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A.1 Introduction

Mutations are rare events, so the emergence of complex adaptations is expected to take a long time, especially
in small populations. Larger populations provide more individual targets for mutational origin, so intuitively
the time required for the establishment of mutants is less; however, should the intermediate steps toward
a complex adaption be selectively disadvantageous, the larger population size may inhibit adaptational
advance, due to the increased efficiency of selection against deleterious intermediate mutants.

Unfortunately, a number of factors may magnify the rate of emergence of complex adaptations in ways
that defy these simple expectations. For example, small populations–owing to the reduced efficiency of
selection–are vulnerable to an increase in the mutation rate resulting from the accumulation of mutations
with mild effects on the efficiency of DNA replication- and repair- loci.1 Such an increase in the per-capita
mutation rate, which is consistent with the known increase in the per-generation mutation rate in unicellular
eukaryotes relative to prokaryotes and in multicellular species relative to unicellular species could offset
the decline in the number of individual mutational targets in small populations.2 On the other hand, in
large populations, despite the short persistence time of deleterious intermediate-stage mutations, the steady
mutational input of the latter will result in a maintenance of a small, stable reservoir of such alleles by
selection-mutation balance. Moreover, this general principle extends to the loci that directly influence the
mutation rate, ensuring that there will always be a pool of individuals with mutation rates elevated above the
population norm. While seemingly maladaptive at the individual level, the individuals residing in this small
segment of the population might be a major source of evolutionary novelties. Finally, in extremely large
populations, the possibility exists for double mutants to vault a fitness valley in a single bound, avoiding the
price of deleterious intermediates altogether.

Because some have questioned whether conventional mutational mechanisms and current principles of
population genetics can adequately explain the emergence of complex adaptations on reasonable evolutionary
time scales,3 there is a need to fully incorporate the above-mentioned complexities into a more comprehensive
framework for understanding the population-genetic environments in which complex adaptations are most
likely to emerge. In the following pages, the beginnings of such a framework are outlined, showing that
when natural levels of heterogeneity in the mutation rate are taken into consideration, adaptations involving
multiple mutation steps can emerge in populations of small to intermediate size at rates that can be orders
of magnitude more rapid than current theoretical expectations.

A.2 The Model

The focus throughout will be on diploid, Wright-Fisher structured populations, with segregation of com-
pletely linked chromosomes occurring every generation. One locus, harboring two potential alleles, are
assumed to govern the mutation rate. A second set of loci are targets of natural selection, and shall be
(aptly) referred to as the adaptive loci. M and m denote alternative alleles at the mutator locus, carrying
with them three distinct mutation rates, denoted u0, u1, and u2 for respective genotypes m/m, M/m (or,
possibly, m/M–hereafter either type will be denoted strictly as M/m), and M/M. (Notice the subscript
denotes the number of mutant mutator alleles in the genotype.) Under the model, the fraction of mutant
(M) alleles produced per generation by m/m genotypes is u0, whereas those produced by M/m and M/M
are (1−u1)/2 and 1.0, respectively. Back mutations (M→m) are assumed to occur at a negligible rate. The

1Lynch (2008)
2Lynch (2007)
3e.g., Pigliucci (2007)
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mutant allele is also assumed to confer a fitness disadvantage, such that the fitnesses of the m/m, M/m,
and M/M genotypes are 1.0, 1.0 − hMsM , and 1.0 − sM respectively, which are consistent with standard
diploid selection models.

Starting with the simplest case, an adaptive locus with two independently mutating sites is denoted by
any combination of capital and lowercase As and Bs (e.g., Ab/ab). Initially, both sites are assumed to be
fixed in the ancestral state whose genotypic fitness is 1.0. The fitnesses of alternative genotypes involving the
two sites are assumed to be additively determined, such that alleles with single mutants at either site have
a reduction in fitness equal to s1 ≥ 0, and alleles with mutants at both sites have an increment in fitness
equal to s2 ≥ 0. Under this scheme, denoting mutants with upper-case letters, the fitnesses of (unordered)
genotypes Ab/ab and aB/ab are 1.0− s1, of Ab/Ab, aB/aB, and Ab/aB are 1.0− 2s1, of Ab/AB and
aB/AB are 1.0− s1 + s2, and of AB/AB is 1.0 + 2s2. The overall fitness of an individual is the product of
the fitnesses at the mutator and adaptive loci (e.g., MAB/mAb has fitness (1.0− hMsM )(1.0− s1 + s2)).

Because the adaptive mutations are specific to two individual sites, the rates of production of alternative
alleles at this locus are assumed to equal the background per-locus mutation rates (defined by the genotypes
at the mutator locus) times a constant k ≤ 1. Akin to the mutator locus, we assume no back mutations.
Throughout we assume mutation rates and effective population sizes (N) that are well within the limits of
existing biological observations.4

The following results are based on stochastic computer simulations of the mean time to fixation of a
novel adaptation, generally relying on 200 independent evaluations for any given set of parameters. Prior
to the initiation of any specific population trajectory, the frequencies of the alleles at the mutator locus
were set to their expectations in the absence of selection on the adaptive locus. For situations in which
the heterozygous disadvantage of the mutator allele was smaller than the power of random genetic drift,
1/(2N), the mutator-allele frequency was set equal to 1.0, and when the power of drift was smaller than
the selective disadvantage, the initial mutator-allele frequency was set equal to the expected value under
selection-mutation balance.5

A.3 Two Allele Case: No ‘M’

We start with the simplest case, where u0 = u1 = u2, so as to get the results for the classical situation,
where the common mutation rate is denoted only by u. For the special situation in which the intermediate
state at the adaptive locus is neutral (s1 = 0), some fairly simple analytical approximations are attainable,
with three different domains of behavior, depending upon the effective population size.

First, if the population is sufficiently small in size, the evolutionary dynamics will proceed in a two-step
process, with a one step mutant (Ab) becoming fixed prior to the arrival of a second step mutation. Starting
with the population fixed with frequency 1.0 at ab/ab, 4Nuk first-step mutations arise per generation (the
four, instead of two, because either A or B mutations can arise in this step with equal probability), each
with fixation probability 1/(2N),6 so the mean arrival time of the first first-step mutation destined to fix is
the reciprocal of the product, 1/2uk generations. Because the average time to fixation of a neutral allele is
4N generations under the Wright-Fisher model, and the rate of origin of second-step mutations is ≤ 2Nuk
per generation, it is clear that there is a negligible chance of a second-step mutation arising prior to fixation
of a first-step mutation if (4N)(2Nuk)� 1, or equivalently if N � 1/(2

√
2uk). Letting

4Lynch (2007)
5See solution of equation (6) in Lynch (2008)
6For validation, notice lims1→0 pf (s1) = 1/(2N) for pf (s1) defined by equation (3.1)
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pf (s2) =
1− e−2s2

1− e−4Ns2
(A.1)

denote the probability of fixation of a beneficial (second-step) mutation, then for mutations that fix sequen-
tially, the rate of appearance of the first double mutant destined to fix is the reciprocal of the sum of the
average arrival times of the two mutations,

rs =
2uk

1 + [1/(npfs2)]
. (A.2)

The mean time to complete establishment of the double mutant is

tf =
1
rs
, (A.3)

ignoring the time for the second mutation to fix, which for small N is negligible compared to the arrival
times of mutations.

Second, provided N > 1/(2
√

2uk), there is a significant chance that a beneficial second-step mutation
will arise on a descendant of a first-step mutation prior to the fixation of the latter. Nearly all first-step
mutations (1− 1/(2N) of neutral mutants) are destined to be lost by drift, but this process can occasionally
rescue such mutants, propelling them to fixation by positive selection. The process in which the beneficial
double mutants go to fixation prior to the population ever achieving a pure one-step state has been called
stochastic tunneling by Komarova et al. (2003) and Iwasa et al. (2004) in the context of cancer development.
The rate of tunneling with a neutral intermediate worked out by these authors via the Moran model is
readily extended to the current case. After accounting for diploidy and the two-fold reduction in the rate of
drift with the Wright-Fisher model, the rate of appearance of the first double mutant destined to fixation
by tunneling becomes

rt ' 4Nuk
√
ukpf (s2). (A.4)

Accounting for both paths (which are taken to be mutually exclusive events), the mean number of
generations until the establishment of the double mutant is

tf '
1

rs + rt
. (A.5)

Third, for N > 1/(4uk), the system begins to behave in an effectively deterministic fashion, with the
expected frequency of the AB allele in generation t being ∼ (ukt)2. The probability of fixation of a beneficial
mutation is essentially equal to 1.0 once the frequency exceeds 1/(4Ns2). Solving for the time required for
the AB allele to reach this point yields a mean time to establishment of the double mutant of

tf '
1

2uk
√
Ns2

. (A.6)

When intermediate (first-step) alleles are disadvantageous, for populations sufficiently small that the
fixation proceeds only in a sequential manner, the mean time to establishment is

rs '
2Nuk

1
2pf (s1)

+
1

pf (s2)

, (A.7)
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where pf (s1), the probability of fixation of a newly arisen first-step mutation, is obtained by substituting
−s1 for s2 in equation (3.1). At population sizes large enough to prevent fixation of first-step mutations
(4Ns1 � 1), the latter are expected to rapidly approach the low frequency maintained under selection-
mutation balance, providing a launching pad for beneficial second-step alleles. Under these conditions, the
mean arrival time of the first beneficial allele to fix by tunneling is obtainable from Iwasa et al. (2004) yields

rf '
4N(uk)2(1− s1)pf (s2)

s1
. (A.8)

Again, the mean time of establishment is given by equation (3.5).

A.4 Two Allele Case with Evolving Mutation Rates

We now turn to the situation where the mutation rate is allowed to evolve. In this case, at population
sizes that are sufficiently small (4NsM � 1), selection is incapable of preventing the fixation of the mutant
mutator allele. Thus, up to an approximate threshold of N = 1/(4sM ), the mean time to establishment can
be obtained using all of the preceding expressions with u2 used as the mutation rate.

In the model applied here, which ignores M → m back mutations, the M allele must ultimately fix.
However, for 4NsM � 1, the probability of such fixation is negligibly small on reasonable biological time
scales (assuming sM � u0), so the mutator allele will generally be maintained at levels defined by selection-
mutation balance, with q̂ denoting the frequency of allele M.7 Because the mutator allele is disadvantageous,
and the first-step mutation confers no selective advantage, the path of sequential fixation will almost always
begin with a gamete containing a nonmutant mutator allele. Conditional on the fixation of a first-step
mutation, the rate of arrival of the second-step mutation is then 2Numkpf (s2), where um = q̂u1 + (1− q̂)u0

is the average background mutation rate experienced by the first-step mutation. Conditional on fixation
of the first-step mutation, the rate of fixation of the second-step mutation is then 2Numkpf (s2), where
u = (1− q̂)2u0 + 2q̂(1− q̂)u1 + q̂2u2 is the average background mutation rate experienced by the second-step
mutation. The rate of sequential fixation is then

rs '
2Nk

[2um(1− q̂)pf (s1)]−1 + [upf (s2)]−1
. (A.9)

The rate of tunneling must allow for the fact that first-step mutations can arise linked to the alternative
alleles at the mutator locus, the rates of which are 4Numk[(1 − q̂) and 4NuMkq̂ for the m and M alleles
respectively, where uM = (1 − q̂)u1 + q̂u2. In the first case, assuming a neutral intermediate, tunneling
proceeds at rate

√
umkpf (s2), and in the second case, it proceeds at approximate rate

√
uMkpf (s2 − sM ),

with the selective advantage of the adaptive mutation being discounted by the selective disadvantage of the
mutator allele. The total rate of tunneling with neutral intermediates is then

rt ' 4Nk3/2

(
(1− q̂)um

√
umpf (s2) + q̂uM

√
uMpf (s2 − sm)

)
. (A.10)

When first-step alleles are deleterious,

rt ' 4Nk2
(
[(1− s1)/s1](1− q̂)u2

mpf (s2) + [(1− s1 − hMsm)/(s1 + hMsM )]q̂u2
Mpf (s2 − sM )

)
, (A.11)

7As stated in footnote (5), this value is the solution of equation (6) in Lynch (2008)
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expanding from Iwasa, et al. (2004). The mean time to establishment is again approximated by substituting
the previous two expressions into equation (3.5).

A.5 Expanding to Three or More Adaptive Sites

Throughout this paper, only populations had the alleic form mab/mab, so expanding the number of sites
on the adaptive loci to three, four, or even an arbitrary number of sites is the next step to consider. Equation
(4.1) is easily generalized to n adaptive loci in the following manner: recall s1 = 0, and then assume for
the purposes of generating a starting point in the analysis that all intermediates are neutral. That is,
s1 = s2 = . . . = sn−1 = 0. Then, the rate to go from state8 0 to 1 when n = 2 is 2u2k, from 0 to 1 when
n = 3 is 3u2k, and so on. It is fairly obvious to see that the rate to mutate a mutant destined to fix from
state i to i+ 1 given n sites is (n− i)u2k. From there it is trivial to generalize equation (4.1) to

tf '
1
u2k

(
n∑
i=2

1
i

+
1

2Npf (sn)

)
. (A.12)

To generalize the approach with deleterious intermediates and with N large enough to allow for non-
trivial tunneling rates requires deeper analysis. A straightforward method to generalize the nontrivial cases
are to try a graphical approach. For example, the following illustration shows an approach for the 3 site
case:

The arrows pointing from a state i to a state i+ 1 is a graphical representation of a sequential fixation,
and the arcs are representative of tunneling. The arcs from a state i to a state i+ j for j ≥ 1 are what will
be referred to as j-tunneling, tunnels that bypass j fixed states, e.g. they go from state i to state i + 2 for
j = 1 (represented by solid lines in Figure 1). The rate of 1-tunneling has been described at length in this
paper. The dashed line is a 2-tunnel, a tunnel that bypasses 2 fixed states. The rate of fixation of 2-tunnels
(or any higher tunnels) is unknown. However, they could possibly be so rare as to make little difference in
most constructs.

Still referring to Figure 1, the rate through a sequence is exactly what one would expect, but there is an
interesting note regarding the rates through the 1-tunnels. Tunnel C, as previously stated, is an unknown
quantity. Tunnel B has rate exactly as described previously. Tunnel A, however, is triple the rate of Tunnel
B, because there are three equally probable ways of traversing Tunnel A: abc → ABc, abc → AbC, or
abc → aBC.

8From here henceforth, state refers to the number of adaptive mutants
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Acknowledging the above, an expected time to fixation of state 3 is

tf '
1

rs + rta + rtb
, (A.13)

where rs is the rate in going through sequentially, rta is the rate in going through Tunnel A and then through
the third sequential path, and rtb is the rate in going through the first sequential path and then through
Tunnel B.

In simulations of this type, the expected time was consistently higher than the simulated time, leading
one to suspect that j-tunneling plays a significant role in these processes, and obviously it plays larger roles
as n increases because each j-tunnel will be multiplied by a constant (or remain the same but is still grouped
with a constant-multiplied j-tunnel).

Recall the constant 3 multiplied by the rate of a 1-tunnel in the discussion about Figure 1. This number
can be determined for any j-tunnel from the ith state where there are n adaptive sites which becomes apparent
if one thinks in the following way: if someone wants to find out the multiplicative coefficient, c, on j-tunneling
from the ith state with n adaptive site, an equivalent measure is to find out the multiplicative coefficient on
j-tunneling from the 0th state with n-i adaptive sites. It quickly becomes apparent that the following holds:

c =
(
n− i
j + 1

)
. (A.14)
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B.1 Introduction

In evolutionary biology, statistical analyses which compare data among present-day species require knowledge
of the common evolutionary history of the species. This information consists of a phylogeny, a tree which
has tips corresponding to present-day species (also called taxa) and has branching nodes which correspond
to speciation events (when one species becomes two). Phylogenies can also have branch lengths which
correspond to the amount of time between nodes. If a phylogeny is known for certain, a standard method
exists for incorporating it into the statistical analysis. When the phylogeny is unknown (due to insufficient
DNA sequence data for instance), we could use a completely random set of phylogenies to simulate the
possible relationships between species. However, often some information about the structure of the tree is
available, from morphological data or the fossil record. Thus an intermediate option which generates only
random trees which fit the known structure would allow this partial information to be incorporated into the
analysis, without assuming that a single phylogeny is correct.

Housworth and Martins showed how to break the set of constrained trees into categories which are defined
by a triplet of combinatorial objects (P, T,C). They gave a formula for the number of trees contained in
a category. They also showed how to draw a random tree from a given category. Thus to draw a random
tree, one would choose a random category and then draw a tree from within that category. The category
should be sampled from the probability distribution corresponding to the category weights (i.e. sample
larger categories more often and smaller ones less often). The original, naive, implementation of category
generation was not computationally feasible for even reasonably large problems. This paper describes an
efficient Monte Carlo Markov Chain method for generating (P, T,C) triplets according to the distribution of
the category weights.

B.2 The Problem

The problem consists of taking a uniform random sample from a specific subset of all bifurcating, rooted,
ordered, labeled trees. Bifurcating means that each branch splits into exactly two other branches, and implies
that every internal node of the tree has degree three. Rooted means that there is one node of degree two
from which all branches descend. Ordered means that the temporal ordering of the entire tree is relevant,
implying for example that the two trees in figure B.1 are distinct. Labeled means that the tips of the tree
are have names. Thus permutations of the names can create distinct trees.

A  B  C  D 

1


2


A  B  C  D 

1


2


Figure B.1: Two trees which have different ordering

The type of biological information we want to incorporate into the comparative analyses divides the N
taxa into subclades and outgroups. The subclades are subsets of the taxa which are more closely related
to each other than to the rest of the taxa. In other words, for each subclade, the most recent common
ancestor is a root for a subtree whose leaves are exactly the elements of the subclade. We will label the
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subclades (1, . . . , r) and their corresponding sizes (k1, . . . , kr). Outgroups are taxa which are known to be
more distantly related to the given subclades. We will let n be the number of outgroups, which we will also
call external taxa. An example of a constraint on 12 taxa would be (A,B,C,D),(E,F,G),(H,I),J,K,L. Here
subclade 1 consists of (A,B,C,D), subclade two consists of (E,F,G), subclade three is (H,I) and the external
taxa are J,K, and L. Thus k1 = 4, k2 = 3, k3 = 2 and n = 3. An example of a tree which fits this set of
constraints is shown in figure B.2.

(A
 B D C)
 J
 (E
 G F)
 (H
 I)
K L


t1=3 

t2=5 

t3=7 

1


2


3


4


5


6


7


8


9


10


R


Figure B.2: One phylogeny from the category with P = (1, 3, 2); T = (3, 5, 7); C = (0, 1, 0)

To categorize the subset of trees under a constraint of the form above, we will use the triplet (P, T,C).
Each of P, T , and C is an ordered r-tuple.

1. P is a permuation of 1, . . . , r. It specifies the order of the roots of the subclades starting from the tips
and going toward the root. pi is the label of the subclade which is the ith one to be fully joined. In the
example above, P = (1, 3, 2) because subclade 1, (A,B,C,D), is joined first, subclade 3, (H,I), is joined
second, and subclade 2, (E,F,G) is joined third.

2. T gives the temporal rank of the subclade roots. ti gives the time (the ordinal rank from the tips to
the root) for subclade pi. Thus the interpretation of T depends on P . In the example in figure B.2,
T = (3, 5, 7) because subclade p1 = 1 is joined at the third event, subclade p2 = 3 is joined at the fifth
event, and subclade p3 = 2 is joined at the seventh event.

3. C is a composition. It specifies the number of external joinings which occur between subclade roots. ci
gives the number of external joining events before ti and after ti−1. Once a clade is completely joined
at its root, we consider it to be an external node. Thus we start with n external taxa, but after each
subclade root, we add one more. In figure B.2, we circle the external joining event between J and the
fully joined subclade 1 which occurs at time 4. Since this occurs before t2 and after t1, c2 = 1. Since
there are no other external joining events, the other entries of C are zero. Thus C = (0, 1, 0).
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B.3 The Solution

B.3.1 Counting Constrained Compositions

Let c and r be positive integers. A composition of c into r parts is defined as an ordered list C of nonnegative
integers (Cr, . . . , C1), where

∑r−1
i=0 Cr−i = c. (We adopt a somewhat awkward notation now for convenience

later). The total number of compositions of c into r is
(
c+r−1
r−1

)
. However we want to count only those

compositions of c which satisfy constraints of the form
∑j
i=0 Cr−i ≤

∑j
i=0Ar−i for all j ∈ {0, . . . , r − 1}

and some list A = (Ar, . . . , A1). In other words, the partial sums of the composition C cannot exceed the
partial sums of a fixed constraint list A.

We begin by noting that the number we wish to calculate is equal to the sum over every possible value
of each entry:

Ar∑
Cr=0

Ar+Ar−1−Cr∑
Cr−1=0

· · ·

Pr
i=2 Ai−

Pr
i=3 Ci∑

C2=0

1

We do not sum over C1 because we assume that the total for the composition c is fixed, so choosing all
but one part of the composition leaves only one possibility for the last part. To compute this sum, we will
use a recursive algorithm. We will first need the following fact from basic combinatorics:

Lemma B.3.1. For positive integers n and k:(
n

k

)
=
(
n+ 1
k + 1

)
−
(

n

k + 1

)
Proof. There are

(
n+1
k+1

)
ways of choosing a k+ 1 sized subset from a set of n+ 1 objects. Let one of the n+ 1

objects be called x. When choosing the k+ 1 things, either x is chosen or it is not. In the former case, there
are

(
n
k

)
ways of choosing the rest of the k elements of the subset from the other n objects. In the latter, there

are
(
n
k+1

)
ways of choosing the k + 1 subset from the other n objects. Thus

(
n+1
k+1

)
=
(
n
k+1

)
+
(
n
k

)
Q.E.D.

We will use this fact to split terms into a difference of two terms which will telescope in the sum. To
illustrate the recursive algorithm, we will show the cases of r ≤ 4. First note that the case r = 2 is trivial,
as the sum is simply

∑A2
C2=0 1 = A2 + 1. For the case r = 3, the sum is

A3∑
C3=0

A3+A2−C3∑
C2=0

1 =
A3∑
C3=0

(
A3 +A2 − C3 + 1

1

)

=
A3∑
C3=0

(
A3 +A2 − C3 + 2

2

)
−
(
A3 +A2 − C3 + 1

2

)
=

(
A3 +A2 + 2

2

)
−
(
A2 + 1

2

)
Observe that the first equality, though trivial, is equivalent to treating the inner sum as the case r = 2,
substituting A3 + A2 − C3 for A2. We will use an analogous substitution for later steps in the algorithm.
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The second equality is by lemma B.3.1 and the third is by telescoping. For the case r = 4 the sum is

A4∑
C4=0

A4+A3−C4∑
C3=0

(A4+A3−C4)+A2−C3∑
C2=0

1

=
A4∑
C4=0

(
A4 +A3 − C4 +A2 + 2

2

)
−
(
A2 + 1

2

)

=
A4∑
C4=0

(
A4 +A3 − C4 +A2 + 3

3

)
−
(
A4 +A3 − C4 +A2 + 2

3

)
−
(
A2 + 1

2

)
=

(
A4 +A3 +A2 + 3

3

)
−
(
A3 +A2 + 2

3

)
−
(
A4 + 1

1

)(
A2 + 1

2

)
The first equality is seen by replacing A3 in the r = 3 case with A4 + A3 − C4 in the inner two sums.

Again, we use lemma B.3.1 and the telescoping of the sum to obtain the next two lines. In the r = 5 case,
we substitute A5 + A4 − C5 for A4 and repeat this process. The first term in the answer to the r = 4 case
splits into two terms by the lemma, the second term is constant and is multiplied by an additional factor,
the third term keeps the constant multiplier

(
A2+1

2

)
and the

(
A4+1

1

)
splits into two terms by the lemma. By

continuing this process, we can recursively find a formula for the number of constrained compositions for
any r. Further sums are tedious by hand and not very illuminating. However, we can program a computer
to run this recursion efficiently. The R code to do this is contained in the Appendix, in the subroutine
“recursion count”.

B.3.2 The Jump Process

To implement a Monte Carlo Markov chain, we must have a so-called “jump process,” a method of generating
candidate points given the current state of the chain. Those candidates will then be accepted or rejected
based on some criteria related to the target distribution. A simple type of jump process is one that is
also independent of the current state. We attempted to create a process which generates triplets (P, T,C)
completely uniformly at random. The chief difficulty lies in the interdependencies of (P, T,C). These
constraints mean that early choices in the algorithm force the number of possible later choices to change. To
adjust for this non-uniformity we often must calculate the total number of later choices given every possibility
of the current choice and then bias our decision based on that information. We succeeded in producing an
algorithm which mostly chooses (P, T,C) uniformly at random. One non-uniformity remains, namely that
the number of choices for T depends on the permutation, P . However, this is easily corrected for later in
the Monte Carlo Markov Chain algorithm.

Algorithm B.3.2. The process to generate a (P,T,C)

1. Choose P, a permutation of {1,. . . , r }, uniformly at random.

2. Choose c, the total for the composition C, weighted according to number of compositions of each c
allowed by the constraints on C

3. Choose C, the composition, uniformly at random, reject if it fails constraints.
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4. Choose τ , the total for the composition Θ, according to the number of compositions allowed by the
constraints on T

5. Choose composition Θ, uniformly at random, and reject if it fails constraints.

6. Find T, which is completely determined by the previous steps.

For choosing random permutations and combinations in steps (1), (3), and (5), we use standard algorithms
found in Nijenhuis and Wilf [2]. For steps (2) and (4) we use the recursion algorithm developed in subsection
B.3.1. For step (2), the constraint list A = (n− 1, 1, . . . , 1, 0, . . . , 0) such that the sum of the list is c. This
constraint arises because we begin with n external taxa, which can only be joined n − 1 times. However,
after each clade is fully joined, we consider it to be new external node. Thus, the allowed partial sum of C
increases by one for each entry of C. In the case where c ≤ (n− 1), the constraint list is (c, 0, . . . , 0), and all(
c+r−1
r−1

)
compositions are allowed. For step (4), the constraint list A = (kpr − 2, kpr−1 − 2, . . . , kp2 − 2). This

constraint reflects the indirect method we use to choose the times using a composition.

B.3.3 Choosing T by a Constrained Composition

To see how to use a composition to choose T, we must first consider two sets of smallest and largest values
for T. This will give us a range for valid times. Throughout this discussion, P and C are fixed and known.
First note that already we know the last entry of T. The equation Tr =

∑r
j=1 cj +

∑r
j=1 kj − r is always

true because we know that the jth subclade needs (kj − 1) times to join and that each external joining uses
one time. Let (t1, . . . , tr) denote the list of minimal times, which we call Tmin, and let (T1, . . . , Tr) denote
the list of maximal times, which we call Tmax. To find the minimal times, we work from the beginning of
the list, and find the smallest value for the next entry by leaving enough times for the next subclade to be
joined as well as the number of external joinings specified by the composition. For the maximal times, we
work from the end of the list, leaving enough time for external joinings. This algorithm (worked out by
Housworth and Martins) yields the following equations:

t1 = kp1 − 1 + c1

ti = ti−1 + kpi − 1 + ci =
i∑

j=1

kpj − i+
i∑

j=1

cj (B.1)

Tr−1 = Tr − cr − 1

Tr−i = Tr−i+1 − cr−i+1 − 1 = Tr −
i∑

j=1

cr−j+1 − i (B.2)

=
r∑
j=1

cj +
r∑
j=1

kj − r −
i∑

j=1

cr−j+1 − i

Now we take the entry-wise difference between Tmax and Tmin and call this new list D, for differences.
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For i ∈ {0, . . . , r − 1}:

Dr−i = Tr−i − tr−i =
r∑
j=1

cj +
r∑
j=1

kj − r −
i∑

j=1

cr−j+1 − i

−

r−i∑
j=1

cj +
r−i∑
j=1

kpj − (r − i)


=

i∑
j=1

kpr−j+1 − 2i

A consequence of the cancellation of the above sums containing cj is that the number of possible sets of
last joining times T does not depend on the composition C. The composition is needed to find Tmax and
Tmin, which give the nominal ranges for the entries T , but the size of those ranges is independent of the
composition.

We now take another difference, this time between adjacent entries of D:

Dr−i −Dr−i+1 =
i∑

j=1

kpr−j+1 − 2i−
i−1∑
j=1

kpr−j+1 − 2(i− 1)

= kpr−i+1 − 2

Let Tref denote the list of all the double differences: (D1 − D2, D2 − D3, . . . , Dr−2 − Dr−1) = (kp2 −
2, . . . , kpr − 2). Note that this double differencing procedure leaves a list which depends only on the sizes of
the subclades in the permuted list kp.

For example, suppose we have a problem where (k1, . . . , k6) = (2, 3, 4, 5, 5, 6) and n = 6 external taxa.
Suppose we choose the permutation P = (3, 2, 5, 4, 1, 6) and the composition C = (0, 0, 2, 4, 3, 1). Since the
composition total c is 10 and the sum of the sizes of the 6 subclades is 25, we know that Tr = 10+25−6 = 29.
After finding Tmax and Tmin using the equations B.1 and B.2, we subtract twice to obtain D and Tref as in
the following table:

Tmax 14 15 18 23 27 29
Tmin 3 5 11 19 23 29
D 11 10 7 4 4 0
Tref 1 3 3 0 4

To choose our times, we will choose a composition Θ which will be constrained by Tref , and then we will
do the reverse of the above differencing procedure to find a corresponding set of times.

Algorithm B.3.3. Here we use a constrained composition to choose T.

1. Choose τ ∈ [0,
∑r−1
i=1 Trefi ], weighted according to the number of compositions of τ into (r − 1) parts,

constrained as in B.3.1 by (kpr − 2, kpr−1 − 2, . . . , kp2 − 2) (Tref in reversed order).

2. Generate a random composition, denoted Θ of τ into (r-1) parts, and reject if it fails the same constraint
as in step (1).
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3. Generate a list of length r, called D. Dr ← 0 ; Dr−i ← Θi +Dr−i+1 for i ∈ {1, . . . , r − 1}

4. Generate Tmax, the set of times where every entry is maximal, using equation B.2

5. Ti ← Tmaxi −Di for i ∈ {1, . . . , r}

Later on we will need the total number of possible choices for the times T , which we will denote by
Ttot(P ). This is simply the sum of all the weights calculated in step (1) of algorithm B.3.3. Again note it
only depends on the choice of permutation.

Using the same example as above, we would begin algorithm B.3.3 by choosing τ between 0 and∑r−1
i=1 Trefi = 11, since that is the greatest total our composition can take can correspond to a valid set

of times. Suppose we choose τ = 8. We now choose Θ so that it corresponds to a set of valid times.
This constraint is exactly the one in ?? with A = Tref (order reversed). For instance in this example
Θa = (1, 2, 4, 0, 2) is valid, while Θb = (3, 1, 4, 1, 0) is not. To see that this is true, we can find the set of
times Ta and Tb corresponding to Θa and Θb respectively. We can illustrate the process of finding Da and
Db and Ta and Tb by steps (3) and (5) of algorithm B.3.3 by the following two tables:

Θa 1 2 4 0 2
Reverse ordered Θa 2 0 4 2 1
Da 9 7 7 3 1 0
Tmax 14 15 18 23 27 29
Ta = Tmax −Da 5 8 11 20 26 29
Tmin 3 5 11 19 23 29

Θb 3 1 4 1 0
Reverse ordered Θb 0 1 4 1 3
Db 9 9 8 4 3 0
Tmax 14 15 18 23 27 29
Tb = Tmax −Db 5 6 10 19 24 29
Tmin 3 5 11 19 23 29

Note that step (3) can be interpreted as adding each term of a reverse ordered Θ to D, starting from the
end of the list. Observe that every entry of Ta falls between the corresponding entries of Tmax and Tmin,
but the third entry of Tb is too small. This is because the sum of the first three entries of Θb is 3 + 1 + 4 = 8
but the sum of the first three entries of Tref is 7.

B.3.4 The Monte Carlo Markov Chain

We will use the Metropolis-Hastings algorithm to construct a random walk on the space of categories. For
a general overview of the Metropolis-Hastings algorithm see [3].

Algorithm B.3.4. Given the current state (P, T,C), we go to the next state by this process:

1. Use the Markov Chain (Algorithm B.3.2) to generate a candidate category (P ′, T ′, C ′)

2. Calculate the weight of the new category, WP ′,T ′,C′

3. Generate U ∈ [0, 1], a uniform random variable.
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4. If U < W(P ′,T ′,C′)
W(P,T,C)

J(P,T,C)
J(P ′,T ′,C′) , then (P, T,C)← (P ′, T ′, C ′)

In step (4), we essentially flip a weighted coin to decide to accept a new category or not. The probability
of acceptance is the product of two ratios. The first ratio is given by equation B.3 determined by Housworth
and Martins which gives the relative weight of a category. W(P, T,C) is the number of trees contained in
the category divided by a common factor to all categories.Thus the ratio W(P ′,T ′,C′)

W(P,T,C) is equal to the ratio of
the total number of trees in the two categories.

W(P, T,C) =
(
t1 − 1
c1

)(
n− c1 + 1

2

)(
t1 − 1− c1
kp1 − 2

)
× (B.3)

r∏
j=2

[(
tj − tj−1 − 1

cj

)(
n−

∑j
i=1 ci + j

2

)(
tj −

∑j
i=1 ci −

∑j−1
i=1 kpi + (j − 2)

kpj − 2

)]

This acceptance decision based on the values of the target distribution at both points is how Metropolis-
Hastings algorithm incorporates the target distribution. By choosing to accept a jump only part of the time
in this way, we create a walk which after a large number of samples converges to the target distribution.
If the category is large, we are likely to not accept many jumps away from it. Likewise, (in the symmetric
Metropolis algorithm) if any candidate category is larger than the current category, we always jump to it.

The second ratio in step (4) of algorithm B.3.4 corrects for having an asymmetrical jump process. By
symmetric, we mean that the probability that one generates a candidate from the current state must equal
the probability of doing the reverse process. We denote by J(P, T,C) the probability that the triplet
(P, T,C) will be generated as a candidate cateogry. A symmetric process would then satisfy the condi-
tion J((P ′, T ′, C ′)|(P, T,C)) = J((P, T,C)|(P ′, T ′, C ′)). Since our jump process is independent, meaning it
does not depend on the current state, we can drop the conditions on these probabilities and simply say
J(P, T,C) = J(P ′, T ′, C ′). However, this condition is not satisfied because the number of possible times,
Ttot, depends on the permutation, P . Thus our process is not completely uniform, and we must incorporate
the asymmetry into the Metropolis-Hastings algorithm. The ratio J(P,T,C)

J(P ′,T ′,C′) accomplishes this correction.
This ratio of probabilities is easily calculated, since it is simply equal to the reciprocal of the ratio total
times.

J(P, T,C)
J(P ′, T ′, C ′)

=
Ttot(P ′)
Ttot(P )

(B.4)

We can see this is true by realizing that the permutation and combination are chosen uniformly at random
so the probabilities will cancel in the ratio, while the probability that a given set of times is chosen (given a
fixed P) is 1/Ttot(P ).

B.4 Discussion

We programmed the algorithm into the R language and ran the program on a MacBook laptop. The code
to run the program is found in the Appendix, along with all necessary subroutines. The acceptance rate
(the number of times a jump was accepted divided by the number of trials) when running the Metropolis-
Hastings algorithm with our jump process was about 1 percent. To increase this acceptance rate, we instead
use every 100th(P, T,C) in the chain. The acceptance rate with this adjustment is about 90 percent for 5
subclades and about 25 percent for 10 subclades. The algorithm’s runtime is about one minute to generate
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100 random categories with 5 subclades and 30 total taxa. It increases to about 7 minutes to generate 100
random categories with 10 subclades and 50 total taxa. This could be improved two ways. First, translating
to a lower-level compiled language such as C or C++. Second, we could improve the method of choosing
compositions in steps (3) and (5) in algorithm B.3.2. The current way of randomly picking compositions
and checking if they satisfy the constraints is inefficient. For larger problems, it often takes many tries
to randomly find a composition which fits the constraints (especially with the composition for times). A
natural extension of this problem would be support for nested constraints on the trees. Constraints for this
problem might look like: ((A,B,C),(D,E),F))(G,H,I),J,K,L. To choose a random tree from these constraints,
we could use generate categories for the overall structure: (A,B,C,D,E,F),(G,H,I),J,K,L. Then we would use
the process described in [1] to generate a random tree. This would give us a set of times that each subclade
uses to join its elements. We would relabel these times and iterate the process for the inside constraints.
The only alteration needed is a change in the formula for the weight, equation B.3.
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Appendices

A Computer Code

The following is the R code which we used to run the algorithms described in the paper. The function
Metropolis is called with a vector k of length r, which contains the sizes of the subclades, n, the number
of external taxa and trials, the number of desired (P,T,C) triplets. It stores every 100th category and
calculates the acceptance rate, defined as the number of times the category changed divided by the number
of trials. Metropolis calls the subroutines “weight” and “ranPTC”. Subroutine “weight” executes the
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formula from [1] for the category weight, and the code is written by Housworth. Subroutine “ranPTC” is
the jump process (algorithm B.3.2). ranPTC calls subroutines “rancom”, “Final T”, and “recursion count”.
Subroutine “rancom” is a translation of the algorithm in [2] to find a random composition. Subroutine
“Final T” is a translation of the algorithm in [1] to find the maximal set of times given P and C. Subroutine
“recursion count” executes the algorithm in section B.3.1 and the code is written by Housworth.

Metropolis<-function(k,n,trials){
ptc<-ranPTC(k,n)
w1<-weight(k,n,ptc[[1]],ptc[[2]],ptc[[3]])
Perms<-vector(mode = "list", length = trials+1)
Times<-vector(mode = "list", length = trials+1)
Comps<-vector(mode = "list", length = trials+1)
Perms[[1]]<-ptc[[1]]
Times[[1]]<-ptc[[2]]
Comps[[1]]<-ptc[[3]]
accept<-0
for(i in 2:(100*trials+1)){
candidate<-ranPTC(k,n)
w_c<-weight(k,n,candidate[[1]],candidate[[2]],candidate[[3]])
#print(w_c)
u<-runif(1)
if (u<((w_c/w1)*(candidate[[4]]/ptc[[4]]))){
ptc<-candidate
w1<-w_c
changed<-TRUE
}
#Every 100th time, store the result, increment the acceptance if we’ve moved,
# and reset logical variable changed to FALSE
if (1==i%%100){
Perms[[(i %/% 100)+1]]<-ptc[[1]]
Times[[(i %/% 100)+1]]<-ptc[[2]]
Comps[[(i %/% 100)+1]]<-ptc[[3]]
if(changed==TRUE) accept<-accept+1
changed<-FALSE
}
}
acceptance<-accept/(trials)
print(Perms)
print(Times)
print(Comps)
print(acceptance)
}

#The following code computes the weights. comp is C, Times is T, and
#k_perm is the size of the clade in the permuted list.
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weight<-function(k,n,p,Times,comp){
r<-length(k)
k_perm<-rep(0,r)
for (i in 1:length(k)) {
k_perm[i]<-k[p[i]] }
P_new = 1
P_new = P_new*choose((Times[1] -1), comp[1]) * choose((n - comp[1] + 1), 2)
P_new = P_new*choose((Times[1] - comp[1] - 1), k_perm[1] - 2)
for (j in 2:r){
P_new = P_new*choose((Times[j] - Times[(j-1)] -1), comp[j])*
choose((n-sum(comp[1:j]) + j), 2)*choose( (Times[j] - sum(comp[1:j])
-sum(k_perm[1:(j-1)]) +(j-2) ), k_perm[j] - 2)
}
return(P_new)
}

#this is the code for the jump process
ranPTC<-function(k,n) {
r<-length(k)
#find random permutation
p<-sample(1:r)

###############################################################
#count the allowed compositions for all possible c
allowed<-rep(0,n+r-1)
a<-rep(0,r)
for(i in 0:(n+r-2)){
if ((i-n)<0) a[1]<-i
else {
a[1]<-n-1
for (j in 2:(2+i-n)){
a[j]<-1
}
}
allowed[i+1]<-recursion_count(a,r,i)
}
#choose c according to weighted probability of allowed
c<-sample(0:(n+r-2),1,prob=allowed)
done<-0
#generate random compositions until one fits the constraints
while(!done){
comp<-rancom(c,r)
sum<-0
ok<-1
for(j in 1:(r-1)) {
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sum<-sum+comp[j]
if (sum>max(n-2+j,0)) ok<-0
}
if (ok==1) done<-1
}

################################################################
#find t_r, which is set by c already
t<-rep(0,r)
t[r]<-c+sum(k)-r

#find the reference_T corresponding to extreme times
reference_T<-rep(0,r-1)
for (i in 1:(r-1)) reference_T[i]<-k[p[i+1]]-2

#generate a vector allowed_times which contains the number of
#possible constrained compositions for each composition total.
allowed_times<-rep(0,sum(reference_T)-1)
#there’s always only one allowed for the sum of 0
allowed_times[1]<-1
#we initialize a_times to the maximum sum, we will decrement it each loop
#to keep its sum equal to i
a_times<-rev(reference_T)
for(i in sum(reference_T):1){
allowed_times[i+1]<-recursion_count(a_times,r-1,i)
entry<-(which(cumsum(rev(reference_T))>(i-1))[1])
a_times[entry]<-a_times[entry]-1
}

#total_times is the total number of times, which depends on p.
#We will need this later for the asymmetry bias correction.
total_times<-sum(allowed_times)

#now we pick a composition total based on allowed_times
t_comptotal<-sample(0:sum(reference_T),1,prob=allowed_times)
#now we pick a random composition and check to see if it fits the constraints
done<-0
while(!done){
t_comp<-rancom(t_comptotal,r-1)
ok<-1
for(j in 1:(r-2)) {
if (cumsum(rev(t_comp))[j]>cumsum(rev(reference_T))[j]) ok<-0
}
if (ok==1) done<-1
}
#now we construct times based on t_comp, Final_T
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differences<-rep(0,r)
for (i in 1:(r-1)) differences[r-i]<-t_comp[r-i]+differences[r-i+1]
t<-Final_T(p,comp,t)-differences

ptc<-list(p,t,comp,total_times)
return(ptc)
}

recursion_count <- function(a, r, c){
count = 0
if (r==2){# it’s all trivial
count = a[1] + 1
}
else #r is at least 3
{
recursion = rbind(c(0, 0, -choose(a[r-1] + 1, 2)),
c(a[r-2]+a[r-1]+2, 2, 1))

if(r>3){
for (j in (r-3):1){
recursion = rbind(recursion, c(a[j]+1, 1, recursion[1,3]))
recursion[1,] = c(0, 0, 0)
for (i in 2:(nrow(recursion)-1)){
recursion[1,3]=recursion[1, 3]-recursion[i, 3]*choose(recursion[i,1],recursion[i,2]+1)
recursion[i,1]=recursion[i, 1] + 1 + a[j]
recursion[i,2]=recursion[i, 2] + 1

} # end for i loop
} # end for j loop
}
for (i in 1:length(recursion[,1])){
count = count + recursion[i, 3]*choose(recursion[i, 1], recursion[i, 2])
}
}# end else r is at least 3
count

} # end recursion_count

#This generates a random composition of c into r.
rancom<-function(c,r) {
a<-sample(c+r-1,r-1)
a<-sort(a)
comp<-c(1:r)
comp[1]<-a[1]-1
if(r==2) {comp[2]<-c+1-a[1]}
else{
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for (i in 2:(r-1)) {
comp[i]<-a[i]-a[i-1]-1
}
comp[r]<-c+r-1-a[r-1]
}
return(comp)
}

#This generates the maximal set of times T_max
Final_T<-function(p,comp,t) {
r<-length(p)
final_T<-1:r
final_T[r]<-t[r]
final_T[r-1]<-final_T[r]-comp[r]-1
for (i in 2:(r-1)) {
final_T[r-i]<-final_T[r-i+1]-comp[r-i+1]-1
}
return(final_T)
}
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C.1 Introduction

Definition C.1. The reversal p(i,j) is defined in the usual way.
(π1...πi−1πiπi+1...πjπj+1...πn) 7→ (π1...πi−1πjπj−1...πi+1πiπj+1...πn)

e.g. (1, 2, 3, 4, 5)p(2, 4) = (1, 4, 3, 2, 5)

Definition C.2. A signed reversal p’(i,j) operates the same way as p(i,j) except it flips the signs of every
object it moves.

e.g. (1, 2, 3, 4, 5)p(2, 3) = (1,−4,−3,−2, 5)
Given an ordering of genes into a chromosome, or genome, it is possible to speak of the distance (the

noise) between two adjancent genes.

Definition C.3. Let di represent the length of noise between gene i-1 and gene i for 1 < i < n. When i=0,n
, then di shall be infinite.

Assumption 1: The lengths of a reversal occur exponentially. f(l) = λe−λ(l)

Assumption 2: The cut of a particular reversal always occurs in the noise and providing the length of
the reversal doesn’t change one cut is as likely as another.

Assumption 3: Our model will be continous, that is for a reversal of i-j, a x1 ∈ [0, d1] is a valid left hand
cut. O shall denote the cut at exactly the gene i and di shall denote the cut at the gene i-1

A reversal p(i,j) now requires more information, namely the length of the reversal and where the
genome/chorosome was cut. To represent this information the notation p(i,j,k,x1) shall be adopted, with i-j
being the interval of genes affected; k being the length of the reversal; and x1 being the left hand cut. Note
that l ≥

∑j−1
k=i dk and 0 ≤ x1 ≤ di−1

Let S±n = Sn × {−1, 1}n. Here the first component is the ordering of genes and the second conveys
the signs of each of those genes. The set this paper concerns itself with is S±n × (R+)n−1. The component
(R+)n−1 = (d1, ..., dn−1) stores the distances.

Definition C.4. Lji =
∑j−1
n=i dn. This is the minimum length of a reversal over markers i-j.

p(i,j,k,x1) sends (π1...πi−1πiπi+1...πjπj+1...πn) 7→ (π1...πi−1−πj−πj−1...−πi+1−πiπj+1...πn) and sends
(d2, ..., dn) 7→ (d2...di−1, di + (l − L− 2x1), di+1...dj−1, dj + (2x1 − l + L), dj+1..., dn)

It is important to note that the reversal with cuts in the noise moves not only the genes but also the
noise. The mapping on the distances above tracks the movement of this noise.

Now that the stage is set, we can address the matter of finding a probability model. This paper will
divided into two main parts. The probability of a partiular reversal and an algorithm for uniform sampling
of paths.

C.2 Calculation of The Probability of a Particular Reversal

P (i, j, l, x1) will be the notation for the probability of the reversal of genes i − j with length l and left cut
point x1. Note that the following probabilities were computed given that a observable reversal occurred.

Definition C.5. M j
i =

∑j
n=i−1 dn. This is the maximum length of a reversal over markers i-j.

Lemma C.2.1. The interval of possible lefthand cuts given l,i, and j is (min(0, l − L− dj),min(l − L, di))
with l ∈ (Lji ,M

j
i )
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Proof. First consider the right end point of the interval. There are two possibilities. Either l is so short that
even with the reversal placed as far right as possible the right hand limit of dj is never encountered, or the
opposite is true. This implies that the right end point of the interval is min(0, l − L − dj). Similarly there
are two possiblities for the left end point. Either l is so short that it encounters the marker j or it is long
enough that it encounters di first. So the left end point of the interval is min(l − L, di) Q.E.D.

Definition C.6. Kj
i (l) = |(min(0, l − L− dj),min(l − L, di))|.

Lemma C.2.2. For a reversal i-j and in an small range of l, a large portion of Kj
i (l′) overlap. The length

of the intervals that does not overlap varies at most linearly with respect to l.

Proof. With each l ∈ (Lji ,M
j
i ) there is a region of possible lefthand cuts in (0, di). Consider the k ∈ (l+ε, l−

ε). The k with a associated interval with the smallest right and left end point will be l−ε. The k with a asso-
ciated interval with the largest right and left end point will be l+ε |(min(0, l + ε− dj)−min(0, l − ε− dj)| ≤
2ε and |min(l + ε, di)−min(l − ε, di)| ≤ 2ε Q.E.D.

Accordingly we shall take the simplfying assumption that in a small interval aroung l, the interval of left
hand cuts is independent of the length of the reversal.

Lemma C.2.3. P (x1 |l, i, j) = 1

Kj
i (l)

Proof. Given one p(i, j, l, x1), we can slide the reversal to the left by a small epsilon. This results in
p(i, j, l, x1 + ε). Since our model veiws p(i, j, l, x1) and p(i, j, l, x1 + ε) as equally likely, x1 is uniformly
distributed on K. Q.E.D.

Lemma C.2.4. P (l |i, j) = λe−λ(l)

e−λ(Lj
i )−e−λ(Mj

i
)

Proof. P (l |i, j) = P (l
∣∣∣l ∈ (Lji ,M

j
i )
)

= P (l)

P (l∈(Lji ,M
j
i ))

Q.E.D.

Lemma C.2.5. P (i, j | a reversal affecting at least one marker occurs) =
∫Mj

i

Lji

Kj
i (l)P

i≤j with i,j∈Z∗
n+1

Kj
i (l)

λe−λ(l)dl

Proof. P (i, j | a reversal affecting at least one marker occurs) =
∫Mj

i

Lji
P (i, j |) a reversal affecting at least one

marker occurs and l)P(l). The relative probability of l is λe−λ(l). Given the length l, the choice of left hand
cut is uniformly distributed over all the possible left hand cuts that result in a observed reversal. Thus
P (i, j |) a reversal affecting at least one marker occurs and l)= Kj

i (l)P
i≤j with i,j∈Z∗

n+1
Kj
i (l)

Q.E.D.

Theorem C.2.6.
∑
i≤j with i,j∈Z∗n+1

P (i, j | a reversal affecting at least one marker occurs) =
∑
i≤j with i,j∈Z∗n+1

∫Mj
i

Lji

Kj
i (l)P

i′≤j′ with i′,j′∈Z∗
n+1

Kj′
i′ (l)

λe−λ(l)dl =

1

Proof. Choose l1 ∈ R+ with l /∈
{
M j
i

}
∪
{
Lji

}
. Form the interval (l−, l+) where l− = max(

{
M j
i < l

}
∪{

Lji < l
}

) and l+ = min(
{
M j
i > l

}
∪
{
Lji > l

}
).

Choose a second l2 ∈ R+ with l /∈
{
M j
i

}
∪
{
Lji

}
∪ (l−, l+). Form (l−2 , l

+
2 ).

Pictorially we consider the positive real line with markers at each M j
i and Lji . The (l−i , l

+
i ) represent the

intervals of the disjoint finite partition of the real line by the markers. (The partition is finite as the number
of markers is finite.)
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Definition C.7. Let N equal the number of intervals in the above partition.

We know that Kj
i (l) 6= 0 on (Lji ,M

j
i ) and is zero otherwise.

Definition C.8. K(l) =set of non-zero Kj
i (l)

The only way K(l) can change as l changes is to lose a Kj
i or to gain a Kj

i . This requires that as l
changes it encounters Lji or M j

i . Thus K(l) is constant on (l−, l+), by construction.

Definition C.9. Klα =set of non-zero Kj
i (l) on (l−α , l

+
α ). Let U =

∣∣Klα

∣∣. Order the elements of Klα i.e.
the ith element of the set shall be denoted as Klαi with i ∈ Z∗U+1

This is well defined by the discussion above.
Thus

∑
i∈Z∗N+1

Kj
i =

∑
i≤j with i,j∈Z∗n+1

Kj
i (l) on (l−α , l

+
α ).

Thus
∑
i≤j with i,j∈Z∗n+1

∫Mj
i

Lji

Kj
i (l)P

i′≤j′ with i′,j′∈Z∗
n+1

Kj′
i′ (l)

λe−λ(l)dl =

∑
i∈Z∗N+1

∫ l+i
l−i

P
i′∈Z∗

U+1
Klα

i′
(l)P

i′′≤j′′ with i′′,j′′∈Z∗
n+1

Kj′′
i′′ (l)

λe−λ(l)dl =
∑
i∈Z∗N+1

∫ l+i
l−i
λe−λ(l)dl =∫∞

0
λe−λ(l)dl = 1
All of this rearrangement is possible as the number of sums and integrals involved is finite as a direct

consquence of the fact that the number of reversals is n2. Furthermore the partition is in fact one of the
entire positive real line as ∀l ∈ R+ K1

1 (l) 6= 0 by d0 being infinite and d1 is non-zero by definition.
Q.E.D.

Thus P (i, j, l, x1) = P (l, x1 |i, j)P (i, j) = P (x1 |l, i, j)P (l |i, j)P (i, j) =
∫Mj

i

Lji

Kj
i (l)P

i′≤j′ with i′,j′∈Z∗
n+1

Kj′
i′ (l)

λe−λ(l)dl 1

Kj
i (l)

λe−λ(l)

e−λ(Lj
i
)−e−λ(Mj

i
)

Remark C.1. If one’s purposes do not allow, the assumption of the neglible length of the genes can be
thrown out. This paper shall only breifly outline the changes required. Note also that the section of uniform
sampling is independent of the section on probability. Provided the user can work out the probability of a
given reversal in π, the rest of the paper can still be used even under a different probability distribution.

Definition C.10. Let li represent the length of gene i ∈ (1, ..., n).

Definition C.11. M ′ =
∑j
n=i−1 dn +

∑j
n=i ln

Definition C.12. L′ =
∑j−1
n=i dn +

∑j
n=i ln

The vaule of Kj
i (l) remains the same. So does the probability distribution above. The proof of theorem

2.8 still holds with slight alteration. The interval (0,min
{
Lji

}
) should not be represented in the partition.

Or rather it can be but the values of K in that interval are zero for all i-j reversals. In the proof of theorem
2.8, the markers of L and M are merely moved around. However we must now normalize the probability
since the minimum possible length of a reversal is no longer zero but the length of the smallest gene.
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C.3 Overview of previously constructed algorithms

Definition C.13. Given π, a hurdle is a section of the permutation of the form πj+1 = i, ...., πj+k−1 = i+k
with all πt ∈ {±(i+ 1), ...,±(k − 1)} ∀t ∈ {j + 2, ..., j + k − 2} and s.t. there is no smaller segment of this
section for which the above property holds. e.g. (2,-4,-3,5) is a hurdle of (6,2,-4,-3,5,1)

We can identify a signed permutation to an unsigned one in the following manner: πi goes to 2πi−1, 2πi if
by is positive and to 2πi, 2πi−1 is it is negative. e.g. (0, 6, 2,−4,−3, 5, 1, 7) 7→ (0, 11, 12, 3, 4, 8, 7, 1, 9, 10, 1, 2, 13).
0 and 7 are added merely as placeholders and perform that same function in the unsigned permutation, so
0 7→ 0 and n + 1 7→ 2(n + 1) − 1. It is clear that if we restrict what types of reversals are allowed on the
unsigned permutation to those that do not seperate the pairs 2πi, 2πi− 1, minimal distance on the unsigned
permuation is the same as that on the signed permuation. The breakpoint graph will be constructed from
the unsigned permutation. Say that i ≈ j when |i− j| = 1. Call (πi, πj) a break point when i ≈ j and but
not πi ≈ πj . Define a breakpoint graph to be the vertices π0 thru πn with as black edge connecting πi to πj
if it is a breakpoint and a grey edge connecting πi to πj if it is a break point of the inverse permutation. i.e.
πi ≈ πj but not i ≈ j. We are interested in alternating cycles, one edge grey the next black the next grey,
in the breakpoint path. It was proven by Bafna and Pezner that the maximum cycle decomposition of the
breakpoint graph is an important factor in minimal reversal distance.

In [4],it was proved that b(π)− c(π) + h(π) ≤ d(π) ≤ b(π)− c(π) + h(π) + 1

Where b(π) is the number of breakpoints,h(π) is the number of hurdles, and c(π) is the maximum cycle
decomposition.

1. Bader’s algorithm for calculating d(π) [5]
This algorithm give the distance and the number of hurdles and superhurdles along with the cycles that

they contain. Superhurdles are those whose destruction greates new hurdles.
Using a few facts from [6], Istvn Mikls and Aaron E. Darling managed a very efficent method of

enumerating possible sorting reversals with a low probability of false acceptance.

1. The reversals of a permutation with no hurdles are only those reversal that are cycle increasing.

2. The reversals of a permutation with only one hurdle is either cycle increasing or hurdle cutting.

3. The reversals of a permutation with two or more hurdles is either cycle increasing, hurdle cutting, or
hurdle merging.

Furthermore

1. Cycles increasing reversals act on a single cycle with reality edges of opposite orientation.

2. Hurdles cutting reversals act on a cycle within a single hurdle.

3. Hurdles merging reversals act on the a cycle with the end points within, even on the edges of, two
different hurdles.

Together these facts make an efficent though non-deterministic algorithm possible.
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C.4 MCMC algorithm for uniform sampling of R length paths
from π to the identity

In this section, the distance of a reversal to the identity will be mentioned often. This is to be understood
under the metric of minimum reversal distance. Consider a tree constructed in the following way, start with
π. In the next level, add nodes for each sorting resersal on π. Each node i in the second level corresponds to
a path pi. attach to this node all the sorting reversals for πpi. Continue for d(π) + 1. Each path on this tree
corresponds with a path from π to the identity. An MCMC method for sampling uniformly from this tree of
minimum paths was created by Istvn Mikls and Aaron E. Darling. That method is enumerated below. All
that the I claim is that which is necessary for the extension of that method to the sampling of non-minimal
paths. Now consider the extension of such a tree in the following way. If the path lengths are to be over
d(π), then each node in the tree can be connected to a number of reversals not all of which will be sorting.
The way such a tree would have to be constructed should be clear from the algorithm below.

Given a path from π to the identity of length R, denote Ci to be the ith long chain of that path i.e. if
πp1p2p3p4p5p6 is a full path, then C3 is πp1p2p3. Let C0 is π.

Definition C.14. Given π, S={p | p is a reversal and d(πp) < d(π)}

Definition C.15. Given π, U={p | p is a reversal and d(πp) > d(π)}

Definition C.16. Given π, O={p | p is a reversal and d(πp) = d(π)}

Lemma C.4.1. For d(π) = 1, O(π) = ∅.

Proof. The form of π and all permutations with minimal distance one is +→ −← +→, where the arrow represents
a string of consecutive numbers and the sign of the string is recorded above. i.e. (1,2,3,4,-7,-6,-5,8,9) is a
possible π

The forms of all possible πp1 are the following:
+→ −←−← +→
+→ −← +→ −→ +←
+→ +→−← −← +→
Since breaks in arrow of the same sign represent breakspoints in the permutation, we conclude that none

of the possible forms of πp1 match those of any permutation α with d(α) = 1. Q.E.D.

This is not to say or suggest that Oπ is always empty. Let a permutation with no superhurdles or double
hurdels be given. The reversal of the entirity of a small isolated, as in not interweaved with any other cycle,
cycle of the breakpoint path with breakpoints at both ends will be a level reversal providing the resultant
cycle also has breakpoints at both ends. This is so as the number of breakpoints, internal to the cycle on
the edges and outside, is unchanged. As is the maximum cycle decomposition, and the number of hurdles.
This is not an irrelevant point as the existance of level moves allows for different types of paths. In effect the
level reversal can be a waiting move in the paths progress to the identity. Furthermore since every reversal
moves the minimal distance of a permutation out or in by at most one, all paths to the identity without a
level are odd when d(π) is odd and even otherwise. Thus without a level move a path of length 50 from π →
identity with d(π) = 17 does not exist.

1. Construct a sample chain Ci for 0 ≤ i ≤ R. C1 = π and CR =identity. Compute d(Ci) for each
sub-chain. For each Ci associate a vetor in {−1, 0, 1}i. This vector gives the nature of each reversal in the
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Ci sub-path. If the jth vector component is 0, then the jth reversal of the path is an element of the O and
so forth. Denote said vector as vCi and the jth component of the vector as vCij

2. A swapping operation will be performed on Ci and Ci+1. This operation will be defined as follows:
Ci+1 7→ C ′i by the removal of the last reversal of Ci+1.

d(C ′i) =


d(Ci+1) + 1 if vCi+1

i+1 = −1
d(Ci+1)− 1 if vCi+1

i+1 = 1
d(Ci+1) if vCi+1

i+1 = 0
(C.1)

At the same time Ci will be extended to Ci+1 in the following way.
Store R-i=r.
For r 6= 2 or r=2 and d(Ci) 6= 1

• While d(Ci) = r, form S by algorithm and choose uniformly. It should be noted that S contains a small
percentage of non-sorting reversals. Once a reversal (pi+1) is chosen, Form C ′i+1 = Ci ◦ pi+1, where ◦
represents the concatenation of Ci with pi+1. Now calculate d(C ′i+1). If d(C ′i+1) = d(Ci) − 1, accept
canditate reversal. Reject it otherwise and choose a new candidate.

• While d(Ci) = r − 1, use the naive algorithm of enumerating posible reversals affecting them and
calculating the new distance to form the sets S,U, and O. This algorithm works in n3. Choose from
the union of S and O. Calculate the d(C ′i+1).

• While d(Ci) < r − 1, choose uniformly over all possible reversals and then calculate the new distance.

For r = 2 and d(Ci) = 1
Backtrack through one accepted reversal, and calculate O again. Continue until.

1. d(Cj) 6= R − j. There are two possible cases.In either case we now choose a new p’(j+1) out of the
O ∪ U − {pj+1} , thereby avoiding the dilemma above.

• d(Cj) = R− j − 3 and pj+1, the reversal just removed, is an element of U

• d(Cj) = R− j − 2 and pj+1 is an element of 0

2. If O is found to be non-empty first, then at that swapping of chains an extension out of O is chosen.

This is a monte carlo markov chain. First any swap can be undone, so reversibility holds. Secondly note
that a state of this markov chain is a vector X = (C1, ..., CR). Since any chain may be grown by a series of
swaps from CO without altering the chains of greater index, irreducibility holds.

The result of this swapping operation is accepted when u chosen uniformly from (0,1) and u ≤ P (C′i◦pi+1|C′i)
P (Ci◦pi|Ci) .

That is
P (C′i◦pi+1|C′i)
P (Ci◦pi|Ci) = P (X|Y )

P (Y |X) with X = (C1, ., Ci, Ci+1, .., CR) and Y = (C1, ., C
′
i, C
′
i+1, .., CR). C ′i =

Ci+1/ {pi+1} and C ′i+1 = Ci ◦ p′i+1 where p′i+1 is an accepted extension. That is X and Y are related by a
chain swap. Now given Ci+1 the new C ′i is determined. The probability of a particular extension is 1/(Q)
with Q being the set of possible steps from Ci given the time left and the distance from the identity of the
position of the permutation at the end of the chain. This Q varies a good deal, its composition is given in

the second step of the algorithm. It is clear that
P (C′i◦pi+1|C′i)
P (Ci◦pi|Ci) = |Qi|

|Qi+1| . In conclusion, given two full chains
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each is the last component of the same number of elements. Thus since this algorithm samples X’s uniformly
it also samples all full paths uniformly.

[4] showed that the mixing time of his algorithm was the following.
Let u a node in the jth level of the tree. Let Lj(u) denote the number of extension of node u,Di be the

number of node is the ith level of the tree.

Definition C.17. Let k= maximaxu∈Dimaxj>i
|Lj(u)||Di|
|Dj | be called the hiddenness rate.

[4] showed that the mixing time was O(hR2+log2(9k)) with h equal the inverse of the smallest transition
probability. I conjecture that my algorithm mixes in less than O((hR2+log2(9k))3+E) where E is the expected
time spent backtracking through the tree. Furthermore I conjecture that a level reversal is likely to exist
at a level greater than or equal to R-j for some j < 10. If this could be demonstrated, a probability of the
accepting a node outside of the tree could be calculated as well as the time spend on that bad path. This
would allow one to estimate E.

C.5 Enumerating parsimonious orderings of blocks

This section is only a slight extension of Gaul and Blanchette. It is included here merely as a point of
interest.

Gaul and Blanchette solved the block ordering problem. Define a block as a small ordered set of gene s.t.
the genes are adjancent in the genome. e.g. [c,d,e,f,b] has a block decomposition [c] [d,e] and [f,b]. Usually
the blocks [a] and [n] are added as place holders. [a] at the beginning of each possible ordering and [n] at
the end. Given two sets of blocks, one for genome A and one set for genome B, what is the simultaneous
ordering of blocks that maximizes the cycles in the resultant breakpoint graph? Roughly this means that
given partial information regarding genome A and genome B, which possible genomes are the most likely
pair. This is the block ordering problem.

In this section, the number of blocks of genome A is assumed to be one. That is the entire genome A
is given. Genome B is still fragmented. The problem now is to enumerate all the parsimonious possible
genome B.

A glance at Gaul and Blanchette will show that their work readily extends to the case outline above.
This paper will not give the program for enumeration explicitly.

First note that the Edge Matching Graph defined in Gaul and Blanchette has only the components a—n
and b—f. The exact graphical style of that paper has not been adopted as the two components have only
two markers. A quick examination will reveal the following.

Lemma C.5.1. The only possible orders of the edge maching algorithm are [a][b...f ][n] and [a’][b’...f ’][n’]
or [a][-f...-b][n] and [a’][-f ’...-b’][n’].

Since [a] and [n] are place holders, genome B is being considered with respect to genome A and [b...f] is
the entire genome A, the two possiblities in the lemma above are equivalent for our purposes.

For all one sided components, list the one sided edges. Label the one sided components 1 thru n. Label
[b’...f’] as n+1.

Now Gaul and Blanchette proved that while ordering the blocks of one-sided components which edge is
sacrificed is irrelevant. Also the reading, negative or positive, is irrelevant. Thus a program that can list the
elements of Sn+1 × {−1, 1}n × Zk1 × .... × Zkn with kn denoting the number of edges in the ith one-sided
component, will have listed all the parsimonious orders.
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Sn+1 gives the order of the one-sided components and [b’...f’]. {−1, 1}n gives the sign of each of the
one-sided components. -1 in the ith position means to read the ith one-sided component backwards. 1
means to read it forwards. Zk1 × ....× Zkn gives the edge to be left out of each one-sided component.
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D.1 Introduction

It was shown algebraically in 2002 in a Grigorchuk-Zuk paper [2] that the Basilica Group G =< a, b > has
exponential growth. The proof showed by contradiction that the semi-group generated by a and b is free by
examining cases with two minimal words representing the same element and contradicting their minimality.

The proof presented in this paper is similar in set-up to the Grigorchuk-Zuk proof, but uses Schreier
Graphs to prove geometrically that no two words in positive powers of a and b represent the same group
element. This intuitive method may be able to be applied to show other groups have exponential growth.

D.2 Growth of Groups

Let S = {s1, . . . sk} be a symmetric finite generating set of a group G =< S >. Then each g ∈ G can
be written as g = si1 . . . sil. The shortest such decomposition is called the length of the element, denoted
l(g) = lS(g). The growth function γ(n) = γSG(n) is the number of g ∈ G such that l(g) ≤ n.

Consider two growth functions γ, γ′ : N→ N and define γ 4 γ′ if γ(n) ≤ Cγ′(αn) for all n > 0 and some
C,α > 0. γ and γ′ are equivalent, denoted γ ∼ γ′ if γ 4 γ′ and γ′ 4 γ.

Theorem D.2.1. If S and S′ are two finite generating sets of a group G then γSG ∼ γS
′

G

Proof. Let S = {s1, . . . , sk} and S′ = {s′1, . . . , s′k′}. Since both sets generate G, we can write each si ∈ S as
a word in elements of S′. Let the length each such word be ci, i.e., lS′(si) = ci. Define

C = max{ci}, 1 ≤ i ≤ k

so that lS(g) ≤ ClS′(g) ∀g ∈ G. This implies that γS
′
(n) ≤ γS(Cn). A similar argument shows that

γS(n) ≤ γS′(C ′n), proving the growth functions to be equivalent. Q.E.D.

We can now define the different types of growth on a function f : N→ R. A function f is called polynomial
if f(n) ∼ nα for some α > 0. A function is called exponential if f(n) ∼ en.

A group has superpolynomial growth if

lim
n→∞

lnγ(n)
ln(n)

=∞

A group has subexponential growth if

lim
n→∞

lnγ(n)
n

= 0

If a group has both superpolynomial and subexponential growth, we say it has intermediate growth. [1]

D.3 Automorphisms of the Infinite Binary Tree

Let T be an infinite binary tree, as in Figure D.1.
The root of the tree, denoted r corresponds to the empty word ∅. V os the set of all vertices v, where

a vertex of level n denoted by | v |= n is a word in {0, 1}n. E is the set of all edges, and by definition
(v, w) ∈ E if w = v0 or w = v1. We denote Tv to be the subtree of T rooted at the vertex v, and we see Tv

is isomorphic to T.
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r
↙ ↘

0 1
↙ ↘ ↙ ↘

00 01 10 10
...

...

Figure D.1: Infinite Binary Tree

We are concerned with Aut(T), the group of bijections of vertices which map edges into edges and preserve
the root and level of vertices. I ∈ Aut(T) is the identity automorphism. The simple but extremely important
automorphism σ ∈ Aut(T) corresponds to a swap at the first level, and maps T0 into T1. Precisely, σ is
defined as σ(0w) = 1w and σ(1w) = 0w for any word w in 0 and 1.

Since the subtrees T0 and T1 are isomorphic to T, we can identify an automorphism of the tree as a swap
or identity on the first level along with automorphisms on T0 and T1. Formally, this is expressed through
the following isomorphism, also called a wreath product :

φ : (Aut(T)×Aut(T)) o Z2 −→ Aut(T)

ε(g0, g1) 7−→ g, ε ∈ {I, σ}

Using φ, we can define finitely generated subgroups of Aut(T) by defining the generating elements recursively.
Note the property that

σ(g0, g1)σ = (g1, g0)

D.4 Schreier Graphs

Schreier graphs can assist in understanding the properties, structure, and growth of these finitely generated
subgroups of Aut(T). In this context, a Schreier graph of a level n, denoted Γn consists of vertices that are
all the words in {0, 1}n and edges corresponding to each generating element acting on each vertex. In other
words, for each vertex v and generator s, there exists an edge from v to s · v. This edge is labeled with the
generator s.

Certain subgroups of Aut(T) have the special property that at all levels n, we can draw Γn so that it is
planar, i.e., so that edges only intersect at their endpoints. In addition, we draw Γn so that the local picture
in the plane is the same at every vertex.

D.5 The Basilica Group

The remainder of this paper focuses on one subgroup of Aut(T) that is generated by two elements, the Basilica
Group G =< a, b > with a and b defined recursively in the following way using the above automorphism φ.

a = σ(b, I)

b = (a, I)



On the Growth of the Basilica Group D-3

In another notation, for any word w in 0 and 1:

a(0w) = 1b(w) a(1w) = 0w

b(0w) = 0a(w) b(1w) = 1w

Example D.1. Some simple level 5 computations:

a(00101) = 1b(0101) = 10a(101) = 10001

b(10100) = 10100

Since we will be concerned with the vertex of n 0’s, the following two examples show how a and b act on
v = 00000:

a(00000) = 1b(0000) = 10a(000) = 101b(00) = 1010a(0) = 10101

b(00000) = 0a(0000) = 01b(000) = 010a(00) = 0101b(0) = 01010

The Basilica Group Schreier Graphs, when drawn with the properities outlined in Section D.4, are useful
tools in understanding properties of the growth of the group. Each word in a, b, a−1, b−1 together with a
starting vertex v gives a path in Γn, with a and b going forward (i.e., following the directions of the arrows)
and a−1 and b−1 going backwards. A cycle in Γn is defined as a forward path starting and ending at the
same vertex.

Proposition D.5.1. The shorest cycles in Basilica Schreier Graphs are those of word in < a > and < b >,
i.e., of only one generating element. Furthermore, there exists a vertex v ∈ {0, 1}n, namely v = 0 . . . 0 (n
0’s) that disconnects Γn into two pieces, Ln and Rn.

This is a consequence of results in [3].

D.6 Exponential Growth of the Basilica Group

Theorem D.6.1. The Basilica Group G =< a, b > as defined above has exponential growth.

This follows immediately from the following Lemma:

Lemma D.6.2. No two words in positive powers of a and b represent the same group element in G.

Proof. Let w1, w2 be different words in positive powers of a and b that represent the same group element
g ∈ G. Then without loss of generality we may assume w1 = w′1a and w2 = w′2b. Let

L = max{ | w′1 |, | w′2 | }

We want to show that, for a large enough n, w1 and w2 acting on the v defined in Proposition D.5.1 will
be in different pieces of the graph, a contradiction of their assumed representation the same group element.
This can be shown if we pick an n large enough that the cycles in only a and only b starting at v are longer
than 2L, as in:

#{< a > ·v} > 2L and

#{< b > ·v} > 2L
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Figure D.2: Basilica Schreier Graph Level 5
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For such an n, we want to show that, for any word w of length ≤ L in positive powers of a and b

wa · v 6= v and wb · v 6= v

Since a · v and b · v are in the seperate pieces of Γn, if the above is true, we will not be able to get back to v
and thus stay in seperate pieces of the graph. Q.E.D.

Proposition D.6.3. Let v = 0 . . . 0 (n 0’s, n even). The the orbit of v under a has length 2n/2.

Proof. We see that it is true for n = 2 with orbit 00→ 10→ 00. Assume it is true for n = k, k ≥ 2, k even,
i.e., the cycle of wk = 0 . . . 0 (k 0’s) under a has lenth 2k/2. We want to show that the cycle of 00wk under
a has length 2(k+2)/2. This orbit is

00wk → 10a(wk)→ 00a(wk)→ 10a2(wk)→ . . .→ 10wk → 00wk

twice as long as the orbit for wk since for each vertex va in the cycle of wk under a, there exists a vertex at
00va and 10va. The result follows from induction. Q.E.D.

A similar argument shows the same result for the cycle of v (n even) under b. From these results, we see
that can pick a large enough n such that

#{< a > ·v} > 2L and

#{< b > ·v} > 2L

Proposition D.6.4. If n is large enough (as defined above for instance), then for any word w of length ≤ L
in positive powers of a and b

wa · v 6= v and wb · v 6= v

Proof. Suppose for some word w, wa · v = v and | w |≤ L. In the set

{wa | wa · v = v, | w | ≤ L}

pick the shortest element. wa · v gives a cycle from v to itself and we see from Section D.5 that the shortest
cycle is that of w = a . . . a. Since we chose a large enough n as defined above, we see that it is impossible to
get back to v, a contradiction. Q.E.D.

D.7 Conclusion and Further Work

While exponential growth of the Basilica Group has already been proven [2], the connection between the
geometric Schreier Graphs and growth of groups is significant. A similar method could most likely be
extended to prove the exponential growth of the Rabbit Group, generated by three elements:

a = σ(I, c)

b = (I, a)

c = (I, b)

Furthermore, it is to be seen whether there exists a connection between the structure of Schreier Graphs
and intermediate growth. Perhaps there is a geometric method to discovering the growth of groups whose
growth is still unknown.
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E.1 Introduction

Few make it through an introductory algebra class without seeing the following exercise:

Exercise. If x2 = 1 for all x ∈ G, prove that G is abelian; more specifically, G is an elementary abelian
2-group.

The inquisitive algebra student, perhaps having seen other elementary exercises where this is the case,
might wonder whether the conclusion of this exercise would follow from a weaker hypothesis. This turns
out to be true; Theorem E.5.1 demonstrates that only three fourths of a finite group’s elements need be
involutions to guarantee it to be elementary abelian.

Before proving this main result, we collect a variety of interesting facts concerning both methods for
explicitly determining the number of involutions in a group and also the structure of groups with many
involutions. As many of these results were motivated by data collected using GAP, we follow that with a
discussion of those data, much of which is available in the Appendix. Some of the accompanying GAP code
is also included in the Appendix; the rest is available here1.

We assume the reader has some familiarity with the basics of finite group theory; The first five chapters
of [2], in particular, are a good place to start learning that material. However, for the convenience of the
reader, we provide some key points from basic group theory here:

Definition E.1.

1. The center of a group G, denoted Z(G), is {x ∈ G | xy = yx for every y ∈ G }.

2. The centralizer of an element g, denoted C(g) or CG(g), is the set of all elements that commute with
g. That is, C(g) = {x ∈ G | xg = gx }.

3. A subgroup H of G is normal in G (denoted H P G if it is preserved under conjugation. That is,
H P G if gHg−1 = { ghg−1 | g ∈ G, h ∈ H } = H.
When H is normal, the coset space G/H is itself a group (called the quotient group) under the operation
given by (aH)(bH) = (ab)H.

4. If G is acting on a set S, then the stabilizer of s ∈ S, denoted stab(s), is { g ∈ G | g · s = s }. The orbit
of s under the action, orb(s), is { t ∈ S | For some g ∈ G, g · s = t }.

5. If H is a subgroup of G, then we call |G|/|H| the index of H in G and denote it by [G : H].

Z(G), C(g), and stab(s) are all subgroups of G (check this!). We call a group “abelian” when Z(G) = G.
Also, when G is acting on itself by conjugation, we denote the orbit of an element g under this action by
cl(g) for “conjugacy class” of g. This is well-defined, as orbits partition a set:

Exercise. Let G be a group acting on a set S, and let s, t ∈ S. Prove that ∼, given by s ∼ t if s ∈ orb(t), is
an equivalence relation.

Theorem E.1.1 (Lagrange’s Theorem). If H is a subgroup of a finite group G, then |H|
∣∣|G|.

Thus the index of a subgroup is always a natural number.

Theorem E.1.2. If G is acting on a set S and s ∈ S, then stab(s) 6 G and [G : stab(s)] = | orb(s)|.

We will be interested in Theorem E.1.2 in a situation wherein G will be acting on itself by conjugation:
1idisk.me.com/zbnorwood1/public
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Corollary E.1.3. | cl(g)| = [G : C(x)].

Definition E.2. It will be especially important for the reader to be familiar with the following groups:

1. The cyclic group of order n, denoted Cn, is a group generated by an element of order n: { ai | 0 ≤ i ≤
n− 1 }.

2. The dihedral group of order 2n, D2n, is the group of symmetries of the n-gon. It is usually given by
the presentation〈
r, s | rn = s2 = 1, srs = r−1

〉
.

3. The symmetric group on n-symbols, denoted Sn, is the group of permutations of a set of cardinal-
ity n. The alternating group An is the subgroup (of index 2) of Sn consisting of exactly the even
permutations—products of an even number of transpositions—in Sn.

We also refer to cyclic subgroups of groups; for example, the cyclic subgroup generated by an element a
of order n is isomorphic to Cn and will be denoted by 〈a〉.
Exercise. Prove that |Sn| = n!.

Exercise. Let n be a natural number, and let a be a generator of Cn. Show that the map φ : Cn → Z/nZ
given by ai 7→ i is an isomorphism.

Exercise. Describe the conjugacy classes in D2n.

Definition E.3. The direct product of groups G and H, denoted G ⊕H, is their Cartesian product under
componentwise multiplication.
Two groups G and H are isomorphic, and we write G ∼= H, if there exists a bijective homomorphism between
the two groups.

For example, Cmn ∼= Cm ⊕ Cn if m and n are relatively prime.

Theorem E.1.4 (Fundamental Theorem of Cyclic Groups). Let Cn be the cyclic group of order n. Then,
for each d dividing n, Cn contains exactly one subgroup of order d.

Theorem E.1.5 (Fundamental Theorem of Finite Abelian Groups). Every finite abelian group is the direct
product of cyclic groups.

Exercise. Every subgroup of an abelian group is normal.

E.2 Definitions and Conventions

In light of the extensive variation among notational conventions used in algebra, here we state explicitly
which conventions we will adopt. First, D2n (not, as is the case in many texts, Dn) will denote the dihedral
group of order 2n. (For example, D8 will be the group of symmetries of the square.) The cyclic group of
order n will be denoted by Cn, groups will always be written multiplicatively, and ⊕ will always be used to
denote an external direct product of groups. (Note that the tables in the Appendix use ×, however.) To
denote the group identity we will use 1 or, when more than one group is being addressed, 1G. Finally, |A|
will serve double duty as the order of a group A if A is a group or the cardinality of a set A if A has no
algebraic structure.

The following definition will be of central importance:
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Definition E.4. For any group G define

J(G) := {x ∈ G | x2 = 1G } and j(G) := |J(G)|.

When G is the only group under consideration, J and j might be used in place of J(G) and j(G), respectively.

Although this definition clearly applies to infinite groups, we will, unless otherwise noted, be dealing with
only finite groups in this paper.

It is worth noting here that, since we use “involution” to describe an element of order 2, J(G) is actually
the set of the involutions (for our purposes, elements of order 2) in G and the identity. The convenience
adopting this convention provides is evident in Lemmas E.3.4 and E.4.4, for example.

We might, with this new terminology, rephrase Exercise E.1:

Exercise. If G = J(G), prove that G is an elementary abelian 2-group.

In our study of groups more than half of whose elements are involutions, it will be convenient to refer to
a generalization of the dihedral group. We define that now:

Definition E.5. If G is an extension of an abelian group A by C2 = 〈x〉, where x acts on each element of
A by inversion, then we say G is of dihedral type and denote G by DA.

Finally, we borrow a definition from Edmonds [1]:

Definition E.6. If G is a group of order 2nm, m odd, and j(G) = 2n−1(m+ 1), then we call G 2-maximal.

This terminology is justified by Edmonds’ proof that a 2-maximal group does in fact have at least as
many involutions as every other group of its order. For convenience, we will restate that result here, using
our conventions:

Theorem E.2.1 (Edmonds). If |G| = 2nm, m odd and n at least 1, then j(G) ≤ 2n−1(m+ 1).

E.3 Determining j(G) and J(G)

It will be useful to record a few almost trivial facts, both to give the reader a feel for the topic and to
streamline the proofs of some of the more interesting theorems. Determining J(Cn), for example, is a trivial
corollary of the Fundamental Theorem of Cyclic Groups:

Lemma E.3.1. If G = C2n, a cyclic group of even order, then J(G) = 〈x〉, where x is the lone involution
in G, and j = 2.

The following are worth recording, but too trivial to merit numbering or proof:

1. A group element is contained in J if and only if it is its own inverse.

2. If |G| is odd, then J(G) is trivial.

3. If |G| is even, then j(G) ≥ 2.2

The following forms the foundation for our analysis of actually realized values of j.
2By Cauchy’s Theorem.
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Proposition E.3.2. If |G| is even, then j(G) is even.

The easiest way to see this is to pair every element with its inverse; an element in J will be paired with
itself, and it is easy to see that the number of such elements must be even. For variety, we provide a short
proof (that expresses the same ideas) using group actions and Burnside’s Counting Lemma. It will be useful
for the reader to recall the following definition:

If G is acting on S, then, for g ∈ G, fix(g) = { s ∈ S | g · s = s }.

Proof. Let G be a group of even order, and let C2 = 〈x〉 act on G by conjugation, wherein x inverts each
element of G. That is, x · g = xgx−1 = g−1 for every g ∈ G. Note that fix(x) = { g ∈ G | g−1 = g } = J(G).
Letting O denote the number of orbits under this action, we have, by Burnside’s Counting Lemma,

O =
1
|C2|

∑
z∈〈x〉

|fix(z)| = 1
2
(
|fix(1C2)|+ |fix(x)|

)
=
|G|
2

+
j(G)

2
.

O and |G|/2 are integers, so j(G)/2 is an integer. That is, j(G) is even, as required. Q.E.D.

Many of our results concern groups more than half of whose elements are involutions. The perceptive
reader might already have identified D2n as such a group; for the rest of you, here is that result with proof:

Lemma E.3.3. If G = D2n, then

j(G) =

{
n+ 1 if n is odd
n+ 2 if n is even.

Proof. We give D2n its standard presentation:〈
r, s | rn = s2 = 1, srs−1 = r−1

〉
First note that (sri)(sri) = (sris)ri = r−iri = 1 for all i, 1 ≤ i ≤ n. As s 6= (ri)−1, sri is a nontrivial
element of J(D2n). So J(G) contains these n distinct elements and the identity, and rn/2 if and only if n is
even. Q.E.D.

Lemma E.3.4. j(G⊕H) = j(G)j(H).

Proof. Let g ∈ G and h ∈ H. Then, since |(a, b)| = lcm(|a|, |b|),

(g, h) ∈ J(G⊕H) ⇐⇒ |(g, h)| ∈ {1, 2}
⇐⇒ lcm(|g|, |h|) ∈ {1, 2}
⇐⇒ |g| ∈ {1, 2} and |h| ∈ {1, 2}
⇐⇒ g ∈ J(G) and h ∈ J(H). Q.E.D.

Proposition E.3.5. If G = DA is of dihedral type, then every element of G r A is an involution, and
j(G) = |G|/2 + j(A).
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Proof. For xi ∈ C2 = 〈x〉 and ai ∈ A, (a1, x1)(a2, x2) = (a1a
−1
2 , x1x2).

So the elements of Gr A correspond to the elements (ai, x) in Ao 〈x〉. Clearly each of these is nontrivial,
and (ai, x)2 = (aia−1

i , x2) = 1G, so each is an involution. Then we have

j(G) = j(GrA) + j(A) = |GrA|+ j(A) = |G|/2 + j(A),

as required. Q.E.D.

Note that, in particular, when G is the dihedral group of order 2|A|, A is cyclic, so

j(G) =

{
|G|/2 + 1 if |A| is odd
|G|/2 + 2 if |A| is even,

as in Lemma E.3.3.

Proposition E.3.6. If x ∈ J(G), then 〈x〉 is normal in G if and only if x is central.

Proof. Every inner automorphism of G must map x to itself, so gxg−1 = x for every g in G. That is, gx = xg
for every g ∈ G. Q.E.D.

Proposition E.3.7. J(G) ∩ Z(G) is a subgroup of G.

Proof. Let J denote J(G) and Z denote Z(G).
Let x and y be elements of J ∩ Z. Then xy ∈ Z and (xy)2 = x2y2 = 1G, as x and y are in J , so xy ∈ J .
Furthermore, (x−1)2 = (x2)−1 = 1G, so x−1 is also in J ∩ Z. Q.E.D.

It seems time to add the symmetric and alternating groups to the list of groups for which we have a
formula for the number of involutions:

Theorem E.3.8 (Formulas for j(Sn) and j(An)).

j(Sn)− 1 =
bn/2c∑
i=1

n!
2i(n− 2i)!i!

and

j(An)− 1 =
bn/4c∑
i=1

n!
22i(n− 4i)!(2i)!

.

Proof. A nontrivial element in Sn is an involution if and only if it is the product of disjoint 2-cycles. For
k ≥ 0, let Nk denote the number of distinct products of k 2-cycles in Sn. It is not difficult to see that Nk = 0
for k > n/2; in S7, for example, there are no products of 4, 5, 6, etc. disjoint 2-cycles.

It is now clear that

j(Sn) =
∑
k

k≤n/2

Nk =
bn/2c∑
k=1

Nk, (E.1)

so we need only to determine Nk. Notice first that, modulo permutation of disjoint cycles3, we must simply
count the number of ways to choose 2 elements from n, iterated k times without replacement. This is clearly
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(
n
2

)(
n−2

2

)
· · ·
(
n−k+2

2

)
, but we have counted each element k! times, so we must divide by k!, yielding

Nk =
1
k!

k−1∏
j=0

(
n− 2j

2

)

=
1
k!

(
n!

2(n− 2)!

)(
(n− 2)!
2(n− 4)!

)
· · ·

=
1
k!

(
n!

2k(n− 2k)!

)
.

Substituting this into Equation (E.1) yields the formula for j(Sn). The formula for j(An) is obtained by
only counting Nk for k even. Q.E.D.

Lemmas E.3.1, E.3.3, and E.3.4 and Theorem E.3.8 allow us to determine j(G) for a large class of groups.
Our focus for the remainder of the paper will be the reverse: given j(G), what can we say about the structure
of G?

E.4 Toward the Main Result

The following special case of the main result is worth proving separately, as the proof reveals some structural
properties of 2-groups with many involution, and seems to suggest how not to prove the main theorem!

Theorem E.4.1. If |G| = 2n, n ≥ 4, then j(G) 6= 2n − 2.

Proof. Suppose not. Then G has exactly two elements of order greater than 2; call them x and x−1. Clearly
|x| = |x−1| must be a power of 2, but if |x| ≥ 8, we have a cyclic subgroup that contains more than two
elements of order greater than 2, a contradiction. So |x| = |x−1| = 4. It is clear that 〈x〉 P G (in fact, it is
characteristic), so the size of the conjugacy class of x is at most 2. Thus [G : C(x)] ≤ 2, so, since we assumed
|G| ≥ 16, C(x) contains an involution y 6= x2. But then 〈x〉 × 〈y〉 = 〈x〉 〈y〉 is a subgroup isomorphic to
C2 ⊕ C4, which contains four distinct elements of order 4, a contradiction. Q.E.D.

Proposition E.4.2. If G is abelian, then j(G) is a power of 2.

Proof. Without loss of generality, we can partition G into a product of cyclic groups of even order and a
product of cyclic groups of odd order. That is,

G = Ca1 ⊕ · · · ⊕ Cam ⊕ Cam+1 ⊕ · · · ⊕ Can

where ai is even for i ≤ m and ai is odd for m+ 1 ≤ i ≤ n.
Then by Lemma E.3.4,

j(G) = j(Ca1)j(Ca2) · · · j(Cam)j(Cam+1) · · · j(Can)

=
( m∏
i=1

j(Cai)
)( n∏

k=m+1

j(Cak)
)

which, by Lemma E.3.1, is 2m, as required. Q.E.D.
3Disjoint n-cycles commute, so we should count α1α2 and α2α1 as the same permutation.
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Lemma E.4.3.
j(G)
|H|

≤ j(G/H) ≤ |G|
|H|

for any normal subgroup H of G.

Proof. The first inequality is a restatement of Proposition 4.8 of [1]; the second is trivial. Q.E.D.

For convenience, we restate Proposition 4.9 of [1] using our conventions:

Lemma E.4.4. For a central subgroup H, j(G) ≤ j(G/H)j(H).

We state the following as a theorem, though we will need it only for the proof of Theorem E.5.1:

Theorem E.4.5. If j(G) > |G|/2, then Z(G) is an (possibly trivial)4

elementary abelian 2-group.

Proof. Let Z = Z(G) and let S be a Sylow 2-subgroup of G. By Corollary 4.4 of Edmonds, NG(S) = S; so,
as Z normalizes every subgroup, Z 6 S.
So Z is a 2-group; let |Z| = 2a. Since Z is abelian, by Proposition E.4.2, j(Z) = 2b for some 0 ≤ b ≤ a.
Now we have

|G|
2

< j(G)

≤ j(G/Z)j(Z) (by Lemma E.4.4)

= j(G/Z)2b

≤ |G|
|Z|

2b (by Lemma E.4.3)

So |Z| < 2b+1, but Z is a 2-group of order at least j(Z) = 2b, so |Z| = j(Z) and Z = J(Z). Q.E.D.

Note that the inequality in the hypothesis of our proposition must be strict:
Consider G = C4 ⊕ C2

n−2. Then j(G) = 2n−1 = |G|/2, but Z(G) = G, which is not an elementary abelian
2-group.

E.5 On a Standard Algebra Exercise: Main Result

We have now accumulated enough firepower to prove the main result:

Theorem E.5.1. If G is a finite group and j(G) > 3
4 |G|, then G is an elementary abelian 2-group.

Proof. By the main theorem of Edmonds [1], G must be a 2-group: if |G| = 2nm, m ≥ 3, then

j(G) ≤ 2n−1(m+ 1) = 2n−2(2m+ 2) < 2n−2(3m) =
3
4
|G|.

Let |G| = 2n, and suppose n > 3, as the case when n ≤ 3 follows trivially from Proposition E.3.2. We
proceed by induction on n. As G is a 2-group, its center is nontrivial, hence contains an involution. Let a
be a central involution in G. By Lemma E.4.4, we have j(G) ≤ j(G/〈a〉)j(〈a〉); so

j(G/〈a〉) ≥ j(G)
2

>
3
8
|G| = 3

4
|G/〈a〉|,

4Consider the dihedral group of order 2n, n odd.
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so by our inductive hypothesis, G/〈a〉 is an elementary abelian 2-group of order 2n−1. We thus have an
extension

C2 � G� (C2)n−1

which we must show to be a direct product.
If G is not an elementary abelian 2-group, there must be an element of order 4; suppose x ∈ G is such an

element. Note that, because G/〈a〉 is of exponent 2, x2 = a. Then, under the natural projection onto the
quotient group G/〈a〉, 〈x〉 is a cyclic subgroup of order 2. As that cyclic subgroup must be normal in the
quotient, 〈x〉 C G. Consequently, conjugation by an element of G must send x to either x or x−1: those are
the only two candidates inside 〈x〉. In particular, the length of the orbit of x under conjugation is at most
2. In fact, since by Theorem E.4.5 there are no elements of order 4 in Z(G), [G : C(x)] 6= 1. So

| cl(x)| = [G : C(x)] = 2,

where cl(x) denotes the orbit under this action. Now note that

j(C(x)) = j(G)− j(Gr C(x)) >
3
4
|G| − 1

2
|G| = 1

4
|G|.

Combining, we have

j(C(x)) >
1
4
|G| = 1

2
|C(x)|,

so we can apply Theorem E.4.5 to C(x). Therefore Z(C(x)) is an elementary abelian 2-group, but x, an
element of order 4, is necessarily in the center of its own centralizer, a contradiction.

So G contains no element of order 4 and is thus an elementary abelian 2-group, as required. Q.E.D.

The inequality in the hypothesis of our theorem must again be strict. G = D8 ⊕ (C2)n−3, in particular,
is not elementary abelian, but j(G) = 2n−3(6) = 3

4 |G|.

E.6 GAP

GAP is a computer algebra program packaged with extensive group libraries. Our chief strategy was to
use GAP to export in a convenient way correlations between the structural properties of a group and its
involution count. The following function of G whose purpose is to, using a counter variable, determine j(G),
will be called by nearly all of the included code.

gap> jinvol := function(g) local a,b;
b := 0;
for a in Elements(g) do
if Order(a)=2 then
b := b+1;
fi;
od;
return b+1;
end;
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Although this is quite unsophisticated, GAP executes this function for fairly large and complicated groups
with surprising efficiency.

A characteristic example, this code verifies the accuracy of the formulas given in Theorem E.3.8 for
n ≤ 10:

gap> sninvol := function(n); return
Sum([1..Int(n/2)], x -> Factorial(n)/(2^x*Factorial(n-2*x)
*Factorial(x)))+1; end;

function( n ) ... end
gap> for x in [1..10] do Print(jinvol(SymmetricGroup(x))
," = ",sninvol(x),"\n"); od;

1 = 1
2 = 2
4 = 4
10 = 10
26 = 26
76 = 76
232 = 232
764 = 764
2620 = 2620
9496 = 9496

gap> aninvol := function(n); return
Sum([1..Int(n/4)], x -> Factorial(n)/(2^(2*x)*Factorial(n-4*x)
*Factorial(2*x)))+1; end;

function( n ) ... end
gap> for x in [1..10] do Print(jinvol(AlternatingGroup(x))
," = ",aninvol(x),"\n"); od;

1 = 1
1 = 1
1 = 1
4 = 4
16 = 16
46 = 46
106 = 106
316 = 316
1324 = 1324
5356 = 5356

I also made use of the orderfrequency function as defined in Gallian and Rainbolt’s GAP User Manual.
A clear theme of the paper is that not all possible even values of j(G) for a given |G| are actually realized

by any finite group. The patterns of actually realized js are, of course, interesting, and a table of such values
(along with the GAP code that generated the table) is included in the Appendix.

For example, Tables E.3 and E.4 in the Appendix motivate the following conjecture, which suggests a
full characterization of the “2-almost-maximal” groups:
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Conjecture E.1. Let G be a finite group of order 2nm, with m odd, and suppose n ≥ 3. If j(G) >
2n−2(2m+ 1), then G is 2-maximal.
If j(G) = 2n−2(2m+ 1), then G is the direct product of C2

n−3 and a group of dihedral type of order 8m.

Table E.2 in the Appendix motivates

Conjecture E.2. Let G be such that j(G) > |G|/2, and suppose 4
∣∣|G|. Then the center of G is nontrivial.

Finally, a cursory glance at Table E.1 would seem to justify the following:

Conjecture E.3. If j(G) > |G|/2, then G is isomorphic to a direct product of cyclic groups of order 2 and
groups of dihedral type.

However, a closer look at, for example, the first listed group of order 128 suggests otherwise. If we
assume every nontrivial extension by a C2 is such that the generator of C2 acts by conjugation on the group
(which GAP’s StructureDescription command alone does not guarantee, of course), then it seems that
no counterexample to E.3 appears until |G| = 128. Further research should investigate whether groups with
j > |G|/2 can be fully characterized using a further generalization of the dihedral group.
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Appendix

It should be noted that the included code often requires allocating GAP more than the default memory; this
can be accomplished using the -o or -m command line option.5

Table E.1: Every group G with j(G) ≥ |G|/2 and |G| ≤ 128.

|G| j(G) Isomorphism Type
2 2 C2

4 2 C4

4 C2 × C2

6 4 S3

8 4 C4 × C2

6 D8

8 C2 × C2 × C2

10 6 D10

12 8 D12

14 8 D14

16 8 (C4 × C2) o C2

8 C4 × C2 × C2

8 (C4 × C2) o C2

10 D16

12 C2 ×D8

16 C2 × C2 × C2 × C2

18 10 D18

10 (C3 × C3) o C2

20 12 D20

22 12 D22

24 14 D24

16 C2 × C2 × S3

26 14 D26

28 16 D28

30 16 D30

32 16 C2 × ((C4 × C2) o C2)
16 (C4 × C2 × C2) o C2

16 (C2 ×D8) o C2

16 C4 × C2 × C2 × C2

16 C2 × ((C4 × C2) o C2)
18 D32

20 (C2 × C2 × C2 × C2) o C2

20 (C4 × C4) o C2

20 C2 ×D16

20 (C2 ×D8) o C2

24 C2 × C2 ×D8

5For example, -o 500m allocates GAP 500 megabytes of memory.
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Table E.1: (continued)

|G| j(G) Isomorphism Type
32 C2 × C2 × C2 × C2 × C2

34 18 D34

36 20 D36

20 C2 × ((C3 × C3) o C2)
38 20 D38

40 22 D40

24 C2 × C2 ×D10

42 22 D42

44 24 D44

46 24 D46

48 24 D8 × S3

26 D48

28 C2 ×D24

32 C2 × C2 × C2 × S3

50 26 D50

26 (C5 × C5) o C2

52 28 D52

54 28 D54

28 (C9 × C3) o C2

28 (C3 × C3 × C3) o C2

56 30 D56

32 C2 × C2 ×D14

58 30 D58

60 32 D60

62 32 D62

64 32 C2 × ((C4 × C2 × C2) o C2)
32 (C2 × ((C4 × C2) o C2)) o C2

32 (C2 × C2 ×D8) o C2

32 (C2 × C2 ×D8) o C2

32 C4 × C2 × C2 × C2 × C2

32 C2 × C2 × ((C4 × C2) o C2)
32 (C2 × C2 ×D8) o C2

32 (C2 × ((C4 × C2) o C2)) o C2

32 (C2 × C2 ×D8) o C2

32 (C2 ×D16) o C2

32 C2 × ((C2 ×D8) o C2)
32 C2 × C2 × ((C4 × C2) o C2)
34 D64

36 C2 ×D32

36 (C8 × C4) o C2

36 D8 ×D8

40 C2 × ((C4 × C4) o C2)



Counting Involutions in Finite Groups E-13

Table E.1: (continued)

|G| j(G) Isomorphism Type
40 C2 × C2 ×D16

40 C2 × ((C2 × C2 × C2 × C2) o C2)
40 C2 × ((C2 ×D8) o C2)
48 C2 × C2 × C2 ×D8

64 C2 × C2 × C2 × C2 × C2 × C2

66 34 D66

68 36 D68

70 36 D70

72 38 D72

38 (C12 × C3) o C2

40 C2 × C2 ×D18

40 C2 × C2 × ((C3 × C3) o C2)
74 38 D74

76 40 D76

78 40 D78

80 42 D80

44 C2 ×D40

48 C2 × C2 × C2 ×D10

82 42 D82

84 44 D84

86 44 D86

88 46 D88

48 C2 × C2 ×D22

90 46 D90

46 (C15 × C3) o C2

92 48 D92

94 48 D94

96 48 C2 ×D8 × S3

50 D96

52 (C12 × C4) o C2

52 C2 ×D48

56 C2 × C2 ×D24

64 C2 × C2 × C2 × C2 × S3

98 50 D98

50 (C7 × C7) o C2

100 52 D100

52 C2 × ((C5 × C5) o C2)
102 52 D102

104 54 D104

56 C2 × C2 ×D26

106 54 D106

108 56 D108
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Table E.1: (continued)

|G| j(G) Isomorphism Type
56 C2 × ((C9 × C3) o C2)
56 C2 × ((C3 × C3 × C3) o C2)

110 56 D110

112 58 D112

60 C2 ×D56

64 C2 × C2 × C2 ×D14

114 58 D114

116 60 D116

118 60 D118

120 62 D120

64 C2 × C2 ×D30

122 62 D122

124 64 D124

126 64 D126

64 (C21 × C3) o C2

128 64 C2 × ((C2 × ((C4 × C2) o C2)) o C2)
64 C2 × ((C2 × C2 ×D8) o C2)
64 (C2 × C2 × C2 ×D8) o C2

64 (C2 × C2 × C2 ×D8) o C2

64 (C2 × C2 × C2 ×D8) o C2

64 C2 × C2 × C2 × ((C4 × C2) o C2)
64 C2 × ((C2 × C2 ×D8) o C2)
64 C2 × C2 × ((C4 × C2 × C2) o C2)
64 C2 × ((C2 ×D16) o C2)
64 C2 × ((C2 × C2 ×D8) o C2)
64 C2 × ((C2 × C2 ×D8) o C2)
64 C2 × C2 × ((C2 ×D8) o C2)
64 (C2 × ((C4 × C4) o C2)) o C2

64 C2 × C2 × C2 × ((C4 × C2) o C2)
64 C4 × C2 × C2 × C2 × C2 × C2

64 C2 × ((C2 × ((C4 × C2) o C2)) o C2)
66 D128

68 (C16 × C4) o C2

68 C2 ×D64

68 (C8 × C8) o C2

72 (C2 × C2 × C2 × C2 × C2 × C2) o C2

72 (C2 × ((C2 ×D8) o C2)) o C2

72 C2 × C2 ×D32

72 C2 × ((C8 × C4) o C2)
72 C2 ×D8 ×D8

72 (C4 × C4 × C4) o C2

80 C2 × C2 × ((C2 × C2 × C2 × C2) o C2)
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Table E.1: (continued)

|G| j(G) Isomorphism Type
80 C2 × C2 × ((C4 × C4) o C2)
80 C2 × C2 × C2 ×D16

80 C2 × C2 × ((C2 ×D8) o C2)
96 C2 × C2 × C2 × C2 ×D8

128 C2 × C2 × C2 × C2 × C2 × C2 × C2

Table E.1 was created using the following GAP code:

PrintTo("/GAP_TeX/Table of js",
"\\begin{longtable}{|c|c|p{2.5in}|}\n",
"\\caption{Every group $G$ with $j(G) \\geq |G|/2$ and
$|G| \\leq 128$.\\label{realizedjs}}\\\\\n",

"\\hline\n",
"$|G|$ & $j(G)$ & Isomorphism Type\\\\\\hline\\endfirsthead\n",
"\\caption[]{(continued)}\\\\\n",
"\\hline\n",
"$|G|$ & $j(G)$ & Isomorphism Type\\\\\\hline\\endhead\n",
"\\hline\\endfoot\n");
for x in List([1..10],y->2*y) do
dummy := [];
for g in AllSmallGroups(x) do
if jinvol(g) >= x/2 then
Append(dummy,g);
fi;
AppendTo("/GAP_TeX/morethanhalf",
x);
if Length(dummy) > 0 then
for y in dummy do
AppendTo("/GAP_TeX/morethanhalf",
" & ",jinvol(y)," & ",StructureDescription(y),"\\\\\n");

od;
else
AppendTo("/GAP_TeX/morethanhalf",
" & \\\\\n");
fi;
od;
AppendTo("/GAP_TeX/morethanhalf",
"\\hline\n")

od;
AppendTo("/GAP_TeX/morethanhalf",
"\\end{longtable}");

Obviously this code asks GAP to create the file
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“/GAP TeX/morethanhalf.txt”, and the following emacs commands will format the text file to produce the
LATEX code for Table E.1:

M-x replace-regexp RET \(C\|D\|S\) RET \1_ RET
M-x replace-regexp RET _\([0-9]*\) RET _{\1} RET
M-x replace-regexp RET x RET \\times RET
M-x replace-regexp RET : RET \\rtimes RET

Be sure to M-< between each line to return the mark to the beginning of the file.

Table E.2: The center of G, for |G| a multiple of 4 and j(G) >
|G|/2.

|G| j(G) Center
4 4 C2 × C2

8 6 C2

8 C2 × C2 × C2

12 8 C2

16 10 C2

12 C2 × C2

16 C2 × C2 × C2 × C2

20 12 C2

24 14 C2

16 C2 × C2

28 16 C2

32 18 C2

20 C2 × C2

20 C2 × C2

20 C2 × C2

20 C2

24 C2 × C2 × C2

32 C2 × C2 × C2 × C2 × C2

36 20 C2

20 C2

40 22 C2

24 C2 × C2

44 24 C2

48 26 C2

28 C2 × C2

32 C2 × C2 × C2

52 28 C2

56 30 C2

32 C2 × C2

60 32 C2

64 34 C2

36 C2 × C2
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Table E.2: (continued)

|G| j(G) Center
36 C2 × C2

36 C2 × C2

40 C2 × C2 × C2

40 C2 × C2 × C2

40 C2 × C2 × C2

40 C2 × C2

48 C2 × C2 × C2 × C2

64 C2 × C2 × C2 × C2 × C2 × C2

68 36 C2

72 38 C2

38 C2

40 C2 × C2

40 C2 × C2

76 40 C2

80 42 C2

44 C2 × C2

48 C2 × C2 × C2

84 44 C2

88 46 C2

48 C2 × C2

92 48 C2

96 50 C2

52 C2 × C2

52 C2 × C2

56 C2 × C2 × C2

64 C2 × C2 × C2 × C2

100 52 C2

52 C2

104 54 C2

56 C2 × C2

108 56 C2

56 C2

56 C2

112 58 C2

60 C2 × C2

64 C2 × C2 × C2

116 60 C2

120 62 C2

64 C2 × C2

124 64 C2

128 66 C2

68 C2 × C2
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Table E.2: (continued)

|G| j(G) Center
68 C2 × C2

68 C2 × C2

72 C2 × C2 × C2

72 C2 × C2 × C2

72 C2 × C2 × C2

72 C2 × C2 × C2

72 C2 × C2 × C2

72 C2

80 C2 × C2 × C2 × C2

80 C2 × C2 × C2 × C2

80 C2 × C2 × C2 × C2

80 C2 × C2 × C2

96 C2 × C2 × C2 × C2 × C2

128 C2 × C2 × C2 × C2 × C2 × C2 × C2

The GAP code used to create Table E.2 is nearly identical to that used for Table E.1, so we will omit it
here. The emacs commands will also render the resulting text file suitable for a LaTeX longtable.

Table E.3: Every realized j(G) for every even |G| ≤ 256.

|G| Realized j(G)s
2 2
4 2, 4
6 2, 4
8 2, 4, 6, 8
10 2, 6
12 2, 4, 8
14 2, 8
16 2, 4, 6, 8, 10, 12, 16
18 2, 4, 10
20 2, 4, 6, 12
22 2, 12
24 2, 4, 6, 8, 10, 14, 16
26 2, 14
28 2, 4, 16
30 2, 4, 6, 16
32 2, 4, 8, 10, 12, 16, 18, 20, 24, 32
34 2, 18
36 2, 4, 8, 10, 16, 20
38 2, 20
40 2, 4, 6, 8, 12, 14, 22, 24
42 2, 4, 8, 22
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Table E.3: (continued)

|G| Realized j(G)s
44 2, 4, 24
46 2, 24
48 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 26, 28, 32
50 2, 6, 26
52 2, 4, 14, 28
54 2, 4, 10, 28
56 2, 4, 6, 8, 16, 18, 30, 32
58 2, 30
60 2, 4, 6, 8, 12, 16, 24, 32
62 2, 32
64 2, 4, 8, 12, 16, 18, 20, 24, 28, 32, 34, 36, 40, 48, 64
66 2, 4, 12, 34
68 2, 4, 18, 36
70 2, 6, 8, 36
72 2, 4, 6, 8, 10, 14, 16, 20, 22, 26, 32, 38, 40
74 2, 38
76 2, 4, 40
78 2, 4, 14, 40
80 2, 4, 6, 8, 10, 12, 16, 22, 24, 26, 28, 32, 36, 42, 44, 48
82 2, 42
84 2, 4, 8, 16, 32, 44
86 2, 44
88 2, 4, 6, 8, 24, 26, 46, 48
90 2, 4, 6, 10, 16, 46
92 2, 4, 48
94 2, 48
96 2, 4, 8, 10, 12, 16, 18, 20, 24, 26, 28, 32, 34, 36, 40, 44, 48, 50, 52,

56, 64
98 2, 8, 50
100 2, 4, 6, 12, 26, 36, 52
102 2, 4, 18, 52
104 2, 4, 6, 8, 28, 30, 54, 56
106 2, 54
108 2, 4, 8, 10, 16, 20, 28, 40, 56
110 2, 6, 12, 56
112 2, 4, 6, 8, 10, 12, 16, 20, 30, 32, 34, 36, 44, 48, 58, 60, 64
114 2, 4, 20, 58
116 2, 4, 30, 60
118 2, 60
120 2, 4, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 32, 34, 38, 42, 48, 62, 64
122 2, 62
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Table E.3: (continued)

|G| Realized j(G)s
124 2, 4, 64
126 2, 4, 8, 10, 22, 64
128 2, 4, 8, 12, 16, 20, 24, 28, 32, 34, 36, 40, 44, 48, 52, 56, 60, 64, 66,

68, 72, 80, 96, 128
130 2, 6, 14, 66
132 2, 4, 8, 24, 48, 68
134 2, 68
136 2, 4, 6, 8, 18, 36, 38, 70, 72
138 2, 4, 24, 70
140 2, 4, 6, 12, 16, 48, 72
142 2, 72
144 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32, 38, 40, 42, 44,

50, 52, 56, 60, 64, 74, 76, 80
146 2, 74
148 2, 4, 38, 76
150 2, 4, 6, 16, 26, 76
152 2, 4, 6, 8, 40, 42, 78, 80
154 2, 8, 12, 78
156 2, 4, 8, 14, 28, 56, 80
158 2, 80
160 2, 4, 8, 10, 12, 16, 18, 20, 24, 28, 32, 36, 40, 42, 44, 48, 50, 52, 56,

60, 64, 68, 72, 82, 84, 88, 96
162 2, 4, 10, 28, 82
164 2, 4, 42, 84
166 2, 84
168 2, 4, 6, 8, 10, 14, 16, 18, 22, 30, 32, 44, 46, 50, 58, 64, 86, 88
170 2, 6, 18, 86
172 2, 4, 88
174 2, 4, 30, 88
176 2, 4, 6, 8, 10, 12, 16, 24, 28, 46, 48, 50, 52, 68, 72, 90, 92, 96
178 2, 90
180 2, 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 46, 60, 64, 92
182 2, 8, 14, 92
184 2, 4, 6, 8, 48, 50, 94, 96
186 2, 4, 32, 94
188 2, 4, 96
190 2, 6, 20, 96
192 2, 4, 8, 12, 16, 18, 20, 24, 28, 32, 34, 36, 40, 44, 48, 50, 52, 56, 60,

64, 66, 68, 72, 76, 80, 84, 88, 96, 98, 100, 104, 112, 128
194 2, 98
196 2, 4, 16, 50, 64, 100
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Table E.3: (continued)

|G| Realized j(G)s
198 2, 4, 10, 12, 34, 100
200 2, 4, 6, 8, 12, 14, 22, 24, 26, 36, 46, 52, 54, 62, 72, 102, 104
202 2, 102
204 2, 4, 8, 18, 36, 72, 104
206 2, 104
208 2, 4, 6, 8, 10, 12, 16, 28, 32, 54, 56, 58, 60, 80, 84, 106, 108, 112
210 2, 4, 6, 8, 16, 22, 36, 106
212 2, 4, 54, 108
214 2, 108
216 2, 4, 6, 8, 10, 14, 16, 20, 22, 26, 32, 34, 38, 40, 46, 56, 58, 62, 64,

74, 80, 110, 112
218 2, 110
220 2, 4, 6, 12, 24, 72, 112
222 2, 4, 38, 112
224 2, 4, 8, 10, 12, 16, 18, 20, 24, 32, 36, 40, 44, 48, 52, 58, 60, 64, 66,

68, 72, 76, 80, 88, 92, 96, 114, 116, 120, 128
226 2, 114
228 2, 4, 8, 40, 80, 116
230 2, 6, 24, 116
232 2, 4, 6, 8, 60, 62, 118, 120
234 2, 4, 10, 14, 40, 118
236 2, 4, 120
238 2, 8, 18, 120
240 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32, 34, 36, 40, 42,

44, 48, 52, 56, 60, 62, 64, 66, 68, 72, 74, 76, 80, 82, 84, 88, 92, 96,
122, 124, 128

242 2, 12, 122
244 2, 4, 62, 124
246 2, 4, 42, 124
248 2, 4, 6, 8, 64, 66, 126, 128
250 2, 6, 26, 126
252 2, 4, 8, 10, 16, 20, 32, 44, 52, 80, 88, 128
254 2, 128
256 2, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 66, 68,

72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 120, 128, 130, 132,
136, 144, 160, 192, 256

Table E.3 was created using the following GAP code:

jfunc := function(a,b) local jofg,lj,og,i,x,q,sq;
jofg := [];
og := 2*Int(a/2);
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repeat
lj := [];
for x in AllSmallGroups(og) do
if not (jinvol(x) in lj) then Append(lj,[jinvol(x)]); fi;
od;
Sort(lj);
Add(jofg,lj);
og := og + 2;

until og > b;
for i in [1..Length(jofg)] do
Print(2*i+2*Int(a/2)-2,": ",jofg[i],"\n");

od;
PrintTo("/GAP_TeX/Table of js",
"\\begin{longtable}{|c|p{4in}}\n",
"\\caption{Every realized $j(G)$ for every even $|G| \leq 256$.
\\label{realizedjs}}\\\\\n",

"\\hline\n",
"$|G|$ & Realized $j(G)$s\\\\\\hline\\endfirsthead\n",
"\\caption[]{(continued)}\\\\\n",
"\\hline\n",
"$|G|$ & Realized $j(G)$s\\\\\\hline\\endhead\n",
"\\hline\\endfoot\n");
for q in [1..Length(jofg)] do
AppendTo("/GAP_TeX/Table of js","\\hline\n",2*q+2*Int(a/2)-2," & ");
for sq in [1..Length(jofg[q])-1] do
AppendTo("/GAP_TeX/Table of js",jofg[q][sq],", ");
od;
AppendTo("/GAP_TeX/Table of js",jofg[q][Length(jofg[q])],"\\\\\n");

od;
AppendTo("/GAP_TeX/Table of js",
"\\hline\n",
"\\end{longtable}");
end;
jfunc(2,256);

Merely adding an argument to jfunc and changing the 2 in line 11 to that local variable would turn this
function into a ‘for loop’ to generate tables like Table E.3.

Table E.4: The conjectured “2-almost-maximal” groups of order
less than 256.

|G| j(G)6 Isomorphism Type
8 6 D8

16 12 C2 ×D8

24 14 D24

32 24 C2 × C2 ×D8
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Table E.4: (continued)

|G| j(G) Isomorphism Type
40 22 D40

48 28 C2 ×D24

56 30 D56

64 48 C2 × C2 × C2 ×D8

72 38 D72

72 38 (C12 × C3) o C2

80 44 C2 ×D40

88 46 D88

96 56 C2 × C2 ×D24

104 54 D104

112 60 C2 ×D56

120 62 D120

128 96 C2 × C2 × C2 × C2 ×D8

136 70 D136

144 76 C2 ×D72

144 76 C2 × ((C12 × C3) o C2)
152 78 D152

160 88 C2 × C2 ×D40

168 86 D168

176 92 C2 ×D88

184 94 D184

192 112 C2 × C2 × C2 ×D24

200 102 D200

200 102 (C20 × C5) o C2

208 108 C2 ×D104

216 110 D216

216 110 (C36 × C3) o C2

216 110 (C12 × C3 × C3) o C2

224 120 C2 × C2 ×D56

232 118 D232

240 124 C2 ×D120

248 126 D248

Constructing Table E.4 required use of the following two GAP functions. The 2nm function factors the
a number in our standard way: a = 2nm, m odd. Calling this function to select the groups of conjectured
“2-almost-maximal” order, almostmax creates (as above) a text file containing code for Table E.4. The
emacs commands described above will again format this table for LATEX.

2nm := function(a) local dummy,x;
dummy := [];

6Note that if |G| = 2nm, m odd, then j(G) = 2n−2(2m+ 1).
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for x in FactorsInt(a) do
if x <> 2 then
Append(dummy,[x]);

fi;
od;
return [Length(FactorsInt(a))-Length(dummy),
Product(dummy)];
end;

almostmax := function(b)
local c,m,n,y;
c := 0;
PrintTo("/Users/zachnorwood/GAP_TeX/almostmax",
"\\begin{longtable}{|c|c|p{2.5in}|}\n",
"\\caption{The conjectured $2$-almost-maximal\
groups of order less than $256$.\n",
"\\label{almostmax}}\\\\\n",
"\\hline\n",
"$|G|$ & $j(G)$\\footnotemark & Isomorphism Type\
\\\\\\hline\\endfirsthead\n",
"\\caption[]{(continued)}\\\\\n",
"\\hline\n",
"$|G|$ & $j(G)$ & Isomorphism Type\\\\\n",
"\\hline\\endhead\n",
"\\hline\\endfoot\n");
repeat
c := c+8;
n := 2nm(c)[1];
m := 2nm(c)[2];
for y in AllSmallGroups(c) do
if jinvol(y) = 2^(n-2)*(2*m+1) then
AppendTo("/Users/zachnorwood/GAP_TeX/almostmax",
c," & ",jinvol(y)," & $",StructureDescription(y),
"$\\\\\n","\\hline\n");

fi;
od;
until c >= b;
AppendTo("/Users/zachnorwood/GAP_TeX/almostmax",
"\\end{longtable}\n",
"\\footnotetext{Note that if $|G| = 2^{n}m$,\
$m$ odd, then $j(G) = 2^{n-2}(2m+1)$.}");

end;

The command almostmax(248) outputs the text file used to create Table E.4.
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F.1 Introduction

Let fc : C→ C be defined by fc(z) = z2 + c. Let fnc denote fc composed with itself n times, and let f−nc (z0)
denote the nth inverse images of z0 under fc. The forward orbit of a point z0 ∈ C is defined to be the set of
points

O+(z0) = {fnc (z0) : n ≥ 0}

and the backward orbit of z0 is the set

O−(z0) = {fnc (z0) : n ≤ −1}

Moreover, the total orbit is the set of points

O(z0) = O−(z0) ∪O+(z0)

When considering the dynamics of the map fc, two types of points will be of interest: fixed points and
periodic points.

Definition F.1. A point z0 is a fixed point iff fc(z0) = z0. Moreover, for a fixed point z0, we have
fc(z0) = z0

2 + c = z0, so an application of the quadratic formula shows that z0 = 1±
√

1−4c
2 .

Definition F.2. A point z0 is a periodic point of period n iff (∃n) such that fnc (z0) = z0.

Thus, a fixed point can be thought of as a period point of period 1. Furthermore, we can classify fixed
points and periodic points according to the following:

Definition F.3. Let z0 be a periodic point of period n. Then z0 is
superattracting if |(fnc )′(z0)| = 0
attracting if 0 < |(fnc )′(z0)| < 1
neutral if |(fnc )′(z0)| = 1
repelling if |(fnc )′(z0)| > 1


Throughout the paper, we will use the term attracting to refer to both attracting and superattracting

periodic points. The reasoning for the terminology in definition F.3 is the following: assume z0 is an
attracting periodic point of period n. Near z0, the function fnc (z) behaves linearly. Furthermore,

|(fnc )′(z0)| = lim
h→0

∣∣∣∣fnc (z0 + h)− fnc (z0)
h

∣∣∣∣ = |λ| < 1

Thus, let z1 be sufficiently close to z0, so that:

|fnc (z1)− z0| = |fnc (z1)− fnc (z0)| ≈ |λz1 − λz0| = |λ(z1 − z0)| < |z1 − z0|

We can see that if z0 is an attracting period point of period n, and z is sufficiently close to z0, then
lim
m→∞

fmnc (z) = z0. A similar argument shows that if z0 is a repelling periodic point of period n and |z− z0|
is sufficiently small, then |fnc (z)− z0| > |z − z0|.

Although the behavior of periodic points is complicated, we can describe the existence of fixed points in
some detail by the following:
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Theorem F.1.1. fc(z) = z2 + c has at most one attracting fixed point, and there exists an attracting fixed

point iff c is in the interior of the region given by g(θ) = −
(
eiθ

2 +
(
eiθ

2

)2
)

.

Proof. Let the two fixed points of fc(z) be z0 = 1−
√

1−4c
2 and z1 = 1+

√
1−4c
2 . Consider the fixed point

z1 = 1+
√

1−4c
2 . Since (fc)′(z) = 2z, we have

|(fc)′(z1)| = |1 +
√

1− 4c| ≤ |1|+ |
√

1− 4c| = 1

Thus shows that z1 cannot be an attracting fixed point.

However, z0 is an attracting fixed point iff |(fc)′(z0)| < 1. This will happen when |(fc)′(z0)| = |1 −√
1− 4c| < 1. That is,

√
1− 4c must be inside the circle with radius 1 centered at 1 + 0i. Parameterizing

this circle as γ(θ) = (1 + cos(θ)) + i(sin(θ)), squaring γ, and applying trigonometric identities, we see that
1− 4c must lie inside the region enclosed by γ2(θ) = (2 cos(θ) + cos(2θ) + 1) + i (2 sin(θ) + sin(2θ)). Further
computation shows that c must lie on the interior of the region enclosed by

γ̃(θ) =
(
−1

2
cos(θ)− 1

4
cos(2θ)

)
+ i

(
−1

2
sin(θ)− 1

4
sin(2θ)

)
= −

(
eiθ

2
+
(
eiθ

2

)2
)

Q.E.D.

Furthermore, if c can be written in the form c = −
(
eiθ

2 +
(
eiθ

2

)2
)

, then fc contains a neutral fixed

point, since
∣∣∣(fc)′ ( 1−

√
1−4c
2

)∣∣∣ =
∣∣∣1−√1 + 2eiθ + ei(2θ)

∣∣∣ =
∣∣eiθ∣∣ = 1.

Finally, we define the natural numbers to be the set N = {0, 1, 2, . . . }, equivalent to the nonnegative
integers. Additionally, we define the extended complex plane to be the set Ĉ = C ∪ {∞}.

F.2 The Julia and Fatou Sets

We may also consider how the iterates of fc behave in a neighborhood of a point z0. This leads to the
definition of equicontinuity:

Definition F.4. A family F of functions in the complex plane is equicontinuous at z0 iff

(∀ε > 0)(∃δ > 0)(∀z ∈ C)(∀f ∈ F)(|z − z0| < δ −→ |f(z)− f(z0)| < ε)

Furthermore, F is equicontinuous on a set X ⊂ C iff it is equicontinuous for all z ∈ X.

In this paper, the family F will refer to the iterates of fc, and the family will be denoted {fnc }∞n=0.

Definition F.5. The Fatou set of fc is the maximal open subset of Ĉ on which {fnc } is equicontinuous.
Furthermore, the Julia set of fc, denoted J(fc) is the complement of the Fatou set.

To make better sense of this definition, we introduce local uniform convergence and normality:
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Definition F.6. A sequence {gn} of functions converges locally uniformly to g on an open set U iff (∀K ⊂ U),
where K is compact, {gn} converges uniformly to g on K.

Definition F.7. A family F is normal on X ⊂ C if every infinite sequence of functions from F contains a
subsequence which converges locally uniformly on X.

The following result, known as the Arzela-Ascoli Theorem, equates the definitions of equicontinuity and
normality. A proof may be found in [1, p.222]:

Theorem F.2.1. Arzela-Ascoli Theorem. Let X ⊂ C be open, and let F be a family of continuous
functions f : X → C. Then F is equicontinuous on X iff it is a normal family on X.

Thus, points in the Fatou set are “well behaved”, in the sense that given any point z0 in the Fatou set
and any value β > 0, we can choose a sufficiently small neighborhood U of z0 such that for all n and for
all z1 ∈ U , the distance between fnc (z1) and fnc (z0) is less than β. On the contrary, points in the Julia set
are not so well behaved, in the sense that given a point z0 ∈ J(fc), and any neighborhood U of z0, we can
choose an n such that the diameter of fnc (U) is arbitrarily large. The points in the Fatou set are also “well
behaved” due to the following:

Theorem F.2.2. The Fatou set and the Julia set are invariant.

Proof. Since the Julia set is defined to the be compliment of the Fatou set, we must only show that the
Fatou set is invariant. That is, we must show that, for any z0, it is true that z0 is in the Fatou set iff fc(z0)
is in the Fatou set. Equivalently (because of the Arzela-Ascoli theorem), we must show that every infinite
sequence of functions {fnkc (z0)} has a subsequence which converges locally uniformly on a set X iff every
infinite sequence of functions {fmk+1

c (z0)} has a subsequence which converges locally uniformly on fc(X).

For the forward direction, assume that every infinite sequence of functions {fnkc (z0)} has a subsequence
which converges locally uniformly on a set X. Let {fmk+1

c (z0)} be an infinite sequence of functions. Then
we can take nk = mk + 1 to prove the existence of a convergent subsequence on f(X). Now, assume that
every infinite sequence of functions {fmk+1

c (z0)} has a subsequence which converges locally uniformly on a
set f(X). Let {fnkc (z0)} be an infinite sequence of functions. Let mk = nk+1 − 1 to prove the existence of a
convergent subsequence on X. Q.E.D.

There are a number of alternate characterizations of the Julia set, and we will introduce a few useful
ones here:

Definition F.8. The filled Julia set of fc, denoted K(fc), is the set

K(fc) = {z ∈ C : fnc (z) 6→ ∞ as n→∞}

Additionally, the basin of attraction of infinity for fc, denoted Ac(∞), is the set

Ac(∞) = {z ∈ C : fnc (z)→∞ as n→∞}

Lemma F.2.3. K(fc) is infinite.
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Proof. It has been shown that for c 6= 1
4 , fc has a repelling fixed point z1 = 1−

√
1−4c
2 . Furthermore, z1 has

two inverse images, which are given by f−1
c (z1) = ±

√
1−
√

1−4c
2 − c. By taking successive inverses, and since

each point has two inverses, we can construct an infinite set of points whose orbits do not tend to infinity.
If c = 1

4 , we can take the inverses of the neutral fixed point z0 = 1
2 to construct an infinite set of points in

K(fc). Q.E.D.

In other words, the filled Julia set consists of those points whose forward orbits do not approach infinity,
and the basin of attraction of infinity consists of those points whose forward orbits do approach infinity. As
its name implies, the filled Julia set is related to the Julia set, as stated in [6, p.91]:

Theorem F.2.4. J(fc) = ∂K(fc). That is, the Julia set is the boundary of the filled Julia set.

Another interesting result relates periodic points and the Julia set. A proof may be found in [2, p.70,109]:

Theorem F.2.5. The Julia set J(fc) is equal to the closure of the set of repelling periodic points.

By combining a few results, we have the following:

Corollary F.2.6. There are an infinite number of repelling periodic points.

Proof. By Lemma F.2.3, K(fc) is infinite. Thus, J(fc) = ∂K(fc) must be infinite, and by applying Theorem
F.2.5, we see that the set of repelling periodic points is infinite. Q.E.D.

F.3 The Structure of the Fatou Set

In this section, we will explore Ac(∞), and then use it to describe the Fatou set. First, however, we need to
provide a few results from complex analysis:

Theorem F.3.1. Maximum Principle. Let g : C −→ C be nonconstant and differentiable on an open set
U . Then |g(z)| does not attain a maximum on U .

Proof. Let z0 ∈ U , and let V ⊂ U be a neighborhood around z0. Since the image of an open set is an
open set, g(V ) must be open, and g(z0) ∈ g(V ). Then there must exist a point g(z1) ∈ g(V ) such that
|g(z1)| > |g(z0)|. Q.E.D.

The next result is also useful when characterizing the Fatou set. It’s proof can be found in [1, §3.3]:

Theorem F.3.2. Montel’s Theorem. Let U ⊂ Ĉ be open, and let F be a family of functions such that
(∀f ∈ F)(∃ distinct af , bf , cf ∈ Ĉ) such that f does not take the values af , bf , and cf in U . Then F is
normal in U .

Now, we consider Ac(∞) in some detail.

Theorem F.3.3. Ac(∞) is an open subset of the Fatou set.

Proof. First, it is obvious that A(∞) is completely invariant. Now, let UR = {z : |z| > R}, and let R be
sufficiently large such that |fc(z)| = |z2 + c| > 2|z| on UR, so that {fnc (z)} converges uniformly to ∞ on
UR. Thus, UR is a subset of both the Fatou set and Ac(∞). Because both Ac(∞) and the Fatou set are
completely invariant, we have that

Ac(∞) =
∞⋃
i=0

f−ic (UR)



On Quadratic Mappings With and Attracting Cycle F-5

is an open subset of the Fatou set (open because it is the union of the inverse images of open sets, which are
open). Q.E.D.

Next, we wish to describe the interior of the filled Julia set. In particular, we wish to prove that the
interior of the filled Julia set consists of open components which are simply connected. First, however, we
must show that Ac(∞) is connected and that ∂Ac(∞) = J(fc).

Lemma F.3.4. Ac(∞) is connected.

Proof. Since Ac(∞) is completely invariant, we must have that ∂Ac(∞) is also completely invariant. Let Ã be
an (open) bounded component of C−∂Ac(∞). Then, by the maximum principle, sup{|z| : z ∈ fc(Ã)} occurs
on ∂Ac(∞), so fc(Ã) is an open bounded component of C − ∂Ac(∞). It follows that sup{|z| : z ∈ fnc (Ã)}
occurs on ∂Ac(∞). This means that no bounded component of C− ∂Ac(∞) maps to a neighborhood of ∞.
Thus, Ac(∞) consists of one component, the unbounded component of C − ∂Ac(∞). Therefore, Ac(∞) is
connected. Q.E.D.

Lemma F.3.5. ∂Ac(∞) = J(fc)

Proof. First, let z0 ∈ J(fc). Then {fnc } is not equicontinuous on any neighborhood U of z0. By Montel’s
theorem, this implies that {fnc (U)} omits at most two points in Ĉ. Hence, f(U) ∪ Ac(∞) 6= ∅, and z0 ∈
∂Ac(∞), so J(fc) ⊂ ∂Ac(∞).

Now, let z0 ∈ ∂Ac(∞). Let U be a neighborhood of z0. Then {fnc (z)} converges to ∞ on Ac(∞) ∪ U .
However, {fnc (z0)} is bounded, so no subsequence of {fnc (z)} can converge on U . Thus, another application
of Montel’s theorem shows that z0 ∈ J(fc), so ∂Ac(∞) ⊂ J(fc). Q.E.D.

Theorem F.3.6. The interior of the filled Julia set consists of open components, each of which is simply
connected. That is, they are topologically equivalent to an open disk.

Proof. By definition, the interior of the filled Julia set is open. Because Ac(∞) is connected, we must have
that Ac(∞) ∪ ∂Ac(∞) = Ac(∞) ∪ J(fc) is connected. Finally, since Ĉ is the disjoint union of the interior of
the filled Julia set, J(fc), and Ac(∞), we must have that the components of the interior of the filled Julia
set are simply connected. Q.E.D.

For values of c such that fc has an attracting cycle, we can further characterize the Fatou set of fc by
the following:

Definition F.9. The immediate basin of attraction of an attracting cycle {z1, z2, . . . , zn} of period n is the
subset of components Bi in the Fatou set such that zi ∈ Bi, where i ∈ {1, 2, . . . , n}. Moreover, the basin of
attraction of an attracting cycle {z1, z2, . . . , zn} of period n is the set of all components B in the Fatou set
such that limm→∞ fmnc (B) = Bi, where i ∈ {1, 2, . . . , n}.

The next result is quite important, and has far-reaching consequences. For a proof, see [2, p.195].

Theorem F.3.7. The immediate basin of each attracting cycle of fc contains a critical point.

This leads to the following corollary:

Corollary F.3.8. fc has at most one attracting cycle, and 0 must be contained in the immediate basin of
attraction for this cycle.
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Proof. The only critical point (a point at which the derivative vanishes) for the map fc(z) = z2 + c is
z = 0. Thus, if fc has an attracting cycle, Theorem F.3.7 requires that z = 0 must be in its immediate
basin. Q.E.D.

We can use Corollary F.3.8 to begin to construct a model of the filled Julia set. If fc has an at-
tracting cycle, then we know that there is a component of Kc which contains the origin. We will here-
after denote this particular component as B∗. Additionally, Theorem F.3.6 suggests that the closures
of the components of K(fc) meet at points belonging to J(fc). Specifically, we will focus on maps fc
whose filled Julia set contains an attracting cycle with period q such that the closures of the components
B∗, fc(B∗), . . . , fq−1

c (B∗) (in other words, the closures of the components of the immediate basin of attraction
for the attracting cycle {z0, f

1
c (z0), . . . , fq−1

c (z0)}) meet at a single point P 0. Interestingly, these components
B∗, fc(B∗), . . . , fq−1

c (B∗) behave predictably, in the sense that each component will move counterclockwise
around P 0 by a predetermined number of components. We thus define:

Definition F.10. The rotation number for fc is a fraction p
q , where q is the period of the attracting orbit,

and each component of the immediate basin of attraction of fc rotates p components counterclockwise under
iteration of fc.

Figure F.1: Julia sets with rotation number 1/4 (left) and 2/5 (right)

What we will focus on now is the process of finding values of c that meet the above criteria.

F.4 External Rays

This section will provide the tools necessary to show where the components of K(fc) map under fc. This is
done partially by comparing f0 and fc. First, note that the dynamics for f0(z) = z2 are very well-behaved.
In fact, 0 is one of only two values of c (the other being −2) such that J(fc) can be described explicitly. It
should be noted that the squaring function f0(z) = z2 squares the modulus and doubles the argument of z,
since if we represent a point z as z = reiθ, then z2 = r2ei(2θ). Thus, the forward orbit of any point z such
that |z| > 1 approaches ∞, while the forward orbit of a point z such that |z| < 1 approaches 0. Finally,
for any point z0 such that |z0| = 1, any point w ∈ O+(z0) in the forward orbit of z0 will also have |w| = 1.
Thus, we have ascertained the following:

K(f0) = {z : |z| ≤ 1}
J(f0) = ∂K(f0) = {z : |z| = 1}

A0(∞) = {z : |z| > 1}

The next theorem helps to relate Ac(∞) and A0(∞).
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Theorem F.4.1. If fc has an attracting cycle, then there exists an invertible mapping Φc : C −K(fc) −→
{z : |z| > 1} such that Φc(fc(z)) = (Φc(z))2.

Proof. Although a detailed proof may be found as a special case of a theorem stated in [6, p.91], we will
nonetheless give an explanation of how to find such a map Φc. We can let

Φc(z) = lim
n→∞

(fnc (z))1/2n

We refer to [6] here in order to solve the problem of determining how to choose a (2n)th root of fnc that is
one-to-one and onto. However, if we assume that we can choose such a map Φc that is invertible, then

Φc(fc(z)) = lim
n→∞

(fnc (fc(z)))1/2n = lim
n→∞

(fn+1
c (z))1/2n = lim

n→∞
(fnc (z))1/2n−1

= (Φc(z))2

Q.E.D.

Hence, the following diagram is commutative:

Ac(∞)
fc−−−−→ Ac(∞)

Φc

y yΦc

A0(∞) −−−−→
f0

A0(∞)

Now, we will describe external rays and how they allow us to understand the Kc.

Definition F.11. The external rays Rt for the map f0 are defined by

Rt = {re2πit : r > 1}

Note that Rt = Rt+k, where k ∈ Z. Therefore, we will limit t to the interval [0, 1). Furthermore, since
Rt consists only values whose modulus is greater than 1, Rt ⊂ A0(∞).

Definition F.12. The external ray Rt lands at a point z0 if

lim
r→1+

Rt = z0

Hence, given a point z0 = e2πit ∈ J(f0), the external ray Rt lands at z0. We can use the map Φc to
define the external rays Rt for an arbitrary value c.

Definition F.13. The external ray Rt for a map fc is defined by

Rt = Φ−1
c (re2πit), r > 1

It has been shown that, if fc has an attracting orbit, then every external ray will land (see [6, p.176,195]).
Therefore, since e2πit ∈ J(f0), then limr→1+ Φ−1

c (re2πit) ∈ J(fc). This allows us to understand the dynamics
of fc in terms of the dynamics of the more-easily-understood dynamics of f0.
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Figure F.2: External rays for f−0.122561+0.744862i (rotation number 1/3)
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Figure F.3: External rays for f−0.50434+0.562766i (rotation number 2/5)
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F.5 The Mandelbrot Set

We wish to find values c ∈ C such that closures of the components of the immediate basin of attraction for the
attracting cycle {z0, f

1
c (z0), . . . , fq−1

c (z0)} meet at a single point. To do this, we introduce the Mandelbrot
set (pictured in Figure F.4).

Definition F.14. The Mandelbrot set M is the set

M = {c ∈ C : fnc (0) 6→ ∞ as n→∞}

The mapping Φc, defined in Theorem F.4.1, is helpful here also. The next theorem compares A0(∞) and
C−M, and is presented in [3].

Theorem F.5.1. There exists an invertible mapping Ψ: C−M −→ {z : |z| > 1}. Moreover, Ψ(c) = Φc(c).

We can use this to define external rays in the parameter space:

Definition F.15. The external ray Rt of M with angle t is defined as

Rt = Ψ−1(re2πit), r > 1

The largest component of the Mandelbrot set is a cardioid. For all values of c in this main cardioid, fc

has an attracting fixed point. Thus, the main cardioid is bounded by the curve g(θ) = −
(
eiθ

2 +
(
eiθ

2

)2
)

,

as proven in Theorem F.1.1. We can then use Schleicher’s algorithm (as given in [3]) to name the bulbs on
the Mandelbrot set and to determine which external rays land at the base of each bulb. Here, the external
rays will be given in their binary expansion. Thus, the ray r1r2 . . . rn, where ri ∈ {0, 1}, represents the
unending binary decimal 0.r1r2 . . . rnr1r2 . . . rnr1r2 . . . . For example, the external ray R1/7 is equivalent to
001. Figure F.5 shows the result of a few applications of Schleicher’s algorithm.

Schleicher’s Algorithm: The main cardioid is defined as the 0/1 or 1/1 bulb. The rays 0 and 1 land at
its cusp. Furthermore, the largest bulb connected to the main cardioid is the 1/2 bulb. The ray 01 lands at
the 1/2 bulb from above, the ray 10 lands from below.

Locate the largest bulb between two already-named bulbs p1/q1 and p2/q2. This is the p1
q1
⊕ p2

q2
= p1+p2

q1+q2

bulb. (The operation ⊕ is known as Farey addition.)
Find the rays closest to the p1+p2

q1+q2
bulb. One ray, r1, will be connected to the p1

q1
bulb, and the other,

r2, will be connected to the p2
q2

bulb. Then, the ray landing on the p1+p2
q1+q2

bulb closest to the p1
q1

bulb is r1r2,
and the ray landing on the p1+p2

q1+q2
bulb closest to the p2

q2
bulb is r2r1.

For values of c within the components of M connected to the main cardioid, fc has an attracting cycle.
Moreover, the immediate basin of attraction for this cycle consists of components whose closures meet at a
single point. Finally, if c is within the p/q bulb of the Mandelbrot set, then the rotation number for fc is
p/q. If the external rays Rt1 and Rt2 land at the p/q bulb of M, then Rt1 and Rt2 will land at the base of
the component fc(B∗). By taking forward and inverse image of these rays, we can discover which rays land
at the base of any component. Now, we may use this information to construct an algorithm to determine
the structure of K(fc).
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Figure F.4: Mandelbrot Set
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F.6 Constructing the Graph of K(fc)

The following algorithm will construct a sequence of graphs which will represent successive approximations
of K(fc) for values of c specified above. The graph completed to the nth stage will be denoted Gn, for n ∈ N.
There will be two different types of vertices in the graph: those labeled Cniφ , and those labeled P jθCniφ

, although

some of these indices may be omitted occasionally either when the value of the index is not important, or
when the value of the index is not known. Whereas the C vertices represent the components of K(fc), the
P vertices represent the points in J(fc) at which the components in K(fc) meet. Therefore, each edge in Gn

will connect a C vertex and a P vertex. Finally, throughout this algorithm, angles (represented by φ and θ)
will be measured in turns. Turns may be converted into radians using the following: 1 turn = 2π radians.
Therefore, we will constrain φ and θ to the interval [0, 1). All angles are measured counterclockwise from
the horizontal.

This algorithm is used to give a sequence of planar graphs. The indices on Cniφ and P jθCni will help to embed
Gn in the plane, and will now be explained in more detail. For a vertex Cniφ , the number n ∈ N signifies
that a vertex C has been created at the nth stage. The number i ∈ N is an index which will distinguish
the various vertices created at the nth stage; it will be used for showing which components represented by a
vertex Cn map to which component represented by Cn−1. Now, we define the base point of a component Cniφ ,
where n ≥ 1, to be the unique vertex P jθCmiφ

connected to Cniφ such that m < n. Then, φ represents the angle

that the vector from the base point of Cniφ to Cniφ makes with the horizontal. Vertices P jθCni , henceforth called

junctures, are created so that each P jθCni
is adjacent to the vertex Cniφ . The vector from Cniφ to P jθCni makes

an angle θ with the horizontal. The particular use of the index j ∈ N will become apparent throughout the
course of the algorithm.

To create the graph G for fc, first we must construct the initial graph G0 consisting of the one vertex
C0

00
. Next, we give a procedure to construct Gn from Gn−1. This procedure is split in three parts. First,

we discuss how to add the components Cn. Then, we provide instructions for indexing the Cniφ . Then,
we determine where to add junctures. Afterwards, we show how to use the index i to determine which
components of Gn map to which component of Gn−1.

F.6.1 Creating G0

First, create the graph G0, consisting of a single vertex labeled C0
00

. Draw an edge from C0
00

to two junctures
labeled P 00

C0
00

(at 0 radians) and P
01/2

C0
00

(at π radians).

F.6.2 Step 1: adding vertices Cn to Gn−1

To each vertex Cm such that n 6≡ m (mod q), add a Cn to each Cm at each P jθCm such that j = bn−mq c. These

points should be labeled Cniφ (keep the i as an undetermined constant for now), where φ = θ+ 1
2−
(
p
q

)
(n−m)

(mod 1). Also, the vector from the base point P jθCm of Cniφ to Cniφ should have angle φ.
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F.6.3 Step 2: labeling the Cn

For n = 1, go to the unique component C1 connected to P 00
C0

00
. Otherwise, go to the unique component

Cn connected to P 0
Cn−1

0
. Label this component as Cn0φ . Let l = 1. From Cn0φ , and facing P 0

Cn−1
0

, make a
clockwise traversal around the graph Gn (as in figure F.6). This is equivalent to traversing the entire graph
Gn by only making left turns. Whenever a component Cn is encountered, label this component Cnl , and
then increase the value of l by 1. This processes mimics the clockwise traversal of

⋃n
k=0 f

−k(B∗) starting at
the fixed point z0 = 1+

√
1−4c
2 . For the moment, we treat this procedure as intuitively clear, but we will give

a precise algorithm for the clockwise traversal of Gn in section F.8.

F.6.4 Step 3: adding junctures P jθ
Cmiφ

Consider all the vertices Cmi such that m ≡ n (mod q). Let j = m−n
q . Attach 2j junctures P jCmi to

vertices Cmi . The vectors from Cmiφ to P jθCmiφ
should have angles θ = φ + 1

2 + 2k+1
2j+1 (mod 1), where k =

{0, 1, 2, . . . , 2j − 1}.
These angles θ ensure that no two edges from Cmi to the points P jCmi are consecutive. Since there will be

1 + 20 + 21 + · · · + 2j−1 = 2j points PCim already connected to Cmi , there is a unique way to add the new
points P j such that no two edges from C to P jC are adjacent.

F.6.5 An Example

The following graphs show successive iterations of the algorithm applied to a map fc with rotation number
1/3 (as in figure F.2).
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Figure F.5: Schleicher’s Algorithm
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Figure F.6: G0



F-16 Jacek Skryzalin

P 00
C0

00

C0
00P

01/2

C0
00

Figure F.7: G0

P 00
C0

00

C1
01/6

C1
12/3

C0
00P

01/2

C0
00

P
01/6

C1
01/6

P
02/3

C1
12/3

Figure F.8: G1



On Quadratic Mappings With and Attracting Cycle F-17

P 00
C0

00

C1
01/6

C1
12/3

C2
01/3

C2
15/6

C2
25/6

C2
31/3

C0
00P

01/2

C0
00

P
01/6

C1
01/6

P
05/6

C2
15/6

P
02/3

C1
12/3

P
01/3

C2
31/3

P
01/3

C2
01/3

P
05/6

C2
25/6

Figure F.9: G2



F-18 Jacek Skryzalin

P
0
0

C
0 0
0

C
1 0
1

/
6

C
1 1
2

/
3

C
2 0
1

/
3

C
2 1
5

/
6

C
2 2
5

/
6

C
2 3
1

/
3

C
0 0
0

P
0
1

/
2

C
0 0
0

P
0
1

/
6

C
1 0
1

/
6

P
0
5

/
6

C
2 1
5

/
6

P
0
2

/
3

C
1 1
2

/
3

P
0
1

/
3

C
2 3
1

/
3

P
0
1

/
3

C
2 0
1

/
3

P
0
5

/
6

C
2 2
5

/
6

P
1
1

/
4

C
0 0
0

P
1
3

/
4

C
0 0
0

C
3 1
0

C
3 2
0

C
3 3
0

C
3 0
1

/
2

C
3 5
1

/
2

C
3 4
1

/
2

P
0
1

/
2

C
3 0
1

/
2

P
0
1

/
2

C
3 5
1

/
2

P
0
1

/
2

C
3 4
1

/
2

P
0
0

C
3 1
0

P
0
0

C
3 2
0

P
0
0

C
3 3
0

Figure F.10: G3



On Quadratic Mappings With and Attracting Cycle F-19

P
0
0

C
0 0
0

C
1 0
1

/
6

C
1 1
2

/
3

C
2 0
1

/
3

C
2 1
5

/
6

C
2 2
5

/
6

C
2 3
1

/
3

C
0 0
0

P
0
1

/
2

C
0 0
0

P
0
1

/
6

C
1 0
1

/
6

P
0
5

/
6

C
2 1
5

/
6

P
0
2

/
3

C
1 1
2

/
3

P
0
1

/
3

C
2 3
1

/
3

P
0
1

/
3

C
2 0
1

/
3

P
0
5

/
6

C
2 2
5

/
6

P
1
1

/
4

C
0 0
0

P
1
3

/
4

C
0 0
0

C
3 1
0

C
3 2
0

C
3 3
0

C
3 0
1

/
2

C
3 5
1

/
2

C
3 4
1

/
2

P
0
1

/
2

C
3 0
1

/
2

P
0
1

/
2

C
3 5
1

/
2

P
0
1

/
2

C
3 4
1

/
2

P
0
0

C
3 1
0

P
0
0

C
3 2
0

P
0
0

C
3 3
0

P
1
5

/
1
2

C
1 0
1

/
6

P
1
1
1

/
1
2

C
1 0
1

/
6

P
1
1
1

/
1
2

C
1 1
2

/
3

P
1
5

/
1
2

C
1 1
2

/
3

C
4 0
2

/
3

C
4 4
2

/
3

C
4 7
2

/
3

C
4 8
2

/
3

C
4 9
2

/
3

C
4 1
1

/
6

C
4 2
1

/
6

C
4 3
1

/
6

C
4 6
1

/
6

C
4 1
0
1

/
6

C
4 1
1
5

/
1
2

C
4 5
1
1

/
1
2

P
0
2

/
3

C
4 0
2

/
3

P
0
2

/
3

C
4 8
2

/
3

P
0
2

/
3

C
4 4
2

/
3

P
0
2

/
3

C
4 7
2

/
3

P
0
2

/
3

C
4 9
2

/
3

P
0
5

/
1
2

C
4 1
1
5

/
1
2

P
0
1
1

/
1
2

C
4 5
1
1

/
1
2

P
0
1

/
6

C
4 1
1

/
6

P
0
1

/
6

C
4 2
1

/
6

P
0
1

/
6

C
4 3
1

/
6

P
0
1

/
6

C
4 6
1

/
6

P
0
1

/
6

C
4 1
0
1

/
6

Figure F.11: G4



F-20 Jacek Skryzalin

P
0
0

C
0 0
0

C
1 0
1

/
6

C
1 1
2

/
3

C
2 0
1

/
3

C
2 1
5

/
6

C
2 2
5

/
6

C
2 3
1

/
3

C
0 0
0

P
0
1

/
2

C
0 0
0

P
0
1

/
6

C
1 0
1

/
6

P
0
5

/
6

C
2 1
5

/
6

P
0
2

/
3

C
1 1
2

/
3

P
0
1

/
3

C
2 3
1

/
3

P
0
1

/
3

C
2 0
1

/
3

P
0
5

/
6

C
2 2
5

/
6

P
1
1

/
4

C
0 0
0

P
1
3

/
4

C
0 0
0

C
3 1
0

C
3 2
0

C
3 3
0

C
3 0
1

/
2

C
3 5
1

/
2

C
3 4
1

/
2

P
0
1

/
2

C
3 0
1

/
2

P
0
1

/
2

C
3 5
1

/
2

P
0
1

/
2

C
3 4
1

/
2

P
0
0

C
3 1
0

P
0
0

C
3 2
0

P
0
0

C
3 3
0

P
1
5

/
1
2

C
1 0
1

/
6

P
1
1
1

/
1
2

C
1 0
1

/
6

P
1
1
1

/
1
2

C
1 1
2

/
3

P
1
5

/
1
2

C
1 1
2

/
3

C
4 0
2

/
3

C
4 4
2

/
3

C
4 7
2

/
3

C
4 8
2

/
3

C
4 9
2

/
3

C
4 1
1

/
6

C
4 2
1

/
6

C
4 3
1

/
6

C
4 6
1

/
6

C
4 1
0
1

/
6

C
4 1
1
5

/
1
2

C
4 5
1
1

/
1
2

P
0
2

/
3

C
4 0
2

/
3

P
0
2

/
3

C
4 8
2

/
3

P
0
2

/
3

C
4 4
2

/
3

P
0
2

/
3

C
4 7
2

/
3

P
0
2

/
3

C
4 9
2

/
3

P
0
5

/
1
2

C
4 1
1
5

/
1
2

P
0
1
1

/
1
2

C
4 5
1
1

/
1
2

P
0
1

/
6

C
4 1
1

/
6

P
0
1

/
6

C
4 2
1

/
6

P
0
1

/
6

C
4 3
1

/
6

P
0
1

/
6

C
4 6
1

/
6

P
0
1

/
6

C
4 1
0
1

/
6

P
1
1

/
1
2

C
2 3
1

/
3

P
1
1

/
1
2

C
2 2
5

/
6

P
1
1

/
1
2

C
2 0
1

/
3

P
1
1

/
1
2

C
2 1
5

/
6

P
1
7

/
1
2

C
2 3
1

/
3

P
1
7

/
1
2

C
2 2
5

/
6

P
1
7

/
1
2

C
2 1
5

/
6

P
1
7

/
1
2

C
2 0
1

/
3

C
5 2
2
1

/
1
2

C
5 9
1

/
1
2

C
5 2
1
7

/
1
2

C
5 1
0
7

/
1
2

C
5 1
7
7

/
1
2

C
5 2
3
7

/
1
2

C
5 5
1

/
1
2

C
5 1
1
1

/
1
2

C
5 0
5

/
6

C
5 1
1

/
3

C
5 2
1

/
3

C
5 3
1

/
3

C
5 4
5

/
6

C
5 6
1

/
3

C
5 7
5

/
6

C
5 8
5

/
6

C
5 1
2
1

/
3

C
5 1
3
5

/
6

C
5 1
4
5

/
6

C
5 1
5
5

/
6

C
5 1
6
1

/
3

C
5 1
8
5

/
6

C
5 1
9
1

/
3

C
5 2
0
1

/
3

P
0
1

/
1
2

C
5 2
2
1

/
1
2

P
0
1

/
1
2

C
5 9
1

/
1
2

P
0
7

/
1
2

C
5 2
1
7

/
1
2

P
0
7

/
1
2

C
5 1
0
7

/
1
2

P
0
7

/
1
2

C
5 2
3
7

/
1
2

P
0
7

/
1
2

C
5 1
7
7

/
1
2

P
0
1

/
1
2

C
5 5
1

/
1
2

P
0
1

/
1
2

C
5 1
1
1

/
1
2

P
0
5

/
6

C
5 0
5

/
6

P
0
1

/
3

C
5 1
1

/
3

P
0
1

/
3

C
5 2
1

/
3

P
0
1

/
3

C
5 3
1

/
3

P
0
5

/
6

C
5 1
8
5

/
6

P
0
1

/
3

C
5 6
1

/
3

P
0
1

/
3

C
5 2
0
1

/
3

P
0
1

/
3

C
5 1
9
1

/
3

P
0
1

/
3

C
5 1
6
1

/
3

P
0
1

/
3

C
5 1
2
1

/
3

P
0
5

/
6

C
5 7
5

/
6

P
0
5

/
6

C
5 8
5

/
6

P
0
5

/
6

C
5 4
5

/
6

P
0
5

/
6

C
5 1
5
5

/
6

P
0
5

/
6

C
5 1
3
5

/
6

P
0
5

/
6

C
5 1
4
5

/
6

Figure F.12: G5



On Quadratic Mappings With and Attracting Cycle F-21

F.7 Interpreting the Algorithm

Our algorithm begins by creating a vertex representing the component B∗ containing the origin (Corollary
F.3.8 requires that this exists). The construction of Cn from Cn−1 replicates taking the nth inverse image
of B∗. The following theorems show that our algorithm constructs an accurate approximation of K(fc). For
a proof of theorem F.7.1, consult [6, p.234]

Theorem F.7.1. No Wandering Domains. Let g : Ĉ→ Ĉ be a rational map. Then every component in
the Fatou set of g is eventually periodic.

Corollary F.7.2. O−(B∗) = K(fc)

Proof. Let B ∈ K(fc) be a component of the interior of K(fc). By theorem F.7.1, the forward orbit of
B is eventually periodic. Therefore, the forward orbit of B must eventually meet the immediate basin of
attraction for either an attracting cycle or a parabolic cycle (a cycle which contains neutral periodic points).
As stated on [6, p.112], the total number of attracting orbits and parabolic orbits for fc is 2. We know
that ∞ is an attracting fixed point for fc, and by hypothesis, there is an attracting orbit. By definition,
O+(B) ∩Ac(∞) = ∅, and therefore, O+(B) ∩B∗ 6= ∅. Thus, O−(B∗) = K(fc) Q.E.D.

We now define a function, N : N→ N. Let N(n) give the number of components Cn created during the
construction of Gn. If p/q be the rotation number for fc, then we can give an explicit formula for N(n) as

N(n) =
{

2n n ≤ q − 1(
2q−1 − 1

) (
2n−q+1

)
n > q − 1

}

By constructing the graph up to Gn, for n sufficiently high (n = 20 seems to be sufficient), and then
by connecting all of the points P surrounding a vertex C, we can create a picture which is topologically
equivalent to K(fc). Thus, each vertex C can now represent a component of K(fc). Furthermore, we can
use the indices i to show where the components Cmiφ map under fc.

Theorem F.7.3. Let Cq−1
Ip/q

represent the component attached to P 01/2

C0
00

whose angle is

φ = p/q. Furthermore, define ĩ as:

ĩ =


i (mod N(q − 1)) i < I

i+ 1 (mod N(q − 1)) I ≤ i < I + N(q)
2

i+ 2 (mod N(q − 1)) i ≥ I + N(q)
2


Then the following is true:

fc(Cmi ) =


Cq−1
I m = 0

Cq−1ei m = q

Cm−1
i (mod N(m−1)) m 6= 0 and m 6= q


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Proof. Recall the map Φc, defined in Theorem F.4.1. For the maps fc which we are considering, every
external ray lands. We can define a surjective map Υc : J(f0)→ J(fc) given by

Υc(e2πit) = lim
r→1+

Φ−1
c (re2πit)

Thus, Υc associates a point in J(fc) to each point in J(f0). Moreover, since Φc(fc(z)) = (Φc(z))2, it follows
that Υc(f0(z)) = fc(Υc(z)). That is, the following diagram is commutative:

J(f0)
f0−−−−→ J(f0)

Υc

y yΥc

J(fc) −−−−→
fc

J(fc)

Now, we parameterize J(f0) by γ(t) = e−2πit. As t goes from 0 to 1, then while γ(t) goes clockwise around
J(f0) once, f0(γ(t)) = e−4πit goes around the J(f0) twice. Similarly, as t goes from 0 to 1, Υc(γ(t)) =
Υc(e−2πit) goes clockwise around J(fc) once, and

fc(Υc(γ(t))) = Υc(f0(γ(t))) = Υc(e−4πit)

goes clockwise around J(fc) twice. The clockwise traversal of Gn, given in the second step of the algorithm,
mimics the clockwise traversal of J(fc) by the mapping Υc(γ(t)). Furthermore, the double clockwise cover
of J(fc) by fc(Υc(γ(t))) justifies the formula fc(Cmi ) = Cm−1

i (mod N(m−1)) for m 6= 0 and m 6= q. The main
problem for m = 0 and m = q is that the components in both Cq and C0 map to components in Cq−1. So,
we isolate the one component to which C0

0 maps (Cq−1
I ), and “skip over” this component when constructing

a formula for fc(C
q
i ) (this results in our formula for ĩ). Q.E.D.

F.8 The Labeling Algorithm

In Section F.6.3, we give instructions to “traverse Gn clockwise”. We realize that, for programming purposes,
this is surprisingly unhelpful. Therefore, we provide a relatively detailed outline, written in pseudo-code, of
a program that traverses Gn clockwise. First, however, we will give answers to several issues that had to be
considered when writing this program and give guidelines that should be followed when writing a computer
program.

This program requires the rotation number (p/q) and the completed (fully indexed) graph Gn−1. One
can begin the program by calling the label components (p q n) procedure. The program starts by locating
the path

P = C0
0P

00
C0

0
C1

0 . . . C
n−1
0

Then, beginning on C0
0 , and facing the next vertex in P (this is P 0

C0
0
), the program applies recursive procedures

which mimic a clockwise traversal of each edge connected to the current vertex.

The following facts needed to be ascertained before writing the program. Let

[m 6= 0] =
{

1 m 6= 0
0 m = 0

}
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Then there are 2d
n−m
q e − [m 6= 0] vertices P jθCmiφ

which are connected to Cmiφ . The vectors from Cmiφ to the

P jθCmiφ
s will have angles

θ =
1
2

+ φ− k

2d
n−m
q e

(mod 1), k = {1, . . . , 2d
n−m
q e − [m 6= 0]}

Furthermore, there are max{q − 1, n −m − qj} vertices CµεΩ which are connected to P jθCmiφ
other than Cmiφ .

The angles of the vectors from P jθCmiφ
to the CµεΩs will be in the set

{
Ω =

1
2

+ θ − k

q
(mod 1)

}
, k = {1, 2, . . . , q − 1}

Lastly, we will need to explain some peculiarities unique to this program. Whenever fractions appear
(they will be represented by λ and ω), they should kept in lowest terms. Whenever “if ∃ CµεΩ” appears in
the program, the program should check if there exists a vertex C adjacent to the current juncture P such
that the vector from P to C makes an angle Ω with the horizontal. If so, the remainder of the indices (ε and
µ) can be uniquely determined from Ω, unless µ = n, in which case an instruction to determine ε is on the
next line. Likewise, whenever “∃ P jωCmiφ

” appears in the program, the program should determine the value of

j (this will be unique) from the values of i, φ, m, and ω, which will always be known. Finally, “stop” ends
the entire program; that is, by the time “stop” is encountered, all vertices Cn will have been labeled.

Labeling Algorithm

begin label components (p q n)
l := 0
α := (N(n))/2
β := N(n)
do label 1

end label components

begin label 1

for (λ = 0) to
(

1
2

)
by
(

1

2
dn
q
e

)
if λ = 1

2

do next component 2 (P 0λ
C0

00
)

else
∃ P jλ

C0
00

do next component 1 (P jλ
C0

00
)

end if
end for
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end label 1

begin label 2

for
(
λ = 1

2

)
to (1) by

(
1

2
dn
q
e

)
if λ = 1

do next component 4 (P 00
C0

00
)

else
∃ P jλ

C0
00

do next component 3 (P jλ
C0

00
)

end if
end for

end label 2

begin next component 1 (P jθCmiφ
)

if j = 0 and if i = 0
for

(
λ = 1

2 + θ − p
q (mod 1)

)
to
(

1
2 + θ + 1

q (mod 1)
)

by
(
−1
q

)
Ω := λ
if ∃ CµεΩ

if µ = n
label CnlΩ
l := l + 1

else
next branch point 1 (CµεΩ)

end if
end if

end for
else

for (λ = 1) to (q − 1) by (1)
Ω := 1

2 + θ − λ
q (mod 1)

if ∃ CµεΩ
if µ = n

label CnlΩ
l := l + 1

else
next branch point 1 (CµεΩ)

end if
end if

end for
end if

end next component 1

begin next component 2 (P jθCmiφ
)

if m = 0
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a := 0
else

a := (N(m))/2
end if
if j = 0 and if i = a

for
(
λ = 1

2 + θ − 1
q (mod 1)

)
to
(

1
2 + θ − p

q (mod 1)
)

by
(
−1
q

)
Ω := λ
if ∃ CµεΩ

if µ = n
label CnlΩ
l := l + 1
if l = α

do label 2
end if

else
next branch point 2 (CµεΩ)

end if
end if

end for
else

for (λ = 1) to (q − 1) by (1)
Ω := 1

2 + θ − λ
q (mod 1)

if ∃ CµεΩ
if µ = n

label CnlΩ
l := l + 1

else
next branch point 2 (CµεΩ)

end if
end if

end for
end if

end next component 2

begin next component 3 (P jθCmiφ
)

if m = 0
a := 0

else
a := (N(m))/2

end if
if j = 0 and if i = a

for
(
λ = 1

2 + θ − p
q (mod 1)

)
to
(

1
2 + θ + 1

q (mod 1)
)

by
(
−1
q

)
Ω := λ
if ∃ CµεΩ
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if µ = n
label CnlΩ
l := l + 1

else
next branch point 3 (CµεΩ)

end if
end if

end for
else

for (λ = 1) to (q − 1) by (1)
Ω := 1

2 + θ − λ
q (mod 1)

if ∃ CµεΩ
if µ = n

label CnlΩ
l := l + 1

else
next branch point 3 (CµεΩ)

end if
end if

end for
end if

end next component 3

begin next component 4 (P jθCmiφ
)

if j = 0 and if i = 0
for

(
λ = 1

2 + θ − 1
q (mod 1)

)
to
(

1
2 + θ − p

q (mod 1)
)

by
(
−1
q

)
Ω := λ
if ∃ CµεΩ

if µ = n
label CnlΩ
l := l + 1
if l = β

stop
end if

else
next branch point 4 (CµεΩ)

end if
end if

end for
else

for (λ = 1) to (q − 1) by (1)
Ω := 1

2 + θ − λ
q (mod 1)

if ∃ CµεΩ
if µ = n

label CnlΩ
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l := l + 1
else

next branch point 4 (CµεΩ)
end if

end if
end for

end if
end next component 4

begin next branch point 1 (Cmiφ)
if m = 0 and if i = 0

for (λ = φ) to

(
1
2 + φ+ 1

2
dn−m

q
e

(mod 1)
)

by

(
−1

2
dn−m

q
e

)
ω := λ
∃ P jωCmiφ
do next component 1 (P jωCmiφ

)

end for
else

for (λ = 1) to
(

2d
n−m
q e − 1

)
by (1)

ω := 1
2 + φ− λ

2
dn−m

q
e

(mod 1)

∃ P jωCmiφ
do next component 1 (P jωCmiφ

)

end for
end if

end next branch point 1

begin next branch point 2 (Cmiφ)

a := (N(m))/2
if i = a

for

(
λ = 1

2 + φ− 1

2
dn−m

q
e

(mod 1)
)

to (φ) by

(
−1

2
dn−m

q
e

)
ω := λ
∃ P jωCmiφ
do next component 2 (P jωCmiφ

)

end for
else

for (λ = 1) to
(

2d
n−m
q e − 1

)
by (1)

ω := 1
2 + φ− λ

2
dn−m

q
e

(mod 1)

∃ P jωCmiφ
do next component 2 (P jωCmiφ

)

end for
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end if
end next branch point 2

begin next branch point 3 (Cmiφ)

a := (N(m))/2
if i = a

for (λ = φ) to

(
1
2 + φ+ 1

2
dn−m

q
e

(mod 1)
)

by

(
−1

2
dn−m

q
e

)
ω := λ
∃ P jωCmiφ
do next component 3 (P jωCmiφ

)

end for
else

for (λ = 1) to
(

2d
n−m
q e − 1

)
by (1)

ω := 1
2 + φ− λ

2
dn−m

q
e

(mod 1)

∃ P jωCmiφ
do next component 3 (P jωCmiφ

)

end for
end if

end next branch point 3

begin next branch point 4 (Cmiφ)
if m = 0 and if i = 0

for

(
λ = 1

2 + φ− 1

2
dn−m

q
e

(mod 1)
)

to (φ) by

(
−1

2
dn−m

q
e

)
ω := λ
∃ P jωCmiφ
do next component 4 (P jωCmiφ

)

end for
else

for (λ = 1) to
(

2d
n−m
q e − 1

)
by (1)

ω := 1
2 + φ− λ

2
dn−m

q
e

(mod 1)

∃ P jωCmiφ
do next component 4 (P jωCmiφ

)

end for
end if

end next branch point 4



On Quadratic Mappings With and Attracting Cycle F-29

F.9 Acknowledgments

I would like to thank my advisor, Eric Bedford, for introducing me to complex dynamical systems. Further
thanks goes to Kevin Pilgrim, who coordinated this REU. I also thank the Indiana University mathematics
department for its enthusiastic support of my education.

Finally, I would like to acknowledge the sources of my graphics. Figures F.1 and F.5 are from [3].
Figures F.2 and F.3 were made using the OTIS applet on the Tomoki Kawahira’s website; the applet can be
found at http://www.math.nagoya-u.ac.jp/˜kawahira/. Figure F.4 was taken from Derek Dreier’s webpage,
http://www.cs.ucr.edu/˜ddreier/. The remainder of the figures were created using the drawing program Ipe,
which can be downloaded from http://tclab.kaist.ac.kr/ipe/.

Bibliography

1. Ahlfors, L. V. Complex Analysis (third edition), McGraw-Hill, 1979.

2. Beardon, A. F. Iteration of Rational Functions. Springer-Verlag, New York, 1991

3. Devaney, R. L. The Complex Dynamics of Quadratic Polynomials. In Complex Dynamical Systems. Amer-
ican Mathematical Society. (1994), 1-27.

4. Devaney, R. L. An Introduction to Chaotic Dynamical Systems, Second Edition. Addison-Wesley, Co.,
Reading, MA, 1992.

5. Gamelin, T. W. Complex Analysis. Springer, New York, 2001.

6. Milnor, J. Dynamics in One Complex Variable. Vieweg, Braunschweig/Wiesbaden, 1999.





The Construction of a Complete, Bounded, Negatively Curved
Surface in R3

Joseph Thurman

Vanderbilt University

Indiana University REU Summer 2009
Advisor: Chris Connell





The Construction of a Complete, Bounded, Negatively Curved Surface in R3 G-1

G.1 Introduction

Although the differential geometry of surfaces, and negatively curved surfaces in particular, is a well-studied
field, there still remain a number of open problems and conjectures, even in the more basic case of surfaces
in R3. In this paper, we examine one such question, the existence of a complete, bounded, negatively curved
surface in R3. In this section, we give the background information necessary to state and understand the
problem, which we begin investigating in Section 2. With the exception of Definition G.6, all definitions
given in this section are taken from [2]. We start with the basic definition of a surface.

Definition G.1. A subset S ⊂ R3 is a regular surface if, for each p ∈ S, there exists a neighborhood V ⊂ R3

and a map x : U → V ∩ S of an open set U ⊂ R2 onto V ∩ S such that x is a diffeomorphism; that is, x is
differentiable and has differentiable inverse x−1. The mapping x is called a parameterization of the surface
at p, and the neighborhood V ∩ S is called a coordinate neighborhood at p.

Notation. We will use (x, y, z) as our coordinates in R3, and (u, v) as coordinates in R2. For convenience,
partial derivatives will usually be written as subscripts throughout this paper. For example, xu = ∂x

∂u .

The conditions of the definition guarantee that a surface S does not self-intersect, as a self-intersection
would violate the bijectivity of x. It also guarantees the existence of a tangent plane at every point, defined
below.

Definition G.2. Let x : U ⊂ R2 → R3 be a parameterization of a regular surface S at a point p. Let q ∈ U
such that x(q) = p. Then the vectors

{
∂x
∂u (q), ∂x∂v (q)

}
form a basis for a 2-dimensional vector subspace called

the tangent plane to S at p and denoted by Tp(S).

In order to define the properties of completeness and negative curvature, we must first have some notion
of distance on the surface. We can use the natural inner product of R3 to define an inner product on the
tangent space at each point of S, Tp(S). Let 〈·, ·〉p denote the inner product on Tp(S), and 〈·, ·〉 denote the
natural inner product of R3. Then, for w1,w2 ∈ Tp(S), define 〈w1,w2〉p := 〈w1,w2〉. This inner product
on Tp(S) leads naturally to the definition of the following quadratic form.

Definition G.3. Let Ip : Tp(S)→ R be defined as

Ip(w) = 〈w,w〉p = |w|2 ≥ 0 (G.1)

This quadratic form is called the first fundamental form of S at p.

This form can be given in terms of (u, v) for the basis {xu,xv} of Tp(S), where x(u, v) = p. Then

Ip(w) = wT

(
E F
F G

)
w

with
E(u, v) = 〈xu,xu〉
F (u, v) = 〈xu,xv〉
G(u, v) = 〈xv,xv〉

. (G.2)

E,F, and G are called the coefficients of the first fundamental form.
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The first fundamental form can be used to define arc length on a surface. Let α(t) : (0, t0) ⊂ R→ S be
the equation of a parameterized curve on S. Then the arc length of the curve from t = 0 to t = t0, denoted
by `(α), is given by

`(α) =
∫ t0

0

√
I(α′(t))dt.

We can therefore define distance on a surface as follows.

Definition G.4. Let S be a regular surface with first fundamental form Ip at point p, and let p, q ∈ S be
given. Then the distance from p to q on S, d(p, q), is

d(p, q) = inf
A
`(α) (G.3)

where A is the set of all C1 curves α on S from p to q.

We use this definition of distance in the next definition, when we require that a sequence of points on
the surface is Cauchy with respect to the surface distance d(p, q).

Definition G.5. A surface S ⊂ R3 is intrinsically complete if, for every Cauchy sequence {pi}∞i=1 with
pi ∈ S and limit point p ∈ R3, we have p ∈ S.

Definition G.6. A surface S is bounded in R3 if there exists a constant M ∈ R such that S is completely
contained in the open ball in R3 of radius M centered at the origin.

Note that a negatively curved, bounded, noncompact surface cannot be extrinsically complete, that is,
complete with respect to the usual Euclidean distance in R3, as such a surface would necessarily have a
Cauchy sequence of points that converges outside the boundary. The surfaces we consider are noncompact,
as discussed at the start of Section G.2.

Now that we have defined two of the properties of the desired surface, we move on to the definition of
Gauss curvature. First, we place one more requirement on the type of surface we consider.

Definition G.7. A regular surface S is called orientable if it is possible to cover it with a family of coordinate
neighborhoods in such a way that if a point p ∈ S belongs to two neighborhoods of this family, then the
change of coordinates has positive Jacobian at p. A choice of such a family is called an orientation of S. If
such a choice is not possible, the surface is called nonorientable.

Notation. For the reminder of this paper, we use surface when we mean regular, orientable surface.

Proposition G.1.1. Let S be a surface with parameterization x : U ⊂ R2 → S. Then for each q ∈ x(U),
we can choose a unit normal vector at q by

N(q) =
xu × xv
|xu × xv|

(q), (G.4)

where × denotes the usual cross product in R3.

Proof. The proof of Proposition G.1.1 is given in [2]. Q.E.D.

Using the definition of the normal field, we may now define another quadratic form on S, the so-called
second fundamental form.
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Definition G.8. The second fundamental form, denoted by IIp(w) : Tp(S)→ R is given by

IIp(w) = wT

(
e f
f g

)
w, (G.5)

where
e(u, v) = 〈N,xuu〉
f(u, v) = 〈N,xuv〉
g(u, v) = 〈N,xvv〉

(G.6)

With these fundamental forms defined, we are now able to give the definition of one of the most important
concepts in differential geometry, that of Gaussian curvature of a surface. There are many equivalent
definitions of Gaussian curvature. It can be defined in terms of the differential of the normal map given in
equation G.1.1, in terms of the curvatures of arcs through points on a surface, or in terms of the first and
second fundamental forms. We use the last definition, as this definition leads more easily to the computation
of the curvature for a surface.

Definition G.9. Let S ⊂ R3 be a surface with parameterization x : U ⊂ R2 → R3, and let E,F,G, e, f, and
g be as defined in (G.2) and (G.6). Let q ∈ U be given such that x(q) = p. Then the Gaussian curvature of
S at point p, denoted by K(p), is given by

K(p) =
eg − f2

EG− F 2
, (G.7)

with each function evaluated at q.

Note that EG−F 2 > 0, so the sign of the curvature is always determined by the coefficients of the second
fundamental form.

Just as Gaussian curvature can be defined in many ways, it also has a number of useful geometric
interpretations. The following proposition gives a property of surfaces around points of negative curvature,
which will be useful later. The proof can be found in [2].

Proposition G.1.2. Let p ∈ S be a point on a surface S such that K(p) < 0. Then for any neighborhood
V around p, there are points of S ⊂ V on each side of Tp(S).

G.2 Previous Results

Armed with this basic understanding of surfaces, we now discuss some past results that will serve as moti-
vation for the problem considered in this paper. In particular, we present theorems from Efimov, Connell,
and Ullman that place restrictions on the end behavior of complete, negatively curved surfaces. We also
briefly review Rozendorn’s construction of a bounded, complete surface with nonpositive curvature. It will
be the goal in later sections of this paper to examine how Rozendorn’s surface can be modified to create a
complete, bounded surface with negative curvature.

We are first motivated by the observation that a compact, negatively curved surface cannot exist in R3.
If such a surface existed, it would be possible to take a flat plane and, beginning at infinity, move it toward
the surface until it is just tangent to the surface. However, by Proposition G.1.2, the surface would exist on
both sides of the tangent plane at this point, contradicting the assumption that this is first point of contact
between the surface and the plane.
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Since the construction of a compact, negatively curved surface is not possible, we consider the construction
of negatively curved surfaces with weaker properties than compactness. This leads naturally to the problem
under consideration. Theorems from Efimov, Connell, and Ullman give further insight into the possibility
of constructing such a surface. We begin with Efimov’s Theorem.

Theorem G.2.1 ([4]). Let S be a complete surface in R3, with K(p) ≤ 0 for all p ∈ S. Then the least upper
bound for K is 0.

Essentially, this theorem states that the Gaussian curvature of a complete surface cannot be bounded
away from zero. The curvature always approaches zero down at least one end of a surface.

Each “end” of a complete surface is topologically equivalent to a punctured disc, i.e., an annulus, that
is unbounded in the intrinsic metric, the distance given in definition G.4. These ends can be classified into
the following types.

Definition G.10. Let Σ denote an end of a surface S. We call a simple closed curve Γ on Σ a belt curve if
it is homotopic to the boundary of the closure of Σ. Then Σ is called a horn end if there is no belt curve of
shortest length on the closure of Σ. Otherwise, Σ is called a bowl end. Further, a horn end is called a cusp
if the infimum of the lengths of the belt curves is 0.

With these definitions, we can give the following theorem from Connell and Ullman.

Theorem G.2.2 ([3]). Given nonnegative integers nc, nb, and g, with nb > 0, there exists a negatively
curved C∞ surface with genus g in R3 with nc cusp ends and nb bowl ends.

Theorem G.2.2 essentially states that there are many types of surfaces that can be embedded in R3

so long as they have at least one bowl end. This raises an interesting secondary problem also considered
throughout the project. Are there any negatively curved, complete surfaces in R3 with only cusp ends?
Currently, only one such surface is known. It has four ends and is due to Vaigant [1]. This lead us to the
following conjecture.

Conjecture G.2.3. Let n be an integer such that n ≥ 4. Then there exists a complete, negatively curved
surface in R3 with n cusp ends.

Remark G.1. A theorem from Osserman [7] requires that a bounded subset R of a nonpositively curved
surface be a contained in the convex hull of ∂R. On a surface S with one, two, or three cusp ends, the
convex hull of the ends approaches a point, a line, or a plane, since each end approaches a point. Since the
surface is not contained in any plane, a nonpositively curved surface with ≤ 3 cusp ends is not possible. We
therefore require that n ≥ 4.

Remark G.2. The proof of this conjecture would actually follow as a special case of the overall question of
this paper. We discuss attempts to prove this conjecture in Section G.4.

The following result is the most relevant to the main problem considered in this paper.

Theorem G.2.4. There exists a complete, bounded, nonpositively curved surface in R3.

Proof. This result was proved by Rozendorn in [8], in which he gave a method to construct such a surface.
Q.E.D.

We use Rozendorn’s surface as the starting point in our investigation. Specifically, it is our goal to
find a modification of Rozendorn’s surface to create a negatively curved surface. The following details of
Rozendorn’s construction are therefore relevant.
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• Rozendorn’s construction begins with a 4-horned sphere of non-positive curvature. See Figure G.1(a)
on page G-5 for an illustration of the building block. Note that this figure has the ends of the building
block removed. At each boundary circle, a tapering tube extending out to infinity is attached. This
starting surface has negative curvature everywhere except at 4 discrete points of zero curvature, marked
in the figure.

• At each stage of the construction, a new building block surface is attached to the end of the surface.
Each new surface attached is modified through a linear transformation, which shrinks and bends the
surface, but does not affect the sign of the curvature. Infinitely many building blocks are attached
in this way. The surfaces are joined together by gluing the circle boundaries shown in Figure G.1(a)
together with negatively curved tubes. It therefore resembles a thickening of an an infinite tree with 4
branches at each vertex. Three levels of such a tree are shown in Figure G.1(b).

• The transformations are such that, as the construction continues, the surface remains bounded inside
a ball in R3, but the path length along the surface is unbounded. The surface is therefore complete.

• Rozendorn’s surface therefore has infinitely many ends, and infinitely many discrete points of zero
curvature.

(a) Rozendorn’s Building Block (Ends
Removed)

(b) Tree Construction

Figure G.1: Roxendorn’s Construction

Our main goal is to find a modification of this surface that removes the points of zero curvature. Such a
modification would therefore yield a complete, bounded surface of negative curvature in R3. We began the
search for such a modification by examining the topological properties of such a surface.

G.3 Topology of Negatively Curved Surfaces

The simplest and most desirable modification would be a local deformation of Rozendorn’s surface around
each point of zero curvature. We could hope to find a transformation that would simply bend the surface
from zero to negative curvature. Applied to every zero point on Rozendorn’s surface, such a deformation
would quickly give the existence of the desired surface.

Unfortunately, the topological properties of negatively curved surfaces make such a local transformation
impossible. In order to give the reason why, we require the following definitions and theorems.
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Definition G.11. Let ~v : S → R3 be a differentiable vector field on a surface S. Then pi ∈ S is called a
critical point of the vector field ~v if ~v(pi) = 0.

Definition G.12. Let ~v : S → R3 be a differentiable vector field on a surface S, and let p ∈ S be a critical
point of ~v. Choose a coordinate neighborhood around p, V ∩ S, such that p is the only critical point of the
field ~v in V ∩S. Use the inverse parameterization function x−1 to project the vector field ~v onto R2, creating
a vector field ~v∗ : U ⊂ R2 → R2, where x−1(V ∩ S) = U . Let Γ be a simple closed curve in U surrounding
the point q with x(q) = p. Then the index of the point p, denoted ind(p), is the winding number of the
vector field ~v∗ along Γ.

Remark G.3. Since the vector field ~v is differentiable, and therefore continuous, the index of a critical point
must be an integer.

Remark G.4. Although the above is defined for vector fields, an analogous definition is possible for line fields.
In the case of line fields, the index of a critical point is an integer multiple of 1

2 .

Finally, we give a simple definition of the Euler characteristic, a basic notion from topology. Although
there are other, more precise definitions, we give the following more intuitive definition, which will be better
suited to our situation.

Definition G.13. Let S be a closed, orientable surface. Then the Euler characteristic of S, denoted by
χ(S) is given by

χ(S) = 2− 2g,

where g is the genus, or “number of holes,” of the surface.

Remark G.5. Although the genus of a surface also has a precise definition, we use the intuitive notion of the
number of “holes” in the surface. For example, the sphere has no holes, and therefore has genus 0, while the
torus has one hole, or genus 1, and so on.

With these definitions, we can now state an important and extremely useful theorem connecting the two
ideas, the classical Poincaré-Hopf Theorem.

Theorem G.3.1. Let S be a closed, orientable surface, and let ~v be a differentiable vector field defined on
S, with critical points pi ∈ P , where P is some index set. Then,∑

P

ind(pi) = χ(S) (G.8)

Remark G.6. Although we give this theorem here for a vector field on a surface, the conclusion of the theorem
also applies, unchanged, to the case of a line field defined on the surface. (See Remark G.4.)

The following proposition allows us to apply Theorem G.3.1 to nonpositively curved surfaces.

Proposition G.3.2. Let S be a surface of nonpositive curvature. Then we can define a differentiable line
field L on S as follows: Let p ∈ S be given. Let k1 and k2 be the principal curvature directions, the vectors
in Tp(S) where IIp(S) reaches its maximum and minimum, respectively. Then

L(p) =
{

0 K(p) = 0
{−c, c}w : IIp(w) = 0 K(p) < 0 , (G.9)
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where w ∈ Tp(S) is chosen so that when {k1,k2} is positively ordered with respect to the normal field on S,
then {k1,w} and {w,k2} are positively ordered as well, and {−c, c} is a interval of scalars such that

c =
∏

~v(qi)=0

d2(p, qi)

.

Proof. This follows from the properties of the asymptotic directions as given in [2] Q.E.D.

Remark G.7. The direction w is called an asymptotic direction, and is the direction where the so called
“normal curvature” of S, which we have not defined, is zero. We multiply w by the scalars in {−c, c, } to
turn the vector into a line extending in both directions. c is chosen so that the length of the lines vanish as the
points reach a critical point. Additionally, there are two such asymptotic directions at a give point, bisecting
the principal directions. The conditions on the ordering of the principal directions with w guarantees that
we choose only one of these asymptotic direction and that our choice gives a continuous field.

We can now use Proposition G.3.2 and Theorem G.3.1 to examine the topology of Rozendorn’s building
block surface. We can cut off each cusp end and cap each end with a hemisphere. This creates a closed,
complete surface of non-positive curvature with 8 critical points - the four points of zero curvature originally
on the surface, and four new critical points at each capped-off end. This surface is topologically equivalent
to a sphere, and therefore has Euler characteristic 2. We can calculate the index at each critical point. The
index on each of the original zero curvature points is − 1

2 , while the index on each of the new critical points
is 1. Therefore, the sum of the indices is 4 + 4 · − 1

2 = 2, as required by Theorem G.3.1.
The points of zero curvature on Rozendorn’s building block are therefore topologically necessary. A local

deformation that removed those points without modifying the indices on each end would give a surface with
χ(S) = 4, which is not possible. Rather, these points can only be removed by a global transformation that
also changes the indices of the ends.

Index restrictions are also relevant when joining the ends of two surfaces. In Rozendorn’s construction,
each pair of ends are joined by a negatively curved, tubular surface. This joining section can be capped on
each end, giving 2 critical points on the joining piece that have indices identical to the indices of the joined
ends. This capped tube is also homeomorphic to a sphere, with χ = 2, so the sum of the indices must also be
2. Thus, we say that two ends of index a and b are complementary, and therefore able to be joined together,
if a+ b = 2.

Definition G.14. A surface S is called self-perpetuating if for every end of index a 6= 1 there is another end
of the surface with index 2− a.

Remark G.8. We call such a surface self-perpetuating because each end could be joined to another copy of
the surface without violating the index conditions on the surface. We consider ends with index 6= 1 because
an end with index 1 can always be joined to a copy of itself. Note that Rozendorn’s building block surface
is self-perpetuating. Thus, many copies of a self-perpetuating surface could possibly be joined together in a
construction method similar to Rozendorn’s method.

We investigated the possibility of constructing other building block surfaces that are self-perpetuating,
but also negatively curved. The sum of the indices on the ends of such a surface is therefore required to be
2, as there can be no critical points elsewhere on the surface. For any number of ends greater than 3, such a
combination of index values is in fact possible. We found the following index combinations are possible for
surfaces with n = 4, 5, 6.
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Example G.1. For n = 4, the only self-perpetuating surfaces of genus 0 possible have indices of {1,−1,−1, 3}
or {0, 0, 0, 2} on the ends. For genus g, the only ends possible have indices of {−g,−g,−g, 2 + g}.
Example G.2. For n = 5 and genus 0, there are an infinite number of possible index combinations on the
ends of the surface. The combination {−2,−2, 4, a, 2− a} is self-perpetuating for any index a. {0, 0, 0, 0, 2}
is also self-perpetuating. For genus g,
{−2− g, 4 + 2g,−2− 2g, a, 2− a} is self-perpetuating for any index a, and {− 2g

3 ,−
2g
3 ,−

2g
3 ,−

2g
3 , 2−

2g
3 } is

self-perpetuating for any g divisible by 3.

Example G.3. For n = 6 and genus 0, there are an infinite number of possible index combinations on the
ends of surface. The combination {−3,−3, 1, 5, a, 2− a} is self-perpetuating for any index a. Other possible
index combinations include {−1,−1,−1,−1, 3, 3},
{−2,−2, 0, 0, 2, 4}, and {−4,−4, 0, 2, 2, 6}. Other possible index combinations continue to have increasing
index on each end, making such a surface even harder to construct.

Even with a self-perpetuating, negatively-curved surface, it is not guaranteed that copies of the surface
could be joined together while maintaining their negative curvature. Rozendorn’s method of joining the
building block surfaces with negatively curved tubes require that the cross-sections of the ends being joined
together be convex curves. The following proposition gives a relationship between the index of an end and
the convexity of its cross section.

Proposition G.3.3. Let S be a nonpositively curved, complete surface with a finite set of discrete zero
curvature points. Consider an end of this surface with index a. Let Γ be the closed, continuous curve given
by the intersection of the end with a plane. Let n be the number of points of inflection of Γ, that is, the
number of points where Γ changes convexity. Then,

4 |1− a| = n (G.10)

Proof. By inspection we see that if an end has index a, then the asymptotic line field must be tangent to Γ
at 2 |1− a| points. Since there are two asymptotic line fields on any surface (see Remark G.7), there are a
total of 4 |1− a| points on Γ where an asymptotic direction is tangent to Γ. We must therefore show that
these points, and only these points, are inflection points for the curve.

Let Γ be parameterized by arc length, so that the curve is given by Γ(s) : R → R3. Then, since Γ
is a planar curve, its inflection points are exactly those points where Γ

′′
(s) changes sign. A geometric

interpretation of IIp given in [2] shows that Γ
′′
(s) changes sign only where IIp = 0, that is, when the

asymptotic line field is tangent to Γ. Q.E.D.

Corollary G.3.4. Γ is a convex curve if and only if a = 1.

Thus, even if we could construct a negatively curved surface with self-perpetuating ends, we would also
have to devise a method to join the pieces together while maintaining negative curvature. Considering the
difficulty of these tasks, we decided to approach the problem from a different direction.

G.4 Point Sliding and the Monge-Ampère Equation

As shown in Section G.3, a local deformation of Rozendorn’s surface at each point of zero curvature is not
sufficient to create an everywhere negatively curved surface. In this section we attempt to find a global
deformation instead. However, our desired global deformation will actually consist of an infinite number of
repeated, local deformations.
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Specifically, we note that although an index point cannot be simply created or destroyed, two index
points can usually be combined together. For example, two critical points on a sphere, each of index 1, could
be moved together and combined into a single critical point of index 2. We attempt to find a similar sliding
procedure on Rozendorn’s surface. However, instead of combining the points of zero curvature, we hope to
move each point out an end and to infinity along the surface, still maintaining negative curvature elsewhere
on the surface. Such a procedure will change the index at each end, and therefore be a global transformation
of the surface.

If such a sliding procedure could be constructed on Rozendorn’s surface, we also note that Conjecture
G.2.3 would follow quite easily. After constructing a surface with n ends and non-positive curvature, the
points of zero curvature could simply be moved down each end, deforming the surface into a new complete,
negatively curved surface. In fact, although Vaigant’s surface has been given explicitly, it could likely be
constructed through such a procedure. Beginning with Rozendorn’s building block, a four-horned sphere
with four points of nonzero curvature, each point could be moved along an end to give a negatively curved
surface the would likely be extremely similar to Vaigant’s.

Finally, we note that a such a sliding procedure, although it ultimately results in a global deformation of
the surface, could be accomplished by repeating a local sliding procedure. If a zero curvature point can be
moved just a small distance from its original location without creating positive curvature, this small sliding
procedure could be repeated to drag the point to infinity.

With this intuitive understanding of the desired sliding procedure, we formalize this problem, starting
with the following basic theorem from [2].

Theorem G.4.1. Let S surface with p ∈ S given. Then there exists an open set V ⊂ R3 with p ∈ V such
that S ∩ V can be parameterized as a graph. That is, there exists a function f : U ⊂ R2 → R such that the
coordinates of a point q ∈ S ∩ V can be expressed as (u, v, f(u, v))

We now consider a nonpositvely curved surface S with a point of zero curvature p. Using Proposition
G.4.1, we parameterize the surface on a neighborhood V around p as a graph, and associating the point p
with the origin of R2. Let z : U ⊂ R2 → R be the graph function of the surface, and let K(u, v) denote
the Gaussian curvature at the point (u, v, z(u, v)). Then, as given, K(0, 0) = 0. Let us call the direction in
which we want to move the zero curvature point the +u-direction, and the distance we wish to move the
point a. That is, if K∗ is the curvature function for the new graph, K∗(a, 0) = 0. At every other point in U ,
we desire K∗ < 0. Finally, we must ensure that this transformation does not affect the rest of the surface.
Therefore, using z∗ to denote the graph function for the new surface, we desire z∗|∂U = z|∂U , z∗~n|∂U = z~n|∂U ,
and K∗|∂U = K|∂U , where z∗~n denotes the derivative in the direction of the normal.

Our goal is therefore to find a new graph function z∗ on the same domain that gives a surface with
the curvature problems stated above. Using the definitions of Gaussian curvature and the first and second
fundamental forms given in the introduction, this problem is equivalent to solving the Dirichlet problem for
the Monge-Ampère equation. That is, we attempt to find a function z∗ such that

(z∗uuz
∗
vv − z∗uv

2) = K(u, v)
(

1 + z∗u
2 + z∗v

2)
)2

, (G.11)

with,

K∗ ≤ 0, K∗ = 0 at only one point in U , z∗|∂U = z|∂U , z∗~n|∂U = z~n|∂U , and K∗|∂U = K|∂U .

Monge-Ampère equations have many applications, and have therefore been extensively studied. However,
much of this study concerns the case of the elliptic Monge-Ampère equation, which occurs when K > 0. In
our case, K ≤ 0, the equation is hyperbolic, and therefore far more difficult to solve.
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We performed a thorough search of the literature to find methods to solve the hyperbolic Monge-Ampère
equation, ultimately focusing on two results given by Han and Hong in [5] and Khuri in [6]. Both of these
results use similar methods to solve the equation. They begin by linearizing the equation and obtaining weak
solutions to the new linear equation. Using various estimates on the derivatives of the equation, they modify
the weak solutions to give regular solutions to the linear equation. Then, using a Nash-Moser iteration
procedure, these regular solutions to the linear problem are used to find a solution to the original equation.

Both of these papers, however, address a problem different from our own. They are not generally
concerned with the domain over which the solution is obtained, and allow this domain to become arbitrarily
small to simplify the estimates they use to solve the equation. In general, the larger the curvature and its
derivatives are in a certain domain, the smaller the subset of the domain on which the solution can be found.

In our problem, we attempt to find a solution over a given domain, and therefore we must ensure that the
curvature and its derivatives are sufficiently bounded to guarantee that the solution domain is large enough
to cover our given domain. In general, these curvature bounds are to restrictive to allow us to find solutions
for most surfaces, as they can place very small bounds on the curvature and its derivatives to orders greater
than 10.

Additionally, the very act of moving these points of zero curvature increases the curvature and its deriva-
tives on the domain considered. Thus, even if the point could be moved once a certain distance, the increase
in curvature caused by that move could mean that the next move could only move a smaller distance. Thus,
instead of being able to draw the points out to infinity, each zero curvature point could end up being bounded
inside a region of prohibitively high curvature.

Figure G.2: Changing Derivative of Curvature

Figure G.2 illustrates why the increase in the derivative of the curvature is necessary. The figure is a
graph of the Gaussian curvature of a nonpositively curved surface along the curve v = 0, where the zero
point is moved in the u-direction. The solid curve represents the original curvature of the surface, and the
dashed curve represents the curvature after the zero point is moved. Because the dashed curve must coincide
with the original curve outside of the domain on which the point is being moved, the surface must reach the
same level of negative curvature in a shorter distance, meaning the derivative of the curvature must increase.

Unable to find a solution to the Monge-Ampère in the general case, and therefore unable to find a general
point-sliding method, we began investigating an explicit moving procedure for a special case, the so-called
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“monkey saddle,” given as the graph
z(u, v) = u3 − 3uv2. (G.12)

The monkey saddle is shown in Figure G.3.

Figure G.3: The Monkey Saddle

The monkey saddle is negatively curved except at (0, 0, 0), where K = 0, and is in fact very similar to
Rozendorn’s surface in the neighborhood of a zero curvature point. We then attempt to find a modification
of this surface in a small neighborhood around the origin that moves the zero curvature point without
changing the rest of the function. Such a new function could be constructed of the form z(u+ b1(u)b1(v), v),
where z is the equation of the monkey saddle given in G.12 and b1, b2 are “bump functions,” more precisely
functions of compact support. These bump functions would be zero outside the domain on which the point is
moved, and thus would not modify the rest of the surface. However, they would have non-zero values within
the boundary, therefore modifying the monkey saddle and moving the point of zero curvature. Such bump
functions must be carefully constructed to ensure that the modified part of the surface still smoothly matches
the surface on the boundary of the domain while still maintaining negative curvature on the surface. We
have not yet been able to give an explicit form for these bump functions. Still, even with the proper bump
functions, this process would only be enough to move the zero curvature once, and only in the u-direction.
Further investigation is required to find a point sliding procedure in any direction, or to be able to move the
point repeatedly.

G.5 Conclusions and Further Research

Although we have been unable to solve the main problem considered in this paper, our research suggests a
number of possible avenues for further research. We hope that continued work on the monkey saddle could
yield a general sliding procedure on that surface. Such a procedure could possibly be generalized to give an
explicit sliding procedure on some of the non-positively curved surfaces we have considered.

Examples G.1, G.2, and G.3 give another possible method to construct a bounded, complete, negatively-
curved surface. Ideally, we could find explicit equations for a negatively-curved surface with indices given
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in one of those examples. Then we must construct a gluing method that smoothly joins non-convex ends
without creating positive curvature. Combining those possible results would yield the desired surface.

Of course, it may also be possible that such a surface cannot be constructed. Further investigations of
negatively curved surfaces and their topology could yield such a result.
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H.1 Introduction

We studied geodesics—simple, locally straight curves—on surfaces with polygonal metrics.
Fuchs and Fuchs [2] studied geodesics, both simple and non-simple, on the Platonic solids. Their results

only covered the regular tetrahedron and cube in detail, however, which makes their paper an excellent
starting point.

This paper begins with a discussion of curvature and how it is measured on and relates to the polygonal
metric. We then set up the background for our methods: the developing map (Section H.1.2), the dual graph
(Section H.2), and quotient spaces (Section H.3). It continues with sections on specific polyhedra we worked
on, such as zonohedra (Section H.4), the rhombic dodecahedron (Section H.4.2), and {6, 4|4}, an infinite
skew polyhedron which has four hexagons meeting at every vertex (Section ??).

H.1.1 Curvature

Curvature of a surface falls into one of two categories: extrinsic and intrinsic. The easiest way to understand
the distinction is to imagine a Flatlander that lives on the given surface and ask whether she could detect
the curvature. If so, the curvature is intrinsic; if not, it is extrinsic.

One type of extrinsic curvature which will come up quite often in the study of polyhedra is the curvature
represented by edges. A Flatlander passing across an edge would remain unchanged from her own perspective.
At least locally, it is possible to flatten out the edge without changing the metric, just as it is possible to
unfold a piece of paper without changing the intrinsic distance between two points on it.

Similarly, a common type of intrinsic curvature we will need to deal with is manifested as the corners
of polyhedra, which are locally equivalent to a cone and known as cone points. They are single points with
highly concentrated curvature. They are best envisioned as a paper wedge with an angle α on which the two
straight edges have been identified. α is called the cone angle.

Definition H.1. The curvature κpi at a cone point pi with cone angle α is κpi = 2π − α.

For simplicity, we will avoid discussing geodesics that pass through cone points; they can be regarded
as limit cases. The cone points of a polyhedron act like punctures: a Flatlander would have to avoid them.
Two continuous curves are said to be homotopic if one can be continuously deformed into the other. If one
of the curves encloses a cone point, so must the other, since there is no way to pass over a cone point by
continuous deformation.

A geodesic is a curve of constant curvature since a Flatlander on a polyhedron would see it as a straight
line. In order to be intrinsically straight, when a geodesic crosses an edge the four angles between the two
lines must behave similarly to the angles of two intersecting lines in the plane. In other words (moving
counterclockwise around the intersection) the sum of the angle between the line segment in the first face and
the edge and the angle formed by the edge and the line segment in the second face must be π.

H.1.2 The Polyhedron Developing Map

The developing map of a polyhedron is useful in determining the homotopy class of a given curve. Take a
curve, not necessarily closed, on a polyhedron. Starting at one end of the curve and following it, roll the
polyhedron on a plane so that the curve always touches the plane.

The three lines shown in FigureH.1 are homotopically equivalent.

Observation H.1.1. If two homotopic curves on a polyhedron connect the same points, the developed image
of both curves connects the points.
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Figure H.1: Polyhedron developing map

Constructing the developing map is not an efficient process, but it clearly distinguishes homotopy classes
which contain geodesics from those which do not:

Observation H.1.2. Take the developing map of a polyhedron along a closed curve; the curve begins and
ends at the same point, so the first and last polygons in the developing map will be congruent.

The curve is homotopic to a geodesic if:

1. it is possible to choose a point on one face and connect it to the associated point on the associated face
by a straight line that does not exit the developing map, and

2. the faces are translations of one another.

H.2 Dual Graphs

The graph of the dual of a polyhedron P turns out to be another useful method for finding geodesics on P
since distinct cycles on the dual graph correspond to distinct homotopy classes of curves on P . Here, we
present some preliminary definitions.

The edge graph of P is a graph in which P ’s edges are the graph’s edges and P ’s vertices the graph’s
vertices. Every simple, spherical (genus zero) polyhedron has a connected, planar edge graph. The dual
graph GP is derived from P ’s edge graph by constructing a single vertex in each face (including the outside
of the graph) and connecting two vertices by an edge if the faces they lie on share an edge.

For example, let P be the cube, shown in Figure H.2(a). Its edge graph is shown in Figure H.2(b) and the
dual graph is constructed in Figure H.2(c). The dual graph has been redrawn for clarity in Figure H.2(d).

The set of faces {fi} of GP is bijectively related to the set of cone points of P , and thus each face
represents—and can be assigned—curvature equivalent to that of the corresponding cone point. We will
generally refer to faces by the number of sides they possess—for instance, a triangular or a hexagonal face—
since in all the polyhedra we will be working with, two corners where the same number of faces meet will be
congruent. Note, however, that the curvature depends only on the original polygon P and cannot be derived
from GP or even the edge graph of P .

A cycle is a set of consecutive edges of GP beginning and ending at the same point. It may pass through
the same vertex more than once.
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Figure H.2: Constructing the dual graph of a cube.

Observation H.2.1. If c is a cycle on GP , c corresponds to a homotopy equivalence class [pc] of continuous,
closed curves pc on P .

Theorem H.2.2 (Jordan Curve Theorem). Every simple, closed curve in the plane divides the plane into an
inside and outside region (and any path connecting a point in the inside to a point in the outside intersects
the curve in at least one point).

This is also true on the sphere. The plane is homeomorphic to a sphere with one point removed. Since
a plane-filling curve can’t be simple, for every simple, closed curve on the sphere there is at least one point
that is not part of the curve. Remove that point and flatten the sphere, and the Jordan Curve Theorem
applies.

Assume that P is finite and has genus 0, and that pc is a curve thereon. Since pc is simple and closed,
by the Jordan Curve Theorem it is the boundary of a disk. There are a finite number of cone points pi
contained in the disk, and we define the enclosed curvature of pc to be the sum of their individual curvatures
κpi .

Note that the Jordan Curve Theorem only applies for surfaces with genus zero—a curve that encircles
the torus’ hole, for instance, does not divide the torus into two regions. We will mainly deal with spherical
polygons, but later in this paper we will also deal with the general notion.

Definition H.2. Choose pc ⊂ P and construct the corresponding cycle c ⊂ GP . If a cone point pi is in the
interior of pc, then c can be said to enclose the corresponding face fi in GP , and the enclosed curvature of
c is equal to the enclosed curvature of pc.

Theorem H.2.3 (The Gauss-Bonnet Theorem). If there exists a geodesic bounding a disk on P , then its
enclosed curvature is 2π.

c and the equivalent cycle of the opposite orientation (for which the “interior” and “exterior” sets are
switched) can be regarded as equivalent—if either of them has curvature of 2π, then both are geodesics. We
will refer to both orientations with the same notation of c.

The Gauss-Bonnet Theorem gives our first necessary condition for geodesics: in order to find geodesics
on P , we will look first for curves enclosing curvature of 2π. The enclosed curvature of a curve depends only
on its homotopy class, so the dual graph useful in finding candidate [pi].

One homotopy class is shown by the path on the dual graph of the cube in Figure H.3. Without loss of
generality, we can choose a side of the closed path to call the interior and shade it. The path encloses four
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of the eight triangles; each of the triangles corresponds to one of the curvature-π cone points of the cube,
for a total enclosed curvature of 2π. The corresponding region is shown, shaded, on the cube in Figure H.3.

Figure H.3: A homotopy class of curves which does not contain a geodesic.

But, as shown in the developing map (figure H.4), there is no straight geodesic in this homotopy class.

Figure H.4: Developing map of the curve in Figure H.3.

Next, we must develop methods for detecting homotopy equivalence classes which contain geodesics.

H.3 Quotient Spaces

In some circumstances, it’s possible to use a geodesic on one surface to find a geodesic on another. For
example, all geodesics on the tetrahedron correspond to at least one and no more than two geodesics on the
torus. This is a consequence of the fact that the torus covers the tetrahedron twice over.

What is a quotient space? A typical representation of a torus is a parallelogram with its opposite edges
identified, as shown in Figure H.5.
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Figure H.5: Torus quotient space

A torus can also be seen as a quotient of the plane, however. Define a group of isometries of R2,
T =

{
ι, τ(p,q), τ(r,s)

}
(the identity and two translations along vectors ~(p, q) and ~(r, s)). Also define an

equivalence relation x ∼ x′ ⇔ φx = x′ (where x, x′ ∈ R2 and φ ∈ T ). Then the torus, expressed as a quotient
space of R2, is R2/T .

The tetrahedron is a quotient space of the torus (and thus, also of R2).

Lemma H.3.1. Suppose G and H are subsets of the same group. Then H is covered by (or acts on) S/G
if and only if h−1gh ∈ G ∀g ∈ G, h ∈ H.

Proof. In the group S/G, when x, y ∈ S and g ∈ G, x ∼ y ⇔ g(x) = y.

1. (⇒ :) Assume that S/G covers H. Then x ∼ y implies that h(x) ∼ h(y) for all h ∈ H. h(x) ∼ h(y)
means that h(x) = g(h(y)) for some g ∈ G; since x ∼ y implies that there exists g′ ∈ G such that
x = g′(y), then g′ = h−1gh. So h−1gh ∈ G for all g ∈ G, h ∈ H.

2. (⇐ :) Assume hgh−1 ∈ G for all g ∈ G, h ∈ H. hgh−1 ∈ G implies that there exists some g′ ∈ G
such that hgh−1 = g′. In S/G x = g′(y) ⇔ x ∼ y for any g′ ∈ G. So g′(y) = h−1gh(y), and then
x = h−1gh(y), and h(x) = g(h(y)). Thus h(x) ∼ h(y) and S/G covers H.

Q.E.D.

Thanks to Lemma H.3.1, we only need for {ι, ν}, the tetrahedron group, to commute with {τ1, τ2} to
check that the torus, R2/T covers the tetrahedron.

Theorem H.3.1. {ι, ν} acts on the torus group.

Proof. 1. Identity Clearly, ιτ = τι ∀τ ∈ T .

2. Point Inversion We must show that ντ = τν∀τ ∈ T .

Choose (x, y) ∈ R2 and τ(p,q) ∈ T .

ντ(p,q) = τ(p,q)ν ⇒ τ(p,q) = ν−1τ(p,q)ν, so:

(a) τ(p,q) ((x, y)) = (x+ p, y + q)

(b)
ν−1τ(p,q)ν ((x, y)) = ν−1τ(p,q) ((−x,−y))

= ν−1 ((−x+ p,−y + q))
= (x− p, y − q)

But τ2
(p,q) ((x− p, y − q)) ∼ (x+ p, y+ q), so by the equivalence relation on the torus, these two points

are the same.
Thus, {ι, ν} commutes with the torus group. Q.E.D.
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Figure H.6: A torus plus a point inversion equals a tetrahedron

Folding up the torus in Figure H.6 so that the associated points touch yields a tetrahedron with each
side two layers thick. This is why the torus is said to cover the tetrahedron. The torus is a twofold cover
of the tetrahedron because equivalence of points under ν ensures that two points (x, y), (−x,−y) which are
not equivalent under T are mapped by ν to a single point in the tetrahedron.

The idea of covering suggests an interesting way to transfer geodesics from the tetrahedron to the torus.
Imagine drawing a geodesic on the tetrahedron in ink so that, as it is rolled across the torus, it leaves an
imprint of the geodesic. More precisely, define a mapping Ψ from the original space to the quotient space.
Using our example, which takes the torus to the tetrahedron, Ψ(x) = Ψ(y) if and only if x = φ(y) where
φ ∈ {ι, ν}. Then, with a slight abuse of notation, pc = Ψ(qc) when ∀x ∈ qc, Ψ(x) ∈ pc. In this case, Ψ is a
two-to-one function because the order of an element in φ ∈ {ι, ν} is at most two.

This leads to a very useful theorem:

Theorem H.3.2. If Q is a finite cover of P where P/Φ = Q, then for any simple, closed pc on P there is
at least one corresponding simple, closed qc on Q.

Proof. 1. pc is simple ⇒ qc is simple: Assume toward contradiction that qc is not simple. Then there is
a point where it intersects itself. Since covering is locally one-to-one, pc would also need to have an
intersection, which is a contradiction.

2. pc is closed ⇒ qc is closed : Suppose there is a curve segment with endpoints q 6= q′ where Ψ−1(q) =
Ψ−1(q′); then the curve on P is closed, but the curve on Q is not. Then we must continue the geodesic.

Suppose Ψ(q) = Ψ(q′) but q 6= q′. Ψ(q) = Ψ(q′)⇒ ∃φ ∈ Φ : φq = q′. Then let φ2q = q′′; since φ2 ∈ Φ,
Ψ(q) = Ψ(q′′)—in other words, the geodesic has been traced out again from P onto Q and now begins
at q, passes through q′, and ends at q′′.

Assume toward contradiction that @n ∈ N : φnq = q. Then q 6= φq 6= φ2q 6= .... But Ψ(q) = Ψ(φq) =
Ψ(φ2q) = ..., meaning that an infinite number of points in Q map to a single point in P . This
contradicts our assumption that Q is a finite cover of P .

Therefore, the transferred geodesic qc must eventually close as long as pc does.

3. pc is smooth ⇒ qc is smooth: The tangent vector at q is mapped to the tangent vector at φq = q′ by
φ, so the curve between q and q′′ is at least C1. See Figure H.7.

Q.E.D.

Note that mapping a geodesic qc on Q to P does not always preserve simplicity of the geodesic.
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Figure H.7: If the curve is C1 at p′, it must be C1 at q′.

H.4 Geodesics on Zonohedra

A zonohedron is a finite, convex polyhedron with parallelogram faces. A zonohedron is uniquely defined by
its star, a set of n vectors e1, e2, ..., en: take convex hull of the points

x1 ~e1 + x2 ~e2 + ...+ xn ~en (xi either 0 or 1)

[1]
We are interested in zonohedra because there is an algorithmic way of generating them, which implies

there might be an algorithmic way of generating geodesics on them.

H.4.1 Geodesics on Zonohedra with 3 Star Vectors

The most obvious geodesics on a zonohedron are called zone geodesics because they lie in zones. There are
n zones in a zonohedron with n star vectors; the zone is the “encircling band” of faces which each have two
edges equal and parallel to the given star vector, as shown in Figure H.8. [1]

Not every zone allows a zone geodesic; one of our first questions is whether there are zonohedra with
no zone geodesics. To reduce this problem to a manageable size, we will limit our exploration to the set of
zonohedra with three star vectors ~e1, ~e2, and ~e3, all of unit length.

We would like to determine when the ~e1-zone contains a closed geodesic. First, note that the upper
vertices of the e1-zone are given by 0, e3, e2 + e3, and e2, while the lower vertices are given by e1, e1 + e3,
e1 + e2 + e3, and e1 + e2, as shown in Figure H.9.

Lemma H.4.1. The ~e1-zone contains a simple geodesic if and only if

|~e1 · ~e2|+ |~e1 · ~e3| < 1

Proof. Take the dot product of all the zone vertices with ~e1. Then the minimum value for the upper
zone needs to be above the maximum value for the lower zone. Inspection of these conditions proves the
claim. Q.E.D.

Now, which zonohedra have no zone geodesics? Let 1 a b
a 1 c
b c 1


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Figure H.8: Two zones (highlighted) on a zonohedron.

Figure H.9: A zone from a generic zonohedron with three star vectors, and its developing map.
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be the Gram matrix of the dot products of the ~ei. Then there are no zone geodesics if and only if |a|+ |b|,
|a| + |c|, and |b| + |c| are all less than 1. For example, let 1 > a = b = c > 1

2 . This suffices to make the
matrix positive definite, so it is invertible and thus the columns are a basis.

Using the Gram-Schmidt process, we can find an orthonormal basis of R3 with respect to the dot product
given by that Gram matrix. By changing the basis, we can thus find 3 vectors ~ei in R3 that have precisely
the above Gram matrix.

Clearly there are zonohedra without any zone geodesics, but there may also be other closed, non-zone
geodesics. The cube is a specific example of a zonohedron with three star vectors, and [2] gives the only
three simple, closed geodesics on the cube, shown in Figure H.10.

Figure H.10: The three cube geodesics and their developing maps. Figure adapted from [2].

Their first, denoted (0, 4), is the zone geodesic on the cube. It would be similarly possible, although not
quite as straightforward, to characterize the other types of geodesic on an arbitrary zonohedron P in M3.

It is important to note that the geodesics shown are not the only possible geodesics on an arbitrary M3

zonohedron. The degenerate case where ~e1, ~e2, and ~e3 are coplanar and evenly spaced at 120◦apart can
be described as a doubled hexagon (that is, a hexagon with both a “back” and a “front” side) with two
additional punctures at the points O and O′. This polyhedron has a geodesic shown in Figure H.11 which
doesn’t correspond to any of the geodesics on the cube.
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Figure H.11: A degenerate zonohedron with three coplanar star vectors has a geodesic which doesn’t fit into
any of the categories in Figure H.10.

H.4.2 Geodesics on the Rhombic Dodecahedron

The problem with the methods used above for M3 is that they do not extend easily to more complicated
zonohedra. For instance M4, the space of zonohedra with four unit-length star vectors, has five degrees of
freedom and M5 has seven.

M1, the space of zonohedra with one unit-length star vector, has 0 degrees of freedom: no matter where
on the unit sphere a vector lies, it is equivalent (under rotation and reflection) to every other vector. In M2,
the only feature that distinguishes zonohedra is the angle between the two vectors: thus, zero degrees of
freedom for placing the first vector plus one for placing the second gives one total degree of freedom. In order
to fix the arrangement of three unit vectors (M3), it is necessary to specify the angles between the third
vector and both of the previous vectors, giving 0 + 1 + 2 = 3 degrees of freedom. As long as the zonohedron
remains embeddable in R3, additional vectors can be fixed with only two additional specified angles, but
even for the four star vector case, this gives 0 + 1 + 2 + 2 = 5 degrees of freedom. This makes the space of
more complicated zonohedra considerably more difficult both to visualize and to work with in the way we
did above.

Once we have the dimension, we still must find the simple, non-zone geodesics, which isn’t straightforward:
the case for the cube used above had previously been completed by [2]. In order to extend the approach to
M4, we would first have to find all the geodesics on the hypercube.

As further generalizations were not practical, we decided to explore specific cases in hope of larger insights.
One of those we studied was the the rhombic dodecahedron (Figure H.12). The rhombic dodecahedron’s
star consists of four unit vectors that point to the top four corners of a cube centered at the origin:

~e1 = (1, 1, 1)
~e2 = (1,−1, 1)
~e3 = (−1, 1, 1)
~e4 = (−1,−1, 1)


We found all of the paths c enclosing 2π by an exhaustive search using the dual graph Grd (Figure H.13).

Excluding isomorphisms, there were 20. Table H.4.2 gives a breakdown of these cycles.
Of the three c for which [pc] contains a geodesic, the geodesic lengths vary. All the vectors in the rhombic

dodecahedron’s star have the same magnitude; for simplicity, we will assume they are unit vectors. The zone
geodesic (listed in Table H.4.2 as the one path c which passes through 6 faces) is the shortest, with a length
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Figure H.12: Rhombic dodecahedron.

Figure H.13: Grd, the net of the rhombic dodecahedron’s dual.
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Table H.1: Curves on the Rhombic Dodecahedron
No. of faces c Distinct [pc] contains

passes through c a geodesic
6 1 1
8 3 2

10 9 0
12 6 0

(relative to the unit vector) of about 5.66. The other two geodesics, which both pass through eight faces,
have relative lengths of about 5.81 and 6.16.

We made several interesting observations:

Theorem H.4.1. There must be an equal number of left and right turns in c.

Theorem H.4.2. There are exactly three simple geodesics that pass through any face at most once on a
rhombic dodecahedron.

Proof. By exhaustion, using the dual. Q.E.D.

Conjecture H.1. There is no zonohedron with a geodesic that passes through the same face more than once.

If true, this would prove that the geodesics listed above are all possible geodesics.

Observation H.4.3. The shortest geodesic is the zone geodesic.

This seems to be true for all zonohedra.

H.5 Geodesics on 6, 4, 4

Based on our work, it seems unlikely that it is possible to find arbitrarily long geodesics on any convex
polyhedron except the tetrahedron. Then why not try polyhedra with cone angles of greater than 2π?

The infinite skew polyhedra have several interesting characteristics: all their faces are congruent, as are
all their vertices, but the curvature at the vertices is more than 2π. One such polyhedron is known as {6, 4|4}
(Figure H.14). Its faces are regular hexagons, four of which meet at each vertex, giving each vertex a cone
angle of 2π − 4(π3 ) = − 2π

3 .
Unbounded polyhedra like {6, 4|4} are difficult to work with using the methods detailed in Section H.2.

A quotient space would be much easier, especially a quotient space which is homeomorphic to the sphere,
since we want to guarantee a connected, planar edge graph and dual graph.

One finite quotient space of {6, 4|4} (by three equal, mutually orthogonal translations τe1 , τe2 , and τe3)
is the object shown in Figure H.15, which has genus 3.

This is easier to visualize, but still rather complicated, so we will introduce a further quotient space: the
stella octangula (Figure H.16).

Observation H.5.1. The involution through the center point of a hexagonal face is well-defined on {6, 4|4} / 〈τ1, τ2, τ3〉.
It has eight fixed points (the center of every hexagon is preserved by the involution) and the quotient space
is the stella octangula. Proof is by inspection.

The covering is twofold since an involution identifies at most two points of the original.
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Figure H.14: A paper model of {6, 4|4}.

Figure H.15: {6, 4|4} / 〈τ1, τ2, τ3〉. Red, green, and yellow edges show associations.

Figure H.16: Two views of the Stella octangula.
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So by Theorem H.3.2, geodesics on the stella octangula correspond to potential geodesics on {6, 4|4} / 〈τ1, τ2, τ3〉,
and thus on {6, 4|4}, as long as they remain simple when lifted from the stella octangula to {6, 4|4}. Since
the covering is twofold (when lifting to {6, 4|4} / 〈τ1, τ2, τ3〉) or infinite (when lifting to {6, 4|4}), simplicity
on these is not guaranteed.

H.5.1 Geodesics on the Stella Octangula

Let Gso (Figure H.17) be the graph of the stella octangula dual. Gso has six 8-loops and eight 3-loops.

Figure H.17: Gso, the graph of the stella octangula dual.

Theorem H.5.2. Each 8-loop enclosed by c represents an added curvature of − 2π
3 .

Proof. The faces of the stella octangula are congruent equilateral triangles, so an octahedral loop represents
a cone point where eight equilateral triangles meet. Since each triangle has an angle of π6 , the total curvature
at the cone point is κ8 = 2π − 8(π6 ) = 2π − 4π

3 = − 2π
3 . Q.E.D.

Similarly, each 3-loop adds a curvature of 2π − 3(π6 ) = π to c.

Theorem H.5.3. If a path class [pc] contains a geodesic, then c encloses either zero or three 8-loops.

Proof. By the Gauss-Bonnet Theorem (Theorem H.2.3), if [pc] contains a geodesic then it encloses curvature
of 2π, and by Definition H.2, the curvature of c is equal to the curvature of [pc]. Since each 8-loop represents
− 2π

3 curvature, in order to get a curvature which is an integer multiple of π, pc must enclose 3n 8-loops
(where n ∈ Z). Since there are only six 8-loops in Gso, c must enclose zero, three, or six of them.

It is clear by inspection that for any cycle c which encloses six 8-loops is equivalent, there is a corre-
sponding cycle of the opposite orientation that encloses zero 8-loops. Since the two are equivalent for our
purposes, the case where c encloses six 8-loops can be ignored. Q.E.D.

Further, if [pc] contains a geodesic and c encloses no 8-loops, c must enclose two 3-loops; and if c encloses
three 8-loops, c encloses four 3-loops.
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Unfortunately, these restrictions still allow many equivalence classes of curves which do not contain a
geodesic. Fortunately, there are a few other restrictions on c which help to narrow the field.

Theorem H.5.4. If c contains ≥ 5 consecutive points of an 8-loop, then there is no geodesic in [pc].

Proof. Assume toward contradiction that c contains 5 consecutive points of an 8-loop. Then pc must pass
through five equilateral triangles which share a point, as shown in Figure H.18, but not through O, the cone
point.a

AOB refers to the union of the interior and the boundary of
a
AOB, minus {O}.

Figure H.18: Developing map of a curve which passes through five consecutive equilateral triangles.

Since pc must pass through all five triangles in order, it is possible to choose three points x ∈
a
AOB ∩ pc

y ∈
a
COD ∩ pc

z ∈
a
EOF ∩ pc


Then pc ⊃ xyz, where y is between x and z.
Let H be the half-plane defined by

←−−→
BOE and containing x. (B,O,E are collinear since ]BOC =

]COD = ]DOE = 60◦ and thus ]BOE = 180◦.) Since x ∈
a
AOB and x ∈ H, A ∈ H. AB = BO =

OF = FA⇒ �ABOF is a rhombus and thus
←→
BO||

←→
AF ; then since A ∈ H, F ∈ H. O,E, F ∈ H⇒

a
EOF ∈

H⇒ z ∈ H, so xz ∈ H.
A 6= O 6= D and ]AOD = 180◦, so O is between A and D. AOD intersects

←−−→
BOE at O, and therefore

A ∈ H ⇒ D /∈ H. Similarly, F ∈ H and C /∈ H. Thus
a
COD − {O} /∈ H and y /∈ H. Then y /∈ xz, a

contradiction. So @c ∈ C which passes through five or more points of an 8-loop consecutively. Q.E.D.

We have not yet carried out the full analysis of geodesics on the stella octangula. There are a few
interesting examples which I will note, however. For one, some geodesics have cycles c which trace the same
edge twice (Figure H.19).

Once all the geodesics on the stella octangula have been classified, the next step would be to lift geodesics
on the stella octangula to {6, 4|4} / 〈τ1, τ2, τ3〉 and {6, 4|4} and check whether they are simple.
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Figure H.19: One example of a geodesic on Gso, the stella octangula, and {6, 4|4}.

H.6 Conclusion and Further Work

We discovered some interesting things about geodesics on polyhedra. We completely classified geodesics
on the rhombic dodecahedron, the M3 zonohedra which had zone geodesics, and got a significant start
on classifying geodesics on much more complicated polyhedra, the stella octangula and {6, 4|4}. We also
developed new methods that may help lay the foundation for using a computer to find geodesics.

Of course, there is a lot of room for further work. One large open question is whether all polyhedra have
at least one simple, closed geodesic. Our work with M3 might make it possible to find such a zonohedron if
it exists. This would require finding non-zone geodesics on the hypercube and beyond, as well as accounting
for degenerate cases.

The case of the rhombic dodecahedron shows that there are some interesting possibilities for computing
geodesics. As preliminary work, it could be useful to quickly run through other test cases and seek out other
patterns. There is also potential in finding better algorithms to search for cycles in dual graphs and deciding
which path classes contain geodesics.
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I.1 introduction

Given an N ×N ×N grid, A is a subset that does not contain the eight corners of any nontrivial box. Let
Iijk be an N ×N ×N tensor of 1′s and 0′s, then

A = {Iijk :
∏2
l=1

∏2
m=1

∏2
n=1 = 0 for any i1 6= i2, j1 6= j2, k1 6= k2}.

The question posted by Erdös asks the lower bound of |A| for an arbitrary N. Using Cauchy–Schwartz
Inequality, we may show that |A| is no larger than O(N

11
4 ). But Erdös conjectured that O(N

11
4 ) is the lower

bound of |A|. i.e. for any ε > 0, there is a set A satisfying the box condition such that |A|= O(N
11
4 −ε). To

provide evidence for Erdös’ conjecture, efforts have been made to look for examples with exponents of N as
close to 11

4 as possible. The currently knwon exponent closest to 11
4 is 8

3 discoved by N. Katz, E.Krop, and
M. Maggioni.[2]

I.2 Katz–Krop–Maggioni’s Example

In Katz–Krop–Maggioni (KKM)’s paper, a finite field Fp and an extension field Fp3 are employed to find
the desired set A. In the previous work done by K. Gunderson, V. Rodl, and A. Sidorenko [1], they used
random planes over Fp. However, the appearance of Fp3 in KKM’s paper is a novelty. Let’s look at the
KKM example in detail.

Consider the finite field Fp, then Fp3 is the extension of Fp by an irreducible cubic polynomial over Fp. If
we let r be a root of this cubic polynomial, then the span of {1, r, r2} over Fp gives the extension field Fp3 .
i.e. any element α ∈ Fp3 can be written as a+ br + cr2, where a, b, c ∈ Fp.

let one corner of the grid be the origin and the three adjacent sides be the x- , y- , and z- axes. Then
each vertex of the grid can be identified with a point in the 3–D Euclidean space shown below.

Given the x- and y- coordinates of a vertex, the KKM example uses a bilinear map to find out the
z-coordinates such that (x, y, z) is in the set A. Since each pair (x, y) has N possible choices for z, it turns
out that each pair (x, y) is mapped to a set of z-coordinates. The following steps illustrate the procedure.
First, index the N points on x-axis with Fp3\{0}.So N = p3 − 1. Then index the N points on y-axis with
Fp3\{0}.
Second, define the bilinear map M by the multiplication rule in Fp3 :

M : Fp3 × Fp3 → Fp3

M(x, y) = x ∗ y

where ∗ denotes multiplication in Fp3 .
Third, assign each x ∗ y to a plane Px∗y in F3

p, which is defined by the equation

ax1 + bx2 + cx3 = 1,

when

x ∗ y = a+ br + cr2.
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Figure I.1:

Fourth, index the N points on z-axis with F3
p\{(0, 0, 0)}.Then the set of z-coordinates correspoinding to the

pair (x, y) are points lying on the plane Px∗y. Thus,

z = {(x1, x2, x3)|ax1 + bx2 + cx3 = 1}.

Since there are p2 points lying on the plane Px∗y, each pair (x, y) is mapped to p2 z-coordinates. And
there are (p3 − 1)2 pairs of (x, y) in the xy-plane. Then |A| can be calculated as follows:

|A| = p2(p3 − 1)2

= (p3)
2
3 (p3 − 1)2

≈ (p3 − 1)
2
3 (p3 − 1)2

= (p3 − 1)
8
3

= N
8
3

Thus A is the set that satisfies the Erdös box condition and has O(N
8
3 ) elements. The significance of

using multiplication in Fp3 is that give any nontrivial rectangle in the xy-plane, the four planes determined
by the four corners of the rectangle intersect at most once. i.e.

|Px1∗y1 ∩ Px1∗y2 ∩ Px2∗y1 ∩ Px2∗y2 | = 0 or 1 (I.1)

for any x1 6= x2, y1 6= y2.
This asserts that there does not exist z1 6= z2 such that
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z1 , z2 ∈ Px1∗y1 ∩ Px1∗y2 ∩ Px2∗y1 ∩ Px2∗y2 .

If this condition fails, A will contain the eight corners of a nontrivial box, whose vertices are (x1, y1, z1), (x1, y1, z2), . . . , (x2, y2, z2)
as shown below:

Figure I.2:

The KKM paper proves (I.1) by using the fact that linear operator My1∗y2−1 does not preserve any line not
containing the origin, where My1∗y2−1 is multiplication in Fp3 by y1 ∗ y2

−1 for any y1 6= y2.

As a continuation of the KKM example, my work focuses on the question: Is the appearance of Fp3 a
necessity or just a matter of convenience when the map is restricted to be bilinear? The conjecture is: If M
is bilinear, then M is uniquely defined by the KKM example up to bordering.

I.3 Main Results

Observe that if the function My : Fp3 → Fp3 is defined as: My(x) = M(x, y) for all x ∈ Fp3\{0}, then My is
linear due to the bilinearity of M . In fact, Fp3 is identical to F3

p, because if α = a+ br+ cr2 ∈ Fp3 , then α ∈

F3
p =

 a
b
c

, where a, b, c ∈ Fp. Thus My can be transformed to be a linear operator acting on the vector

space F3
p as My : F3

p → F3
p. And My becomes a 3× 3 matrix over Fp.

For each y in Fp3\{0}, there is an associated linear operator My. Let S be a set of these linear operator
My’s, and the goal is to completely characterize the set S.
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Theorem I.3.1. S satisfies the Erdös box condition if and only if (My1My2
−1)t does not preserve a line not

containing the origin for any My1 6= My2 ∈ S.

Proof. We will use the same strategy of the KKM example.
If S satisfies the Erdös box condition, then

|PMy1(x1) ∩ PMy1(x2) ∩ PMy2(x1) ∩ PMy2(x2) | = 0 or 1 (I.2)

for any x1 6= x2, y1 6= y2. Since

PMy1(x1) ∩ PMy1(x2) = Ly1 (I.3)

is either empty or a line, we may assume it is a line. Similarly, we may assume

PMy2(x1) ∩ PMy2(x2) = Ly2 (I.4)

is a line. Then (I.2) becomes

|Ly1 ∩ Ly2 | = 0 or 1.

In fact, the intersection of two different lines is either a point or empty, we could prove (I.2) by showing that
Ly1 and Ly2 are not the same line.
From (I.3),

Ly1 :
{

(X Y Z)My1(x1) = 1
(X Y Z)My1(x2) = 1 (I)

where X,Y, Z are variables in Fp .
From (I.4),

Ly2 :
{

(X ′ Y ′ Z ′)My2(x1) = 1
(X ′ Y ′ Z ′)My2(x2) = 1 (II)

where X ′, Y ′, Z ′ are variables in Fp.
If the linear operator (My1My2

−1)t preserves a line, Ly1 can be mapped to Ly2 through the following steps:

1. Left multiplication by (My1My2
−1)t :

 X
Y
Z

 → (My1My2
−1)t

 X
Y
Z

;

2. Let

 X ′

Y ′

Z ′

 = (My1My2
−1)t

 X
Y
Z

;

3. Take the transpose of both sides: (X ′ Y ′ Z ′) = (X Y Z)My1My2
−1;
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4. Right multiplication by My2My1
−1: (X ′ Y ′ Z ′)My2My1

−1 = (X Y Z);

5. Substitute (X ′ Y ′ Z ′)My2My1
−1into (I), we get (II).

Thus Ly1 = Ly2 . However, Erdös box condition implies that Ly1 6= Ly2 . Hence, (My1My2
−1)t cannot

preserve any line not containing the origin.
To prove the converse, note that if (My1My2

−1)t doesn’t preserve a line for any My1 6= My2 , we get
Ly1 6= Ly2 . Then |Ly1 ∩ Ly2 | = 0 or 1 and (I.2) is true. Q.E.D.

Corollary 1. S satisfies the Erdös box condition if and only if My1My2
−1 has irreducible characteristic

polynomial over Fp.

Proof. By Theorem (I.3.1), we know that (My1My2
−1)t can’t preserve any line not containing the ori-

gin, which means (My1My2
−1)t can’t preserve the two dimensional subspace spanned by the line. Thus

(My1My2
−1)t doesn’t preserve any two dimensional subspace in F3

p. From Caley-Hamilton Theorem [3], we
see that (My1My2

−1)t does not have a quadratic factor in its characteristic polynomial. Hence, (My1My2
−1)t

has an irreducible characteristic polynomial over Fp. Since My1My2
−1 is the transpose of (My1My2

−1)t, it
follows that My1My2

−1 has an irreducible characteristic polynomial over Fp. Q.E.D.

Corollary 2. S satisfies the Erdös box condition if and only if QSR satisfies the Erdös box condition for
any invertible matrices Q and R.

Proof. The notation QSR represents multiplying every matrix in S by Q and R. Thus QSR = {QMyR |My ∈
S}. By corollary 1, we see that S satisfies the box condition if and only if My1My2

−1 has an irreducible
characteristic polynomial. Consider two matrices in S, say QMy1R and QMy2R, (QMy1R)(QMy2R)−1 =
Q(My1My2

−1)Q−1 is a similar matrix to My1My2
−1. Thus (QMy1R)(QMy2R)−1 also has an irreducible

characteristic polynomial. Hence, QSR also satisfies the box condition. It is easy to verify that the converse
is also true. Q.E.D.

Using corollary 2, we are able to modify S by an appropriate choice of Q and R, so that it contains an
identity matrix I . Then we will reach corollary 3 as follows.

Corollary 3. If S contains an identity matrix I and S satisfies the Erdös box condition, then any matrix in
S is either a multiple of I or has an irreducible characteristic polynomial over Fp .

Proof. If My ∈ S is a multiple of I, say My = dI, where 0, 1 6= d ∈ Fp, then My takes the plane ax1 + bx2 +
cx3 = 1 into ax1 +bx2 +cx3 = d. Clearly these two planes have empty intersection, because they are parallel
to each other.
If a matrix My ∈ S is not a multiple of I, by corollary 1, My(I)−1 = My has an irreducible characteristic
polynomial over Fp . Q.E.D.

Corollary 3 establishes the most significant property of S.



I-6 Chengcheng Yang

I.4 More on the Conjecture

Previously, the bilinear form

M : Fp3 × Fp3 → Fp3

is a function over Fp3 . After identifying Fp3 with F3
p, the bilinear form becomes

M : F3
p × F3

p → F3
p.

We introduce three bilinear forms A1, B1, C1, each of which corresponds to one coordinate of M(x, y) in the
following way:

A1 : Fp3 × Fp3 → Fp and A1(x, y) = 1st coordinate of M(x, y)

B1 : Fp3 × Fp3 → Fp and B1(x, y) = 2nd coordinate of M(x, y)

C1 : Fp3 × Fp3 → Fp and C1(x, y) = 3rd coordinate of M(x, y).

Then

M(x, y) =

 A1(x, y)
B1(x, y)
C1(x, y)

 .

Using the matrix representation of bilinear form, we have

M(x, y) =

 xtA1y
xtB1y
xtC1y


= (xtA1y xtB1y xtC1y)t

= [xt(A1y B1y C1y)]t

= (A1y B1y C1y)tx

Therefore each matrix My ∈ S can be expressed as My = (A1y B1y C1y)t. Let y =

 a
b
c

. Let A1 =

(A1(1) A1(2) A1(3)), B1 = (B1(1) B1(2) B1(3)), C1 = (C1(1) C1(2) C1(3)), where A1(i), B1(i), C1(i) (1 ≤ i ≤ 3)
are columns of A1, B1, C1, respectively. Then

My = (A1y B1y C1y)t

=
(
aA1(1) + bA1(2) + cA1(3) aB1(1) + bB1(2) + cB1(3) aC1(1) + bC1(2) + cC1(3)

)t
= a

(
A1(1) B1(1) C1(1)

)t + b
(
A1(2) B1(2) C1(2)

)t + c
(
A1(3) B1(3) C1(3)

)t
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= aA2 + bB2 + cC2,

where A2 = (A1(1) B1(1) C1(1))t, B2 = (A1(2) B1(2) C1(2))t, C2 = (A1(3) B1(3) C1(3))t. Thus {A2 B2 C2} is
a basis of S.

In view of corollary 2, we may choose appropriate matrices Q and R to make one of A2, B2, C2 to be the
identity matrix I. If QA2R = I,QB2R = A, and QC2R = B, then {I, A, B} is a basis of S.

Now we are ready to prove the conjecture.

Case One: A and B are commutative

Lemma 1. Let T be the set of matrices in M3×3(Fp) that commute with A, then T = span{I, A,A2}.

Proof. Suppose K ∈ span {I, A,A2}, then K = aI + bA+ cA2 for some a, b, c ∈ Fp.

∵ KA = (aI + bA+ cA2)A = aA+ bA2 + cA3

AK = (aI + bA+ cA2)A = aA+ bA2 + cA3

∴ KA = AK, and K commutes with A.

Thus span {I, A,A2} ⊆ T .
To show they are actually equal, we need to prove span {I,A,A2} and T have the same dimention over

Fp. Since f(t) splits in Fp3 , A is diagonalizable in Fp3 , and there exists an invertible matrix Q ∈ M3×3(Fp3)
such that Q−1AQ is a diagonal matrix. Let T ′ be the set of matrices in M3×3(Fp3) that commute with A.
Using the fact that A,B are simultaneously diagonalizable if A,B ∈ M3×3(Fp3) commute, we can write T ′

as

T ′ = {B | Q−1BQ is a diagonal matrix in M3×3(Fp3)}.

Since the set of diagonal matrices in M3×3(Fp3) is

span {
( 1 0 0

0 0 0
0 0 0

) ( 0 0 0
0 1 0
0 0 0

) ( 0 0 0
0 0 0
0 0 1

)
} over Fp3 ,

it follows that

T ′ = span { Q−1
( 1 0 0

0 0 0
0 0 0

)
Q Q−1

( 0 0 0
0 1 0
0 0 0

)
Q Q−1

( 0 0 0
0 0 0
0 0 1

)
Q } over Fp3 .

Hence, T ′ has dimension 3 over Fp3 . This indicates that T ′ = span {I, A,A2} over Fp3 . Recall Fp is a
subfield of Fp3 , so T = span {I, A,A2} over Fp, where T is a subspace of T ′. Q.E.D.

Theorem I.4.1. Let {I, A, B} be a basis of S, and let FpI be the field {dI | d ∈ Fp, I is the identity
matrix}. If S satisfies the Erdös box condition and A, B commute, then S is a cubic extension of the field
FpI , excluding the zero matrix.

Proof. Since {I, A,B} is a basis of S, matrices I,A,B are linearly independent. So A is not a multiple of I.
Then corollary 3 tells us that A has an irreducible characteristic polynomial over Fp. Let the characteristic
polynomial of A be



I-8 Chengcheng Yang

f(t) = −t3 + αt2 + βt+ γ,
where α, β, γ ∈ Fp. By Caley-Hamilton Theorem [3], A satisfies f(t), i.e.

f(A) = −A3 + αA2 + βA+ γI = 0.

Therefore span {I, A,A2} is a cubic extention of FpI generated by the element A.
Since A and B commute, we know that B ∈ span {I, A,A2} by lemma 1. Thus span {I,A,B} ⊆ span

{I, A,A2}. Because the two vector spaces have the same dimension over Fp, we conclude that

span {I, A,B} = span{I, A,A2}.

So S is a cubic extension of the field FpI , excluding the zero matrix.
Q.E.D.

Theorem I.4.1 asserts that when A and B commute, S is the same as that in the KKM example. That
is to say, S = { My | My is the linear operator on F3

p induced by mulitiplication in Fp3 by y, where y ∈ Fp3

\ {0}}.

Case Two: A and B are not commutative

Before we discuss the general case, let’s look at a special case first.

Proposition.(Haile’s Special Case). Suppose P ≡ 1 (mod 3). Let α and β be two elements in Fp that
are not cubes. Let A and B be A3 = αI and B3 = βI, respectively. Moreover, AB = wBA, where w is a
cubic root of 1 and w 6= 1. Then S does not satisfy the Erdös box condition.

Proof. To show S does not satisfy the box condition, we need to prove there exist a and b ∈ Fp3 such that
aA+bB has a reducible chracteristic polynomial over Fp. Using the condition AB = wBA and w2+w+1 = 0,
we find that

(aA+ bB)3 = a3A3 + a2b[(w2 + w + 1)BA2] +
ab2[(w2 + w + 1)B2A) +B2A] +
b3B3

= a3A3 + b3B3

= a3(αI) + b3(βI)

= (a3α+ b3β)I.

If we could prove a3α+ b3β is a cube in Fp, then aA+ bB has a reducible characteristic polynomial.
Suppose g is a cyclic generator of the field Fp such that Fp = {g, g2, . . . , gp−1}. Let

Q1 = {g1, g4, . . . , gk1 , . . . , gp−3}, where k1 = 3n− 2, 1 ≤ n ≤ p−1
3 ;

Q2 = {g2, g5, . . . , gk2 , . . . , gp−2}, where k2 = 3n− 1, 1 ≤ n ≤ p−1
3 ;

Q3 = {g3, g6, . . . , gk3 , . . . , gp−1}, where k3 = 3n, 1 ≤ n ≤ p−1
3 .
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We see that Q3 is the set of cubes in Fp, and Q1 = g2Q3, Q2 = gQ3. Since α,β ∈ Q1 ∪Q2, and a3, b3 ∈ Q3,
we have a3α , b3β ∈ Q1∪Q2. This is because multiplying any element in Q1 (or Q2) by a cube yields another
element in Q1 (or Q2).Let α′ = a3α and β′ = b3β. If we can find α′, β′ ∈ Q1 ∪Q2 such that α′ + β′ ∈ Q3,
then aA+ bB has a reducible characteristic polynomial. There are two cases.

1. P ≡ 1 (mod 3) but P 6≡ 1 (mod 9)

Since p− 1 is divisible by 3 and 1 = gp−1, the cubic roots of 1 are g
p−1

3 , g
2(p−1)

3 , and 1. However, g
p−1

3 and
g

2(p−1)
3 are not cubes, because p− 1 is not divisible by 9. Thus g

p−1
3 , g

2(p−1)
3 ∈ Q1 ∪Q2. Choose α′ = g

p−1
3

and β′ = g
2(p−1)

3 , we get

t3 − 1 = (t− α′)(t− β′)(t− 1)

Thus α′ + β′ + 1 = 0 or α′ + β′ = −1 ∈ Q3.

2. P ≡ 1 (mod 3) and P ≡ 1 (mod 9)

Now p−1 is divisible by 9. So g
p−1

3 and g
2(p−1)

3 are cubes. Then (Q3 +Q3)∩Q3 6= φ. Proof by contradiction.
Assume there does not exist α′, β′ ∈ Q1 ∪Q2 such that α′ + β′ ∈ Q3. Then consider Q1 ×Q2 = {(α′, β′) |
α′ ∈ Q1 , β

′ ∈ Q2}. Divide Q1 ×Q2 into two subsets J1 and J2 such that

J1 = {(α′, β′) | α′ + β′ ∈ Q1}

J2 = {(α′, β′) | α′ + β′ ∈ Q2}

In subset J1, we have
α′ + β′ = γ′ ∈ Q1 (I.5)

for any (α′, β′) ∈ J1. Multiply both sides of (I.5) by g2, we get

g2α′ + g2β′ = g2γ′

g2α′ − g2γ′ = −g2β′

where g2α′,−g2γ′ ∈ Q3, and −g2β′ ∈ Q1. Thus we get a pair (g2α′,−g2γ′) ∈ Q3 ×Q3, whose sum is in Q1.
Because the number of pairs (α′,−γ′) ∈ J1 is |J1|, there are totally |J1| pairs of (g2α′,−g2γ′) ∈ Q3 × Q3,
whose sum is in Q1.

Similarly, in subset J2, we have
α′ + β′ = γ′ ∈ Q2 (I.6)

for any (α′, β′) ∈ J2. Multiply both sides of (I.6) by g, we get

gα′ + gβ′ = gγ′

gβ′ − gγ′ = −gα′,
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where gβ′,−gγ′ ∈ Q3, and −gα′ ∈ Q2. Thus we get a pair (gβ′,−gγ′) ∈ Q3 × Q3, whose sum is in Q2.
Because the number of pairs (β′,−γ′) ∈ J2 is |J2|, there are totally |J2| pairs of (gβ′,−gγ′) ∈ Q3 × Q3,
whose sum is in Q2.

Consequently, |J1| + |J2| = |Q1 × Q2| = |Q3 × Q3| implies that for each pair of elements in Q3 × Q3, their
sum is either in |Q1| or |Q2|. Thus Q3 +Q3 ⊆ Q1 ∪Q2. This contradicts with Q3 +Q3 ∩ Q3 6= φ.

Q.E.D.

I.5 Conclusion

In Haile’s special case, we’ve proved that if A and B do not commute, S does not satisfy the Erdös box
condition. In the general case, we are trying to prove that this is also true. Using Dickson’s Theorem [4],
we are able to characterize A and B such that aA + bB has an irreducible characteristic polynomial for
any a, b ∈ Fp. However, we feel that A and B will not satisfy the condition that (My1My2

−1)t for any
My1 6= My2 ∈ span {I, A,B}. If this feeling is correct, the conjecture that M is uniquely defined by the
KKM example is true.
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