us to the following
proposition:

Proposition 3.7. Under iteration of w 7→ w + 1 + A
w + θ(w), every point w in

the right half-plane Re(w) > 4.36 converges to infinity: the real parts of points
in its orbit converge to +∞.
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Proof. We will show this using induction. The first step has already been shown
above. If we let w1 = 4.36, we will start with the base case n = 1. Following
the same process as above, we found that w1 7→ 4.66 = w2. Hence, w1 < w2

and so the base case is true.
Now, we want to assume that n holds. This means that wn−1 7→ wn and

hence wn−1 < wn. So, we need to look at where wn gets mapped to: wn 7→
wn+1+A/wn+θ(wn). Since we know that wn > wn−1, we can say that 1/wn <
1/wn−1. So, we have that A/wn < A/wn−1 which means that the most negative
it can be is −A/wn−1. Now, we need to look at a bound on θ(wn). By definition,
|θ(wn)| ≤ B/|wn|2 < B/|wn−1|2 which means that −|θ(wn)| > −B/|wn−1|2.
So, with these replacements, we see that wn 7→ wn + 1 + A/wn + θ(wn) >
wn + 1 − A/wn−1 − B/|wn−1|2. However, since wn > wn−1, we know that
wn−1 + 1−A/wn−1−B/|wn−1|2 < wn + 1−A/wn−B/|wn−1|2. We also know
that wn−1+1−A/wn−1−B/|wn−1|2 = wn. So, if we let wn+1 = wn+1+A/wn+
θ(wn) > wn+1−A/wn−1−B/|wn−1|2 > wn−1+1−A/wn−1−B/|wn−1|2 = wn,
we have that wn < wn+1 which completes the proof.

What this proposition has told us is that the real values in the half-plane in
the w-plane converges to infinity. Since this line is mapped backwards by 1/z,
when this line converges to infinity, we have that the resulting circle converges
to the origin. To see this, consider the half-planes given by x > 4.36 and
x > 4.66. Using the method explained in section 1, we can see that these
two lines map to these two circles, respectively: (x − 0.115)2 + y2 < 0.013
and (x − 0.107)2 + y2 < 0.012. When these two circles are graphed together,
we see that the second is mapped inside the first but both are tangent to the
origin. Hence, as the real value of the half-plane converges to infinity, these
circles converge to the origin. This means that since this area that represents
all values of the second iterate of c2 within our annulus is contained within the
half-plane, we can see that the second iterate c2 must converge to the origin.
Hence, c2 must converge to the origin as well and this completes our proof of
Corollary 3.6.

Combining the proofs of Corollaries 3.5 and 3.6 as well as the proof for
Proposition 3.7, we can see that Lemma 3.4 has been proven.

Since we were able to show that c2 converges to the origin within our annulus,
we can say something about c1 in the other region under consideration. Because
fc(z) = f1/c(z), we can say that fc(c2(c))⇔ f1/c(c2(c))⇔ f1/c(c1(1/c)). Hence,
within the other area (since it is where c2 is mapped by 1/c) we can say that c1
converges to the origin within region b. With these new pieces of information,
we can look back to the charts for regions b and d:

Region b c1 c2
SMVC y n
→ 0 y ?

Region d c1 c2
SMVC n y
→ 0 ? y
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As you can see, we can now say that c1 converges to the origin in region b
and that c2 converges to the origin in region d which completes the pattern that
we were looking for. Hence, we know that for any cubic, there is a critical point
satisfying the SMVC bound and converging to the origin.

4 Concluding Remarks

This paper has shown that Complex Dynamics can help give an idea of which
critical points satisfy SMVC for quadratic and cubic polynomials. It began with
a brief introduction the problem as well as some basic background information
in Complex Dynamics and Complex Analysis. From there, it described the
quadratic case as an example for the cubic case. In the cubic case, we showed
that the intuition that convergence of a critical point and SMVC do have a
relation by using a specific instance of the Petal Theorem. From here, if we
can show this intuition is true for higher order polynomials, we may have a
different possibility for proving that this form of SMVC is true. There is also
the possibility of looking into the following stronger form of SMVC:

Conjecture 4.1. Let f(z) = z+
∑n
i=2 aiz

i of degree n ≥ 2 be a complex valued
polynomial for which f(0) = 0 and f ′(0) = 1. Then, there exists a critical point
c of f that satisfies: | f(c)

c | ≤
d−1
d where d is the degree of the polynomial.

This has been shown to be true for polynomials of degree 2, 3, and 4 by
algebraic methods in a paper by Q. Rahman and G. Schmeisser [4]. However,
the link between this version of SMVC and the convergence of the orbits of the
critical points does not seem to have been looked into.
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On the Combinatorics of Schubert

Calculus

Linh Truong

1 Introduction

We construct a lattice by choosing three unit vectors u, v, w in the plane such
that u+ v + w = 0.

w

v

u

The points iu+ jv with i, j integers will be called lattice points, and a segment
joining two nearest lattice points will be called a small edge. We consider positive
measures m which are supported by a union of small edges, that satisfy the
following properties:

(1) The restriction of m to each small edge is a multiple of a linear measure.
This multiple is called the density of m on the small edge.

(2) m satisfies the balance condition

m(AB)−m(AB′) = m(AC)−m(AC ′) = m(AD)−m(AD′)

whenever A is a lattice point and the neighboring lattice points B, C ′, D,
B′, C, D′ are in cyclic order around A.

A

B

B'

CC'

D

D'

The density of a measure m will be considered to be zero on segments outside
its support. A lattice point incident to at least three small edges in the support
of m is called a branch point of the measure m. We only consider measures with
at least one branch point.

Fix an integer r ≥ 1, and denote by ∆r the (closed) triangle with vertices
0, ru, ru+ rv = −rw. We use the notation

Aj = ju, Bj = ru+ jv, Cj = (r − j)w,
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for j = 0, 1, . . . , r, for the lattice points on the boundary of ∆r. We also set

Xj = Aj + w, Yj = Bj + u, Zj = Cj + v

for j = 0, 1, 2, . . . , r.
We denote by Mr the collection of all measures m satisfying conditions (1)

and (2), whose branch points are contained in ∆r, and such that

m(AjXj+1) = m(BjYj+1) = m(CjZj+1) = 0, j = 0, 1, . . . , r.

The numbers

αj = m(AjXj), βj = m(BjYj), γj = m(CjZj),

where j = 0, 1, . . . , r, will be called the exit densities of m. A measure m ∈Mr

is said to be rigid if there is no other measure m′ ∈Mr with the same exit points
and exit densities as m. In other words, a rigid measure is entirely determined
by its exit densities.

Given a measure m ∈Mr, we define its weight w(m) ∈ R+ to be

w(m) =
r∑
j=0

m(AjXj) =
r∑
j=0

m(BjYj) =
r∑
j=0

m(CjZj).

The equality of the three sums giving w(m) is an easy consequence of the balance
condition.

The remainder of the paper is organized as follows. In Section 2 we formulate
the Littlewood-Richardson Rule in terms of measures. In Section 3 we focus
our discussion of measures on a special kind - tree measures. This leads us to
our main results in Section 4, where we develop a set of rules for constructing
rigid tree measures. We conclude the paper with possible directions for future
research in Section 5.

2 The Littlewood-Richardson Rule

We can describe the Littlewood-Richardson rule in terms of measures, and this
turns out to be a very useful way to study intersections of Schubert varieties.
Given integers n, 1 ≤ k ≤ n− 1, the Grassmanian manifold Gr(n, k) is defined
to be

Gr(n, k) = {k-dimensional linear vector subspaces of Cn}

For every flag

E = {{0} = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = Cn},

where Ej is a subspace of dimension j, Gr(n, k) can be written as a union of
Schubert varieties described as follows. For each set

I = {i1 < i2 < · · · < ir} ⊂ {1, 2, . . . , n},
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one defines the Schubert variety

S(E , I) = {M ∈ Gr(n, k) : dim(M ∩ Eix) ≥ x, x = 1, 2, . . . , k}.

Given sets I, J,K ⊂ {1, 2, . . . , n} of cardinality k such that

k∑
l=1

(il + jl + kl − 3l) = 2k(n− k)

the Littlewood-Richardson rule provides a non-negative integer cIJK with the
property that the set

S(E , I) ∩ S(F , J) ∩ S(G,K)

has a finite intersection, equal to cIJK . The integer cIJK is called the Littlewood-
Richardson coefficient, and cIJK can be defined in terms of measures.

Assume that m ∈ Mr assigns integer densities to all small edges. Let
αn, βn, γn be the exit densities of m. We can then define an integer

n = r + w(m),

and sets I, J,K ⊂ {1, 2, . . . , n} of cardinality r by setting I = {i1, i2, . . . , ir},
where

il = l +
l−1∑
n=0

αn, l = 1, 2, . . . , r, (1)

jl = l +
l−1∑
n=0

βn, l = 1, 2, . . . , r, (2)

kl = l +
l−1∑
n=0

γn, l = 1, 2, . . . , r. (3)

These are precisely the triples of sets (I, J,K) which satisfy the Littlewood-
Richardson rule. The Littlewood-Richardson coefficient cIJK equals the number
of measures m ∈ Mr with integer densities which satisfy (1), (2), and (3), i.e.
which have the same exit densities as m.

Given a measure m ∈Mr, we formulate the associated Schubert intersection
problem. A measure m determines sets I, J,K as above. The problem is to
compute explicit elements in the intersection of three Schubert varieties,

S(E , I) ∩ S(F , J) ∩ S(G,K),

where E ,F ,G are generic flag varieties. An explicit solution of the Schubert
intersection problem associated with a measure can be produced in the rigid
case, and the method is described in [2].

Example. In Figure 1, the measure m assigns density 1 to the thickened edges
and density 0 to the other edges in the triangle.
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Figure 1: This measure has one branch point.

The sets I, J,K are determined by m as follows:

I = {1, 3, 4, 5}
J = {1, 3, 4, 5}
K = {1, 2, 4, 5}

The subspace M of C5 in the intersection of three Schubert varieties

S(E , I) ∩ S(F , J) ∩ S(G,K)

is exactly M = E1 +F1 +G2, where E1, F1, G2 are elements of the flags E ,F ,G,
respectively.

3 Trees and Measures

Some measures m ∈ Mr have an underyling tree structure which we describe
next. We consider trees embedded in the plane R2 such that

(T.1) each edge of the tree is a straight line segment of unit length,

(T.2) each vertex has order 2 or 3, and

(T.3) there are only finitely many vertices of order 3.

These conditions imply that a tree is infinite, but has a finite number of ends.
Ends are sequences of vertices of the form V0V1 . . . , where V0 is a branch point,
Vj has order 2 for j ≥ 1, and VjVj+1 is an edge for each j ≥ 0. We will require
one more condition on our trees.

(T.4) The shortest path joining two different ends contains an odd number of
vertices of order 3.

All trees discussed in the sequel satisfy the above four properties.
An immersion of a tree T ⊂ R2 is a continuous map f : T → R2 which

satisfies the following properties:

(1) f is isometric on each edge.
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(2) If V A and V B are two edges meeting at a vertex of order 2, then

2f(V ) = f(A) + f(B).

(3) If V A, V B, V C are three edges meeting at a vertex of order 3, then

3f(V ) = f(A) + f(B) + f(C),

and the restriction of f to V A∪V B∪V C preserves the orientation of the
tree.

A tree is endowed with an arclength measure. Given an immersion f of T , we
consider the push-forward mf of this measure. That is, if f(T ) is contained in
the small edges of a lattice determined by the vectors u, v, w, then mf assigns
to each edge a density equal to the number of its preimages in T . The resulting
measure satisfies the balance condition at all vertices. Since T has a finite
number of ends, we can arrange f so that mf belongs to Mr for sufficiently
large r.

A measure m will be called a tree measure if m = mf for some immersion
f of a tree. In the next section, we will construct a set of rules for which an
immersion produces a rigid tree measure.

4 Results

There is a certain class of loops which indicate non-rigidity if they exist in the
support of a measure. Let A1A2 . . . AkA1 be a loop consisting of small edges
AjAj+1 contained in the support of a measure m ∈ Mr. We will say that this
loop is evil if each three consecutive points Aj−1AjAj+1 = ABC forms an evil
turn, i.e. one of the following situations occurs:

(E.1) C = A, and the small edges BX,BY,BZ which are 120◦, 180◦, and 240◦

clockwise from AB are in the support of m.

(E.2) BC is 120◦ clockwise from AB.

(E.3) C 6= A and A,B,C are collinear.

(E.4) BC is 120◦ counterclockwise from AB and the edge BX which is 120◦

clockwise from AB is in the support of m.

(E.5) BC is 60◦ counterclockwise from AB and the edges BX,BY which are
120◦ and 180◦ clockwise from AB are in the support of m.

The existence of an evil loop in the support of a measure implies non-rigidity.
This was proven in [1]:

Theorem 4.1. A measure m ∈ Mr is rigid if and only if its support contains
none of the following configurations:
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(1) Six edges meeting at one lattice point.

(2) An evil loop.

Our main result is to prove the following proposition:

Proposition 4.2. Let T be a tree that satisfies properties (T.1) through (T.4),
and f an immersion f : T → R2. Suppose f satisfies the following conditions:

(1) There is a vertex A ∈ T (called the root of T ) such that f−1(f(A)) = {A}.

(2) The only branch points of f(T ) are of the following forms (up to rotation):

(3) f has consistent orientation. That is, suppose X1X2 and Y1Y2 are edges of
T such that X1 and Y1 are closer to the root of T than X2 and Y2, respec-
tively, and f(X1X2) = f(Y1Y2). Then f(X1) = f(Y1) (and consequently,
f(X2) = f(Y2)).

(4) If four edges meet at a lattice point B, then the orientation of one of the
edges is determined as follows. Let AB be the small edge such that the
other small edges BX,BY,BZ are located 120◦, 180◦, 240◦ clockwise from
AB. Then the orientation of AB must point from B to A.

B A

X

Y

Z

Then mf is a rigid tree measure.

Proof. Suppose f : T → R2 satisfies the conditions of the hypothesis. By Rule
(2), a branch point in f(T ) cannot have six surrounding edges all belonging to
f(T ). By Theorem 4.1, it is enough to show that f(T ) contains no evil loops.
We show that if an evil loop exists in f(T ), then the loop lifts to a single branch
of T . This will lead to a contradiction of property T.3.

By the conditions imposed on the immersion f , the only evil turns that can
arise in f(T ) are E.1, E.2, E.3 and E.4. The evil turn E.5 cannot arise because
of Rule (2). The turns E.2 and E.4 are reversible under our conditions, in the
sense that they are evil either way we traverse them.

Let A0A1A2 · · ·An be an evil loop in f(T ) (where A0 = An). Since an evil
loop must have a turn of the form E.2, E.4, or E.5 (because collinear ”turns”
alone cannot form a loop), we may choose A0 so that the evil turn A0A1A2 is of
the form E.2 or E.4. Since the turns E.2 and E.4 are reversible, we may assume
that A0A1 assumes the orientation of the tree (if not, we traverse the evil loop
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in the reverse order). That is, we can assume that there is a lift B0B1 to the tree
of the edge A0A1. We show that A1A2 can also be lifted by showing that the
orientation of A1A2 matches the tree orientation. The possible configurations
of A0A1A2 are:

(E.2) A1A2 is 120◦ clockwise from A0A1.
The edge A1X which is 240◦ clockwise from A0A1 must also be in the
support of f(T ).

A0
A1

A2

The edge A1A2 must assume the orientation of the tree by consistency of
orientation of the immersion f .

(E.4) A1A2 is 120◦ counterclockwise from A0A1 and the edge A1X which is 120◦

clockwise from A0A1 is in the support of f(T ).

A0
A1

A2

The edge A1A2 must assume the orientation of the tree by consistency of
orientation of the immersion f .

Thus, given a lift B0B1 of A0A1, there is a vertex B2 such that B1B2 lifts
A1A2. So the evil turn A0A1A2 lifts to a simple path B0B1B2 on T , consistent
with the orientation of T .

We inductively show that each edge in the evil loop A0 . . . An lifts to an edge
of the tree. For simplicity, we let Ak+mn = Ak for all m ∈ N, 0 ≤ k < n.

Suppose there is a lift BiBi+1 of the edge AiAi+1 so that AiAi+1 assumes
the orientation of the tree. We show that there is also a lift Bi+1Bi+2 of the
edge Ai+1Ai+2. The possible configurations of the evil turn AiAi+1Ai+2 are:
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(E.1) Ai+2 = Ai, and the small edgesAi+1X,Ai+1Y,Ai+1Z which are 120◦, 180◦,
and 240◦ clockwise from AiAi+1 are in the support of f(T ).

Ai+1
Ai

X

Y

Z

The orientation of the edge AiAi+1 in this evil turn contradicts Rule (4)
of the immersion f , so this evil turn does not arise in f(T ).

(E.2) Ai+1Ai2 is 120◦ clockwise from AiAi+1.
The edge Ai+1X which is 240◦ clockwise from AiAi+1 must also be in the
support of f(T ).

Ai
Ai+1

Ai+2

The edge Ai+1Ai+2 must assume the orientation of the tree by consistency
of orientation of the immersion f .

(E.3) Ai+2 6= Ai and Ai, Ai+1, Ai+2 are collinear. There are two cases:

(a) The lattice point Ai+1 has only two surrounding edges, AiAi+1 and
Ai+1Ai+2, in the support of f(T ).

Ai
Ai+1

Ai+2

Then the edge Ai+1Ai+2 must assume the orientation of the tree by
consistency of orientation of the immersion f .

(b) The lattice point Ai+1 has four surrounding edges in the support of
f(T ).
By Rule (4), the edge Ai+1Ai+2 must assume the orientation of the
tree.

(E.4) Ai+1Ai+2 is 120◦ counterclockwise from AiAi+1 and the edge Ai+1X
which is 120◦ clockwise from AiAi+1 is in the support of f(T ).

The edge Ai+1Ai+2 must assume the orientation of the tree by consistency
of orientation of the immersion f .

Thus, given a lift BiBi+1 of AiAi+1, there is a vertex Bi+2 such that Bi+1Bi+2

lifts Ai+1Ai+2, completing the induction.
We have constructed inductively an infinite path

B0B1B2 · · ·BnBn+1 · · ·
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Ai+1
Ai Ai+2

Ai
Ai+1

Ai+2

of the tree T with the following properties:

(1) f(Bj) = Aj

(2) BjBj+1 is oriented away from the root.

We claim that infinitely many of the vertices Bj have order 3.
By construction, the vertex A1 is a branch point of mf . Thus lifted vertex

B1 ∈ T with f(B1) = A1 is a vertex of order 3, because the immersion f cannot
map a vertex of order 2 to a turn of the form E.2 or E.4.

Moreover, each vertex B1+mn, m ∈ N, has order 3 because

f(B1+mn) = A1+mn = A1.

Thus, infinitely many vertices Bj have order 3. But this contradicts property
T.3 of the tree. Thus, we’ve shown that en evil loop cannot exist in f(T ), and
therefore mf is a rigid tree measure.

The above proposition guarantees that if we construct a tree measure fol-
lowing the four stated rules, then the resulting measure will be rigid.

5 Future Research

The finiteness of the number of vertices of order 3 (i.e. property T.3) was crucial
in the proof of Proposition 4.2. Our next question is whether Proposition 4.2
still applies to trees with an infinite number of vertices of order 3. That is, if
a tree satisfies properties T.1, T.2, and T.4, and if an immersion f : T → R2

satisfies the four rules of Proposition 4.2, then will the resulting measure f(T )
be rigid?

Another question we investigated is the following: Given a triangle of size
r, what is the maximum weight that a rigid tree measure m ∈Mr could have?
We have a lower bound on this number: for large r, the maximum weight of a
measure inMr is at least 2br/3c. The lower bound can be easily explained with
the help of a couple of figures.

Given a measure m ∈Mr of weight w, Figures 2 and 3 demonstrate how to
produce a measure m′ ∈ Mr+3 of weight 2w. By branching the exit densities
on one side of ∆r in the illustrated way, one exit branch of density w is added
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Figure 2: A measure m ∈M4 of weight w

w

w

w

Figure 3: A measure m′ ∈M7 of weight 2w

to each side of the triangle, thereby increasing the total weight by a factor of
2. In this process, we also increase the size of the triangle by 3. Thus, for large
r, the maximum weight of m ∈ Mr is ≥ 2br/3c. We are interested in finding a
least upper bound on the maximum weight of a measure.

A tree measure of weight w has 3w − 2 branch points. This relation allows
us to investigate the maximal weight problem using a different approach. The
problem becomes that of finding the maximum number of branch points of a
rigid tree measure in Mr.

Thus, we attempted to characterize trees with rigid immersions. That is,
we are interested in the types of trees that can be immersed onto the plane to
produce rigid measures. Does every tree have a rigid immersion? Are there
some tree configurations that absolutely prohibit a rigid immersion? By char-
acterizing trees with rigid immersions, we might be able to find an upper bound
on the number of branch points that a rigid tree measure m ∈ Mr can have,
and ultimately find the maximum weight that such a measure could have.
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Abstract

Classifying Single-Tile Periodic Tilings of the Real Line and Realizing
the Deformation Spaces of Two and Three Square Periodic Tilings of the
Plane through Combinatorial Structure.

1 Introduction

A tiling can be thought of as an assortment of objects that covers a space cleanly
and without any gaps. A periodic tiling can be thought of as a base object that is
a subset of the space (what we will call a fundamental domain) being translated
around the space by a consistent method of instructions (what we will deem
translation by the group of translational vectors). Generally, in Rn, we can
think of a fundamental domain as an n-dimensional object (or subset of Rn)
with a set of n translational vectors. We will be looking at periodic tilings in R
and R2, so we will only need one or two translational vectors.

Figure 1: Example of a periodic tiling in R

More specifically, in R2, we will be looking at periodic tilings by squares,
most notably tilings by one, two, and three squares.

As for periodic tilings of R, we will be looking at tiles consisting of disjoint
intervals. Many examples will be given for both. (Note we cannot show all of R
or R2 in our tiling, so we will only show a subset of these regions being tiled.)
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Figure 2: Example of a tiling in R2

2 Tilings of the Real Line

2.1 Defining the Tiling

Given any length interval in R, call length L, we can subdivide the interval into
n parts, say, of lengths a1, ..., an such that the sum of the ai’s equals L. Note
the ai’s do not have to be in any specific order.

a1 a4 a3 a2!
L

Figure 3: A divided interval of length L

We can then deform the intervals in a modularly arithmetic specific manner
(breaking the parts up and putting them apart from each other, called a lift
mapping) to create a union of disjoint intervals. We call this an n-prong tile.

Definition 2.1. Let a1, ..., an represent interval lengths in R. An n-prong tile
is a union of disjoint intervals a1, ..., an (ai’s in increasing order) with a1 + ... +
an = L such that the tile modulo L is a single connected tile of length L.

a1 a4 a3 a2 a1 a2 a3 a4

Figure 4: Creating an n-prong tile (n = 4) from a single interval of length L

Let the a1 length interval always be the first disjoint interval (we know
we can do this by simply moving any interval in front of a1 to the back (e.g.
a5a10a1an...an−25 is equivalent to a1an...an−25a5a10 by modular arithmetic mod
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L). Then this n-prong tile will tile R by translation with period L. We would
like to say this is the only way to tile R with translates of one tile, but it will not
be proven in this paper (see the results of Lagarias and Wang in [1] for showing
how all tilings of the real line by a single tile will eventually be periodic).

2.2 Examining the Tiling

Note that with n disjoint intervals, (we will refer to them as prongs, numbered
in increasing order: “1, 2, . . . , n”), we have one prong that is fixed (namely
prong 1), which we must have in order to define our n-prong tile.

a1 a2 a3 a1a2 a3 a3 a1 a2

Figure 5: Because of the numbering of the prongs (1-2-3, 2-3-1, and 3-1-2), the
above three tiles are equivalent; they are just starting at different prongs. We
fix prong 1 as the starting prong to make sure we don’t repeat the same tilings.

This means the other n−1 prongs can be patterned in any desired order over
the period-length interval (i.e. when the tile is taken modulo L), which allows
for (n− 1)! classes of countably infinite many different tilings. We control the
different tilings by modulating the gap sizes, or if the prong pattern is in
consecutive order (e.g. 1, 2), we can set the gap between the two equal to zero
and make an n−1 prong tile, or set the gap equal to L, and by modulating this
length we get 0+L+L+ ...+L (m times), or simply mL. (For modulating other
gaps, we take the shortest length between the consecutive prongs (say a1 + a3

or something) then go around the interval again, which will of course add on L
to the shortest gap length, and we can do this as many times as we please.)

a1 a2 a3 a1 a2 a3modulate

Figure 6: Modulating the second gap in a 3-prong tile

Also it should be noted that gaps can be modulated independently. If we
call gaps b and call the gap after each ai, (for i = 1, ..., n) bi (so that bn is the
gap after the end prong an), we can associate an mi in N to each bi to indicate
how modulated a gap is, and mi does not necessarily have to equal mj . This
ensures there are countably infinite different tilings for each class of tiles.

a1 a2 a3

Figure 7: We use the same tile as in the previous example. This time, the first
gap is modulated once and the second gap is modulated twice. We also show it
tiles.

Here are the definitions of some of the terms emphasized above:
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Definition 2.2. The prong pattern of an n-prong tiling is the numerical
ordering of the prongs when the tile is taken modulo L. The prong pattern
determines which tiling class we are in, which is useful in determining if two
tilings are equivalent.

Definition 2.3. Two tilings are in the same class if their prong patterns are
the same. If two tilings are in the same class, they are said to be equivalent.

2.3 Building up the Classes

Let us look at the classes for each n-prong tile, starting with n = 1:

For a 1-prong tile, all we do to tile is shift by the period (or interval) length
L. We can call this Class 0 or “class-less” since the prong pattern is always
“1, 1, 1, 1, . . .”, and no other tilings have the same prong number adjacent to
one another.

a1 a1 a1 a1

Figure 8: Example of a Class 0 tiling

For a 2-prong tile, we have prong number 1 fixed in the first spot, so prong
number 2 must come next, yielding 1! = 1 class(es), so there is only one class of
countably infinite tilings. The prong pattern will always be “1, 2, 1, 2, . . .”.
Let us examine further:

a1 a1 a1a2 a2 a2

Figure 9: A two prong tile with a gap length of zero

We can have gap b1 = 0, but that reduces to a class-less 1-prong tile. (Note
the obvious fact that combining any two prongs by setting bi = 0 will reduce an
n-prong tile to an (n− 1)-prong tile, drastically reducing the number of classes
for decent-sized n (say n ≥ 4).) To make things interesting, we take b1 = a2+a1

and get:

a1 a1 a2 a2a2 a1 a1 a2a2 a1

Figure 10: A two prong tile, tiling by translation by a1 + a2

As previously stated, we can take b1 = m1(a2 + a1) to get the countably
infinite many tilings in this class. Note the increasing modular pattern “1, 2, 1,
2, . . .” where the prong number is increasing until all the prongs are named
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(e.g. “1, 2, 3, 1, 2, 3, . . .” for 3-prongs and “1, 2, 3, 4, 1, 2, 3, 4, . . .” for
4-prongs). This pattern shows up as a class for all n-prong tilings, n ≥ 2, so we
call this Class 1.

Definition 2.4. For any n-prong tile, n ≥ 2, a tiling with prong pattern “1, 2,
3, 4, . . . , n” is defined to be a Class 1 tiling.

a1 a2a1 a2a1 a2a1 a1a2

a1 a2a1 a2a1 a2a1 a2a1 a2a2a2 a1 a1

Figure 11: Examples of 2-prong Class 1 tilings; note the second example has its
gap modulated

For a 3-prong tile, we have prong number 1 fixed in the first spot, leaving
prongs 2 and 3 free, yielding 2! = 1 classes with prong patterns “1, 2, 3, 1, 2,
3, . . .” or “1, 3, 2, 1, 3, 2, . . .”. We have already looked at the first and
named it Class 1 (and it is important to note Class 1 tilings have the longest
unmodulized gaps, for all the gaps are always equal to at least L). We now
must look at this second interesting prong pattern that is decreasing modularly
(like “3, 2, 1, 3, 2, 1, . . .” with 1 moved to the front by convention):

a1 a2a3 a1 a2 a3lift

Figure 12: Showing the lift mapping for a Class 2, 3-prong tile

Completely opposite of the Class 1 tilings, these Class 2 tilings have the
shortest unmodulized gaps (in the case of the 3-prong tiles). As with Class 1,
Class 2 tilings appear for every n-prong tiling (for n ≥ 3 this time).

Definition 2.5. For any n-prong tile, n ≥ 3, a tiling with prong pattern “1, n,
n− 1, n− 2, . . . , 3, 2” is defined to be a Class 2 tiling.

a1 a2 a3 a1 a2 a3 a1 a2 a3 a1 a2 a3 a1 a2 a3

a1 a2 a3a1 a2 a3a1 a2 a3a3 a1

Figure 13: Examples of 3-prong tilings; the first is a Class 1 tiling and the
second is a Class 2 tiling

For a 4-prong tile, we have prong number 1 fixed in the first spot, leaving
three free prongs, yielding 3! = 6 classes, and this is where the classes start to
become overwhelming. We only name Class 1 and Class 2 and call the other
classes by the prong pattern they have. For the 4-prong tiles, the six classes are:
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Class 1 (1,2,3,4)
Class 2 (1,4,3,2)
Class 1-2-4-3
Class 1-3-2-4
Class 1-3-4-2
Class 1-4-2-3

As always, the gaps can be modulized, and the period L is the sum of the
prong lengths.

a1 a2 a3 a4a1 a2 a3 a4a1 a2 a3a2 a3 a4a3 a4a4 a1 a2a1 a2a1

a1 a2 a3 a4a1 a2 a3 a4a1 a2 a3 a4a1 a2 a3 a4a3 a4a4 a1 a2 a3a1 a2 a1

Figure 14: Examples of 4-prong tilings; the first is a Class 1-2-4-3 tiling and the
second is a Class 1-3-4-2 tiling

We can keep going, to five, six, and seven prong tiles, but, in general, for
n-prong tiles, we fix the first prong, leaving n−1 free prongs, which yield (n−1)!
classes. Class 1 is always included for n ≥ 2, and Class 2 is always included for
n ≥ 3. Gaps can always be modulized independently, and the tiles are always
translated by L, the sum of the prong lengths.

a1 a2 a3 a4 a5 a1 a2 a3a1 a2 a3 a4 a5a1 a2 a3 a4a3 a4 a5a5 a1

a1 a2 a3 a4 a5 a6 a1a1 a2 a3 a4 a5 a6a1 a2 a3 a4a1 a2 a3a1 a2a3 a4 a5 a6a4 a5 a6a5 a6a6

Figure 15: Examples of n-prong tilings; the first is a Class 1-3-5-2-4, 5-prong
tiling, and the second is a Class 2, 6-prong tiling

2.4 Number Classification by Tilings Theorem

With the above information we have gathered empirically, we can now form a
theorem relating these tilings of the real line to number theory, namely, that we
can produce countably infinite real line tilings (ignoring the obvious uncountably
infinitely many choices for each prong’s length) for any finite ordered list of
natural numbers. For ease, we will require the list of numbers to always start
with 1 to avoid any repetition.

Theorem 2.6. Given a finite ordered list N of n natural numbers beginning
with 1, there exist countably-infinite many n-prong tiles (ignoring the choice of
prong length) whose prong patterns are the same as the ordered list N .

Proof. The proof simply follows from what we have already found. If we have
our ordered list N that begins with 1, we can relate this list to a prong pattern
of some n-prong tile. To each number i in N , we can associate a real value ai in
order to construct this tile. As before, let L = a1 + ... + an and then create an
L-length interval broken up into these n parts with a prong pattern equivalent
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to the list N . Then we can lift the tile from its modulo L state into a tile with
n prongs such that we tile R periodically. The “countably-infinite many” part
comes from the fact that we can modulate the size of each gap to whatever we
please.

This theorem is useful for giving us a geometric representation of a finite
pattern of natural numbers, and it is interesting to note that for any ordered
list of natural numbers, we can find an n-prong tiling (and not just one, but
always countably infinitely many).

3 Tilings by Squares

3.1 Definitions and Examples

Recall in the introduction we mentioned the criteria for a tiling. For tilings by
squares, the space we are looking to tile is R2 and our fundamental domain
is a square or a union of several squares (without any gaps). The transla-
tional vectors are two linearly independent vectors in R2, inherently with an
x component and a y component. Below is an example of a tiling by one square:

t1

t2

Figure 16: A tiling by one square with translational vectors !t1 and !t2

Note the fundamental domain in this case is just one square, but the situation
changes with two squares:

t2

t1

Figure 17: A tiling by two squares with translational vectors !t1 and !t2
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It would be wise to define what we mean by fundamental domain and trans-
lational vectors in this case:

Definition 3.1. Given a topological space X and a group G acting on it, we
can find that the images of a single point under the group action form an orbit,
and a fundamental domain is a subset of X that contains exactly one point
from each orbit.

This definition can be simplified for our purpose of periodically tiling R2

by squares since we are looking at Z2 acting on R2 by translation, which will
always form a lattice.

Definition 3.2. For Z2 acting on R2 by translation (the case for our square
tilings), a fundamental domain of a tiling is the most irreducible and irre-
dundant piece of the tiling such that the whole tiling can be determined (in
accordance with translations by a constant set of two translational vectors).
We define irreducible to mean that no subsets of the fundamental domain will
be able to tile the plane by itself, and we define irredundant to mean the inter-
section of any two fundamental domains is the empty set. In our case with a
tiling by n squares, this means each of the n squares can only be represented
once in the fundamental domain.

Definition 3.3. In general, for a vector space V of dimension n, the set of
translational vectors is the consistent set of instructions that determines the
n-linearly independent directions in which the fundamental domain will move,
and this set of instructions is repeated indefinitely until the entire space is tiled.
For Z2 acting on R2 by translation, the set of translational vectors are two
linearly independent vectors !t1 and !t2 in R2.

Looking back at our first two-square example, this becomes obvious:

t2

t1

Figure 18: A single tile of two squares that tiles R2

The “L”-shaped fundamental domain is being translated by the vectors !t1
and !t2 throughout all of R2, and we can see this will tile the plane periodically.
We can prove this by looking at the fundamental domain and seeing where
another copy of it would have to go to tile periodically. In this case, we look
at the corner where the “L”-shape bends and look at what can fill that corner.
The only possible fit is the bottom left corner of the fundamental domain, so
we attach another copy there and continue:
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Figure 19: The two tiles must fit together in this manner

Note that this automatically determines one of the vectors, since we must
do this for all copies and so we will eventually form an infinite band.

t1

Figure 20: One translational vector is determined

To find the other vector, we must note how the long bands can fit together.
Since there is one band, there must be another. We look at the zig-zagging
pattern on the bands, and note how the two bands fit together.

t1

Figure 21: Two bands can only fit together in this manner
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Since these two bands fit together, we can connect all bands together and
get a periodic tiling of the entire plane.

t2

t1

Figure 22: The second vector is determined, and we tile R2

We can construct a useful proposition of the process we just went through
for all “L”-shaped tiles:

Definition 3.4. A fundamental domain (or tile) is “L”-shaped if it consists
of six vertices, five of which form outward-oriented corners and one of which
forms an inward-oriented corner (as one would expected for any block “L”). A
perfect “L”-shaped fundamental domain is one that can take no other forms
when tiled, i.e. its tiling cannot have an alternate fundamental domain that is
a rectangle or a “Z”-shape (we will not discuss “Z”-shaped tiles however).

Proposition 3.5. Given a perfect “L”-shaped fundamental domain in R2, there
exists only one unique tiling of R2

Proof. To tile, all gaps must be filled. That means the one inward corner of our
“L” shape must be filled. However, the only possible translate that will fill that
corner is diagonal, so that the corner opposite the inward one meets it cleanly
(a figure above represents this step). If we don’t do this, we will have a gap or
an overlap near the inward corner. We can translate in this direction infinitely
long to get an infinite band, and now we must find how the band interlocks.

Since we plan on tiling the entire plane, we must have another one of these
infinitely long bands, and the two must cleanly match-up (otherwise we will
have gaps or overlaps). Note the zig-zag patterns on either side of the bands.
We can cleanly match-up the bands in multiple ways (just by shifting the bands
against each other), but each of these match-ups produces the same tiling (see
one of the above figures for a visualization). Continuing to add these bands on
in this manner will tile the plane.

We tried all possibilities to create this tiling (looking at options for the
inward corner and the zig-zag), but we can see there is only one tiling in which
the “L”-shaped tiles will fit together.
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The process discussed above can be used to determined if a tile will actually
tile the plane if it is not “L”-shaped, but as one can see the process can be
quite lengthy and fairly inefficient. Because of this we introduce the new idea a
deformation space.

Definition 3.6. Given a periodic tiling of the plane by squares whose sides
are parallel to the axes, a deformation space is the set of all possible periodic
tilings that can be obtained by a single translation or a single scaling of a subset
of squares in the fundamental domain. Both the scaling and shifting are done
in a continuous manner.

For ease, we will disregard any deformation that uniformly scales all parts of
the fundamental domain, and we will disregard any rotations that are used to
deform the tiling. Since this can be done with any tiling, it is best to mention
it once but then ignore it due to triviality.

We can see what this looks like in our “L”-shaped example. We can deform
this tile by scaling the smaller square on top until the two squares are of equal
size.

Figure 23: Deforming the “L”-shaped two square tiling by growing the small
square

Note we can continue this deformation by now shrinking the square to the
other side:

Figure 24: Deforming the equal-size two square tiling by shrinking the green
square to the right side

If we continue this deformation, we will end up shrinking one square to a
point, leaving us with one square. We can also start with our original tile and
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shrink the top square to a point, again leaving us with one square, the same
one as in the first case. This completes a deformation space with two squares of
different sizes. Note the importance of color in the example as well; a tiling by
a single orange square and a tiling by a single green square are not the same.

To make sure a fundamental domain tiles, we still must go through the steps
outlined above. Allowing for the deformation spaces gives us a better intuition
on what may tile and what may not, and we are better able to understand the
underlying structure of a tiling system with their help.

Definition 3.7. A tiling system for a periodic tiling by n squares is the
complete classification of all possible tilings by n squares. That is, it is the
union of all existing deformation spaces.

The tiling system is usually made evident by drawing the entire moduli
space, which we will now define.

3.2 Moduli Spaces

After the insight deformation spaces give us about the underlying structure of a
tiling system, one begs the question, “are there multiple deformation spaces?”
and “how are they related?”. We introduce the concept of moduli space to
answer these questions and give us a full view of the structure of the tiling
system.

Definition 3.8. A moduli space is a geometric object whose points uniquely
represent another mathematical object (in this case different periodic tilings by
squares) that are connected by isomorphism classes (in this case they are of
the same deformation space). Furthermore, note different moduli spaces can
intersect in different ways.

In our case, we use moduli spaces to represent deformation spaces, where
each point in the moduli space represents a unique tiling. It is important to note
that two different points cannot represent the same tiling. A given deformation
space maps bijectively to a corresponding moduli space; if two deformation
spaces share the same tiling, these two deformation spaces must intersect at a
point.

In the end of the previous section, we mapped out the deformation space of
the “L”-shaped two-square tile. We can represent this as a moduli space in the
form of a loop. Since the translational vectors are uniquely determined by the
shape of the fundamental domain (i.e. it only admits one specific tiling), we
only have a one-parameter family (save for scaling and trivial rotation) since we
can only choose the size of the second square, hence the one-dimensional moduli
space (the loop).

It follows that since all our deformation spaces will be “cyclic” in the one-,
two-, and three-square cases, all our moduli spaces must be “cyclic”, or closed
into a loop for each dimension the deformation space admits. (Here, “cyclic”
means that continuing the deformation will return us to the tiling with which we
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started, same as what we did in the previous section. There is a slight exception
in the case where we reduce our tiling to a fewer number of squares, and we will
address that issue in this section.)

For dimension greater than or equal to two, it would seem that a sphere may
fit this description. However, in a sphere the “loop size” will vary depending
on where you are on the sphere. If we look at all loops in the x-direction in
say the two-sphere, we notice the loop is full at the equator but shrinks to a
point as we increase or decrease our value for y. This cannot be; it doesn’t
follow the structure of the deformation space we want. A torus, however, does
keep a constant-sized loop for each dimension, indicating that continuing a
deformation will eventually return us to the tiling with which we started. (Note
this also makes more sense topologically. The loop in the one-dimensional case
is simply S1, and for an n-dimensional moduli space, we want all n-dimensions
to have the independent property of following a loop. We can then take the
Cartesian product of all these S1 objects to maintain the “independence” of
each dimension, giving us S1 × S1 × ...× S1, which is homeomorphic to the n-
torus.) Therefore in our cases of one-, two-, and three-square tilings, the moduli
spaces will either be loops or tori, and we will see that the interest lies in how
they are all connected.

3.2.1 Moduli Space for One Square

Let us first look at the one-square moduli space. In determining how to begin
looking at the moduli space, it is often best to start with the most basic tiling
one can think of. In this case, we want to look at the “grid” tiling where all
the squares line up (in the next section we will understand combinatorially why
this is the case).

t1

t2

Figure 25: The basic “grid” tiling of one square

Notice that the fundamental domain in the one-square case is simply one
square, so any scaling done to part of the fundamental domain will inher-
ently tile the entire fundamental domain. Therefore we can eliminate the
“independent scaling” deforming tactic mentioned previously and just look at
shifts/translates. Notice that two shifts can occur by moving vertical bands up
or down or moving horizontal bands left or right. Let us first look at moving
the vertical bands and look at how the translational vectors are affected:
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t1

t2
t1

t2

Figure 26: Deforming the one square “grid” tiling by a vertical shift

Right away note that the vertical vector stays the same, but the previously
horizontal vector now has a y-component. Also note that there are no free
parameters for this tiling. The new tiling created by the vertical shift still has
two well-defined translational vectors coming from each fundamental domain
(i.e. each square), so the tiling is determined uniquely.

We can continue this deformation until we reach the point where the tiling
becomes a grid again, but note how the translational vectors have changed:

t1

t2
t1

t2
t1t2

Figure 27: Continuing the vertical shift deformation

Fortunately, the first grid and the last grid are isomorphic by the group
action by SL2(Z), so we have

t1

t2
t1t2

=~

Figure 28: Isomorphic by group action by SL2(Z)

and this shows that we have completed the loop for this moduli space.
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Similarly, we can follow the same process for the horizontal band shift. There
will be no free parameters, so we will again have a one-parameter family (another
loop). Continuing the deformation, we will reach the original grid as before with
different translational vectors, but again these tilings are isomorphic by the
group action by SL2(Z). That closes the loop for the horizontal shift moduli
space, and since there are no more deformations we can do (save for the trivial
ones of scaling and rotating), we have a complete picture of all tilings by one
square, and it turns out to be a nice figure eight:

Figure 29: The entire one-square moduli space

3.2.2 Moduli Space for Two Squares

Things get more interesting with two-square tilings. As before, we want to
start with the most basic tiling we can think of, which would be where all the
squares are of the same size and line up in a grid. There are two colors this
time instead of one, so we must think what the most basic and homogeneous
way is to arrange the tiles. If we have long horizontal or vertical bands of the
same color, we eliminate the homogeneous aspect we were going for, so we will
instead arrange the initial tiling as a checkerboard pattern.

Figure 30: The checkerboard pattern two square tiling

Note there are four fundamental domains we can take from this tiling: a tall
rectangle and a wide rectangle, both have a case where orange is the top-most
or left-most color, and both have a case where green is the top-most or left-most
color.
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Figure 31: The checkerboard pattern with four possible fundamental domains
highlighted

In this case (as we will see), the same tilings and deformation spaces are
created with the four different fundamental domains, but we cannot always
assume this, so it is important to make note of which fundamental domains we
have available.

Let us first take the case where we scale one square to be smaller, yielding an
“L”-shape tiling that we discussed in the previous section. We will deform our
checkerboard tiling by shrinking the orange square relative to the green square.
Note that we can shrink it two ways:

Figure 32: Both orientations of the shrinking orange square deformation

Also make note of the various fundamental domains for each tiling. Each of
the tilings admits four fundamental domains, highlighted below:

Figure 33: Both orientations of this deformation with fundamental domains
highlighted
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We can continue shrinking the orange square in both tilings until it becomes
a point, giving us two green squares with an orange point on a corner (the corner
on which the point lies depends on which fundamental domain we choose).

Figure 34: Both orientations in which the orange square shrinks to a point

However, it is obvious that these two new tilings are the exact same. If we
look at the tiling that the green square and the orange point admits, we find
that we have a grid of green squares with an orange point at every single vertex.

Figure 35: The single tiling at which the orange square has shrunk to a point

It now becomes unclear which green square/orange point orientation we
started with, so we know that all orientations admit the same tiling. This holds
true for every square with an accompanying point. Therefore we can essentially
disregard the point, and this leaves us with a tiling by one square, whose “figure
eight” moduli space we already know about. Then we have a complete loop with
what we will call a limit point where we attach the moduli space for one square.

=

Figure 36: The moduli space in which we shrink the orange square
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Definition 3.9. A limit point is a point in a moduli space for periodic square
tilings by n squares (n ≤ 3, in our case) where one or more of the squares is
deformed into a point. At this point, we can attach the moduli space for square
tilings by m squares (where m is the number of remaining squares that haven’t
been deformed to points). We perform this process to understand how all the
different moduli spaces are connected.

We can repeat what we just did by shrinking the green square relative to the
orange square, getting two different tilings depending on which side the green
square was shrunk, and then getting a tiling by a single orange square where
the green square is deformed to a point at the limit point in the loop. We then
attach the moduli space for one square as stated in the above definition.

=

Figure 37: The moduli space in which we shrink the green square

Now that we have done all the independent scaling we could do, we must
look for the possible shifts that can be done. Notice right away that a vertical
band shift and a horizontal band shift is possible as in the one-square case. Let
us first look at the horizontal band shift:

t1 t1

t2 t2

Figure 38: The horizontal shift deformation from the original checkerboard tiling

Note that as with all the previous deformation cases, the translational vectors
are determined by the tiling. We have one horizontal vector and one diagonal
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vector. However, let us continue this horizontal shift. Eventually notice that
the green and orange squares will be aligned in vertical bands. At this point,
we could continue with our horizontal shift, eventually returning back to the
checkerboard tiling and staying in the same moduli space, or we could vertically
shift the same-color bands, entering a whole new moduli space. Since we already
have a firm grasp on the first case, we will enter the new moduli space.

?

Figure 39: The moduli space for the horizontal shift deformation

The new way to deform this band tiling is to shift the vertical bands up or
down. Let us do that and look at the translational vectors.

t1

t2 t2

t1 ?

Figure 40: Shifting the vertical bands; note the one free vector

One of the vectors is defined, but the other can go anywhere past the adjacent
green band. This gives us our first free translational vector in our moduli spaces,
and since we already can shift the green band freely, we have two variables in
this deformation space. This means instead of a loop we get a two-dimensional
torus as a moduli space (the reasoning for this was explained earlier in the
section).

We can repeat this whole process from the beginning at the checkerboard
tiling, this time starting with a vertical shift deformation rather than a hori-
zontal shift, and we will end up with horizontal bands of the same color, which
when shifted against each other will also admit a two-dimensional torus as a
moduli space.

These are all the deformations we can do with a two-square tiling, so we
can combine all these moduli spaces into a single picture, giving us the entire
system of periodic tilings by two squares.
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Figure 41: The toroidal moduli space for shifting the vertical bands

2

=

2

=

Figure 42: The entire two-square moduli space
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It is important to notice that we can deform any tiling by two squares into
another tiling by two squares without ever touching a limit point (the same
applies for tilings by one square). This means the entire space of tilings by two
squares is connected, which is a critical observation. Also, at the beginning of
the discussion about the two-square space, we mentioned that the fundamental
domain we look at can be any one of the four possible ones on the base tilings,
and that any deformations we produce from the four will produce equivalent
tilings. Instead of explaining with words, look now at the four pictures of the
moduli spaces where we observe a different starting fundamental domain:

2

=

2

=

2

=

2

=

2

=

2

=

2

=

2

=

=~

=~

= ~ = ~

Figure 43: The four equivalent variations of the two-square moduli space, im-
plying the choice of a fundamental domain does not matter for two squares

Note that for each deformation space, the tilings are the same, though dif-
ferent fundamental domains exist. The translational vectors for each case are
different, but since the tilings are equivalent it does not matter. (Since each
point in the moduli space uniquely represents a tiling, it does not matter if the
translational vectors are different; it only matters that we have the same tiling.)
There is always an “L”-shape with one color bigger than the other, there is al-
ways a checkerboard base tiling, there are limits to one square of each color, and
there are the bands of color; each has multiple fundamental domains, but the
tilings are equivalent. This brings us to an important proposition for two-square
tilings:
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Proposition 3.10. Given a periodic tiling of the plane by two squares of colors
a and b, we can take any fundamental domain we like and deform however we
like and the deformation space (and thereby the moduli space) will be the same.
That is, the choice of a fundamental domain does not affect the moduli space
for the two-square tilings.

Proof. The four illustrations above clearly depict the equivalence of the moduli
(and deformation) spaces. Since the above moduli space represents all possible
periodic tilings by two squares, the proposition holds true.

This proposition becomes useful when studying the three-square tiling, since
there are multiple places where a tiling at a limit point will have a different
fundamental domain, but will produce the same tiling. Since the tilings are
what we care about, we merely make these the same point to adhere to the
moduli space’s definition of unique representation.

3.2.3 Moduli Space for Three Squares

With tilings by three squares, everything breaks loose. We no longer have a
simple, homogeneous, basic tiling with which we can start. Instead, we have
four. As with the previous two cases, we find our beginning tilings by taking
the most basic and homogeneous tilings, i.e. having all squares with the same
size and having no two squares of the same color share an edge. Furthermore, it
helps if we fix one of the square colors as the “lead color” in order to eliminate
any redundant reordering of fundamental domains (e.g. an “orange-green-blue”
horizontal rectangle as a fundamental domain will clearly admit the same tiling
as a “green-blue-orange” and a “blue-orange-green” horizontal rectangle). How-
ever, reorderings are not the same as permutations (e.g. an “orange-green-blue”
horizontal rectangle as a fundamental domain is not the same as an “orange-
blue-green”). This is an important proposition.

Proposition 3.11. Consider a periodic tiling by two or three squares in which
the squares are all the same size and the fundamental domain can be represented
as a rectangle that is the union of two or three squares (i.e. two or three squares
tile a rectangle). The tilings will be equivalent if the colors in the rectangle can
be reordered modularly and not permuted. That is, given colors a and b, the
fundamental domain a-b is equivalent to the fundamental domain b-a (where
the fundamental domain is a rectangle (union of two squares), horizontal or
vertical). Similarly for three squares, given colors a, b, and c, the fundamental
domain a-b-c is equivalent to b-c-a is equivalent to c-a-b, and the fundamental
domain a-c-b is equivalent to c-b-a is equivalent to b-a-c. We would refer to
color a as the “lead color” in this case.

Proof. If this observation isn’t obvious at first, consider the band that a rectan-
gular fundamental domain would make. If we look at the coloring encoded on
this band, we will see a-b-a-b-. . . for two squares, and either a-b-c-a-b-c-. . .
or a-c-b-a-c-b-. . . for three squares. But notice: the a-b-a-b-. . . is the same
as a b-a-b-a-. . . pattern, the a-b-c-a-b-c-. . . is the same as the b-c-a-b-c-a-. .
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. and the c-a-b-c-a-b-. . . pattern, and the a-c-b-a-c-b-. . . is the same as the
c-b-a-c-b-a-. . . and the b-a-c-b-a-c-. . . pattern; it simply depends on where
we begin our encoding. However, the encoding is infinitely long since we are in
R2, so for every pattern there is another continuance of that pattern before and
after it. This makes the choosing of the beginning color arbitrary, for the same
pattern will yield the same tiling. Therefore we can just deem color a the “lead
color” in order to encompass the various possible reorderings.

This eliminates the possibility of redundant tilings in a moduli space, and
it allows us to connect different points of the moduli space that we might have
overlooked. This becomes evident for the three-square moduli space.

With this proposition, we can now look at the four base tilings for the
three-square case. Remember we will not include any redundant fundamental
domains.

UD1 DD2

UD2DD1

Figure 44: The four base tilings for tilings by three squares, named UD1, DD1,
UD2, and DD2

Note we have labeled the base cases “UD1”, “DD1”, “UD2”, “DD2” for ease
of identification. Right away, we can see that we can deform DD1 to UD1 by a
downward shift by the tall rectangular fundamental domain, and we can deform
DD2 to UD2 by a downward shift by the tall rectangular fundamental domain.

DD1 UD1

DD2 UD2

Figure 45: Deforming the base tilings by a downward shift of the tall rectangular
fundamental domain
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Note we also can deform DD2 to UD1 by a right shift by the wide rectangular
fundamental domain, and we can deform DD1 to UD2 by a right shift by the
wide rectangular fundamental domain.

DD2 UD1

DD1 UD2

Figure 46: Deforming the base tilings by a right shift of the wide rectangular
fundamental domain

But now note we can connect these four base tilings into a nice square figure,
forming a more interesting pattern than the simple point we had as our base
case in the one and two-square cases.

UD1 DD2

UD2DD1

Figure 47: The four base tilings and the deformations that connect them

There is more shifting we can do, however. Let us return to the first case of
deforming DD1 to UD1 by a downward shift by the tall rectangular fundamental
domain. We can continue the deformation after reaching UD1, still shifting
downward, until we reach a new line-up. In this tiling, which we will name
“V1”, we have a horizontal band of orange above a horizontal band of green
above a horizontal band of blue above a horizontal band of orange again, and
the pattern continues. We could continue the downward shift deformation we
were originally doing, and this would complete the loop and bring us back to
DD1, or we could also stay on V1 and shift the bands horizontally against each
other like we did in the two-square case.
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UD1

DD1

V1

?

Figure 48: Continuing the downward shift deformation to get to the new tiling
V1 and to complete a moduli space

As one may have guessed, we have free variables with these horizontal band
shifts as in the two-square case, but here we have one more free variable than
in the two-square case. We can fix the orange band (thereby fixing one of the
translational vectors), then we can shift the green band independently, we can
shift the blue band independently, and we can shift the next orange band in-
dependently, making the second translational vector free. This gives us three
variables for the deformation space of the V1 tiling, which means we can rep-
resent this moduli space with a three-dimensional torus, not a two-dimensional
torus or a loop.

V1

3

Figure 49: The 3-D toroidal moduli space on which V1 lies

This adds a new type of moduli space to our tiling system, and as one may
guess it does not happen one time, but four times. We can continue the defor-
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mation of DD2 to UD2 to get the tiling “V2”, we can continue the deformation
of DD2 to UD1 to get “H1”, and we can continue the deformation of DD1 to
UD2 to get the tiling “H2”. With each of these, we can continue on the original
deformation path to complete the loop, or we can branch off from V2, H1, and
H2 into three-dimensional tori. We then get a very interesting and structured
moduli space combining all of these spaces.

UD1 DD2

UD2DD1

V1 V2

H1

H2

3

3

3

3

Figure 50: The main structure of the three square tiling system, which includes
the four base tilings and the four tilings with bands (V1, H1, V2, H2)

This is only the beginning of the three-square tiling system, however. We
still have yet to deform by independent scaling, which we will now do. As before
with the shifts, we will have to look at the two main fundamental domains for
each of the four base tilings, the vertical rectangle and the horizontal rectangle.

To find the new deformation spaces, we want to look at scaling one or two
of the squares in the fundamental domain; that brings up the possibilities of
growing one square, shrinking one square, growing two squares, and shrinking
two squares. (The two-square scaling must be done uniformly with both of the
squares, otherwise we will get a fundamental domain that doesn’t tile. The
same goes for three-square scaling; they must all be scaled uniformly. But that
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is the trivial uniform scaling deformation that we cannot use, making the above
four options the only four.) There is a way to reduce these four cases to two
cases, however, making our hunt for new deformation spaces much easier; we
just have to look at the cases relativistically.

We want to say that growing one square is the same deformation as shrinking
two squares and that growing two squares is the same as shrinking one. We can
show this is true; it is merely a difference of perspective. We will do an example
that will be universal for all of the possible fundamental domains.

Let us grow the orange square, but look at the other two squares from the
point of view of the orange square. The orange square may not realize he is
growing, so to him, it looks like the blue and the green squares are shrinking, i.e.
we are deforming by shrinking two squares at the same time we are deforming
by growing one square. Since we do not account for uniform scaling, we can
conclude that the two deformations are equivalent. Similarly, if we shrink the
orange square and observe from his point of view, it looks like the green and
the blue squares are getting bigger. That is, we are deforming by growing two
squares at the same time we are deforming by shrinking one. Again, since we
do not account for uniform scaling, we can conclude that the two deformations
are equivalent. (Note that another way to make this evident is to fix the area
of the three squares to add up to 1.)

=~

=~
Figure 51: A diagram of the “relativistic” proof detailed above; note the cases
are equivalent modulo scaling

This simplification means that we only have to worry about growing or
shrinking a single square in the four base tilings. Unfortunately, this allows for
twenty-four possible new deformation spaces, but, luckily, we can reduce this
number.

The first and simpler deformation is shrinking one of the squares. This will
lead us to a limit point and into the two-square moduli space. But first, recall
Proposition 3.10: that color reordering yields the same tiling for colors a and
b. From this, we can determine the equivalence of multiple tilings. As long
as we have a “gridlock” tiling (like in the base cases, where everything is lined
up), rectangular fundamental domains of the same orientation (either vertical or
horizontal), and the same colors (e.g. blue followed by green and green followed
by blue), then the tilings will be the same. The picture below gives an example:
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Figure 52: Note how different tilings can reach the same limit point

It would be helpful to define the term gridlock for ease of notation.

Definition 3.12. A periodic tiling by squares is called gridlocked if all the
squares are lined up such that each vertex is touched by four squares. Neces-
sarily, the squares are all of the same size.

Examples of gridlock tilings we have seen include the checkerboard tiling,
the vertical band tiling, and the horizontal band tiling from the two-square case.
We also have UD1, UD2, DD1, DD2, H1, H2, V1, and V2 from the three-square
case. We know there are only those three gridlock tilings for the two-square case
(since we know the entire moduli space for two squares), and we will see later
that those eight tilings for the three-square case are the only gridlock tilings as
well.

Note that at the limit point, the tiling will always be gridlocked (this will be
explained combinatorially in the next section). Therefore the tiling will either
be the checkerboard type, the vertical band type, or the horizontal band type.
However, the previous example is indicative of the type of deformation to two
squares we will always have, so the vertical or horizontal band tilings will always
come from deforming the four base cases into two squares. Always remember
that each point in the moduli space is unique and that the same tilings will
have to occur at the same point, so we will have many instances where these
limit points connect deformation spaces. We will see soon that this moduli
space becomes too complicated and entangling to be accurately represented in
a two-dimensional drawing, but we will try to make the diagrams as meaningful
and readable as possible.

Let us first take UD1 with its vertical rectangular fundamental domain and
look at shrinking the blue square, say to the left side to start. Notice that right
away we get a perfect “L”-shaped fundamental domain. But notice DD1 has the
same vertical rectangular fundamental domain, and that if we shrink the blue
square there to the left side we get the same perfect “L”-shaped fundamental
domain. Yet we know by Proposition 3.5 that if we have the same perfect
“L”-shaped fundamental domain, we have the same tiling; therefore these two
deformations must be represented by a single point in the moduli space. We
call this a shared deformation space or shared space for short.

Definition 3.13. In a tiling system, a shared deformation space (or shared
space for short), is a deformation space which is formed from similarly deform-
ing two different tilings that share a common fundamental domain. The defor-
mations of these two base tilings create the exact same deformed tiling, and the
two base cases essentially “share” this deformation space.
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This means for our moduli space, UD1 and DD1 must be infinitesimally close
but not touching, yet they must be close enough to be connected by a point.
In fact, they must be close enough to be connected by three points that do not
touch (one for shrinking the blue square, one for shrinking the green square,
and one for shrinking the orange square). Then from each of these points we
can form a one-dimensional deformation space like we did with the “L”-shaped
tiles for two squares. All three loops will reach a limit point into two squares,
and the tilings will be horizontal band tilings.

UD1

DD1

Figure 53: The limit points resulting from shrinking one square in the UD1 and
DD1 tilings; note the short dashed lines to indicate a shared space

We can also do the same for the vertical fundamental domains of UD2 and
DD2 since they are the same. Shrinking a square in UD2 yields the same tiling
as shrinking the same color square in DD2, so, as in the above case, UD2 and
DD2 must be infinitesimally close but not touching, and there must be three
points connecting them. We can then branch off and form one-dimensional
deformation spaces like before, and each loop will reach a limit point into two
squares that yield horizontal band tilings.

But we just said a little while ago that horizontal or vertical band tilings
composed of the same colors were identical. That means each pair of loops that
has eliminated the same color must touch at the limit point, so we have six
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loops but only three limit points.

UD1 DD2

UD2DD1

Figure 54: The equivalent limit points between the two pairs of base tilings
sharing the same vertical fundamental domain

Now we can do the same process for the horizontal fundamental domains
of the four base tilings. Note that UD1 and DD2 share the same horizontal
fundamental domain, and DD1 and UD2 share the same one. This means,
like above, UD1 and DD2 must be infinitesimally close and be connected by
three points that have one-dimensional deformation spaces coming from them,
and DD1 and UD2 must be infinitesimally close and be connected by three
points that have one-dimensional deformation spaces coming from them. We
get vertical band tilings at each limit point in this case, so like before, each pair
of loops that has eliminated the same color must touch at the limit point, giving
six loops but only three limit points.

The moduli space now gets very hard to draw effectively on a flat, two-
dimensional surface, so we will use a different style line for the loops resulting
from the vertical fundamental domains than for the loops resulting from the
horizontal fundamental domains. Below is a preview of the drawing so that it
will make sense later when put into the entire moduli space.

Recall that in the two-square moduli space, horizontal and vertical band
tilings of the same color would eventually deform into each other. This means
that out of our six limit points, the three pairs that have the same colors will
connect in the two-square moduli space. We won’t draw any lower square moduli
spaces since the drawing is already complicated enough, but it is important to
notice this fact.
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UD1 DD2

UD2DD1

Figure 55: The equivalent limit points between the two pairs of base tilings
sharing the same horizontal fundamental domain

UD1 DD2

UD2DD1

Figure 56: All one square shrinking deformations resulting from the four base
cases

31



Now that we have the shrinking square case settled, we can look at what
happens when we grow a square. First, let us look at growing the vertical
fundamental domain of UD1 and DD1. Since they share the same vertical
fundamental domain and any deformation by growing a square will turn the
fundamental domain into a perfect “L”-shape, we again know by Proposition
3.5 that the two deformations produce the same tilings for each color square
that is being grown. Therefore we have another three points connecting UD1
and DD1, and we can look at the deformation spaces for each.

Let us look at growing the orange square. Growing the other cases produce
similar results, so this case will be indicative of the other two. First, let the
orange square grow to the right, such that its left edge still matches up with
the left edges of the green and blue squares. There will come a point in this
growth where the orange square’s side length is equal to the combined length
of the side lengths of the blue and green square (which are of equal size). Note
that this “L”-shaped tiling is one that is not perfect, for there exists another
fundamental domain for this tiling (namely the rectangular one).

UD1

DD1

Figure 57: Growing the orange square from UD1 and DD1, making note of
the particular tiling in which the three squares form a rectangular fundamental
domain

There are two deformations we could take from this point. One involves
shifting and the other involves a continuation of the growing we have done. We
will come back to the shift and will continue on with the growing.

Recall growing one square is the same as shrinking two, so if we continue
growing the orange one, we are constantly shrinking the green and the blue one
(which are the same size). This means that this deformation will end in a limit
point to one square, which is our first three-to-one square limit point.

Now we can grow the other two squares back from the other side of the
orange one to complete the deformation space. We will go back through the
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Figure 58: Growing the orange square and reaching a three-to-one square limit
point

tiling with the non-perfect “L”-shaped fundamental domain and return to our
starting place at UD1 and DD1. Note that the non-perfect “L”-shaped tiling is
slightly different this time. As one may guess, the two non-perfect “L”-shaped
tilings will be connected.

UD1

DD1

Figure 59: The entire single loop moduli space of growing one square

Let us return to the non-perfect “L”-shapes. Recall that we can use the shift
as a deformation by shifting the horizontal bands of rectangles. If we look at
the first of these tilings that we encountered, we can shift to the right or left
(both will be the same but the involve moving around the moduli space in a
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different direction). Let us shift to the right.

Figure 60: Shifting the rectangular fundamental domain to the right

There will come a point where the rectangular tiles are all aligned; the orange
squares line up in vertical bands, and the green and blue squares line up in an
alternating vertical band. This is a special case that we will discuss after we
complete the shifting deformation which we are now on.

Figure 61: Further shifting the rectangular fundamental domain to the right,
reaching a unique point in which we have vertical bands of squares

If we continue with the right shift, we will eventually reach the second non-
perfect “L”-shape tiling we discovered in the above square-growth deformation.
This is the connection between the two that was mentioned earlier. Now we can
simply continue this right shift, and we will return back to the tiling at which
we started.

Figure 62: The moduli space of shifting the rectangular fundamental domain

Now we can look at the special rectangular tiling we just mentioned, where
the orange squares are lined up in vertical bands and the green and blue squares
line up in an alternating vertical band. This is the final barrier that stands
between us and completing the three-square tiling system. Notice right away
that it is possible to shift the two vertical bands independently, almost exactly
like we did in the two-square case with vertical bands. As before, this will form
a two-dimensional deformation space that is represented by a 2-D torus.
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Figure 63: The special rectangular fundamental domain with the 2-D torus to
which it is attached; note the example of a tiling that lies inside this torus

There are some special cases that arise in this torus, however. Notice if we
only shift the alternating green and blue vertical band one square length up,
we have a different rectangular fundamental domain than we started with. We
could then perform a horizontal rectangle shift to the non-perfect “L”-shape,
then shrink the orange square, and we would end up in the UD2 and DD2 base
cases instead of UD1 and DD1. This tells us that the 2-D torus overlaps with
the opposite one, connecting the two opposing sides in a new way. We will
illustrate this important observation soon, but there are still two more special
cases on the torus that we must address. Both of the cases involve breaking the
horizontal bands and lining the vertical ones up in a certain way. Below are the
two cases; we will call the first Case 1 and the second Case 2:

2

Figure 64: The two special cases on the 2-D torus; Case 1 is located near the
top of the figure, while Case 2 is located near the bottom

Notice how in either case, two different rectangular fundamental domains
arise depending on if you look at the orange square being on the left or right of
the other two.

Case 1 Case 2

Figure 65: The Case 1 tiling and the Case 2 tiling; note the two different
fundamental domains in each one
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These two special alignments allow us to perform one final deformation that
will let us complete the tiling system for three squares. There exists a tiling
by three squares in which all squares are different sizes, but there are a few
restrictions. The first is that the sum of the side lengths of the two smaller
squares must be the same as the entire side length of the larger square. The
next (which essentially follows from the first) is that the tile must be a perfect
“L”-shape.

Figure 66: An example of a tiling by three squares in which all three squares
are different sizes

We will see in the next section how the first restriction arises mathematically,
but for now we will just perform the deformation. Let us take Case 1. First we
will grow the green square while shrinking the blue one, and we will take the
fundamental domain that places the orange square on the left of the other two.

Figure 67: The beginning of the deformation starting from Case 1 in which we
grow the green square while shrinking the blue square

If we continue this deformation of growing green while shrinking blue, we
will eventually reach a limit point with the blue square disappearing to a point,
leaving the orange and the green square. However, notice the pattern through
which we reach the limit point:
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Figure 68: Continuing the above deformation, this time shrinking the blue
square to a point

Notice that the squares do not line up in vertical bands like they did when
we shrunk one square. Instead, they form the checkerboard pattern that is
at the center of the two-square tiling system. This means that we have three
points in the three-square tiling system that reduce to three different cases in
the two-square system. We can think of it as an “underground network” for
the two-square moduli spaces; they act as shortcuts to different parts of the
three-square moduli space, creating a much more interesting link between the
three-square and the two-square system than we had with the two-square and
the one-square system.

Now we must continue the deformation. Since we already shrunk the blue
square to a point, we must bring it back on the other side like we have done in
the past. As before, we do this by taking a vertical mirror image of what we
just did. Continuing to grow the blue square and shrink the green, we end up
at the Case 2 tiling, not back at our original starting point.

Figure 69: The half loop that we get from the deformation in which the green
square is larger than the blue square

We can do the same thing again for the Case 1 tiling if we grow the blue
square while shrinking the green. This time at the limit point we will have an
orange and blue square checkerboard pattern. Continuing the deformation, we
again end up at the Case 2 tiling, not at our original starting point.

Figure 70: The half loop that we get from the deformation in which the blue
square is larger than the green square
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But now note that we have already taken care of the deformations that come
from the Case 2 tiling. This allows us to complete the internal structure of the
2-D toroidal moduli space.

Figure 71: The internal loop of the 2-D torus

Notice the two checkerboard tilings at the two reduction points. We will
see that these exact same tilings come up multiple times throughout the entire
tiling system. For the ease of illustrating the moduli spaces on a two-dimensional
page, we will not connect them but instead mark each point by a two-color star.
This two-color star will stand for the checkerboard pattern with two squares
that have the star’s colors. Any stars that are the same are the same point.
This will help us in decreasing the overwhelming crowdedness and complexity
of the three-square system, and it will better allow us to see how the spaces
connect. We will do the same for the one-square case. Instead of connecting all
one-square limit points of the same color, we will just mark those points with a
solid-colored star of the square’s color.

Figure 72: The various stars we will use in the three-square moduli space; the
two-color stars stand for checkerboard tilings while the solid-colored stars stand
for gridlock tilings by the same-colored square

Now we can combine this information to get a clear picture of what is going
on in the 2-D torus that we have looked at so deeply:

2

Figure 73: The 2-D torus moduli space along with its internal structure
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It is important to remember that the 2-D torus is shared between opposite
sides (e.g. the UD1/DD1 side and the UD2/DD2 side). When illustrating
the entire moduli space, we will not connect the two since it would make our
picture impossible to read. Instead, we will indicate a copy of the 2-D torus
with a dashed line. We will still mark the two tilings that join the opposing
sides, but it will be made clear that there is only one of that type of 2-D torus.

2 2
versus

Figure 74: An example of the 2-D torus (and the surrounding moduli space) on
both sides of the entire three-square moduli space; note the dashed lines on the
torus to the right to indicate that it is repeated

Now that we have the final piece figured out, we can repeat the deformation
for each color in the fundamental domain. Notice that this repetition will create
many more two-color stars, indicating the same two-square checkerboard pat-
terns at limit points. For the UD1 and DD1 starting case, we still must grow
the green square, and we must grow the blue square. Completing those two
tasks will yield the picture depicted below.

UD1

DD1

2

2

2

Figure 75: The complete one-square growth for the UD1 and DD1 starting case
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We can also complete the opposing UD2/DD2 starting case since the two
sides share tori. They also share three-to-one square limit points, so we can now
make use of the single colored stars. (As one may surmise, the single colored
stars will occur on each side.) They share three-to-two limit points as well (and
so do all of the other sides).

UD1 DD2

UD2DD1

2 2

2 2

2 2

Figure 76: The complete one-square growth for the UD1 and DD1 starting case
along with the UD2 and DD2 starting case; note the dashed lines for the 2-D
tori on the right side of the figure to indicate they are repeated

Now we only have the horizontal fundamental domains from the four base
cases to worry about. However, it is all the same idea, only with rectangles that
are tall instead of wide. We apply everything we have discussed with this “one
growing square” deformation, and we finally lay eyes upon our long sought after
prize: the complete moduli space for the three-square tiling system.

The end result is a beautiful topological object. Though it is hard to ef-
fectively represent on a two-dimensional surface, the moduli spaces and the
connections are evident. The symmetry that this tiling system creates is unbe-
lievable. After examining/admiring the three-square system for a little while,
we now must focus in on the most important question: why do these tiling
systems look the way they do? What is the mathematics behind it all?

40



UD1 DD2

UD2DD1

V1 V2

H1

H2

3

3

3

32 2

2 2

2 2

2

2

2

2

2

2

Figure 77: The entire three-square moduli space
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3.3 Combinatorial Structure

We now know what each tiling by one, two, and three squares looks like, and we
know how their deformation spaces connect, but it is important to understand
why they look the way they do and deform the way they do. To do this, we use
what is called the dual graph of a tiling.

Definition 3.14. The dual graph of a tiling is a graph we place over the
entire tiling to look at how each individual square interacts with its neighboring
squares. First, we draw a vertex in the middle of each square and label the
vertex with the size of the square (say a, b, or c, since we are only concerned
with three different squares in our case). Then, given a square, we look at what
is touching its top and bottom edges and what is touching its left and right
edges. For each square touching our square’s top or bottom edges, we draw a
colored line (say red) to that neighboring square to indicate a vertical edge, and
for each square touching our square’s left or right edges, we draw a different
colored line (say yellow) to that neighboring square to indicate a horizontal
edge. Note that squares that touch at a vertex do not qualify as neighbors.
Also note that the vertical and horizontal edges naturally make the graph a
directed graph. We repeat this process for all squares in the tiling to obtain the
dual graph.

Figure 78: An example of a dual graph

So why introduce this dual graph? One of the things that the dual graph
can tell us is how we can deform a tiling and how many different deformation
spaces intersect the tiling. Let us first look at deforming the tiling, then we will
discuss the deformation space intersections.
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What we want to do now is attach data to the dual graph. We have al-
ready labeled the vertices by square size, so the next thing we do is “reduce”
the dual graph to avoid any redundant edges. Let us think of these edges as
vectors, directing us from one vertex to another. The only constraint we will
put on the vectors is that they all point in the positive x-direction. If this does
not determine the y-direction, then we will require the vector to point in the
positive y-direction as well. Now for the reduction: we need to look at a single
fundamental domain and the pieces around it (dual graph still intact). Now
we must label each edge as a vector according to our above constraints. For
example, we can have a vector going from square a to square a and one from
square a to square b (where a and b simultaneously denote the square’s size and
name). Note that if we have a square a to square a vector, all other vectors
that direct square a to a translate of itself will be equivalent, i.e. there is only
one path from square a to square a. The a to b vector however, will not be
the same as the b to a vector as long as we follow our vector constraints above.
We continue on like this, labeling the dual graph edges as vectors and making
sure we do not count the same vector twice (modulo translation). The process
is harder to describe in words than to show, so below is a generic example.

v5

v4

v3

v1v2

v6

v7 v8

v9
c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

Figure 79: An example of a tiling by three squares with a “reduced” dual graph,
in which all three squares are labeled and all nine vectors are labeled

The next step is to explicitly define each of the vectors we have just labeled.
Let us continue with the above example, as it helps us understand the process
better. Looking at v1, we will notice that in the vertical direction, it moves from
the vertex of square a to another vertex of square a, so it travels 2a vertically.
(We will say the size a, b, or c is half of the square’s side length to avoid
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unnecessary fractions in our vectors.) We can see that the vector moves some
unidentified amount in the horizontal direction, so we call this value x1 and get
v1 = (x1, 2a).

For v2, note that it moves by a variable amount x2 horizontally and moves
downward a + b, so we get v2 = (x2,−(a + b)) = (x2,−a− b)

One could easily identify the remaining vectors, calling unknown horizontal
movements xi and unknown vertical movements yi for vector vi, and we find
the following values for each vector: v3 = (x3,−a − b), v4 = (a + b, y4), v5 =
(a+b, y5), v6 = (a+c,−y6), v7 = (a+c,−y7), v8 = (x8, b+c), and v9 = (x9, b+c).

Now, how can we find these xi and yi values? The answer lies in the loops
composed of three (or sometimes four) vectors that the dual graph holds. With
each of these loops, we can create a vector equation that equals zero, and with
all of these equations, we have a system that allows us to solve for the unknown
values. But, as before with the vectors, we cannot count the same loop twice.
That is, loops composed of the same vectors located at the same places in the
loop are equivalent (modulo translation). We will label the loops with Roman
numerals, and we will continue on with our above example.
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v3

v1v2
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v7 v8

v9
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VI
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v4

v3
v8

v9

v9

Figure 80: All of the necessary data attached to the tiling; note the dashed
vectors indicate a vector that is copied by translation in order to complete a
loop

In this case we find six loops, which we label with Roman numerals. The
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six equations are:

I : v5 − v3 − v1 = 0
II : v1 − v4 + v2 = 0
III : v6 − v2 − v8 = 0
IV : v4 − v6 − v9 = 0
V : v9 − v7 + v3 = 0
V I : v8 − v5 + v7 = 0

Note that we can write any one equation in terms of the other five (e.g.
V I = −I − II − III − IV − V ), so the equations are linearly dependent. (In
general, the equations are dependent because together they sum to zero; this
means we can always write one equation in terms of the others.) This allows
us to eliminate one equation and lets us not use any redundant information.
We will toss out equation VI, but in cases with more squares, it would help to
carefully choose which equation to throw out to make the linear algebra much
easier to do.

For each equation, we get two separate equations: one for the horizontal
movement, and one for the vertical movement. We will use the subscript 1
for horizontal movement and the subscript 2 for vertical movement for ease of
notation. So now we have ten equations, and they are as follows:

I1 : a + b− x3 − x1 = 0
I2 : y5 + a + b− 2a = 0
II1 : x1 − a− b + x2 = 0
II2 : 2a− y4 − a− b = 0
III1 : a + c− x2 − x8 = 0
III2 : −y6 + a + b− b− c = 0
IV1 : a + b− a− c− x9 = 0
IV2 : y4 + y6 − b− c = 0
V1 : x9 − a− c + x3 = 0
V2 : b + c + y7 − a− b = 0

Now all we do is solve each equation. What we want to do in this case is get
each xi and yi in terms of a, b, and c, and then check for the constraints on a,
b, and c. First we want to look at the equations where we only have a single xi

or a single yi. This includes equations I2, II2, III2, IV1, and V2, and we find
that y5 = a− b, y4 = a− b, y6 = a− c, x9 = b− c, and y7 = a− c, respectively,
from each of these equations.

Next we want to find an equation where we know one of the xi or yi quantities
in terms of a, b, and c, but don’t know the other. Equation V1 is the case for
which we are looking, for we know the quantity x9 and now can find the quantity
x3. We get x3 = a− b + 2c.
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Now we simply continue this process, looking for the equations with one
known variable and one unknown variable. We can now find x1 from I1, then
we can find x2 from II1, and finally x8 from III1. We find x1 = 2b − 2c,
x2 = a− b + 2c, and x8 = b− c.

Notice how we never used equation IV2. This equation tells us the constraints
on the square size variables a, b, and c. If we plug in y4 and y6 into IV2, we find
2a− 2b− 2c = 0, or 2a = 2b + 2c. Recall that we used a, b, and c as half of the
side length for each square to avoid fractions in our equations. This means 2a,
2b, and 2c indicate the entire side length for each square. This final constraint
tells us that the smaller squares b and c must have their side lengths always sum
to the larger square a’s side length.

Now, how does this relate to the deformation space? The last constraint tells
us most of the information we need to know. Since we don’t count scaling, the
size a will be given, and we can only choose sizes b or c. But if we choose one,
the other one will automatically be given by the size constraint above, so we
only get to freely choose one of the sizes. Furthermore, since all other variables
are in terms of a, b, and c, this free choice is the only free choice we get with
this space of tilings. That means we only have one free variable with this set
up, which means we have a one-dimensional deformation space and therefore a
loop for the moduli space, all of which we predicted in the last section. The
use of the dual graph and the named vectors and loops gives us the information
we need on how we can deform a tiling, though in some cases this deformation
space may be easier to recognize on some tilings than on others (the above case
was pretty simple).

Before moving on, note how there were three squares, six loops, and nine
vectors. This is no coincidence; it turns out this is directly related to the Euler
characteristic for tori. (It makes sense that we look at tori since our fundamental
domain repeats itself on all sides.)

Recall that the Euler characteristic χ = V −E+F , where V denotes vertices,
E denotes edges, and F denotes faces. For tori, we know that χ = 0, always
(see Matveev’s entry in the Encyclopedia of Mathematics [2]). This means E =
V +F . We already know V , the vertices, since each squares’ center represents a
vertex in the dual graph, so we have three of them. Since edges simply connect
vertices, it makes sense that our nine vectors would be the edges that we want.
Going one step further, faces connect edges, so our loop equations represent the
faces in this case. (Normally faces would be two-dimensional objects, but in
our case we created loops to represent each of these two-dimensional objects to
allow us to use algebra to solve for the unknowns. Though the dimensions are
not the same, the numbers are, and that is what we are concerned about.)

We can generalize this relationship, writing E and F in terms of V . Given
a set of vertices V , we will have 3V edges connecting each of the vertices, and
we will have 2V faces (or loops) connecting each of the edges. That means the
original equation E = V + F is transformed into 3V = V + 2V , which is still
true. This is the relationship that will always hold in the dual graph analysis
of the tiling, so if one applies the analysis and finds that the squares, vectors,
and loops don’t make this formula true, there is a mistake. This formula turns
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out to be very useful to ensure we are on the right track with trying to find the
dimension of the deformation space.

Below are more examples in which we find the dimension of a deformation
space using the dual graph. Note we can analyze cases in which there are more
than three squares, and the procedure still works.
Example 3.15. We begin by putting a “reduced” dual graph on the tiling and
labeling all squares, vectors, and loops.
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Figure 81: A tiling by five squares with all squares, vectors, and loops labeled

We next define each of the vectors in the picture.

v1 =
(

x1

a + b

)
v2 =

(
x2

a + b

)
v3 =

(
x3

−a− c

)
v4 =

(
x4

−a− c

)

v5 =
(

a + c

y5

)
v6 =

(
a + c

y6

)
v7 =

(
a + d

y7

)
v8 =

(
a + d

y8

)

v9 =
(

a + e

y9

)
v10 =

(
a + e

y10

)
v11 =

(
x11

c + e

)
v12 =

(
x12

d + e

)
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v13 =
(

x13

c + d

)
v14 =

(
b + c

y14

)
v15 =

(
b + c

y15

)

Now we write down the equation for each loop. Note we have ten equations
in this example.

I : v5 − v15 − v1 = 0
II : v1 − v14 + v3 = 0
III : v8 − v3 − v13 = 0
IV : v10 − v8 − v12 = 0
V : v6 − v10 − v11 = 0
V I : v14 + v2 − v6 = 0
V II : v15 − v4 − v2 = 0
V III : v11 − v9 + v4 = 0
IX : v12 − v7 + v9 = 0
X : v13 − v5 + v7 = 0

Since the equations are linearly dependent, we can toss one out (say equa-
tion X). Then we can split up the remaining equations into their x and y
components, leaving us with eighteen equations in total.

I1 : a + c− b− c− x1 = 0
I2 : y5 − y15 − a− b = 0
II1 : x1 − b− c + x3 = 0
II2 : a + b− y14 − a− c = 0
III1 : a + d− x3 − x13 = 0
III2 : y8 + a + c− c− d = 0
IV1 : a + e− a− d− x12 = 0
IV2 : y10 − y8 − d− e = 0
V1 : a + c− a− e− x11 = 0
V2 : y6 − y10 − c− e = 0
V I1 : b + c + x2 − a− c = 0
V I2 : y14 + a + b− y6 = 0
V II1 : b + c− x4 − x2 = 0
V II2 : y15 + a + c− a− b = 0
V III1 : x11 − a− e + x4 = 0
V III2 : c + e− y9 − a− c = 0
IX1 : x12 − a− d + a + e = 0
IX2 : d + e− y7 + y9 = 0
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In this example we want to find all xi and yi in terms of a, b, c, d, and e like
we did in the previous example. The first set of equations we can do this for is
I1, II2, III2, IV1, V1, V I1, V II2, V III2, and IX1. These equations reduce to
the following:

I1 ! x1 = a− b

II2 ! y14 = b− c

III2 ! y8 = d− a

IV1 ! x12 = e− d

V1 ! x11 = c− d

V I1 ! x2 = a− b

V II2 ! y15 = b− c

V III2 ! y9 = d− a

IX1 ! x12 = d− e

Note right away we can combine equations IV1 and IX1 to find:

x12 = d− e = e− d⇒ {x12 = 0 and d = e}.

Now we can combine what we found in the above nine equations with I2,
II1, IV2, V I2, V II1, and IX2 to find six more xi and yi values.

I2 ! y5 − b + c− a− b = 0⇔ y5 = a + 2b− c

II1 ! a− b− b− c + x3 = 0⇔ x3 = 2b + c− a

IV2 ! y10 − d + a− d− d = 0⇔ y10 = 3d− a

V I2 ! b− c + a + b− y6 = 0⇔ y6 = a + 2b− c

V II1 ! b + c− x4 − a + b = 0⇔ x4 = 2b + c− a

IX2 ! d + d− y7 + d− a = 0⇔ y7 = 3d− a

With the values obtained from these equations, we can write equations V2

and V III1 using only a’s, b’s, c’s, and d’s.

V2 ! a + 2b− c− 3d + a− c− d = 0⇔ 2a + 2b = 2c + 4d⇔ a + b = c + 2d

V III1 ! c− d− a− d + 2b + c− a = 0⇔ 2a− 2b = 2c− 2d⇔ a− b = c− d

We can now solve for x13 located in III1 using the x3 value we found in II1

and the constraints on a, b, c, and d we found in V III2.

III1 ! a + d− 2b− c + a− x13 = 0⇔ 2a− 2b− c + d = x13

⇔ 2c− 2d− c + d = x13 ⇔ x13 = c− d

Now let us look at combining V2 and V III1 in order to get more explicit
constraints on the square sizes. We already know d = e, so we take V2 − V III1

to get:

V2 − V III1 : (a + b = c + 2d)− (a− b = c− d) ! 2b = 3d⇔ b =
3
2
d
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Now we take V2 + V III1 to get:

V2 + V III1 : (a + b = c + 2d) + (a− b = c− d) ! 2a = 2c + d⇔ c = a− d

2

With these new constraints, we claim that a and d are free variables, and
we will show this by explicitly writing each variable in terms of a and d.

a = a

b =
3
2
d

c = a− d

2
d = d

x1 = x2 = a− 3
2
d

x3 = x4 = 2(
3
2
d) + (a− d

2
)− a = 3d− d

2
=

5
2
d

y5 = y6 = a + 2(
3
2
d)− (a− d

2
) =

7
2
d

y7 = y10 = 3d− a

y8 = y9 = d− a

x11 = x13 = (a− d

2
)− d = a− 3

2
d = x1 = x2

x12 = 0

y14 = y15 = (
3
2
d)− (a− d

2
) = 2d− a

We must choose a to define our tiling, leaving d as our only free parameter,
indicating that we are on a one-dimensional deformation space. "
Example 3.16. As before, we begin by putting a “reduced” dual graph on the
tiling and labeling all squares, vectors, and loops. Note that we have three
squares, nine vectors, and six loops, as expected.

We next define each of the vectors in the picture.

v1 =
(

a + b

y1

)
v2 =

(
a + c

y2

)
v3 =

(
a + b

y3

)

v4 =
(

x4

2a

)
v5 =

(
a + c

y5

)
v6 =

(
a + b

y6

)

v7 =
(

a + c

y7

)
v8 =

(
x8

b + c

)
v9 =

(
x9

b + c

)
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Figure 82: A tiling by three squares with all squares, vectors, and loops labeled
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Now we write down the equation for each loop. Note there are six equations
in this example.

I : v1 + v8 − v2 = 0
II : v2 + v9 − v3 = 0
III : v3 − v1 − v4 = 0
IV : v4 − v7 + v5 = 0
V : v6 − v5 − v8 = 0
V I : v7 − v6 − v9 = 0

Because of linear dependency, we will toss out one equation (say V I). Now
we break up each vector equation into its x and y components, yielding ten
equations.

I1 : a + b + x8 − a− c = 0
I2 : y1 + b + c− y2 = 0
II1 : a + c + x9 − a− b = 0
II2 : y2 + b + c− y3 = 0
III1 : a + b− a− b− x4 = 0
III2 : y3 − y1 − 2a = 0
IV1 : x4 − a− c + a + c = 0
IV2 : 2a− y7 + y5 = 0
V1 : a + b− a− c− x8 = 0
V2 : y6 − y5 − b− c = 0

Next we reduce and rearrange each equation, writing the xi or yi terms on
one side of the equality and the a, b, and c terms on the other side.

I1 ! x8 = c− b

I2 ! y2 − y1 = b + c

II1 ! x9 = b− c

II2 ! y3 − y2 = b + c

III1 ! x4 = 0
III2 ! y3 − y1 = 2a

IV1 ! x4 = 0
IV2 ! y7 − y5 = 2a

V1 ! x8 = b− c

V2 ! y6 − y5 = b + c

Right away note that I1 and V1 give:

x8 = c− b = b− c⇒ {x8 = 0 and b = c}.
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Also note that I2 + II2 = III2, which gives an important relation:

I2 + II2 = y2 − y1 + y3 − y2 = y3 − y1 = III2

⇔I2 + II2 = (b + b) + (b + b) = 4b = 2a = III2

⇒a = 2b

With these two relations, we can now write our ten equations in an even
more reduced form:

I1 ! x8 = 0
I2 ! y2 − y1 = 2b⇔ y2 − y1 = a

II1 ! x9 = 0
II2 ! y3 − y2 = 2b⇔ y3 − y2 = a

III1 ! x4 = 0
III2 ! y3 − y1 = 2a

IV1 ! x4 = 0
IV2 ! y7 − y5 = 2a

V1 ! x8 = 0
V2 ! y6 − y5 = 2b⇔ y6 − y5 = a

We claim that a, y2, and y5 are free variables, and we will show this by
explicitly writing each variable in terms of a, y2, and y5.

a = a

b =
a

2
c =

a

2
y1 = y2 − a

y2 = y2

y3 = y2 + a

x4 = 0
y5 = y5

y6 = y5 + a

y7 = y5 + 2a

x8 = 0
x9 = 0

We must choose a to define our tiling, so we are left with two free parameters,
indicating that we are on a two-dimensional deformation space. "

Notice how the deformation spaces from these examples all have a dimension
of at least 1. Now let us shift gears and look at how the deformation spaces
intersect and why these examples have such dimensions.
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Usually (as one has seen from the moduli spaces above), a tiling doesn’t
intersect any additional deformation spaces other than the one on which it sits.
This is the relatively “boring” case, but we can make it interesting by looking
at what happen at each vertex of each square in the fundamental domain.

Notice that in a complete tiling, the area around each vertex must be covered.
This means every part of the 360◦ degrees around each vertex must be covered.
The vertex itself has a square coming from it, so this covers a fourth of the
space, or 90◦. Now we must find a way to cover the other 270◦. Clearly we can
have three more vertices all touch at this one point, each adding 90◦ to cover the
space, so the area around the vertex will indeed be covered. Then at the vertex
we have a “+” alignment. But we can also have an edge touch a vertex, and
this will cover half of the space, or 180◦. Then all we have left to cover is 90◦,
for which we can use another vertex. This creates a “T” alignment. We claim
these are the only two alignments, and this follows directly from our progression
above. The only two parts that can touch at a vertex are an edge and other
vertices, so this means we can only add discrete values of 90◦ and 180◦ to get
to 360◦. Adding 180◦ to 180◦ does give 360◦, but we are missing the important
part of looking at what surrounds a vertex, so this case cannot happen. If we
have an edge, the only way to get to 360◦ is to add on two more vertices, giving
us the “T” alignment. If we do not have an edge, the only way to get to 360◦
is to add all vertices, giving us the “+” alignment.

“T” “+”

Figure 83: Examples of “T” alignments and “+” alignments

Proposition 3.17. In a periodic tiling by squares, the only two possible align-
ments at each and every vertex are the “T” alignment and the “+” alignment.

Proof. Our argument above suffices as a proof to this proposition; we showed
how to get to the “T” and “+” alignments, and we showed that they were the
only possible ones.

So how does this relate to intersecting deformation spaces? Well, first we
must look at only the alignments in and around the fundamental domain and
disregard any redundant ones (the same thing we did when reducing the dual
graph, its vectors, and its loops modulo translation). Since there are copies
of the fundamental domain all around, we must make sure we don’t count the
same alignment twice: only once on one fundamental domain and not again in a
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different spot on a different fundamental domain. Drawing a piece of the tiling
helps with this dilemma.

Figure 84: An example detailing how to accurately determine the number of
alignments; note the dashed circles to indicate a repeated alignment (i.e. an
alignment that is equivalent modulo translation to a previous one)

We claim that if our tiling only has “T” alignments, then we will stay on
the same deformation space, yet if we “+” alignments, there exist different
deformations to take us to different deformation spaces. If we have one “+”
alignment, we have an intersection of two deformation spaces. If we have two
“+” alignments, we have four different deformation spaces intersecting. With
three “+”’s we have eight. There seems to exist a pattern with the amount
of “+” alignments and the number of intersecting deformation spaces at that
point. This does not hold true at limit points (obviously, since we are no longer
dealing with the same number of squares). We have not proven this yet, but we
will make a conjecture:

Remark 3.18. Deformation Space Intersection Conjecture (DSI Con-
jecture): For n number of “+” alignments in a given tiling (n ≥ 0), there exist
2n one-dimensional deformation spaces that intersect at that tiling.

We have an idea to start the proof, and it involves looking at the nearby
moduli space. At a tiling with “+” alignments, the space nearby looks like the
union of open subsets of finite dimensional vector spaces corresponding to the
moduli spaces of tilings where each “+” alignment has been deformed into a
“T” alignment. For n “+” alignments, there can be at most 2n such spaces
(since a single “+” alignment admits two “T” alignment deformations). The
tricky part comes when we try to show this number is always reached. We can
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show this on a case-by-case basis, but we have not been able to prove this in
general.

Figure 85: The intersecting moduli spaces in the one-square case; note there is
one “+” alignment in the gridlock tiling and two one-dimensional moduli spaces
that intersect at that tiling

We have to “maneuver” through the conjecture some to make it work for
“+” alignments for tilings in a torus (and pay great attention to the one-
dimensional detail). For instance, we can have the following case appear in
the two-dimensional torus moduli space for two squares:

Figure 86: An example of a tiling located in the 2-D torus moduli space in the
two-square tiling system; note there is one “+” alignment

In this case we have one “+” alignment, but we are already located deep
inside a deformation space and are not near any others with which to intersect.
How can this be? Well, recall that the two-dimensional torus is homeomorphic
to S1×S1, which means we actually can think of this torus as two loops working
together in this space, so anytime in this deformation space that we have a “+”
alignment, we can think of the two S1 loops crossing each other. This topological
detail allows us to fit in the “+” alignments that we find while in toroidal moduli
spaces. Note that in the three-square tilings V1, H1, V2, and H2, we have a
three-dimensional torus as a moduli space, so we are working with three S1
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loops, which can cross each other in different ways, accounting for the various
“+” alignments we may find.

Figure 87: Examples of tilings in the 3-D torus attached to V1; note the tiling
on the left has one “+” alignment and the tiling on the right has two “+”
alignments

Another issue arises when we have the shared spaces that we brought up in
the last section. Clearly, in the three-square tiling system, shared spaces are
very prominent, with six shared spaces associated to every adjacent pair of the
base tilings.

UD1

DD1

2

2

2

Figure 88: UD1 and DD1 and their six shared spaces
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But if we count all the deformation spaces that surround a base tiling (let
us take UD1 as an example), we get a massive number of fourteen deformation
spaces: the horizontal-sliding space, the vertical-sliding space, the six shared
spaces with DD1, and the six shared spaces with DD2.

UD1 DD2

DD1

V1

H1

2

2

2

2

2 2

Figure 89: UD1 and all the deformation spaces that surround it

Since all four base cases have three “+” alignments, we expect 23 = 8 in-
tersecting deformation spaces. So what is the problem here? It comes from
overcounting the shared spaces.

We should be counting each shared space once, but if we get fourteen for
each of the four base cases, we have counted them all twice. For instance in
the UD1 example, we included all the shared spaces with DD1. But if we look
at DD1 and include all of the shared spaces with UD1, we have just become
redundant. There are two ways around this. One is to include only one set of
shared spaces. That is, for UD1 only including the shared spaces with DD2, for
DD2 only including the shared spaces with UD2, for UD2 only including the
shared spaces with DD1, and for DD1 only including the shared spaces with
UD1. This way each shared space in counted only once, and each of the four
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base cases have eight intersecting deformation spaces.
This procedure is alright, but we would like a better way that incorporates

both sets of shared spaces without overcounting. For this, we count the number
of shared spaces between two tilings, divide by two, and add that number to the
number of intersecting deformation spaces. It is the same idea in principal as the
first, but in a more mathematical and property-preserving manner. That means
for UD1, the shared spaces with DD1 account for 6÷ 2 = 3 of the intersecting
deformation spaces, and the shared spaces with DD2 account for 6 ÷ 2 = 3 of
the intersecting spaces as well. Adding this onto the two sliding deformation
spaces, we get eight total intersecting spaces. This works for all four of the base
cases, and the problem is settled.

One may ask what the difference is between overcounting the shared spaces
and overcounting other spaces. Shouldn’t it be that if two tilings are on the
same deformation space that we add 1

2 to each of their values for intersecting
spaces? Clearly not, but it may not be obvious at first glance. In the case of
shared spaces, we have two different tilings that act as the same point on a
deformation space. This is why we divide by two in that case. For any other
case like the UD1-DD1-V1 loop, UD1 and DD1 are on the same deformation
space, but they are different points. This is why we do not divide by two (as
we had been doing up to this point).

One final issue comes up with the intersection of a torus with another moduli
space, namely a loop. Let us look at the intersection point of the 2-D torus with
vertical band alignments for the two-square case, and then the intersection point
of the 3-D torus with the vertical band alignments (the tiling V1) for the three-
square case.

2

Figure 90: The 2-D torus, its neighboring loop, and the gridlock tiling at their
intersection; note the gridlock tiling has two “+” alignments

Right away note that there are two “+” alignments, but we only have two
intersecting moduli spaces, and our conjecture predicts there should be four.
The issue arises with the underlying S1 loops in the torus again. Instead of
looking at the loop and the 2-D torus intersecting at a point, we must look at
the loop intersecting with two other loops at a point, essentially quantizing the
intersection of the loop and the 2-D torus. Yet these other two loops form the
torus, so they behave differently. Let us call the torus loops α and β, and call the
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other moduli space loop M0. Now we need four deformation spaces to intersect
at this point. Clearly, we will have M0 intersect. The trick comes when looking
at the α- and β-loops. We will have the α-loop by itself intersect, and we will
have the β-loop by itself intersect. We will also have a combination of the loops
intersect: an α-β-loop so to speak. We include this combination to account
for the direct product in S1 × S1. Though we cannot realize these additional
intersections when simply looking at the 2-D torus and the loop intersecting at
a point, we can quantize the torus into its loops and see that mathematically,
there are indeed four one-dimensional deformation spaces that intersect this
point.

Now we can look at the case with three squares and the tiling V1:

3

V1

UD1

DD1

Figure 91: The 3-D torus, its neighboring loop, and the gridlock tiling (V1) at
their intersection; note V1 has three “+” alignments

In this case, we have three “+” alignments, but again we only see two inter-
secting moduli spaces. This time our conjecture predicts there should be eight.
Now, as before, we must break up the 3-D torus and look at its three underlying
S1 loops. Let us call them α, β, and γ, and let us call the other moduli loop M0.
Clearly we will have M0 intersect, and clearly we will have the single α-loop, the
single β-loop, and the single γ-loop intersect at this point as well. Now we must
account for the direct product in S1×S1×S1. With this, we find we also have
the α-β-loop intersect, the α-γ-loop intersect, the β-γ-loop intersect, and the
α-β-γ-loop intersect, all at this point V1. That gives us the eight intersecting
one-dimensional deformation spaces we need, and our conjecture still holds.

The single internal loop inside of the 2-D tori in the three-square tiling
system follows this precedence as well. Either side of internal loop accounts for
one of the four possible intersecting moduli spaces, while the other three come
from the combinations of loops in the 2-D torus.

We can also do this with a tiling by four squares that has vertical bands
(similar to the V1 case). In this case we have a 4-D torus and a neighboring
loop as our moduli spaces, and our tiling has four “+” alignments, which means
we need sixteen intersecting one-dimensional deformation spaces.

We can label each of the four toroidal loops as before (and the original M0

one as well) and look at all their different combinations as before. At the in-
tersection, we can have the four loops by themselves, six different combinations
with two loops, four different combinations with three loops, and one combina-
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2

Figure 92: The internal loop inside of the 2-D torus in the three-square tiling
system; note that the tiling at either intersection of the loop and the torus has
two “+” alignments

4

Figure 93: The 4-D torus, its neighboring loop, and the gridlock tiling at their
intersection; note the gridlock tiling has four “+” alignments
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tion with all four loops. Those fifteen intersecting loops plus the original M0

loop account for all sixteen one-dimensional deformation spaces that intersect
at that point.

Note that for this final issue of tori intersecting loops, the 2n follows from
the combinatorial formula involving the binomial coefficient:

2n =
n∑

k=0

(
n

k

)

where k is the number of loops in consideration and n in the number of “+”
alignments in the tiling (also the dimension of the torus in consideration). For
any torus, k = 0 corresponds to M0 intersecting, k = 1 corresponds to all single
loops intersecting, k = 2 corresponds to all combinations of two loops, k = 3
corresponds to all combinations of three loops, and so on. It becomes clear that
our conjecture will hold for all cases.

3.4 Conclusions

With the DSI Conjecture and the dual graph analysis, we can theoretically
determine all parts of a tiling system for a finite number of squares. As we saw
in the moduli space section, we were able to find the entire tiling systems for
two and three squares without the use of the DSI Conjecture and the dual graph
analysis, but when we think about four or five squares, the tiling system become
so complicated that it would be extremely difficult to manually complete them.
There are also so many more available tilings in four and five square cases (for
instance, instead of just the “L”-shaped tiles and the rectangle tiles, “Z”-shaped
tiles begin to appear) that it would be hard enough to merely think of all the
different possible cases, let alone classify them and see how they interact with
other deformation spaces.

With these two tools we described in the last section, we can look at a given
tiling, use the dual graph analysis to determine the dimension of its deforma-
tion space and how to deform the tiling, and then use the DSI Conjecture to see
how many other deformation spaces intersect the point we are looking at. Usu-
ally, we will have no “+” alignments and will have no intersections with other
deformation spaces. But there will be tilings with these interesting “+” align-
ments after some deforming, and we will find beautiful mathematical patterns
and topological objects through the various intersections of these deformation
spaces as we further explore tilings by squares.
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