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A.1 Introduction

Consider three unit vectors u, v, and w where u + v + w = 0. These vectors, which form an equilateral
triangle in the plane, generate a set oflattice points f iu + jv : i; j 2 Zg. De�ne a small edgeas a unit segment
joining two nearest lattice points. Our research is concerned with measuresas de�ned in [1]|unions of small
edges assigned positive densities, which satisfy the \balance condition" that

m(a) � m(a0) = m(b) � m(b0) = m(c) � m(c0)

whenever the six edgesa, c0, b, a0, c, and b0 are located in cyclic order around a single lattice point, and
where m(e) denotes the density assigned to a small edgee.

a a0

b0

bc0

c

De�ne the support of a measurem as the set of small edges in the measure,f e 2 m : m(e) > 0g. A
branch point is any lattice point incident to at least three edges in the support of a measure.

Consider in particular a closed triangle, denoted4 r for �xed integral r � 1, with vertices at 0, ru , and
ru + rv . Name the lattice points on its borders A j = ju , B j = ru + jv , and Cj = rw � jw . The lattice
points immediately outside its borders will be denotedX j = A j + w, Yj = B j + u, and Z j = Cj + v. A few
of these points are depicted below on4 5.

X 0

X 1 A0

A1

Y0 Y1

B0 B1
Z0

Z1

C0

C1

De�ne M r as the set of measures with all branch points contained in4 r where

m(A j X j +1 ) = m(B j Yj +1 ) = m(Cj Yj +1 ) = 0 ; j 2 f 0; 1; : : : ; r g:

Similarly, de�ne M �
r as the set of measures with all branch points contained in4 r where

m(A j X j ) = m(B j Yj ) = m(Cj Yj ) = 0 ; j 2 f 0; 1; : : : ; r g:
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M �
r can be considered a re
ection ofM r across any angle bisector of4 r .

Note that all measures in M r are determined entirely by their restrictions on 4 r . Indeed, because no
branch points are permitted outside of4 r , all densities outside the triangle must propagate as half-lines.

De�ne an attachment point of m 2 M r as any non-corner point on the border of4 r incident to an exterior
edge in the support ofm. More precisely, an attachment point is anyA j (or B j , Cj ) for j 2 f 1; 2; : : : ; r � 1g
where m(A j X j ) > 0 (or B j Yj , Cj Z j ). Attachment points are de�ned analogously for M �

r . The number of
attachment points in a measurem will be denoted ap(m).

For a measurem 2 M r , we de�ne its weight ! (m) as

rX

j =0

m(A j X j ) =
rX

j =0

m(B j Yj ) =
rX

j =0

m(Cj Z j ):

The balance condition necessitates that these sums be equal. The weight of a measure inM �
r can be de�ned

analogously, using the edgesA j X j +1 , etc.

De�ne the boundary @mof m 2 M r as a triple of r -tuples, (�; �; 
 ) 2 (Rr )3 where, for i 2 f 1; 2; : : : ; r g,

� i =
i � 1X

j =0

m(A j X j ); � i =
i � 1X

j =0

m(B j Yj ); 
 i =
i � 1X

j =0

m(Cj Z j ):

We are concerned withrigid measures, measures determined entirely by their weight andboundary; for
the rest of this paper, we will only consider rigid measures,and indeed, many of the following results do not
hold for non-rigid measures.

A.2 Puzzles and Duality

In this section, we de�ne the notions of in
ating a measure m into an object termed a \puzzle," for reasons
to be made clear, and subsequently the notion of *de
ating a puzzle into a dual measurem� .

De�ne the in
ation of a measurem 2 M r as the following procedure. First, cut 4 r along the edges of
the support of m, forming a collection of white puzzle pieces corresponding to the resulting shapes.

Translate each small edgee in m along segments 60� clockwise frome, with length m(e). Together, the
four resulting segments form a parallelogram with two edgesof e's original length, parallel to e, and two
edges of lengthm(e), 60� clockwise frome. This parallelogram is termed the in
ation of e, and is illustrated
as adark gray puzzle piece.

Translate the white puzzle pieces away from each other, �tting the newly-created parallelograms in place
of their corresponding small edges. These pieces all �t together, leaving spaces corresponding to each branch
point in m, which are �lled in as light gray puzzle pieces.

The resulting puzzle is a triangle of sizer + ! (m), consisting of three kinds of pieces, corresponding to
shapes carved out of4 r by m, small edges ofm, and branch points of m.
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In the example above, the thinner lines in the support have density one, and the thicker one density two.
The in
ation is drawn to the right.

This puzzle can now be*de
ated to yield a measure in M �
r , as follows. Remove the white pieces, and

de
ate the dark gray pieces in the opposite direction as theywere in
ated|shrink the original sides to points,
while maintaining the edges of lengthm(e). The light gray pieces remain, separated by edges corresponding
to the dark gray pieces.

In the above �gure, the puzzle is de
ated to yield a dual measure. The thicker edge, again, has density
two; the borders of the triangle, as well as an inner edge, have density one.

This *de
ation results in a triangle with sides of ! (m), and a measure inM �
r denoted m� , the dual

measure of m. Each original edge is rotated 60� clockwise from its original location, and its length and
density have swapped places.

The original measurem can be generated fromm� by applying *in
ation followed by de
ation, in the
opposite directions as in
ation and *de
ation. This replac es the original length and density of each small
edge.

A.3 Descendance and Skeletons

We now de�ne a partial order on small edges. For incident small edgese and f , we saye ! f if either:

1. they are 120� apart, and the edge oppositee has zero density;

2. they are opposite, and an edge 120� from e has zero density.
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e ! f implies that m(e) � m(f ), as a simple consequence of the balance condition.m(e) = m(f ) only if
f ! e as well.

Furthermore, we saye ) f if there exists a sequence of small edgese1; e2; : : : ; en such that

e = e1 ! e2 ! � � � ! en = f:

f is said to be adescendantof e, its ancestor. If e ) f and f ) e, then e , f and the edges areequivalent.
Edges that are minimal with respect to descendance are called root edges.

In the skeleton below, all the thinner edges have density oneand are equivalent root edges; the thicker
edge has density two and is not a root edge.

The sequencee1; e2; : : : ; en is called the descendance path frome to f , and induces a natural orientation
on f , the direction that f is traversed in its descendance path. As shown in [1], iff is not a root edge, then
this orientation of f away from the root edgesis the same for any descendance path from any root edge that
is an ancestor off .

A support s � m = f e 2 m : r ) eg containing all descendants of a root edger is called askeleton. A
measure whose support is a skeleton is called anextremal measure. It is a property of skeletons that they
contain no proper subset which can support a measure, which in fact serves as a de�nition in [1]. As a result,
an extremal measure is entirely determined by its density onany small edge.

By the nature of the partial ordering ) , all members of each equivalence class of root edges generate
the same skeleton. Clearly, every edge inm is a descendant of at least one equivalence class of root edges.
Thus, m can be treated simply as a sum of the skeletons generated by a maximal collection of inequivalent
root edges. This decomposition ofm into a sum of skeletons is unique, and the number of skeletonsin this
decomposition|alternatively, the number of equivalence c lasses of root edges|will be denoted sk(m).

Finally, we de�ne an order relation on skeletons. For skeletonsS1 and S2, we sayS1 � 0 S2 if S1 contains
collinear small edgesa and b and S2 contains collinear small edgesc and d, such that a, b, c, and d are
incident at a single point, and a is 60� clockwise from c. It is shown in [1] that � 0 is well-de�ned for
skeletons contained in a rigid measure.

A.4 Results

Measures are a representation of the Horn inequalities fromlinear algebra, as discussed in [1], [2], and [3].
This paper is concerned, however, with the combinatorial aspects of measures, in particular, Bercovici's
conjecture that

sk(m) + sk(m� ) = ap(m) + 1
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for all rigid m. The proof for the casesk(m) = sk(m� ) = 1 is located in [1]; here we use a much more general
approach to prove that

sk(m) + sk(m� ) � ap(m) + 1 :

Two measures arehomologousif there exists a bijection between edges inm and m0 that sends all edges
to parallel edges, and keeps all concurrent edges concurrent. The measuresm and m0 are homologous if
and only if m� and m0� are homologous. Two puzzles are said to be homologous if their de
ations are
homologous.

Consider a measure
m = � 1m1 + � 2m2 + � � � + � sk (m ) msk (m )

and its dual,
m� = � 1� 1 + � 2� 2 + � � � + � sk (m � ) � sk (m � )

where � i ; � i 2 R+ and m1; : : : ; msk (m ) ; � 1; : : : ; � sk (m � ) are extremal measures.
Altering any � i changes the densities of small edges inm, but this clearly results in a measure m0

homologous tom, as long as� i remains positive.
Altering any � i changes the densities of small edges inm� , a�ecting the lengths of edges inm, since

duality swaps lengths and densities. However, because the resulting m�0 is homologous to the originalm� ,
m0 is also homologous tom (again, as long as� i remains positive).

Adjusting any number of � , � is the only way to generate a measurem0 homologous tom|it generates
all possible densities for the support ofm, and all possible lengths that maintain homology with the original
measure.

De�ne Pm as the set of all puzzles homologous to the in
ation of a rigidmeasurem.

Lemma A.4.1. There exists a bijection betweenPm and (R+ )sk (m )+ sk (m � ) .

Proof. We have just produced a bijection between the set of allm0 homologous tom and the set of tuples

(� 1; : : : ; � sk (m ) ; � 1; : : : ; � sk (m � ) ); � i ; � i 2 R+ :

Additionally, in
ation is a bijection between all m0 and all puzzles inPm . These can be composed to form
a bijection betweenPm and (R+ )sk (m )+ sk (m � ) .

The bijection described in Lemma A.4.1 is one way to distinguish puzzles inPm . We will need to introduce
one more set describing such puzzles.

Every attachment point corresponds to the edge of a puzzle piece on the border of its puzzle. Consider
the location of an attachment point on a puzzle to be the clockwise vertex of that edge, unless otherwise
stated, and number the attachment points counterclockwisestarting at A1.

Let ` denote the length of the side of a puzzle, and let� i 2 (0; 1] denote the relative position of the i th
attachment point in the puzzle, as a fraction of the side length. De�ne Qm as the set of tuples

(`; � 1; � 2; : : : ; � ap(m ) ):

Clearly, dim Qm � ap(m) + 1.
We now construct a map from Qm to Pm .
We �rst use a construction on two extremal measures� 1; � 2 2 M r introduced in [1], called the stretch

of � 1 to the puzzle of� 2. Essentially, � 2 is in
ated to yield a puzzle of size r + ! (� 2), on which is placed
a \stretched" version of � 1 homologous to� 1. This new measure� 0

1 2 M r + ! ( � 2 ) is then in
ated by itself,
yielding a puzzle whose pieces correspond to the locations of edges in� 1 in the in
ation of � 1 + � 2.
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We will use this construction because it yields a puzzle thatcorresponds only to edges in� 1, while
maintaining the positions of � 1's in
ated edges in the in
ation of � 1 + � 2. Speci�cally, attachment points
have the same location in the in
ation of � 0

1 as in the in
ation of � 1 + � 2.
Note, however, that the procedure outlined in [1] is only possible if S2 � 0 S1, where S1, S2 are the

supports of � 1, � 2.
De�ne the set of Si as the skeletons supporting the extremal measures� i which comprisem. Order these

skeletons in a non-increasing order, such thatS1 � 0 S2 � 0 � � � � 0 Ssk (m ) . Then, consider the stretch of each
� i to the puzzle of � i +1 + � � � + � sk (m ) . Call this new measuremi .

Now we construct a certain extremal measurem0
i homologous to mi , located on the in
ation of mi .

Choose an attachment point whose exterior edge is a root edge.
Call that root edge r , and orient all other edges inmi according to their descendance paths fromr . In

the example below, the location of the exterior root edge is marked by a dot.

�

Attach each edge to theright side, according to this orientation, of its in
ation in the p uzzle. This results
in a collection of disconnected segments on the puzzle, as shown below.

These segments will now be connected using the process outlined in Lemma A.4.2.

Lemma A.4.2. Assumee, f are incident small edges inmi and have been placed on a puzzle as described.
Then the edges can be extended to intersect at a vertex, without entering the interior of a puzzle piece, as
long ase ! f .

Proof. Using the de�nition of e ! f and the balance condition, we can easily enumerate all possible oriented
supports of mi around the lattice point to which e and f are incident, up to rotation. As shown below, in
all four cases, the edges can be extended to meet at a point without entering a puzzle piece.
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Becausemi is extremal, every edge has a descendance path fromr . Clearly, we can follow these de-
scendance paths, connecting every two consecutive edges asprescribed by Lemma A.4.2, until every edge is
connected. It is easy to see that this procedure results in a new measurem0

i homologous tomi .

By this construction, all the attachment points of m0
i except our initial point are reached from interior

edges oriented outward, and thus these edges inm0
i always intersect the clockwise end of each attachment

point. Similarly, m0
i always intersects the original attachment point at its counterclockwise end.

Now suppose we perform this construction in reverse, given atuple in Qm . Since their locations are
already known, we start at the clockwise end of each attachment point except one which has an exterior root
edge. By following the descendance paths in reverse, we can obtain the location of the counterclockwise end
of the one attachment point we omitted at the beginning.

Below is an example of how the reverse process would proceed.Interior vertices can be obtained by
intersecting lines extended from the attachment points. The arrows indicate the order in which those
vertices are determined.
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Notice also that the �nal arrow determines the counterclockwise end of the initial attachment point.
By taking the di�erence of the location of that counterclock wise end and the location of its corresponding

clockwise end, which as given by the tuple inQm , we obtain the width of that attachment point on the puzzle,
which is equal to the density of its exterior root edge. Becauesmi is extremal, knowing the density of this
one edge allows us to determine the densities of all its edges.

Thus, from the tuple in Qm , we have determined the edge densities ofmi , which correspond directly to
the densities of� i . Since we have fully determined� i , we now perform the same operation on� i +1 .

Once this process is �nished for every skeleton, the resulting measures� 1; : : : ; � sk (m ) can be summed to
determine m, which in turn determines the speci�c member of Pm corresponding to the given tuple in Qm .

Therefore, this entire process determines a map fromQm to Pm . Since every puzzle inPm corresponds
to a tuple in Qm , this map must be surjective; indeed, this process must workfor every tuple corresponding
to a puzzle in Pm . We can now use this fact to prove the upper bound asserted earlier.

Theorem A.4.3. sk(m) + sk(m� ) � ap(m) + 1 for any rigid m.

Proof. We have just shown there exists a surjective map fromQm to Pm , implying that dim Qm � dim Pm .
But since dim Pm = sk(m) + sk(m� ) and dim Qm � ap(m) + 1, this implies that sk(m) + sk(m� ) �
ap(m) + 1.

A.5 Future Research

Because the above proof was only recently discovered, it lacks some details which merit further investigation.
Most notably, we must prove that every extremal measure musthave an external root edge.

We believe it will be fairly straightforward to prove that di m Qm = ap(m) + 1, and that the map
demonstrated above is a bijection. The full conjecture should follow directly from these additional facts. We
also hope to further study this map and related maps, in an e�ort to discover further properties of measures.
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B.1 Generalities

The braid group may be thought of as a group of equivalence classes of sets of descending, non-intersecting
paths (strands) which begin at a given (�nite) set of points i n the plane and end at the same set of points in
a copy of the plane which has been translated downwards. The equivalence relation is homotopy relative to
the endpoints; that is, two braids are equivalent if one can be deformed into the other, leaving the endpoints
�xed, without passing strands through each other. Two braids are multiplied by concatenation, joining the
bottom of the �rst braid to the top of the second. The pure brai d group is the subset of the braid group for
which each strand returns to its original position in the new plane.

We can give the set of points a standard labeling which allowsus to identify sets of paths with particular
braid elements. The pure braid group onn strands P Bn admits the following presentation [1][3]: it is
generated by elementsA ij (see �gure B.11), where 1 � i < j � n, which correspond to twisting the i th

Figure B.1: The generatorA ij

strand around the j th strand, subject to the following relations:

A � 1
rs A ij A rs =

8
>>>><

>>>>:

A ij
if r < s < i < j
or i < r < s < j

A rj A ij A � 1
rj if r < i = s < j

A ij Asj A ij A � 1
sj A � 1

ij if r = i < s < j
A rj Asj A � 1

rj A � 1
sj A ij Asj A rj A � 1

sj A � 1
rj if r < i < s < j:

Call these relationsR1; : : : ; R4. For illustrations of the �rst two Artin relations, see �gur e B.2. Note that the
�rst relation tells us that two pure braids commute if the str ands involved in each are completely disjoint (far
commutativity)|compare �gures B.2(a) and B.2(d)|or if the strands indexed by one lie strictly between
the strands indexed by the other|compare �gures B.2(b) and B .2(e). For the second relation, imagine
pulling the �rst strand in front (see �gure B.2(c)) or behind (see �gure B.2(f)) the others.

We can project the paths onto one of the planes (see �gure B.3). In this case an oriented curve or curves
in the plane traces the path along which each strand travels.This will be our standard projection.

The center of the pure braid group is generated by the full twist D 2 [2], which is given by

D 2 = ( A12A13A14 � � � A1n )(A23 � � � A2n )(A34 � � � A3n ) � � � (A (n � 1)n )

for the braid on n strands. Note that each parenthesized factor in this product corresponds to one loop
moving around all those numbered above it (see �gure B.4). Since no loop interacts with any of the others,
each loop and thus each factor commutes with the others.

1We have used the positive orientation of the plane, while Art in uses the negative orientation. However, the relations ar e
indi�erent to the choice of orientation.
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(a) A � 1
rs A ij A rs , where r < s < i < j (b) A � 1

rs A ij A rs , where i < r < s < j (c) A � 1
rs A ij A rs , where r < i = s < j

(d) A ij , where r < s < i < j (e) A ij , where i < r < s < j (f) A rj A ij A � 1
rj , where r < i = s < j

Figure B.2: Illustrations of the �rst two Artin relations fo r pure braids

Figure B.3: The generatorA ij
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Figure B.4: The full twist D 2 on four strands

Let f : C ! C be the function f (z) = z2 + c for some c 2 C such that the point 0 is periodic or
pre-periodic. We will primarily be concerned with functions for which the forward orbit of 0 consists of three
or four points. To �nd examples of such functions we may simply solve equations of the form

f m (c) = f n (c)

for c, choosing appropriate values ofm and n. For example, to �nd a value of c for which the orbit of 0
enters a 2-cycle after two iterations, we set

c2 + c = (( c2 + c)2 + c)2 + c:

Putting all the terms on one side and factoring gives us

c3(c + 1) 2(c + 2)( c2 + 1) = 0 :

The point 0 is a �xed point for c = 0, is periodic of period 2 for c = � 1, and enters a 1-cycle after two
iterations for c = � 2. So the two values ofc for which 0 enters a 2-cycle after two iterations arei and � i .

Let X = f f n (0) j n 2 Ng and let X 0 = X [ (� 1)X . Note that f (X 0) = f (X ) � X . Let G = P BX denote
the group of pure braids based at the points inX . Say jX j = n, so that G ' P Bn . Call the strand based at
the point c the nth strand, and label the remaining strands 1; : : : ; n � 1. Consider an oriented closed curve
based at a point in X � f cg and not passing through any other points in X . This corresponds to a braid
in G (we may parametrize the curve so that it gives a path, and treat the other strands as moving straight
down). When we take its inverse image underf , we get either two oriented closed curves based at points
in X 0 or one oriented closed curve passing through two points ofX 0 and mapping by degree two. These
curves induce a permutation of the points ofX 0 in the natural way. This gives rise to a homomorphism
� : G ! SX 0, where SX 0 denotes the symmetric group onX 0, called the monodromy homomorphism.

In general, pure braid generatorsA ij which do not have strands running around the singularity c will be
sent under � to the identity, while generators A in will be sent to transpositions of the form (z � z), where
f (z) is the base point of the i th strand. See �gures B.5, B.8, B.9, and B.10.2

2These �gures were created using the OTIS applet at http://ww w.math.nagoya-u.ac.jp/ kawahira/programs/otis.html.
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We can give the image of� explicitly. Since each generator of the formA ij where j 6= n is sent to the
identity, we need only consider the image of generators of the form A in . Suppose that � (A i 1 n ) = ( z1 � z1)
and � (A i 2 n ) = ( z2 � z2). If z1 = � z2, then f (z1) = f (z2) is the base point of both the (i 1)th and ( i 2)th
strands, and thus A i 1 n = A i 2 n . So eachA in permutes a pair of elements ofX 0 which are not a�ected by any
other generators. There aren � 1 generators of the formA in , so we have im(� ) ' Zn � 1

2 .
We are interested in pure braids which are taken underf � 1 to other pure braids; that is, elements in the

kernel of � . We have A ij 2 ker(� ) for i < j < n , and A2
in 2 ker(� ) for i < n ; since ker(� ) � G, all conjugates

of these are also in ker(� ). We can give the generators for ker(� ) explicitly.

Theorem B.1.1. Let f : C ! C be the quadratic function f (z) = z2 + c, where c is some complex
constant such that the orbit of 0 is �nite. Let X be this orbit, let n = jX j, let X 0 = X [ (� 1)X , and let
G = P BX ' P Bn be the group of pure braids based atX . Call the strand based at the pointc the nth strand,
and label the remaining strands1; : : : ; n � 1. Let � : G ! SX 0 be the monodromy homomorphism which sends
the pure braid A to the permutation induced byf � 1(A), where we consider our standard projection ofA.
Then H = ker( � ) is generated by the set of elements of the following form:

8
<

:

A ij where i < j < n
A2

in where i < n
A in A ij A � 1

in where i < j < n:

Proof. Let S be this set of elements and letK be the subgroup generated byS. The proof is in two parts.
The �rst shows that all conjugates of these elements are inK , that is, that K is a normal subgroup. We
certainly have K � H , so the second shows that all elements ofH are elements ofK , that is, that H � K
and thus that H = K .

First, we show that K is a normal subgroup. It su�ces to show that conjugating each element of S by
each generator ofG again gives an element ofK , since if s 2 S, xsx � 1 = s1 � � � sk where eachsi 2 S or
s� 1

i 2 S, and g 2 G, then gxsx� 1g� 1 = gs1 � � � sk g� 1 = gs1g� 1g � � � g� 1gsk g� 1. Each gsi g� 1 can then be
reduced once again to a product of elements ofS or their inverses.

We divide the argument into cases. Most of the cases depend onstrings of calculations using the relations
R1; : : : ; R4, which I have omitted.

� Conjugates of A ij , where j 6= n
We want to show that elements A rs A ij A � 1

rs are products of elements ofS. We divide this further into
subcases depending on the values ofr and s.

{ r; s 2 [1; n)
The element A rs A ij A � 1

rs is trivially in K , sinceA rs ; A ij 2 S.

{ r 2 [1; i ) [ (j; n ); s = n
By R1, the elementsA rs and A ij commute, soA rs A ij A � 1

rs = A ij 2 K .

{ r = i; s = n
The element A rs A ij A � 1

rs is in K by construction.

{ r 2 (i; j ); s = n
By a long series of calculations, we haveA rs A ij A � 1

rs =
(A � 2

in )(A in A ij A � 1
in )(A2

in )(A � 1
rj )(A � 2

rn )(A rn A rj A � 1
rn )(A2

rj )(A � 2
in )

(A in A � 1
ij A � 1

in )(A ij )(A in A � 1
ir A � 1

in )(A � 1
rj )(A in A ij A � 1

in )(A2
in )(A ir )

(A � 2
in )(A in A � 1

ij A � 1
in )(A2

in )(A ij )(A � 1
ir )(A � 2

rn )(A � 2
in )(A in A ir A � 1

in )
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(A � 2
in )(A rn A � 1

rj A � 1
rn )(A � 2

in )(A in A � 1
ir A � 1

in )(A2
in )(A � 2

rn )(A ir )(A rj )
(A � 1

ir )(A � 2
in )(A in A ir A � 1

in )(A2
in ), a product of elements ofS and their inverses and thus inK .

{ r = j; s = n
By a shorter set of calculations we haveA rs A ij A � 1

rs = ( A � 2
in )(A in A ij A � 1

in )(A2
in ), a product of

elements ofS and their inverses and thus inK .

� Conjugates of A2
in

We want to show that elementsA rs A2
in A � 1

rs are products of elements ofS. We divide this into subcases
depending on the values ofr and s.

{ r; s 2 [1; n)
The element A rs A2

in A � 1
rs is trivially in K , sinceA rs ; A2

in 2 S.

{ r 2 [1; i ); s = n
By another brief set of calculations, we haveA rs A2

in A � 1
rs = ( A � 1

ri )(A2
in )(A ri ), a product of elements

of S and thus in K .

{ r = i; s = n
In this case we haveA rs A2

in A � 1
rs = A2

in 2 K .

{ r 2 (i; n ); s = n
By another brief set of calculations we haveA rs A2

in A � 1
rs = ( A � 2

in )(A in A � 1
ir A � 1

in )(A2
in )(A in A ir A � 1

in )(A2
in ),

a product of elements ofS and their inverses and thus inK .

� Conjugates of A in A ij A � 1
in , where j 6= n

We want to show that the elements A rs A in A ij A � 1
in A � 1

rs are products of elements ofS. Once again we
divide into subcases depending on the values ofr and s.

{ r; s 2 [1; n)
As before, in this case the elementA rs A in A ij A � 1

in A � 1
rs is trivially in K , sinceA rs ; A in A ij A � 1

in 2 S.

{ r 2 [1; i ); s = n
By another calculation we haveA rs A in A ij A � 1

in A � 1
rs = ( A � 1

ri ) (A � 1
rn A ri A rn )(A in A ij A � 1

in )(A � 1
rn A � 1

ri A rn )(A ri ),
a product of elements ofS and their inverses and thus inK .

{ r = i; s = n
We have A rs A in A ij A � 1

in A � 1
rs = ( A2

in )(A ij )(A � 2
in ) 2 K .

{ r 2 (i; j ); s = n
By another hideous calculation we haveA rs A in A ij A � 1

in A � 1
rs =

(A � 2
in )(A in A � 1

ir A � 1
in )(A2

in )(A ir )(A ij )(A � 1
rj )(A � 1

ir )(A � 2
rn )(A ir )

(A in A rn A � 1
in )(A rj )(A in A � 1

rn A � 1
in )(A2

rj )(A � 1
ij )(A � 2

in )(A in A ij A � 1
in )

(A2
in )(A � 1

ir )(A � 2
in )(A � 1

rj )(A2
in )(A ij )(A in A ir A � 1

in )(A � 2
in )(A � 1

ij )
(A in A ij A � 1

in )(A in A � 1
ir A � 1

in )(A � 1
ir )(A � 2

rn )(A ir )(A ir )(A � 4
in )

(A in A rn A � 1
in )(A � 1

rj )(A in A � 1
rn )(A � 1

in )(A � 2
in )(A2

in )(A � 2
ir )(A � 2

rn )(A ir )
(A in A ir A � 1

in )(A rj )(A in A � 1
ir A � 1

in )(A � 2
in )(A in A ir A � 1

in )(A2
in ), a product of elements of S and their

inverses and thus inK .
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{ r = j; s = n
By yet another calculation we haveA rs A in A ij A � 1

in A � 1
rs =

(A � 2
in )(A in A � 1

ij A � 1
in )(A2

in )(A ij )(A � 2
in )(A in A ij A � 1

in )(A2
in ), a product of elements ofS and their in-

verses and thus inK .
{ r 2 (j; n ); s = n

Finally, we have A rs A in A ij A � 1
in A � 1

rs = ( A � 2
in )(A in A � 1

ir A � 1
in )(A2

in )
(A ir )(A in A ij A � 1

in )(A � 1
ir )(A � 2

in )(A in A ir A � 1
in )(A2

in ), a product of elements of elements ofS and their
inverses and thus an element ofK .

So every element ofS, when conjugated by any generator and thus any element ofG, remains in K ; so
K � G.

Now we show that H � K . First, recall that the image of � is isomorphic to Zn � 1
2 , and that every

generator of the form A in is mapped under� to a transposition. We have G=H ' im( � ), so the cosets ofH
correspond exactly to ordered (n � 1)-tuples of 0s and 1s. There is a 1 in thei th position for the coset xH
whenever the generatorA in appears an odd number of times as a factor of the coset representative x. (Note
that the inverses of A in may be either added or subtracted, since we are counting modulo 2.) This also tells
us that any product of the generators A ij is in H if each generatorA in appears an even number of times
and each generatorA ij where j 6= n appears any number of times.

We will use an inductive argument on the length of an element in the generatorsA ij . Let jgj denote this
length, so that if g = A i 1 j 1

� � � A i k j k
, then jgj = k, and say that j1j = 0. Supposeg 2 H . We want to show

that g 2 K .
There are four base cases to consider. Ifjgj = 0, then we have g = 1 2 K . If jgj = 1, then g must be of

the form g = A ij where j 6= n, and thus g 2 K . If jgj = 2, then g is either of the form g = A i 1 j 1
A i 2 j 2

, where
j 1; j 2 6= n, or of the form g = A2

in , both in K . If jgj = 3, then g may be of any form in which each generator
A in appears an even number of times; for example, we may haveg = A in A jk A in = ( A in A jk A � 1

in )(A2
in ). The

�rst part of the proof gives us that ( A in A jk A � 1
in ) 2 K , and sog 2 K . The other cases are similar.

Now suppose that for anyh 2 H with jhj � m � 1 we haveh 2 K . Let g 2 H be a word of length m.
We wish to show that g 2 K .

Write g = A � 1
i 1 j 1

� � � A � 1
i m j m

. Let x be the �rst factor A � 1
i 1 j 1

and let y be the second factorA � 1
i 2 j 2

. If j 1 6= n,
then we are done, forg; x 2 H and soA � 1

i 2 j 2
� � � A � 1

i m j m
, a word of length m � 1, must also be inH and thus

in K . So consider the case whenj 1 = n. Similarly, if j 2 6= n, then g = xyx � 1xA � 1
i 3 j 3

� � � A � 1
i m j m

, we have
g; xyx� 1 2 H , and thus xA � 1

i 3 j 3
� � � A � 1

i m j m
, a word of length m � 1, is also in H and thus in K . So consider

the case whenj 2 = n.
Because the elementg is in H , the factors x and y must appear an even number of times and hence

at least once more. We will consider the two cases whenx appears beforey and when x appears after y
separately.

Supposex appears as the factorA � 1
i k j k

and y appears as the factorA � 1
i l j l

. Let c = A � 1
i 3 j 3

� � � A � 1
i k � 1 j k � 1

,

d = A � 1
i k +1 j k +1

� � � A � 1
i l � 1 j l � 1

, and e = A � 1
i l +1 j l +1

� � � A � 1
i m j m

; that is, we have g = xycx � 1dy� 1e. If we remove the
factors x and y, the remaining element cde must still be in H , since each factorA in still occurs an even
number of times. So the elementscd and e must be in the same cosetuH . Recall that if the element A in
appears as a factor of the coset representativeu, then it must appear an odd number of times, and thus at
least once, in each of the elementscd and e. Thus, we must have juj � j cdj and juj � j ej. Write e = ue0,
where e0 2 H .

If cd 2 uH , then cx� 1d 2 xuH ; but left and right cosets of normal subgroups are equal, so we can write
cx� 1d 2 xHu . Let cx� 1d = xku, where k 2 H .
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Now we can write

g = xyxkuy � 1ue0

= ( xyxy )(y� 1ky)(y� 1uy� 1u)(e0): (B.1)

Each of the parenthesized factors is inH . We have

xyxy = A � 1
i k n A � 1

i l n A � 1
i k n A � 1

i l n

= A � 1
i k n A � 1

i l n A � 1
i k n A � 2

i k n A � 1
i l n

=

8
>><

>>:

A � 1
i k i l

A � 1
i l n A i k i l

A2
i k n A � 1

i l n , by R2 if x = A i k n and i k < i l

A � 2
i k n A � 1

i k i l
A � 1

i l n A i k i l
A2

i k n A � 2
i k n A � 1

i l n , by R2 if x = A � 1
i k n and i k < i l

A � 1
i l n A � 1

i l i k
A � 1

i l n A i l i k
A i l n A2

i k n A � 1
i l n , by R3 if x = A i k n and i l < i k

A � 2
i k n A � 1

i l n A � 1
i l i k

A � 1
i l n A i l i k

A i l n A2
i k n A � 2

i k n A � 1
i l n , by R3 if x = A � 1

i k n and i l < i k

=

8
>><

>>:

(A � 1
i k i l

)(A � 1
i l n A i k i l

A � 1
i l n )(A � 1

i l n A2
i k n A � 1

i l n ) if x = A i k n and i k < i l

(A � 2
i k n )(A � 1

i k i l
)(A � 1

i l n A i k i l
A � 1

i l n )(A � 1
i l n A2

i k n A � 2
i k n A � 1

i l n ) if x = A � 1
i k n and i k < i l

(A � 2
i l n )(A i l n A � 1

i l i k
A � 1

i l n )(A1� 1
i l n )(A i l i k

)(A i l n A2
i k n A � 1

i l n )(A1� 1
i l n ) if x = A i k n and i l < i k

(A � 2
i k n )(A � 2

i l n )(A i l n A � 1
i l i k

A � 1
i l n )(A1� 1

i l n )(A i l i k
)(A1� 1

i l n ) if x = A � 1
i k n and i l < i k

Each parenthesized factor is a conjugate of an element ofK and hence inK . We have k 2 H and

jkj � j x � 1cx� 1duj � j xj + jcj + jxj + jdj + juj � j xj + jcj + jxj + jdj + jej = m � 2;

so k 2 K and thus y� 1ky 2 K . We have y� 1uy� 1u 2 H and

jy� 1uy� 1uj � j yj + juj + jyj + juj � j yj + jcdj + jyj + jej = m � 2;

so y� 1uy� 1u 2 K . And we have e0 2 H and

je0j � j u� 1ej � j uj + jej � j cdj + jej = m � 4;

so e0 2 K . Thus all of the parenthesized factors in (B.1) are inK , so we haveg 2 K .
The other case is similar. Supposey appears as the factorA � 1

i k j k
and x appears as the factorA � 1

i l j l
. Let c =

A � 1
i 3 j 3

� � � A � 1
i k � 1 j k � 1

, d = A � 1
i k +1 j k +1

� � � A � 1
i l � 1 j l � 1

, and e = A � 1
i l +1 j l +1

� � � A � 1
i m j m

; that is, we haveg = xycy� 1dx� 1e.
Once again we must havecd and e in the same cosetuH , so juj � j cdj and juj � j ej. Moreover we have
ycy� 1d 2 uH = Hu, and we write ycy� 1d = ku, where k 2 H , and e = ue0, where e0 2 H .

So we have

g = xkux � 1ue0

= ( xkx � 1)(xux � 1u)(e0): (B.2)

We have k 2 H and

jkj � j ycy� 1du� 1j � j yj + jcj + jyj + jdj + juj � j yj + jcj + jyj + jdj + jej = m � 2;

so k and thus xkx � 1 are in K . The case forxux � 1u is almost identical to the case fory� 1uy� 1u above, and
the case fore0 is the same as before. Thus, each of the parenthesized factors in (B.2) is in K , so g 2 K .
Therefore we haveH � K , and thus H = K .
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We now turn to the task of constructing homomorphisms between pure braid groups. We know that
the inverse image underf of a pure braid in H is a pure braid in P BX 0. Let ~� f : H ! P BX 0 be the
homomorphism that carries an element ofH to its inverse image underf . Let � � : P BX 0 ! P BX be the
\forgetful map" which loses track of the strands based at points in X 0� X . This map is also a homomorphism.
Recalling that G = P BX , let � f : H ! G be the homomorphism� f = � � � ~� f . A homomorphism is de�ned
by its action on the generators of its domain, so we move to ourexamples to give� f explicitly.

B.2 The Rabbit; or, the 0-3 Case

For the braids on three strands, let a = A12; b = A13; c = A23. Let f (z) = z2 + cR , where cR � � :122561 +
:744862i . Under this function, the point 0 is periodic of period 3. Figure B.5 shows the action off � 1 on
the pure braid group generators. To illustrate how we evaluate � f on the generators ofH , consider the

(a) A 12 and f � 1 (A 12 ) (b) A 13 and f � 1 (A 13 ) (c) A 23 and f � 1 (A 23 )

Figure B.5: The pure braid group generators and their inverse images underf for f (z) = z2 + cR . The blue
curves are the pure braid group generators, and the green curves are the inverse images of these generators.
The �rst, second, and third strands are, respectively, those based at the pointsc2

R + cR ; (c2
R + cR )2 + cR ; cR .

progression shown in �gure B.6 for the elementb2 and in �gure B.7 for the element bab� 1. That is, we
evaluate ~� f on elements ofH by tracing the paths along their inverse images. We then use� � to ignore the
strands based at� cR and � c2

R � cR . Proceeding in this way for all of the generators ofH , we �nd that

� f (a) = b

� f (b2) = c

� f (c2) = a

� f (bab� 1) = 1
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(a) As a reminder, the pure braid
group generators...

(b) ...and their inverse images under f

(c) We start by tracing the curve for b
twice...

(d) ...then apply ~� f , tracing the in-
verse image of b twice...

(e) ...then apply � � , forgetting the
strands from extraneous points to
themselves

Figure B.6: An illustration of the evaluation of � f on the generatorb. The orange curve isa, the blue curve
is b, and the purple curve is c. All curves are oriented counter-clockwise.
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(a) We start by tracing the curves for
bab� 1 ...

(b) ...then apply ~� f , tracing the in-
verse image of these curves...

(c) ...then apply � � , forgetting the
strands from extraneous points to
themselves. These strands can be
pulled straight|so � f (bab� 1 ) = 1.

Figure B.7: An illustration of the evaluation of � f on the generatorbab� 1. The orange curve isa, the blue
curve is b, and the purple curve is c. All curves are oriented counter-clockwise.

We note that � f is surjective and not injective. We also examine where� f sends the center ofG. In general,
the element D 2 is not in H , but the element D 4 is in H . On three strands we have

D 4 = ( abc)2

= abcbca

= aa� 1babc2a

= b2b� 1abc2a

so that � f (D 4) = D 2 for this case.

B.3 i ; or, the 2-2 Case

Let f (z) = z2 + i . Under this function, the point 0 is enters a 2-cycle after two iterations. Figure B.8 shows
the action of f � 1 on the pure braid group generators. For this case we will replace the generatorbab� 1 with
the generator b� 1ab. As with the rabbit, we evaluate � f on the generators ofH by tracing inverse images
and discarding the strands based at points outside of the forward orbit of 0. In this case we �nd that

� f (a) = b

� f (b2) = c

� f (c2) = 1

� f (b� 1ab) = a
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(a) A 12 and f � 1 (A 12 ) (b) A 13 and f � 1 (A 13 ) (c) A 23 and f � 1 (A 23 )

Figure B.8: The pure braid group generators and their inverse images underf for f (z) = z2 + i . The blue
curves are the pure braid group generators, and the green curves are the inverse images of these generators.
The �rst, second, and third strands are, respectively, those based at the pointsi � 1; � i; i .

Once again, we have� f surjective and not injective, and � f (D 4) = � f (b2b� 1abc2a) = cab= D 2.

B.4 The 3-1 Case

Let f (z) = z2 + c3, where c3 � � :228155 + 1:11514i . In this case the point 0 enters a 1-cycle after three
iterations of f . Figure B.9 shows the action off � 1 on the pure braid group generators. Evaluating� f on
the generators ofH in the same way gives

� f (a) = b

� f (b2) = 1

� f (c2) = a

� f (bab� 1) = c

Once again: � f is surjective and not injective, and � f (D 4) = � f (b2b� 1abc2a) = cab= D 2.

B.5 The 0-4 Case

Let f (z) = z2 + c4, where c4 � � :15652 + 1:03225i . In this case the point 0 is periodic of period 4. Figure
B.10 shows the action off � 1 on the pure braid group generators. In this case we have
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(a) A 12 and f � 1 (A 12 ) (b) A 13 and f � 1 (A 13 ) (c) A 23 and f � 1 (A 23 )

Figure B.9: The pure braid group generators and their inverse images underf for f (z) = z2 + c3. The blue
curves are the pure braid group generators, and the green curves are the inverse images of these generators.
The �rst, second, and third strands are, respectively, those based at the pointsc2

3 + c3; (c2
3 + c3)2 + c3; c3.

� f (A12) = A14

� f (A13) = 1

� f (A23) = 1

� f (A2
14) = A34

� f (A2
24) = A13

� f (A2
34) = A23

� f (A14A12A � 1
14 ) = 1

� f (A14A13A � 1
14 ) = A24

� f (A24A23A � 1
24 ) = A12

Once again,� f is surjective and not injective.

B.6 Extensions

We are interested in using our braid homomorphism to tell us more about the long-term behavior of simple
closed curves under repeated iteration off � 1. One principle we would like to verify is that of contraction of
word length; that is, given a word of a certain length in the generators of G, we would like to show that after
a certain number of iterations of � f the length of the resulting word has decreased by some de�nite factor.
The action of � f on the generators ofH certainly suggests this; the generatorA12 is the only one in each
case we have examined whose length is not immediately decreased by application of � f . However, verifying
this property is not as simple as verifying it on the generators, since, as was suggested above in proving the
generating set forH , writing an element which is in H as a product of generators ofH has the potential to
dramatically increase word length.
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(a) A 12 and f � 1 (A 12 ) (b) A 13 and f � 1 (A 13 ) (c) A 14 and f � 1 (A 14 )

(d) A 23 and f � 1 (A 23 ) (e) A 24 and f � 1 (A 24 ) (f) A 34 and f � 1(A 34 )

Figure B.10: The pure braid group generators and their inverse images underf for f (z) = z2 + c4. The blue
curves are the pure braid group generators, and the green curves are the inverse images of these generators.
The �rst, second, third, and fourth strands are, respectively, those based at the pointsc2

4 + c4; (c2
4 + c4)2 +

c4; ((c2
4 + c4)2 + c4)2 + c4; c4.
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Thus we introduce two extensions which have the potential for use in verifying the contraction property.
The �rst is an extension of � f . Consider the case wheren = 3. The domain of � f is a subgroup of index 4
of G. We extend the homomorphism� f to a map � f : G ! G as follows:

� f (w) =

8
>><

>>:

� f (w) if w 2 H
� f (b� 1w) if w 2 bH
� f (c� 1w) if w 2 cH
� f (c� 1b� 1w) if w 2 bcH:

Note that � f is not a homomorphism.

The second extension is an expanded form of the elements ofG. Label the cosetsH; bH; cH; bcH 1
through 4, respectively. Let � 0 : G ! S4 give the permutation of the cosets induced by an element ofG.
Then the expanded form is

g = � 0(g)( � f (g); � f (gb); � f (gc); � f (gbc)) :

Consider a set containing the generators ofG, their inverses, and any product of two of these. For each
element s in this set, examine its expanded form. If any of the elements� f (s); � f (sb); � f (sc)� f (sbc) are not
in the set, add them and repeat. If eventually the set closes o�, then we can show the contraction property.

We give the expanded forms of the generators for our three examples wheren = 3.

� For f (z) = z2 + cR , we have

a = ( b;1; 1; b)

b = (1 2)(3 4)(1 ; c;1; a� 1ca)

c = (1 3)(2 4)(1 ; b; a; ab� 1)

a� 1 = ( b� 1; 1; 1; b� 1)

b� 1 = (1 2)(3 4)( c� 1; 1; a� 1c� 1a; 1)

c� 1 = (1 3)(2 4)( a� 1; ba� 1; 1; b� 1)

� For f (z) = z2 + i , we have

a = ( b; a; a; b)

b = (1 2)(3 4)(1 ; c;1; a� 1ca)

c = (1 3)(2 4)(1 ; ba� 1; 1; ab� 1)

a� 1 = ( b� 1; a; a� 1; b� 1)

b� 1 = (1 2)(3 4)( c� 1; 1; a� 1c� 1a; 1)

c� 1 = (1 3)(2 4)(1 ; ba� 1; 1; ab� 1)
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� For f (z) = z2 + c3, we have

a = ( b; c; a� 1ca; b)

b = (1 2)(3 4)(1 ; 1; 1; 1)

c = (1 3)(2 4)(1 ; bc� 1; a; cab� 1)

a� 1 = ( b� 1; c; a� 1c� 1a; b� 1)

b� 1 = (1 2)(3 4)(1 ; 1; 1; 1)

c� 1 = (1 3)(2 4)( a� 1; ba� 1; 1; cb� 1)

We hope that further work in this direction will give us the de sired property.
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C.1 Preliminary De�nitions in Coding Theory

Let F2 denote the �nite �eld having two elements, namely f 0,1g. The vector spaceFn
2 consists of all lengthn

vectors with entries either 0 or 1. We de�ne a binary linear code , C[n; k], to be a k dimensional subspace
of Fn

2 , in which the vectors in C[n; k] are calledcodewords . We de�ne the weight of a codeword to be the
number of places in which the codeword has a nonzero entry. Tosee this, let's consider an example inF8

2; let
u = (1 ; 0; 0; 1; 0; 0; 1; 1) 2 F8

2. Clearly, the weight of u, denoted w(u), is 4. A code in which every codeword
has weight divisible by four is said to bedoubly even .

For any given code C[n; k] we de�ne its dual , C? [n; n � k], to be the set of vectorsv 2 Fn
2 that are

orthogonal to every codeword inC[n; k]. The concept of orthogonality is the same as always, exceptsince
we are in F2, operations are performed modulo 2. A code is said to beself dual if C[n; k] = C? [n; n � k].
It follows that a self dual code in Fn

2 has dimensionn=2. On the other hand, a code is said to beself
orthogonal if C[n; k] � C? [n; n � k], thus a self orthogonal code will have dimension less than or equal to
n=2.

In the next section, we will de�ne and discuss Hadamard matrices and their connection to codes. To see
this connection more clearly, we need to de�ne what thegenerator matrix for a code is.

De�nition C.1. Let C[n; k] be a k dimensional code whose codewords have lengthn. De�ne a generator
matrix for C to be a k � n matrix whose rows are basis vectors forC.

De�nition C.2. Let C1[n; k] and C2[n; k] be two k dimensional codes. We sayC1 is equivalent to C2 if we
can permute the columns of their generator matrices so that they have the same basis.

C.2 Introduction to Hadamard Matrices

Let H be an n � n matrix with entries � 1 that satis�es HH T = nI n . Such a matrix is called aHadamard
matrix and will exist and have maximal determinant nn= 2 only if n = 1 ; 2, or n � 0 (mod 4) [5]. Hadamard
matrices are non-singular and (by negating and permuting rows and columns) will contain a �rst row and
column in which every entry is 1. Doing this is callednormalizing the matrix. The resulting matrix will be
equivalent to the non-normalized matrix, where equivalent means up to row and column permutation and
negation.

For any Hadamard matrix, there is an equivalence class of binarly linear codes associated with it. To
obtain this code, we �rst normalize the matrix, then replace the � 1's with 0's to obtain a f 0; 1g matrix. The
code is the linear span of these rows, and equivalent matrices give rise to equivalent codes.

For this paper, we will �nd the codes of certain Hadamard matrices and their subcodes in hopes that
they too will be the codes of a Hadamard matrix. The codes in question will be doubly even, self orthogonal
or self dual codes, because whenn � 0 (mod 8), wheren is the size of the Hadamard matrix, the resulting
code will be doubly even and self orthogonal [1]. Because of the large number of possibilities of subcodes for
certain codes, we will make a de�nition to narrow our search.

De�nition C.3. A code C is said to besuitable if it contains the all 1 vector and its generator matrix does
not contain duplicate columns.

Clearly, the code of a Hadamard matrix must contain the all 1 vector, since for any Hadamard matrix, we
can make the �rst row have all 1's. Also, from a result found in [8], the code for ann � n Hadamard matrix
must have dimensiond � log2 n + 1, therefore we only need to consider subcodes down to this dimension.
The generator matrix for the code may not have duplicate columns because, if it did, every codeword in
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the code would have duplicate columns. This would translateto the associated Hadamard matrix having
duplicate columns, which we know is not true since Hadamard matrices are non-singular.

As stated above, this paper will deal solely with binary linear codes, more speci�cally doubly even self
dual and self orthogonal codes. Although we are not limitingourselves to codes only generated by weight
four codewords, special mention of them must be made. Any code that is generated by weight four codewords
is the direct sum of the following codes: the duadic codes (d2n ), e7, and e8 [2]. Therefore we will focus our
discussion on these codes to get a better picture of where thecodes generated by weight four codewords
come from.

C.3 The Duadic Codes ( d2n), e7, and e8

We'll begin our discussion of codes generated by weight fourcodewords with the duadic codes d2n . These
codes are of dimensionn � 1 and length 2n, whose basis is formed as such:

d2n = h11110000� � � 00; 11001100� � � 00;

11000011� � � 00; � � � ; 11000000� � � 11i

where each codeword is of length 2n. As an example, the basis for d8 is h11110000; 11001100; 11000011i , and
contains the codewords

11110000
11001100
11000011
00111100
00001111
00110011
11111111
00000000

These codes respectduads , or have aduadic structure. This means that we are free to permute columns 1
and 2, 3 and 4, 5 and 6, and so on. This is clear by how the basis isformed; column 1 is the same as column
2, column 3 is the same as column 4, and so on. It is also important to note that d4 respectstetrads ,
meaning we are free to permute columns 1 through 4 and columns5 through 8. Both notions of a code
respecting duads and tetrads will be used later.

The other codes generated only by weight four codewords aree7 and e8. To construct e7, begin with the
basis for d6, adding a zero to the end of each codeword to make it length 7, and add the self glue vector
1010101 to the basis. Adding a self glue vector (a vector not in the original code) to the basis of a code
increases its dimension by one and thus increases the amountof words in the code by a factor of two. Note
that e7 has length 7, though for the purposes of this paper, we will add zeros to the end of each codeword to
make its length a multiple of 8 (this process is called \padding"). For example: to make every codeword of
e7 have length 8, we will pad each codeword with a single zero, making e7 = h11110000; 11001100; 10101010i .
We construct e8 in a similar way, glueing 10101010 tod8, thus e8 is h11110000; 11001100; 11000011; 10101010i .

Note that adding a self glue vector to a code is di�erent than adding a glue vector, a notion that will be
used when considering codes that have a direct sum structure.

De�nition C.4. Let C1 � C2 � � � � � Ck be a code formed by the direct sum ofk codes. De�ne aglue vector
x of the form (x1; x2; � � � xk ), where x j =2 Cj for 1 � j � k, to be a vector that adds a dimension to the code,
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increases the number of words in the code by a factor of two, and breaks the direct sum structure of the
code.

Consider the examplehd8 � d8; (10101010; 10101010)i , which has the following basis

11110000 00000000
11001100 00000000
11000011 00000000
00000000 11110000
00000000 11001100
00000000 11000011
10101010 10101010

Notice that without the glue vector (10101010; 10101010), any codeword of the code will retain the direct sum
structure. However, adding this glue vector essentially \glues" the two codesd8 and d8 together. Therefore,
with the addition of this glue vector, not every codeword in the code will retain this direct sum structure.
The following lemma is helpful in showing the uniqueness of glue vectors within codes.

Lemma C.3.1. Let C = C1 � C2 � � � � � Ck be a code made up of the direct sum ofk codes. Letu and v be
codewods such thatv = u + c, where c 2 C. Then the code formed by gluingu to C is equivalent to the code
formed by gluingv to C.

The proof is trivial and not shown here, but to see its application, let's consider an example. Consider
the above examplehd8 � d8; (10101010; 10101010)i . If we glue

(10101010; 10101010) + (11110000; 00000000) = (01011010; 10101010)

to d8 � d8 instead of gluing (10101010; 10101010) tod8 � d8, we will clearly get a code equivalent tohd8 �
d8; (10101010; 10101010)i . This follows because we can just add (11110000; 00000000) back to the glue
vector displayed above to make the last basis vector for the code be (10101010; 10101010), thus the codes
are equivalent.

Because of the frequency with which certain glue componentsappear, we will de�ne the glue components
a = 10101010 andq = 11000011. Note that, with this de�nition for q, the coded8 is hd6; qi .

C.4 The Deletion Process

Given a dimensionk, doubly even, self orthogonal code, how can we �nd all of the dimensionk � 1 subcodes
of this code? When working in Rn , it is natural to �nd the k � 1 dimensional subcodes of ak dimensional
code by �nding the orthogonal complements of all the 1 dimensional subspaces ofRn . However, since we
are working in Fn

2 , applying this process would yield the original code back again, since every codeword is
orthogonal to both itself and every other codeword.

A process for �nding the k � 1 dimensional subcodes of a doubly even, self orthogonal dimension k
code is as follows: letC[n; k] be a doubly even, self orthogonal code. Choose the basis forC[n; k] to be
hC1; C2; � � � Ck i . Let v 2 Fk

2 . Choosek � 1 linearly independant vectors to form hvi ? . Each of the vectors
in hvi ? will correspond to a vector in C[n; k]. For example; (1; 0; 0; � � � 0) will correspond to C1, (0; 1; 0; � � � 0)
will correspond to C2, (1; 1; 0; � � � 0) will correspond to C1 + C2, and so on. So, thek � 1 dimensional space
hvi ? will correspond to a k � 1 dimensional subcode ofC[n; k].

To see this, let's consider the example of �nding all the 3 dimensional subcodes of the doubly even, self
dual codee8. Sincee8 is of dimension 4, we will choosev from F4

2. Recall that e8 is
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h11110000; 11001100; 11000011; 10101010i

Choosing v = (1 ; 0; 0; 0) corresponds to the deletion of 11110000 from the basis fore8, as hvi ? yields
h(0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1)i . This will be h11001100; 11000011; 10101010i in the code, which is equiv-
alent to e7. Thus the resulting 3 dimensional subcode ofe8 is e7. As it turns out, there is only one other
dimension 3 subcode ofe8, namely d8, which can easily be shown by considering all 24 � 1 = 15 choices of
v (we omit the all zero vector). The complete breakdown of dimension 3, 2, and 1 subcodes ofe8 is shown
below and will be used later.

� e8

� e7 � d8

� d6 � 2d4

� d4
� hj i

Clearly, none of the above codes are suitable except fore8. However, they will be important in our search
as we will need to know all possible subcodes ofe8, d8, e7, and so on.

For this paper we will be using the deletion process startingwith self dual codes and essentially working
our way down in dimension. There is a complete list of the selfdual codes of length 8, 16, 24, and 32 given
in [2]. We also know that for any n � 0 (mod 8), a self dual code of dimensionn will exist, and that every
doubly even self orthogonal code is contained in some doublyeven self dual code [6]. We'll also be working
with sizes n � 0 (mod 16), since the codes for a Hadamard matrix can be eitherself dual or self orthogonal,
whereas in the 8 (mod 16) case, they are restricted only to self dual codes.

C.5 The Complete Breakdown of the Self Dual, Doubly Even
Code e8 � e8

Our goal here is to provide a complete list of suitable subcodes for the length 16, doubly even self dual code
e8 � e8, similar to that done for e8. This will be done by using the deletion process, but sincev 2 F8

2, a brute
force method will take quite some time as there are 255 possible choices forv. So, we will use the following
results to provide the complete list.

For this �rst result, recall from linear algebra that for som e spaceSn , we can write Sn as the sum of
Sl � Sn � l , where 1� l � n � 1.

De�nition C.5. Let Let v 2 Fn
2

�= Fl
2 � Fn � l

2 . De�ne �eld one to be the �rst l positions of the vector v,
and de�ne �eld two to be the remaining n � l positions of v.

Before stating the lemma, let's �rst consider an example to clearly show the meaning of �eld one and
�eld two. Let v = (0 ; 1; 1; 0; 0; 0; 0; 0; 0) and let u = (0 ; 0; 0; 0; 1; 1; 0; 0; 1). Both v and u are in F9

2
�= F4

2 � F5
2.

Thus �eld one refers to the �rst 4 positions of v and u and �eld two refers to the last 5 positions of v and
u. Clearly, v has ones only in �eld one, andu has ones only in �eld two.
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Lemma C.5.1. Let v 2 Fn
2 . Then the spacehvi ? can be written as the span ofn � 1 vectors of weight 1 or

2, where at most one of which has a 1 in �eld one and �eld two.

Proof. To begin the proof, �rst consider the two trival cases wherew(v) = w = 1 or 2. When w = 1, we can
form hvi ? with only weight one vectors, and whenw = 2, we can form hvi ? with n � 2 weight one vectors
and need only one vector of weight two (namely the vectorv itself), which may or may not have a one in
�eld one and �eld two.

For w � 3, consider the process for forminghvi ? . Begin by including the weight one vectors that have a
one in a position wherev has a zero, and zeros everywhere else. Clearly, these vectors are linearly independent
and orthogonal to v. Note that there are n � w of these, sincev has weightw, leaving n � w positions where
v has a zero entry. Since all operations are performed modulo 2, the remaining vectors in hvi ? need only be
of weight two to be orthogonal to v.

Let v1 be the number of ones in �eld one ofv and let v2 be the number of ones in �eld two of v.
Clearly, v1 + v2 = w. From �eld one alone, there are v1 � 1 linearly independent vectors orthogonal tov.
Similarly, from �eld two alone, there are v2 � 1 linearly independent vectors orthogonal tov. We now have
(n � w) + ( v1 � 1) + ( v2 � 1) linearly independent vectors to form hvi ? , none of which have a one in �eld
one and �eld two. Since v1 + v2 = w, we have

(n � w) + ( v1 � 1) + ( v2 � 1)
= n � w + ( v1 + v2) � 2

= n � 2

linearly independent vectors to form hvi ? , none of which have a one in �eld one and �eld two. We are now
free to choose the �nal weight two basis vector forhvi ? to have a one in �eld one and a one in �eld two.

It is important to note that we can break Fn
2 into a direct sum of two vector spaces in a number of

di�erent ways. In the above example, we could have saidF9
2 = F3

2 � F6
2 and de�ned �eld one to be the �rst

three positions and �eld two to be the last six positions. The above result will still hold no matter how
we break Fn

2 into a direct sum of two vector spaces, however it is important to choose the correct vector
spaces in order for the lemma to be useful. How to choose the two vector spaces correctly can be seen in the
following result:

Proposition C.5.2. Let C1 be a code of dimensionl , and let C2 be a code of dimensionn � l . The n
dimensional code formed by their direct sumC1 � C2 will have n � 1 dimensional subcodes only of the
following forms:

(a) �C1 � C2, where �C1 is any l � 1 dimensional subcode ofC1

(b) C1 � �C2, where �C2 is any n � l � 1 dimensional subcode ofC2

(c) h�C1 � �C2; (x; y)i , where x 2 C1 but x =2 �C1, and y 2 C2 but y =2 �C2

Furthermore, the resulting code is independent of the choice of x and y.

Proof. For this proof, we will use the \deletion process" describedabove, wherev 2 Fn
2 . By Lemma C.5.1,

hvi ? will either have no basis vectors with a 1 in �eld one and a 1 in �eld two, or at most one basis vector
with a 1 in �eld one and a 1 in �eld two. In this case, �eld one is d e�ned as the �rst l positions of v, since
C1 is of dimensionl , and �eld two will be the last n � l positoins of v, sinceC2 is of dimensionn � l . Since
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C1 � C2 is already broken up into a direct sum, the case wherehvi ? has no basis vectors with a 1 in �eld
one and a 1 in �eld two will yield either (a) or (b).

If hvi ? does have a basis vector with a 1 in �eld one and a 1 in �eld two, this particular vector will
correspond to a glue vector in a subcode ofC1 � C2. Since there will be at most one of such vectors, the
remaining basis vectors of ann � 1 dimensional subcode ofC1 � C2 will be determined by a direct sum of an
l � 1 dimensional subcode ofC1 and an n � l � 1 dimensional subcode ofC2. It is clear from the de�nition of
a glue vector that the glue vector will be of the form (x; y), where x 2 C1 but x =2 �C1 and y 2 C2 but y =2 �C2.
It is also clear from Lemma C.3.1 that the code is independentof the choice ofx and y.

We now have su�cient results to �nd all the dimension 7 subcodes ofe8 � e8, and they are

hd8 � d8; (a; a)i
he7 � d8; (q; a)i
he7 � e7; (q; q)i

e7 � e8

d8 � e8

Because we are only concerned with suitable codes, we need only continue �nding subcodes ofhd8 � d8; (a; a)i ,
since it is the only code that does not have duplicate columnsand contains the all 1 vector.

When �nding the dimension 6 subcodes ofhd8 � d8; (a; a)i , we can essentially ignore the glue vector (a; a)
and only consider the dimension 5 subcodes ofd8 � d8. We are free to do this because adding (a; a) to any
combination of vectors in d8 � d8 will yield a vector equivalent to ( a; a). This is because we are free to swap
columns 1 with 2, 3 with 4, 5 with 6, and so on without changing any of the vectors in d8 � d8. Since adding
(a; a) to any combination of vectors in d8 � d8 will only change the vector with respect to those pairs of
columns, we will get a vector equivalent to (a; a). By using the deletion process, one of three things can
happen; we will have a vectorv without a 1 in position 7, which will correspond to including (a; a) in the
basis for the subcode. Ifv is of weight one and has a 1 in position 7, this will result in the deletion of (a; a)
from the code, resulting in the sub coded8 � d8. If v is of weight � 2, and has a 1 in position 7, this will
correspond to a basis vector equivalent to (a; a), since we are free to permute columns 1 and 2, 3 and 4, 5
and 6, and so on. Therefore, unlessv = (0 ; 0; 0; 0; 0; 0; 1), the deletion process will always yield a code with
(a; a) in the basis. So, to �nd all the dimension 6 subcodes ofhd8 � d8; (a; a)i , we need only consider the
dimension 5 subcdoes ofd8 � d8, since (a; a) will be a glue vector for any subcode ofhd8 � d8; (a; a)i . Thus
the dimension 6 subcodes ofhd8 � d8; (a; a)i are

d8 � d8

hd6 � d8; (a; a)i
h2d4 � d8; (a; a)i

hd6 � d6; (q; q); (a; a)i
hd6 � 2d4; (q; q); (a; a)i

h4d4; (q; q); (a; a)i

Again, since we only want to consider the suitable codes, we will only need to �nd the subcodes of
h4d4; (q; q); (a; a)i , since it is the only code that does not have duplicate columns and that contains the all 1
vector.

By a similar argument used to show when (a; a) will be in the basis for a dimension 6 subcode of
hd8 � d8; (a; a)i , we can show both (a; a) and (q; q) will be in the basis for any dimension 5 subcode of
h4d4; (q; q); (a; a)i . This will be the case whenv 6= (0 ; 0; 0; 0; 1; 0) and v 6= (0 ; 0; 0; 0; 0; 1), since of course this
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just corresponds to deleting (a; a) or (q; q) from the code. Therefore, we need only consider the 3 dimensional
subcodes of 4d4. So, the dimension 5 subcodes ofh4d4; (q; q); (a; a)i are

h4d4; (a; a)i
h4d4; (q; q)i

h3d4; (q; q); (a; a)i
hj � 2d4; (q; q); (a; a)i

hj � j; (p; p); (q; q); (a; a)i
hj � d4; (p; w); (q; q); (a; a)i

hd4 � d4; (w; w); (q; q); (a; a)i

where j is the length 8, dimension 1 codeh11111111i , p is the length 8 vector 11110000, andw is the length
8 vector 00001111. Again, we only want the suitable codes, which in this case ishj � j; (p; p); (q; q); (a; a)i .
In fact, this code is equivalent to the Reed Muller Code, which can be found in [4].

We now have our complete list of the suitable dimension 7, 6, and 5 subcodes of the doubly even, self
dual codee8 � e8, and they are

hd8 � d8; (a; a)i
h4d4; (q; q); (a; a)i

hj � j; (p; p); (q; q); (a; a)i

C.6 The Other Doubly Even, Self Dual Code of Length 16: hd16; (a; a)i

By applying the deletion process again tohd16; (a; a)i , we can �nd the suitable subcodes of dimension 7, 6,
and 5. To show this, it is important to know all the possible dimensionn � 2 subcodes of any duadic code
d2n .

Lemma C.6.1. Let d2n be the dimensionn � 1, length 2n duadic code. Then then � 2 dimensional subcodes
of d2n are:

d2n � 2; d2n � 4 � d4; d2n � 6 � d6; � � � dn � dn if n is even
or

d2n � 2; d2n � 4 � d4; d2n � 6 � d6; � � � dn +1 � dn � 1 if n is odd

Proof. Recall that the basis for d2n is

1111000000� � � 00

1100110000� � � 00

1100001100� � � 00

1100000011� � � 00

...

1100000000� � � 11

Note that there are n � 1 basis vectors ford2n , and that we are free to use row operations to change the basis
and still get an equivalent code. If we keep the �rst and last vector the same, and change the remaining
n � 3 vectors to themselves plus the last basis vector (11000000� � � 11), we will get a basis that resembles a
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d4 � d2n � 4 with a glue vector (11000000� � � 11). But, since this is still n � 1 dimensional, we can remove the
last vector from the basis to get then � 2 dimensional subcoded4 � d2n � 4 of d2n . In a similar way, if we keep
the �rst two vectors and the last vector, and change the remaining n � 4 vectors as we did above, we will get
the subcoded6 � d2n � 6. In general, if we keep the �rst k basis vectors as they are, where 1� k � b n � 1

2 c, and
we perform the procedure as described above, we will get then � 2 dimensional subcoded2+2 k � d2(n � 1� k ) .
Clearly, we ge t all the subcodes listed above exceptd2n � 2, which can be attained simply by keeping the
original basis and removing the last vector from it.

We now need to show that this list is in fact complete. Assume then that this list were not complete.
There would then exist a codeC generated by weight 4 codewords that is not in the above list.We can say
this code must be generated by weight 4 code words by the way wechosehvi ? in the deletion process. Recall
that we chosehvi ? to only have weight 1 and weight 2 vectors. These will correspond to weight 4 codewords
since adding any two codewords ind2n will result in a weight 4 codeword. Because every code generated by
weight 4 codewords is a direct sum ofd2n ; e7; or e8 [2], C would have to contain e7 or e8. This is because
the above lists all possible ways to breakd2n into a direct sum, while still retaining the desired dimension.
However, sinced2n respects duads, meaning we are free to swap columns 1 and 2, 3 and 4, 5 and 6, and
so on without changing the c ode, any subcode if it would also have to respect duads. So if the list were
incomplete, C would have to contain e7 or e8, which do not respect duads, thus contradicting the fact that
any subcode of a code that respects duads will also respect duads, therefore the above list is complete.

Lemma C.6.2. Let d2n be then� 1 dimensional duadic code of length2n. If any codeword or combination of
codewords is added to the glue vectora2n , the resulting codeword is equivalent toa2n by column permutations.

Proof. First note that a2n refers to the length 2n glue vector a = (10101010� � � 10| {z }
2n

). Since all vectors in

d2n respect duads, we are free to swap columns 1 and 2, 3 and 4, 5 and6, and so on of the generator
matrix without changing the code. Adding a2n to any vector in d2n will only swap entries of a2n within
duads, therefore we are free to permute the a�ected columns of this \new" vector to produce a2n back again,
therefore this \new" vector is equivalent to a2n .

We now have su�cient results to �nd all the dimension 7 subcodes of the other length 16 self dual code
hd16; (a; a)i .

Proposition C.6.3. All possible dimension 7 subcodes ofhd16; (a; a)i are

d16

hd14; (a; a)i
hd4 � d12; (a; a)i
hd6 � d10; (a; a)i
hd8 � d8; (a; a)i

Proof. By using the deletion process,v will be of the following forms: it will not have a 1 in position 8,
meaning we include (a; a) in the basis for a subcode;v is of weight 1 with its 1 in position 8, meaning we
delete (a; a) from the code resulting in the subcoded16; or v is of weight � 2 with a 1 in position 8, which
by C.6.2 will result in a subcode having a glue vector equivalent to (a; a) in the basis. Therefore, aside from
the case wherev is of weight 1 with its 1 in position 8, any subcode ofhd16; (a; a)i will have (a; a) as a basis
vector. Therefore we need only consider the subcodes ofd16 to �nd all possible subcodes ofhd16; (a; a)i .
Applying C.6.1 will now get the above complete list of subcodes ofhd16; (a; a)i .
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Again, since we only want suitable codes, this will narrow our �ndings down to hd8 � d8; (a; a)i , since
the other codes either do not contain the all 1 vector or have agenerator matrix with duplicate columns.
Obviously, we have already found all the subcodes ofhd8 � d8; (a; a)i , thus we have our complete list of
suitable subcodes ofe8 � e8 and hd16; (a; a)i . We can now move to a discussion of their relevance to Hadamard
Matrices.

C.7 Hadamard Matrices of Order 16

Hall proved in [3] that there are �ve equivalence classes of Hadamard Matrices of order 16. This means that,
given a 16� 16 Hadamard matrix, this matrix is equivalent to one of the �v e matrices given in [3] up to row
and column permutation and negation.

Sloane's directory of Hadamard matrices gives these �ve matrices, labeled 16:0, 16:1, 16:2, 16:3, and
16:4 [7]. The codes associated with these matrices are our suitable codes found above, where 16:0 is hj �
j; (p; p); (q; q); (a; a)i , 16:1 is h4d4; (q; q); (a; a)i , 16:2 is hd8 � d8; (a; a)i , 16:3 is hd16; (a; a)i , and 16:4 is e8 � e8.
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D.1 Introduction

For a given vortex, the core is considered to contain a vortexline perpendicular to the plane the vortex
is in, around which particles in the 
uid rotate at some angular frequency. We consider a point vortex to
be a point singularity with some angular frequency placed atthe point the vortex line crosses the plane.
Vortices are of interest in 
uid dynamics, and are often studied when analyzing and modeling weather and
atmospheric patterns, ocean 
ows, and atomic interactions, among other topics.

Though there has been a huge variety of projects researchingvarious aspects of systems of vortices, there
is still much left unknown. The possible vortex con�guratio ns that can develop in a system have been studied
for nearly 150 years, dating back to 1878-79 when the physicist Alfred Mayer performed experiments utilizing
magnets on 
oating corks in a magnetic �eld in an e�ort to demo nstrate atomic interactions [1]. Certain
steady states observed during this experiment proceeded tolaunch many other research experiments involving
vortices in an e�ort to model and observe many di�erent phenomena. In 1978 and 1979, Campbell and Zi�
published papers describing such equilibrium con�gurations of vortices in the plane, primarily focusing on
stable con�gurations [3]. Their well known report, often referred to as the \Los Alamos catalog", revealed
many nested ring equilibria con�gurations [2]. While we have unfortunately been unable to obtain a copy
of the catalog itself, it is repeatedly referenced in several other papers on point vortex research.

Equilibrium con�gurations of point vortices are de�ned as systems of vortices that move such that the size
and shape of the con�guration do not change, so that the distances between vortices is always the same [1].
More recently, in 1998, Aref and Vainchtein from the University of Illinois at Urbana-Champaign, published a
paper outlining a method of \growing" equilibrium con�gura tions of point vortices of equal strength, through
which they found many con�gurations not previously found in the Los Alamos Catalog [2]. The method
consists of two main steps. Assuming a valid equilibrium ofN vortices to be given, the method �rst calls
for all co-rotating points for that system to be found. A co-rotating point is considered to have the same
angular frequency as the vortices given, but a strength of zero. In other words, it is essentially an additional
vortex, but with strength zero so that it does not a�ect the sy stem. The second step is then to take the
strength of a given co-rotating point and increase it incrementally from zero to one, adjusting all vortices in
the system. As all vortices in the system are considered to have strengths of one, the con�guration found
when the strength of the co-rotating point is equal to one is found to be the new equilibrium con�guration
of N + 1 vortices. This method is described in full in this paper.

As the method outlined above has clearly been utilized in past research projects, our goal is to �rst verify
results found in past research so as to ensure the method is indeed working, and then shift our focus into
other areas of the problem that have not been so extensively researched to this point. While we able to
successfully verify past results and analyze the process ofgrowing new con�gurations fairly extensively, time
constraints have unfortunately not allowed our research toproceed much farther. However, the future of
point vortex research continues to look very promising, andthe stage is set to continue on to other aspects
of the problem.

D.2 Vortex Equations of Motion

An equilibrium con�guration of N vortices of strength � satis�es the di�erential equation [2 ]

dz�
k

dt
=

�
2�i

NX

j =1

1
zk � zj
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where zj and zk are complex variables,k = 1 ; :::; N , j 6= k, and the asterisk denotes complex conjugation.
If we consider such a con�guration to rotate uniformly with a ngular frequency! - that is zk (t) = zk (0)ei!t

- then we see that this equation easily simpli�es to an algebraic system.

dz�
k

dt
= � i!z �

k (0)e� i!t =
�

2�i

NX

j =1

1
(zk (0) � zj (0))ei!t

z�
k (0) =

�
2�!

NX

j =1

1
zk (0) � zj (0)

We must multiply the complex conjugate by e� i!t when we consider the rotation of the system, as this is
the conjugate of ei!t . This term then cancels from our equation, and we scale �

2�! = 1, yielding the greatly
simpli�ed algebraic system

z�
k =

NX

j =1

1
zk � zj

Because of the cancellation of theei!t term in the equation, it is evident that a valid equilibrium s olution
is not dependent on the rotation of the system at a timet and we therefore can chooset arbitrarily. Therefore,
given a valid equilibrium con�guration of vortices z1; :::; zN , we see that any rotation of that con�guration
is also a valid con�guration. Therefore, while we take the vortex equations of motion to be satis�ed by
zk (t) = zk (0)ei! ( t ) , the algebraic system is satis�ed byzk (0). We take t = 0 to be implied in the algebraic
system. Because it is already apparent that any rotation of avalid con�guration of vortices is also a
valid con�guration, we consider any rotation of a valid equilibrium con�guration to, in fact, be the same
con�guration. This is important to consider when growing new con�gurations.

D.3 Solving for Co-Rotating Points

In order to grow new con�gurations of N + 1 vortices, we �rst need a system of vorticesz1; :::; zN of equal
strength that satisfy the system

z�
k =

NX

j =1

1
zk � zj

(D.1)

where k = 1 ; :::; N and j 6= k.
Given such a system that solves equation D.1, a valid co-rotating point zN +1 is found that satis�es the

system [2]

z�
N +1 =

NX

j =1

1
zN +1 � zj

(D.2)

For any initial con�guration, it is expected that several co -rotating points will be found, though the exact
number depends on the initial con�guration. In order to solve equation D.2, we must �rst convert the system
to be in terms of real variables. Becausez = a + ib, we �nd the system it terms of real variables as shown:
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z�
N +1 =

NX

j =1

1
zN +1 � zj

aN +1 � ibN +1 =
NX

j =1

1
(aN +1 � aj ) + i (bN +1 � bj )

�
�

(aN +1 � aj ) � i (bN +1 � bj )
(aN +1 � aj ) � i (bN +1 � bj )

�

aN +1 =
NX

j =1

aN +1 � aj

(aN +1 � aj )2 + ( bN +1 � bj )2

bN +1 =
NX

j =1

bN +1 � bj

(aN +1 � aj )2 + ( bN +1 � bj )2

f 1 = aN +1 �
NX

j =1

aN +1 � aj

(aN +1 � aj )2 + ( bN +1 � bj )2

f 2 = bN +1 �
NX

j =1

bN +1 � bj

(aN +1 � aj )2 + ( bN +1 � bj )2

Notice that the � i term cancels in the equation involvingbN +1 . We then solve f 1 and f 2 for aN +1 and
bN +1 using Newton's method.

D.3.1 Newton's Method

Newton's method involves choosing an initial guess point, extending the tangent line at that point to where
it crosses thex axis, and taking that x coordinate as the new guess point. The function and derivative are
then calculated at that point, and the process is repeated. To �nd the residual r that the x coordinate is
modi�ed by at every iteration of the algorithm, we examine th e Taylor series expansion. Given an initial
guess pointxk 2 R and a function f : R ! R, we then �nd the Taylor series to be

f (xk + r ) = f (xk ) + f 0(xk )r +
f 00(xk )

2
r 2 + � � �

Because we assumer to be small, we take all nonlinear terms to be insigni�cant and therefore we are
able to approximate, setting the function equal to zero

0 � f (xk ) + f 0(xk )r

Solving for r , we �nd r = � f (x k )
f 0(x k ) . For the next iteration of Newton's method, the x coordinate is taken

to be xk+1 = xk + r and the method is repeated. This easily generalizes to multiple dimensions, giving for

a function f : Rn ! Rn , r = � f (x k )
Df , where D f =

h
@fi
@xj

i
is the Jacobian matrix of f .
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While Newton's method is a very powerful root approximation algorithm, it is not without its shortcom-
ings. Though the method has a rapid rate of convergence, it isnot guaranteed to converge, as this depends
upon the initial x coordinate and the derivative at that point. If x happens to fall on or near an extremum,
then the �rst derivative will be found to be 0 or near 0, and the tangent line can be sent o� to in�nity,
resulting in a failure of convergence. It is also possible that the residual will modify the x coordinate such
that xk = xk+2 and the algorithm will continually adjust between the same two points, and never converge.

D.3.2 Applying the Method

For the purposes of �nding the co-rotating points for a given system of vortices, we have a functionf de�ned
from R2 ! R2. This is because we take the initial con�guration to be �xed i n the complex plane, and we
are only allowing the coordinates of our guess for the co-rotating point to be adjusted through Newton's
method. Our Jacobian matrix is then

Df =

2

6
4

@f1
@aN +1

@f1
@bN +1

@f2
@aN +1

@f2
@bN +1

3

7
5 :

The partial derivatives are then found as follows:

@f1
@aN +1

=
@

@aN +1

0

@aN +1 �
NX

j =1

aN +1 � aj

(aN +1 � aj )2 + ( bN +1 � bj )2

1

A

= 1 �
NX

j =1

(bN +1 � bj )2 � (aN +1 � aj )2

[(aN +1 � aj )2 + ( bN +1 � bj )2]2

@f1
@bN +1

=
@

@bN +1

0

@aN +1 �
NX

j =1

aN +1 � aj

(aN +1 � aj )2 + ( bN +1 � bj )2

1

A

=
NX

j =1

2(aN +1 � aj )(bN +1 � bj )
[(aN +1 � aj )2 + ( bN +1 � bj )2]2

@f2
@aN +1

=
@

@aN +1

0

@bN +1 �
NX

j =1

bN +1 � bj

(aN +1 � aj )2 + ( bN +1 � bj )2

1

A

=
NX

j =1

2(aN +1 � aj )(bN +1 � bj )
[(aN +1 � aj )2 + ( bN +1 � bj )2]2
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@f2
@bN +1

=
@

@bN +1

0

@bN +1 �
NX

j =1

bN +1 � bj

(aN +1 � aj )2 + ( bN +1 � bj )2

1

A

= 1 �
NX

j =1

(aN +1 � aj )2 � (bN +1 � bj )2

[(aN +1 � aj )2 + ( bN +1 � bj )2]2

To be con�dent that all co-rotating points will be found, we w rote a program including methods similar to
selected subroutines from [5]. We developed the program such that an initial guess point is placed every 0.02
units along both the real and imaginary axes, starting from (-100, -100) and extending to (100, 100). Many
of these points yield the same result for the coordinates of the co-rotating point and many diverge. When
all initial points have been run, however, we are left with a list of coordinates for several unique co-rotating
points, which we can then plot. Some examples are given in section D.5 for several initial con�gurations.

D.4 Growing New Con�gurations of N + 1 Vortices

Once we have successfully found all co-rotating points for avalid equilibrium con�guration, we then follow
a similar method for \growing" the new con�guration of N + 1 vortices. First picking one of the co-rotating
points as our initial coordinate for Newton's method, we then solve the system [2]

z�
k =

NX

j =1

1
zk � zj

+
p

zk � zN +1
(D.3)

where k = 1 ; :::; N , j 6= k, and p is increased from 0 to 1, as well as

z�
N +1 =

NX

j =1

1
zN +1 � zj

(D.4)

When p = 0, equation D.3 is simply equivalent to equation D.1. As the strength p of the co-rotating point
is increased, however, all points in the system (including the initial vortices) are adjusted. We therefore have
a function f : R2N +2 ! R2N +2 . Because we are interested in equilibrium con�gurations where all vortices
are of equal strength, and we take the strength of all vortices in the initial system to be 1, we take the new
con�guration of N +1 vortices to be the coordinates found whenp = 1. To solve, we must �nd these systems
in terms of real variables. Taking odd terms (i.e. x2k � 1) to be real components and even terms (i.e.x2k ) to
be imaginary components, we �nd:
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f 2k � 1 = x2k � 1 �
NX

j =1

(x2k � 1 � x2j � 1)
hj

� p
(x2k � 1 � x2N +1 )

dk

f 2k = x2k �
NX

j =1

(x2k � x2j )
hj

� p
(x2k � x2N +2 )

dk

f 2N +1 = x2N +1 �
NX

j =1

x2N +1 � x2j � 1

~hj

f 2N +2 = x2N +2 �
NX

j =1

x2N +2 � x2j

~hj

where hj = ( x2k � 1 � x2j � 1)2 + ( x2k � x2j )2, dk = ( x2k � 1 � x2N +1 )2 + ( x2k � x2N +2 )2, and ~hj =
(x2N +1 � x2j � 1)2 + ( x2N +2 � x2j )2,k = 1 ; :::; N , and j 6= k. The complete work for this conversion can be
found in section D.7.

While we again use Newton's method to solve these functions,we do this through utilizing a software
package called AUTO. AUTO is an arc length continuation and bifurcation software package that incre-
mentally increases the parameterp from 0 to 1. Fortunately, AUTO has a program to numerically �n d the
Jacobian matrix for our functions, though the necessary partial derivatives can also be user supplied if the
need arises.

The software reads the initial coordinates for the vorticesand the co-rotating point of interest from
a �le, and then outputs data into three separate �les. One �le (fort.7) contains the data relevant to the
continuation curve up through six components of the points being adjusted. This �le also includes data for
the parameter p and the Euclidean norm. Another �le (fort.8) gives complete information for points along
the continuation curve that AUTO singles out and assigns a type. These points are of special interest, and
include limit (turning) points, endpoints, user de�ned poi nts (in this case, whenp = 1), points at a certain
frequency, and points at which it is apparent that the method will not converge. Finally, fort.9 includes
convergence information. While we have not had a need to examine the convergence data, we are certainly
interested in the data given in fort.7 and fort.8, as this is the data used to create the bifurcation diagrams,
as well as give the actual coordinates of the vortices for thenew equilibrium con�guration. Using this data,
we are then able to plot the new con�gurations of N + 1 vortices.

D.5 Results and Analysis

D.5.1 The Trivial Case: N = 3

The logical place to start when growing new equilibrium con�gurations of vortices is the simplest con�gu-
ration that can easily be veri�ed by hand. In our case, we began with three vortices placed equidistantly
from one another on the unit circle. As this is clearly a trivial case, we certainly did not expect to �nd
particularly unique results. However, not only is this the most practical place to begin, but it also proved to
provide a great introduction to using AUTO, what we can expect in terms of the bifurcation diagrams found
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and plotting the new equilibrium con�gurations, as well as an excellent test to assure us that the programs
used are indeed working.

Solving for all co-rotating points, we �nd ten - four within t he unit circle and six around the initial
con�guration. These are shown in �gure D.1. Notice the symmetry across the real axis.
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-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Figure D.1: Co-rotating points for an initial con�guration of three vortices placed equidistantly on the unit
circle.

Once we have found the coordinates for the co-rotating points, we then take each co-rotating point and
utilize AUTO to determine the new con�guration that results from increasing the strength of that point
from 0 to 1. The resulting bifurcation diagrams of the correlation between p and a1 for several co-rotating
points are given below in �gures D.2 through D.5. It may at �rs t seem that we have many con�gurations
resulting even from one co-rotating point, as we often see a range of values fora1 when p = 1. However,
upon plotting the new con�gurations associated with these points on the diagram, we �nd that many are
identical con�gurations, and another vortex has simply switched places with the vortex that a1 describes.
Though we have often found that not all con�gurations given from one co-rotating point are exactly identical
in terms of the exact coordinates of the vortices, we do see that they are all rotations of one another, and we
therefore take them to be the same equilibrium con�guration (see section D.2). Up to this point, we have
not seen a case where one co-rotating point results in more than one unique new equilibrium con�guration.
In fact, we have found that several unique co-rotating points often result in growing the same con�guration.

Even from this initial trivial case, it is apparent that the c ontinuation curves can exhibit very unique
properties. While we would typically expect some variation of �gure D.2, where some branches continue
through p = 1, some turn around, and some diverge, clearly there are many other possibilities. While we
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cannot immediately observe what con�gurations will result from which points on the bifurcation diagram,
we can gain a better understanding of how the con�guration develops asp increases. The clearest example
is in �gure D.5, when we see that all branches converge to 0 atp = 1. This shows us that the point of
interest represented in the diagram is located at the centerpoint of (0; 0). We could similarly analyze the
continuation curves given for other components to gain a more complete picture of exactly how all of the
vortices are adjusted. However, as our primary interest is the resulting con�gurations, we will not delve into
much detail in this report. Other unique bifurcation diagra ms are shown in �gures D.3 and D.4. One shows
a continuation curve with nearly every branch having a limit point at p = 1, whereas the other shows a
continuation curve with no limit points at all and yields a di �erent con�guration than what we had previously
found. While we cannot say what is particularly special about the points that would cause such behavior, it
is nevertheless intriguing and may be an area of interest in future work.

Two unique con�gurations are found from this trivial case: t hree vortices equidistant from one another
on a circle of radius

p
2 around a center point at (0; 0) (�gures D.2, D.3, and D.5), and four vortices

equidistant from one another on a circle of radius
q

3
2 (�gure D.4). Intriguingly, all continuation curves that

yield the latter con�guration have similar properties to th ose seen in �gure D.4 - namely, they all seem to
have no limit points. Not surprisingly, we see an increase inthe radius of the circular con�gurations as more
vortices are introduced. To see exactly how the radius changes with each added vortex, however, we must
continue growing con�gurations, taking the two con�gurati ons of four vortices as our initial con�gurations
and applying the same method.
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Figure D.2: Typical bifurcation diagram of a1 vs. p. Each point where a branch crosses p=1 corresponds to
a valid new equilibrium con�guration.
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Figure D.3: Bifurcation diagram with nearly all branches having limit points at p = 1. Despite this unique-
ness, we �nd the same con�guration previously found.
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Figure D.4: Bifurcation diagram with no limit points. This c o-rotating point also yields a new con�guration,
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Figure D.5: Bifurcation diagram showing all branches converging to (and having limit points at) p = 1. For
the con�guration found, we see that a1 correlates to the real component of the center point.
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D.5.2 Higher Values of N

As new con�gurations are continually found and taken to be the new initial con�guration in growing the
next set of systems, it is very easy to become inundated with very large amounts of vortex con�gurations,
for each of which we must test several co-rotating points. Several of these initial systems are shown with
their co-rotating points in �gure D.6.
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Figure D.6: Examples of co-rotating points for several initial systems of vortices. Filled circles represent
initial vortices while open circles are co-rotating points.

Through a systematic and exhaustive search for equilibriumcon�gurations of vortices for N = 3 ; :::; 6,
we feel con�dent that we have found all equilibrium con�gura tions for these N values. These con�gurations
are shown in �gure D.7.

Upon measuring the radii of con�gurations for N vortices on a circle andN � 1 vortices rotating around a
center vortex, we �nd that a pattern appears to emerge. We �nd that, for N vortices placed equidistantly on a

circle the radius is
q

N � 1
2 and that, for N � 1 vortices on a circle around a center vortex, the radius is

q
N
2 .

Similar relations may emerge from other families, though the systems' complexities make it considerably
more di�cult to determine.

While previous research has shown con�gurations that lack both rotational and re
ectional symmetry for
N � 8, we see con�gurations that lack only rotational symmetry for N � 5 [2] [1]. We also see \families" of
con�gurations emerge - systems that display similar patterns across di�erent N values. While we cannot say
with certainty that these families will be apparent for all N values greater than that at which they initially
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Figure D.7: Con�gurations grown for N = 3 ; :::; 6. Plots shown are from (� 3; � 3) to (3; 3). As N increases,
we see new \families" of con�gurations - patterns that emerge and appear to be sustained even for di�erent
(increasing) N values.
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appear, they seem to translate consistently to higherN values in our narrow scope of con�gurations. As
�gure D.7 clearly shows, it seems that every increase inN yields many more valid con�gurations and many
more families of con�gurations, making it di�cult at best to continue exhaustively �nding all con�gurations
for increasing N values. Fortunately, realizing that growing con�guration s from a given co-rotating point
will yield identical con�gurations to those found from that co-rotating point's symmetric counterpart, we
can considerably reduce the number of co-rotating points that we need to use as starting points in growing
our con�gurations. Unfortunately, as we will see in the next section, there are cases when this does not
necessarily hold true.

D.5.3 Asymmetric Con�gurations

As aforementioned, previous research has shown that asymmetric con�gurations can be found for N � 8.
We will brie
y analyze one of these cases.

Consider the initial con�guration of seven points given in � gure D.8 with all co-rotating points. The
points labeled A and B are our primary points of interest.
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Figure D.8: Initial con�guration of 7 vortices shown with al l co-rotating points. Our points of interest are
the co-rotating points labeled A and B.

Taking point A as our initial co-rotating point, we �nd the as ymmetric con�guration of eight points given
in �gure D.9

Clearly asymmetric con�gurations such as this are intriguing. Though we see no rotational or re
ectional
symmetry, there are still vortices that share a common radius. However, more importantly, we see that, if
we take co-rotating point B (the symmetric counterpart of A) , and choose to grow a con�guration, we do
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Figure D.9: Asymmetric con�guration of eight vortices obta ined from growing from co-rotating point A. The
circles drawn in are for convenience in seeing which vortices share a common radius.

not get the identical con�guration as obtained from A, nor any rotation of it. We rather get a re
ection of
the con�guration obtained from A. While certainly similar, we see this is a unique con�guration. The two
con�gurations are given in �gure D.10.

A B

Figure D.10: Two unique asymmetric con�gurations found from co-rotating points A and B.

This case tells us several things. First, it shows us that we can no longer assume that a co-rotating
point yields an identical con�guration as its symmetric counterpart. This makes things more di�cult still.
However, this example also shows that asymmetric con�gurations must always come in pairs, as the re
ec-
tion of any asymmetric con�guration also seems to be a valid con�guration. We also �nd (not surprisingly)
that the co-rotating points for an asymmetric initial con�g uration seems to also be asymmetric. Finally,
we �nd that growing an equilibrium con�guration from an asym metric con�guration can yield rotationally
and re
ectionally asymmetric con�gurations, as well as con�gurations with symmetric properties. Clearly,
asymmetric con�gurations considerably complicate our purpose of growing equilibrium con�gurations sys-
tematically. The co-rotating points for an asymmetric con� guration of eight points, as well as examples of
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both asymmetric and symmetric con�gurations of nine points grown from the asymmetric con�guration are
given in �gure D.11.
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Figure D.11: Co-rotating points for asymmetric con�gurati on of eight points with two possible resulting
con�gurations. Notice that both asymmetric and symmetric con�gurations can be found.

D.6 Future Research

While at this point we have merely veri�ed results found in pr evious research, the stage is now set to continue
in a number of di�erent directions. An obvious course of action is simply to continue growing equilibrium
con�gurations for larger values of N beyond what is currently known. It is also possible to reverse this
process, beginning with a system ofN vortices and decreasing the strength of one of them from 1 to 0,
�nding new con�gurations of N � 1 vortices. Through doing this, one could see if any new con�gurations
are found, as well as compare with the growing process described in this article to note major di�erences
and comparative e�ectiveness.

Another avenue could include comparing the stability of the con�gurations found with this method with
stable con�gurations found in the past, as well as to see if any new stable con�gurations can be found
through this method. Along similar lines, we can consider the energies of the systems and, more speci�cally,
the change in energies when growing one con�guration from another. If we consider the entropies of the
systems in the same way, we can look speci�cally for cases where we see con�gurations being grown that
have a lower energy, yet higher entropy. While we have started looking into this relatively untapped area of
research, we have not yet obtained substantial enough results to present in this report.

Yet another interesting aspect to look at in future researchwould be to adjust the programs used for the
method described in this report for growing a system of vortices on a sphere. While the method described here
would essentially remain the same, we would primarily simply be changing the equations being considered
for the vortex systems. Paul Newton gives the equations needed to consider a system of vortices on a sphere
in [4]. His book also gives a very detailed overview of vortexsystems in general as well as areas of research
such as those mentioned here.

Though many of these areas have already been researched to a small extent, as in [1] and [3], there is
still clearly a wealth of possibilities for new discoveriesto be made. Indeed, vortex systems have seen a rich
history of past research in a number of di�erent applications, and it seems the topic will continue to provide
such opportunities in the future.
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D.7 Complete Work for Conversion to Real Variables

z�
k = 	 k + � k

	 k =
NX

j =1

1
zk � zj

=
NX

j =1

1
(x2k � 1 � x2j � 1) + i (x2k � x2j )

�
(x2k � 1 � x2j � 1) � i (x2k � x2j )
(x2k � 1 � x2j � 1) � i (x2k � x2j )

=
NX

j =1

(x2k � 1 � x2j � 1) � i (x2k � x2j )
(x2k � 1 � x2j � 1)2 + ( x2k � x2j )2

	 2k � 1 =
NX

j =1

(x2k � 1 � x2j � 1)
(x2k � 1 � x2j � 1)2 + ( x2k � x2j )2

	 2k = � i
NX

j =1

(x2k � x2j )
(x2k � 1 � x2j � 1)2 + ( x2k � x2j )2

� k =
p

zk � zN +1

=
p

(x2k � 1 � x2N +1 ) + i (x2k � x2N +2 )
�

(x2k � 1 � x2N +1 ) � i (x2k � x2N +2 )
(x2k � 1 � x2N +1 ) � i (x2k � x2N +2 )

= p
(x2k � 1 � x2N +1 ) � i (x2k � x2N +2 )
(x2k � 1 � x2N +1 )2 + ( x2k � x2N +2 )2

� 2k � 1 = p
(x2k � 1 � x2N +1 )

(x2k � 1 � x2N +1 )2 + ( x2k � x2N +2 )2

� 2k = � ip
(x2k � x2N +2 )

(x2k � 1 � x2N +1 )2 + ( x2k � x2N +2 )2

Recombining terms, we then �nd:
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x2k � 1 =
NX

j =1

(x2k � 1 � x2j � 1)
hj

+ p
(x2k � 1 � x2N +1 )

dk

x2k =
NX

j =1

(x2k � x2j )
hj

+ p
(x2k � x2N +2 )

dk

f 2k � 1 = x2k � 1 �
NX

j =1

(x2k � 1 � x2j � 1)
hj

� p
(x2k � 1 � x2N +1 )

dk

f 2k = x2k �
NX

j =1

(x2k � x2j )
hj

� p
(x2k � x2N +2 )

dk

where hj = ( x2k � 1 � x2j � 1)2 + ( x2k � x2j )2, dk = ( x2k � 1 � x2N +1 )2 + ( x2k � x2N +2 )2, k = 1 ; :::; N , and
j 6= k.

Similarly, we �nd

z�
N +1 =

NX

j =1

1
zN +1 � zj

x2N +1 � ix 2N +2 =
NX

j =1

1
(x2N +1 � x2j � 1) + i (x2N +2 � x2j )

�
(x2N +1 � x2j � 1) � i (x2N +2 � x2j )
(x2N +1 � x2j � 1) � i (x2N +2 � x2j )

x2N +1 =
NX

j =1

(x2N +1 � x2j � 1)
~h

x2N +2 =
NX

j =1

(x2N +2 � x2j )
~h

f 2N +1 = x2N +1 �
NX

j =1

(x2N +1 � x2j � 1)
~h

f 2N +2 = x2N +2 �
NX

j =1

(x2N +2 � x2j )
~h

where ~hj = ( x2N +1 � x2j � 1)2 + ( x2N +2 � x2j )2.
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The ends of pants complexes of small genus E-1

E.1 De�nitions

Denote the surface of genusg with b boundary components bySg;b, or simply Sg if b = 0.

De�nition E.1. A curve on a surface isessential if it cannot be contracted to a point, and non-peripheral
if it is not isotopic to a boundary component.

De�nition E.2. Say 3g + b > 3, or g = 0 ; b = 3. A pants decompositionof S = Sg;b is a set f C1; : : : ; Cn g
of essential, non-peripheral (isotopy classes of) curves such that Sn(C1 [ � � � [ Cn ) is a disjoint union of
thrice-punctured spheres, or \pairs of pants".

The number of curves n in a pants decomposition is 3g + b � 3 and the number of pairs of pants is
2g + b� 2. There is only one pants decomposition ofS0;3 and that is the empty set.

De�nition E.3. The pants graph of a surfaceS is a graph whose vertices are the pants decompositions of
S and whose edges connect any two pants decompositionsf C1; : : : ; Cn g and f C0

1; : : : ; C0
n g such that:

1. f C2; : : : ; Cn g = f C0
2; : : : ; C0

n g (after some reordering of the indices), and

2. C1 and C0
1 have minimal geometric intersection among all pairs of isotopy classes of essential, non-

peripheral curves on the component ofSn(C2 [ � � � [ Cn ) they belong to.

In particular, if C1 and C0
1 belong to a once-punctured torus, they intersect once, and if they belong to a

four-punctured sphere they intersect twice. In the �rst case they are said to di�er by an \S-move" and in
the second by an \A-move".

One can add 2-cells to this graph to form a cell complex, called the pants complex; we will be unconcerned
with these here. For a general overview of the pants complex see [1].

The pants graph of S will be denoted by PG(S) or simply PGg;b if S = Sg;b.
Given two vertices v; w of a graph, we may de�ne the distance between them to be the smallest number

of edges in a path between them, or in�nity if no such path exists. In [2], Hatcher and Thurston show that
the pants graph is indeed connected, so the distance betweentwo decompositions is �nite. Let B r (v) be the
ball of radius r aroud the vertex v.

De�nition E.4. Let O be an arbitrary vertex of a graph G. Say a subgraph ofG is in�nitely deep or has
in�nite depth if it is unbounded when considered as a subset ofG. Let nr be the (possibly in�nite) number
of connected components ofGnB r (O) with in�nte depth, and let n = lim r !1 nr . G is said to haven ends.

Remark E.1. For a subgraph of a graphG to be in�nitely deep, it is necessary for it to be unbounded (when
considered as a graph by itself), but this is not su�cient.

Remark E.2. Clearly this de�nition is independent of the choice of basepoint O.

Note that if S and T have �nite diameter, and S � T , then each in�nitely deep component of GnS
will contain at least one in�nitely deep component of GnT. Thus nr will never decrease becauseB r (O) �
B r +1 (O), and the limit certainly exists (or approaches in�nity). A lso note that the choice of basepoint does
not matter in our de�nition.

In [4] Masur and Schleimer show that PGg has one end forg � 3. Although they only show this for
closed surfaces, their arguments appear to be valid forP Gg;b with g � 3 and arbitrary b � 0. The pants
graphs PG0;4 and PG1;1 are isomorphic and have in�nitely many ends (in fact, there are already in�nitely
many components when we removeB1(O)).
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E.2 Possible number of ends

We show that a certain class of graphs, including the pants graphs, can only have 0, 1, 2, or1 ends. Since
the pants graphs have in�nite diameter, they can thus have 1,2, or 1 ends.

Lemma E.2.1. Let G be a connected graph and say there exists anR > 0 such that for v 2 G, GnBR (v)
has at least 3 in�nitely deep components. ThenG has in�nitely many ends.

Proof. Say G has n < 1 ends. Pick someO 2 G and somer such that GnB r 0(v) has n in�nitely deep
components for r 0 � r . Choose some in�nitely deep component ofGnBR (v) and a v0 in that component
such that d(v; v0) = D > r + R; note that B r (v0) is contained in that component. Then there are at least
n + 1 in�nitely deep components of Gn(BR (v) [ B r (v0)): n � 1 in�nitely deep components of GnBR (v)
not containing v0, and at least 2 in�nitely deep components of GnB r (v0) which do not contain v. BD + r (v)
contains BR (v) [ B r (v0), so each in�nitely deep component ofGn(BR (v) [ B r (v0)) restricts to at least one
in�nitely deep component GnBD + r (v). But by our choice of r , GnBD + r (v) has only n components, a
contradiction.

Lemma E.2.2. Let G be a connected graph whose automorphism groupAut (G) acts on its vertices co�nitely,
that is, there are �nitely many orbits of the vertices of G under the action of Aut (G). Then G has 0, 1, 2,
or 1 ends.

Proof. Say G has strictly more than 2 ends, so there existv 2 G and r > 0 such that GnB r (v) has some
n > 2 in�nitely deep components. Choose representativesv1; : : : ; vn of the orbits of G; sinceG is connected
there exists someD such that d(v; vi ) < D for 1 � i � n. Then B r (v) � B r + D (vi ) for each i , soGnB r + D (vi )
has at leastn components. But then for any v0 2 G we can pick� 2 Aut (G) such that � (vi ) = v0 for somei ,
and then � (GnB r + D (vi )) = GnB r + D (v0) has at least n components as well. Thus the conditions of lemma
E.2.1 hold and G has in�nitely many ends.

Theorem E.2.3. PGg;b has 1, 2, or 1 ends.

Proof. Note that a pants decomposition is determined up to homeomorphism by the combinatorics of how
its pairs of pants are connected; that is, for each pair of pants, we need only specify which pair of pants
(if any) each of its boundary components is attached to. Since there are �nitely many ways to determine
this, the homeomorphisms ofSg;b with itself act co�nitely on the pants decompositions of Sg;b, and these
induce automorphisms ofPGg;b. Thus lemma E.2.2 applies; as noted abovePGg;b has in�nite diameter and
therefore has at least one end.

E.3 End calculations using end strucures of curve complexes

In this section we prove that PGg;b has at most as many ends as certain complexes of curves associated to
Sg;b.

De�nition E.5. The curve complex C(S) of a surface S is a simplicial complex whose vertices are the
(isotopy classes of) curves onS and which has an n-simplex spanning vertices
 0; : : : ; 
 n if they can be
realized by disjoint curves onS. If S = S1;1 we instead require that each pair
 i ; 
 j intersect once, and if
S = S0;4 we require that they intersect twice.
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If g � 2, or if g = 1 and b � 1, or if g � 0 and b � 4, then C(Sg;b) is connected and unbounded (see [6]
lemma 1.21, exercise 1.31, and corollary 2.25).

We will need a result of Masur and Minsky to relate the curve complex of a surfaceS to the pants graph
S. If V is a subsurface ofS and � is an arc in W such that @� � @V, let N be a regular neighborhood
of � [ @V. Then @Nwill be a set of curves inV ; de�ne the curve surgery of � to be the subset of these
curves which are essential and non-peripheral. If
 is a curve onS which intersects V , de�ne the subsurface
projection � V (
 ) of 
 in V as follows: if 
 � V , then set � V (
 ) = f 
 g; otherwise, 
 \ V is a disjoint union of
arcs, and� V (
 ) is the union of the curve surgeries of those arcs. IfP is a pants decomposition onS, de�ne
� V (P) to be the union of all � V (
 ) where 
 ranges over the curve inP; � V (P) has diameter at most 2 in
C(W ) (see [3] lemma 2.3). All of these operations preserve homotopy so there is no ambiguity in de�ning
them.

A curve 
 cuts a subsurfaceV if � V (
 ) is nonempty; equivalently, 
 cuts V i� it is not isotopic to any
curve carried by SnV. A subsurfaceV is essential if each of its boundary components are essential curves,
and it is not an annulus. If V is a non-pants essential subsurface andP is a pair of pants, then it contains
at least one curve which cutsV (so � V (P) 6= ; ).

Given two curves 
 and 
 0 which cut V , de�ne dV (P; P0) to be the distance between the sets� V (P) and
� V (P0) in C(V ), and similarly, if P and P0 are pants decompositions, de�nedV (P; P0) to be the distance
between� V (P) and � V (P0) in C(V ). When there is no subscript,d(P; P0) still denotes distance in the pants
complex. Let [x]C equal x if x � C and 0 otherwise.

Then, there exists C0 = C0(S) � 1 such that if C � C0, there exist K = K (C) � C and E = E(C) � 0,
such that for any pants decompositionsP and P0 on S,

1
K

X

V

[dV (P; P0)]C � E � d(P; P0) � K
X

V

[dV (P; P0)]C + E; (E.1)

where the sums range over (isotopy classes of) essential non-pants subsurfacesV of S (see theorem 6.12 and
section 8 in [3]).

Lemma E.3.1. Let S be a surface and �x a basepointO 2 PG(S). Given R > 0, there existsR0 > 0 such
that for any essential W � S, if 
 cuts W , dW (
; O ) > R 0 and P 2 PG(S) contains 
 , then d(P; O) > R

Proof. Fix some C � C0 and someK; E satisfying (E.1), and set R0 = K (R + E + C) + 2. Then we have

d(P; O) �
1
K

X

V

[dV (P; O)]C � E

�
1
K

[dW (P; O)]C � E

�
1
K

dW (P; O) � (E + C):

Thus, given R > 0, if dW (P; O) > K (R + E + C), we will have d(P; O) > R . If dS (O; 
 ) > R 0 and if
P 2 PG(S) contains 
 , then since � W (P) has diameter 2, we havedS (P; O) > R 0 � 2 = K (R + E + C), so
d(P; O) > R .

De�nition E.6. Let O 2 PG(S) and R > 0. Call a curve 
 2 C(S) R-far from O if any pants decomposition
P 2 PG(S) containing 
 lies outsideBR (O).
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In this language, lemma E.3.1 states that for anyR > 0, any 
 which satis�es the conditions of the
theorem is R-far from O.

For the sake of convenience we expand the de�nition of the pants graph slightly.

De�nition E.7. If S is a disk or annulus, de�ne PG(S) to be the graph with one vertex and no edges.
If X be a disjoint union of surfaces,

X = [ n
i =1 S( i ) ;

then de�ne
PG(S) = � n

i =1 PG(S( i ) );

the cartesian product of the pants graphs of theS( i ) . Namely, the vertices ofPGare the n-tuples (v1; : : : ; vn )
where vi 2 PG(S( i ) ) and an edge connects two vertices (v1; : : : ; vk ; : : : ; vn ) and (v1; : : : ; v0

k ; : : : ; vn ) if vk and
v0

k are connected by an edge inPG(S(k ) )

Remark E.3. As long as none of theS( i ) are annuli or disks, this provides the logical de�nition of PG(S),
since a pants decomposition of the whole surface is just a pants decomposition of each component, and a
single move corresponds to moving in just one surface. The de�nitions for disks and annuli are only included
to simplify things.

We note that the product of connected graphs is also connected, so PG(S) is still always connected.

Lemma E.3.2. Let S be a surface. Choose a basepointO 2 PG(S) and R > 0. If 
 2 C(S) is R-far from O,
then given two pants complexesP; P0 both containing 
 , there exists a path fromP to P0 which lies outside
BR (O)

Proof. We construct a path from P to P0, each of whose vertices contain
 . 
 divides S into at most
two components, neither of which are a disk or annulus since
 is essential and non-peripheral. IfS0 is a
component of Sn
 then P de�nes a pants decomposition onSn
 by taking those elements ofPnf 
 g which
lie in S0; similarly given an element P0 2 PG(Sn
 ), we can add
 to the curves of thus P0 to de�ne a pants
decomposition ofS which contains 
 . Pnf 
 g thus determines an element of )P G(Sn
 ), and similarly so does
P0nf 
 g. Since0P G(Sn
 ) is connected there is a path fromPnf 
 g to P0nf 
 g. This de�nes a path from P to
P0 whose vertices all contain
 , so the path lies o utsideBR (O) by assumption.

Corollary E.3.3. Let S be a surface. Choose a basepointO 2 PG(S) and R > 0. If 
 0; 
 1; : : : ; 
 n is a path
in C(S) such that each
 i is R-far from O, P is a pants complex containing
 0, and P0 is a pants complex
containing 
 n , then there exists a path fromP to P0 which lies outsideBR (O).

Proof. For 0 � i < n let Pi be some arbitrary pants decomposition containing both
 i and 
 i +1 . By lemma
E.3.2, there exist paths from P to P0, Pi to Pi +1 for 0 � i < n , and Pn � 1 to P0, all of which lie outside
BR (O). Therefore there is a path from P to P0 which lies outsideBR (O).

Theorem E.3.4. Let S be a surface. Choose a basepointO 2 PG(S). Given R > 0 there existsR0 > 0 such
that if P; P0 are pants decompositions such that
 2 P; 
 0 2 P0, and 
 and 
 0 belong to the same component
of C(S)nBR 0(O), then there is a path from P to P0 in PG(S)nBR (O).

Proof. Apply lemma E.3.1 to �nd R0 such that d(P; O) > R wheneverP contains a 
 satisfying dW (
; O ) >
R0. Say nowP and P0are pants decompositions where
 2 P; 
 0 2 P0, 
 � W; 
 0 � W , and dW (O; 
 ); dW (O; 
 0) >
R0. Then by assumption there exists a path
 = 
 0; 
 1; : : : ; 
 n = 
 0 in C(W ) such that d(
 i ; O) > R 0 for each
i . Then each
 i is R-far from O, so by corollary E.3.3 we are done.
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Next we use the following result of Schleimer (see [7]):

Theorem E.3.5. Let g � 2. For any vertex 
 2 C(Sg;1) and r > 0, the subcomplexC(Sg;1)nB r (
 ) is
connected.

Remark E.4. This is slightly stronger than the statement that C(Sg;1) has one end, becauseC(Sg;1)nB r (
 )
has only one component, in�nitely deep or not.

Given this, we then have:

Corollary E.3.6. Let g � 2. Given O 2 PGg;1 and R > 0, there exists R0 > 0 such that if P1; P2 are
pants decompositions with
 i 2 Pi and dS (
 i ; O) > R 0 for i = 1 ; 2, then there is a path from P1 to P2 in
PGg;1nBR O

Next we want to show that we can always move pants decompositions far out enough in the curve complex.
First we have a partial converse of lemma E.3.1.

Lemma E.3.7. Let S be a surface and �x a basepointO 2 PG(S). Given A > 0, there existsA0 > 0 such
that if d(P; O) > A 0 then dV (P; O) > A for some essential non-pants subsurfaceV of S.

Proof. Pick some C > A and �nd E = E(C) and K = K (C) satisfying (E.1). Set A0 = E. Then if
d(P; O) > A 0 we have

K
X

V

[dV (P; P0)]C + E � d(P; O) > E;

and so [dV (P; P0)]C must be strictly positive for some essential non-pantsV . By de�nition this means that
dV (P; P0) � C > A .

We will also need the following result ([6] lemma 2.28).

Lemma E.3.8. Suppose thatV is an essential subsurface ofS, and let f 
 0; 
 1; : : : ; 
 n g be a path in C(S)
such that every
 i cuts V . Then dV (
 0; 
 n ) � 6n.

Theorem E.3.9. Let g � 2 and b � 0, or let g = 1 and b � 2. Say O 2 PGg;b, R > 0, and A > 0.
Then there existsA0 > R such that if d(O; P) > A 0 then there is a path in PGg;bnBR (O) from P to some
P0 2 PGg;bnBR (O) such that P0 contains a curve 
 satisfying dS (O; 
 ) > A .

Proof. Set S = Sg;b. By lemma E.3.1 there existsR0 > 0 such that if dV (O; 
 ) > R 0 for essentialV � S
which 
 cuts, then 
 is R-far from O. By lemma E.3.7 there existsA0 > 0 such that if d(O; P) > A 0 then
dV (O; P) > R 0 for some non-pants essentialV � S; without loss of generality we can takeA0 > R . Then we
can �nd some � 2 P which cuts V , so that dV (O; � ) > R 0; in particular � is R-far from O.

We show that without loss of generality � is nonseparating. Say that � separatesS = Sg;b into S(1) ,
S(2) . Sinceg � 1, one of theS( i ) has nonzero genus; call itV 0. V 0 is essential since its boundary is a union
of � and boundary components ofS, and is not a pair of pants or annulus since it has nonzero genus. Now,
given any two curves� 1 and � 2 on V 0, if there exists a homeomorphism fromV 0n� 1 to V 0n� 2, then we can
extend such a homeomorphism onto� 1 and � 2; thus any curve on V 0 is determined by the homeomorphism
class ofV 0n� . There are �nitely many such classes, since if� is nonseparating, thenV 0n� is homeomorphic
to Sg� 1;b+2 , and if it is separating, V 0n� is a disjoint union of Sg1 ;b1 and Sg2 ;b2 , where g1 + g2 = g and
b1 + b+ 2 = b+ 2. Thus C(V 0) is co�nite under the action of homeomophisms ofS with itself. In particular,
any vertex of C(V 0) lies within a constant distance M of a nonseparating curve, so we can �nd a curve� 0

such that dV 0(O; � 0) > (M + R0), and then a nonseparating curve� 00within M of � 0, so that dV 0(O; � 0) > R 0,
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and so� 00is R-far from O. Since� 00does not separateV 0, it does not separateS. Since� is R-far from O,
we can use lemma E.3.2 to moveP to someP0 containing both � and � 00. Then we can replaceP with P00,
� with � 00, and V with V 0. Thus without loss of generality � is nonseparating.

Let N (� ) be a regular neighborhood of� and set W = SnN (� ). W is essential since its boundary
components consist of two curves isotopic to� and the boundary components ofS. W is homeomorphic to
Sg� 1;b+2 , which is not an annulus or pair of pants because eitherg � 1 > 0 or b+ 2 > 3. Then � W (O) is
nonempty, and sinceC(W ) is unbounded we can �nd a curve
 0 � W such that

dW (O; 
 0) > R 0+ 12A + 18: (E.2)

Choose then a pants decompositionP0 containing � and 
 0. By lemma E.3.2 there is a path connectingP
and P0 which lies in PG(S)nBR (O).

Any curve which does not cut W is isotopic to a curve onSnW = N (� ), so the only curve which does
not cut W is � itself. Connect 
 0 to a vertex which is distance 2A + 3 away by a geodesic, that is, �nd a
path 
 0; 
 1; : : : ; 
 2A +3 such that dS (
 0; 
 2A +3 ) = 2 A + 3.

We show now that without loss of generality, each of the
 i cut W , that is, none of the 
 i are � . By
de�nition, 
 0 and � are disjoint. If 
 i = � for i > 1, then sincedS (
 0; � ) = 1, there is a path 
 0; 
 i ; 
 i +
1; : : : ; 
 2A +3 with length strictly less than 2 A +3, contradicting the assumption that dS (
 0; 
 2A +3 ) = 2 A +3.
We are left with the case that 
 1 = � ; in this case choose a curve� which intersects� but not 
 0, and consider
instead the path D � (
 0); D � (
 1); : : : ; D � (
 2A +3 ), where D � denotes the Dehn twist about � . � \ 
 0 = ; , so
D � (
 0) = 
 0. However, � and � intersect, soD � (
 1) 6= 
 1. Finally, Dehn twisting preserves distance, so for
the same reason as a bove we cannot haveD � (
 i ) = � for i > 1. In either case we have a geodesic of length
2A + 3 whose vertices cutW , so without loss of generality we can assume all of the
 i cut W .

Now, suppose thatdS (
 0; O) � A and dS (
 2A +3 ; O) � A. Then 
 0 and 
 2A +3 both lie within distance A of
the set � S (O), which is a set with diameter 2. But then dS (
 0; 
 2A +3 ) � 2A +2, a contradiction. Thus either
dS (
 0; O) > A or dS (
 2A +3 ; O) > A . If dS (
 0; O) > A , then P0 is our desired pants decomposition and we are
done. Thus supposedS (
 2A +3 ; O) > A . Since each
 i cuts W , we have by lemma E.3.8 thatdW (
 0; 
 i ) � 6i
for 0 � i � 2A + 3. By (E.2), we have by the triangle inequality that dW (
 i ; O) > R 0+ 6(2 A + 3 � i ) � R0.
By our choice of R0 this means that the 
 i are R-far from O. Then by corollary E.3.3 we can connectP0 to
some arbitrary pants decomposition containing
 2A +3 . Then dS (
 2A +3 ; O) � dS (
 2A +3 ; O) > A an d we are
done.

Corollary E.3.10. For g � 2, PGg;1 has one end.

Proof. Fix a basepoint O and R > 0. Find an R0 satisfying the conclusion of lemma E.3.1, and anA0

satisfying the conclusion of theorem E.3.9 withA = R0. Say P1 and P2 lie in in�nitely deep components of
PGg;1nBR (O). By de�nition, for i = 1 ; 2 we can �nd a path in PGg;1nBR (O) from Pi to someP0

i such that
d(O; P0

i ) > A 0. By theorem E.3.9 we can �nd a path in PGg;1nBR (O) connecting P0
i to someP00

i , where P00
i

contains a curve
 i satisfying d(
 i ; O) > R 0. By corollary E.3.6 there is a path in PGg;1nBR (O) from P00
1 to

P00
2 . Thus P1 and P2 lie in the same component.

Of course, the reason we can prove this forPGg;1 for g � 2 is due to theorem E.3.5; if we had an analogous
theorem for some otherC(Sg;b) satisfying g � 2 or g = 1 and b � 2 then we could show thatPGg;b has one
end as well. However, none of these results are known. Also, there are other proofs thatPGg;b has one end
for g = 2 ; b � 2, or for g � 3, so the only cases for which this would be useful areg = 1 ; b � 2, or g = 2 ; b = 0.



The ends of pants complexes of small genus E-7

E.4 End calculations using end structures of pants graphs of sub-
complexes

In the previous section we used the one-endedness of a complex of curves associated with a surface to
guarantee we stay away from a base pants decomposition, thenused the connectedness of the pants graphs
of subsurfaces to actually follow the paths we made in the curve complex. In this section we will still be
using the complexes of curves to provide a general course andusing the pants graphs to follow this course,
but now we will use the one-endedness of the pants graphs to stay away from the basepoint.

Lemma E.4.1. Let S be a surface. Fix disjoint curves
 1; : : : ; 
 n on S. Set S0 = Sn(
 1 [ � � � [ 
 n ). Then
there exist A; B > 0 such that for any pants decompositionsP; P0 such that f 
 1; : : : ; 
 n g = � � P; P0,

A � dPG(S0) (Pn� ; P0n�) � B � dPG(S) (P; P0) � dPG(S0) (Pn� ; P0n�) : (E.3)

Proof. Let S(1) ; : : : ; S(k ) be the components ofS0 and let Pi be the pants decomposition ofS( i ) induced
by Pn�, and similarly for P0

i Pick someC > C 0(S); C0(S(1) ); : : : ; C0(S(n ) ) (de�ned before (E.1)) and pick
E1; K 1 such that

1
K 1

X

V � S

dV (P; P0) � E1 � dPG(S) (P; P0) (E.4)

where the V range over essential non-pantsV � S.
Similarly pick E2; K 2 large enough that

dPG(S ( i ) ) ((Pi ); P0
i ) � K 2

X

V � S ( i )

dV (Pi ; P0
i ) + E2

for all 1 � i � k. Summing over for all i yields

dPG(S0) (Pn� ; P0n�) =
kX

i =1

dPG(S ( i ) ) ((Pi ); P0
i ) (E.5)

� K 2

X

V � S ( i )

dV (Pi ; P0
i ) + kE2

where the sum now ranges over non-pantsV which are essential subsurfaces of anyS( i ) . Since theS( i ) are
themselves essential, so are all the subsurfacesV , so we have

X

V � S ( i )

dV (Pi ; P0
i ) �

X

V � S

dV (P; P0): (E.6)

Combining equations (E.4), (E.5), and (E.6) give the result

A � dPG(S0) (Pn� ; P0n�) � B � dPG(S) (P; P0)

for some choice ofA and B .
Clearly dPG(S) (P; P0) � dPG(S0) (Pn� ; P0n�), since any path from Pn� to P0n� in PG(S0) de�nes a path

of the same length fromP to P0 by adding � to each vertex.
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Lemma E.4.2. Let S be a surface and letO 2 PG(S) and R > 0. There existsR0 such that if d(O; P) > R 0

then P lies in an in�nitely deep component of PG(S)nBR (O).

Proof. ChooseA > 0 be lemma E.3.1 such that ifdV (
; O ) > A for essential nonpantsV � S then 
 is
R-far from O. ChooseR0 > 0 by lemma E.3.7 such that if d(O; P) > R 0 then P contains a curve
 such that
dV (
; O ) > A for some essential nonpantsV � S.

Then let d(O; P) > R 0; P contains some curve
 which is R-far from O. For any N > 0 use lemma
E.3.1 to �nd some 
 N � Sn
 which is N -far from O, and let PN be some pants decomposition containing
both 
 and 
 N . By lemma E.3.2 there is a path fromP to PN which lies outside ofBR (O). Thus whatever
component of PG(S)nBR (O) contains P must contain pants decompositions which are arbitrarily far from
O, and by de�nition has in�nite depth.

Lemma E.4.3. Let S be a surface and letO 2 PG(S) and R > 0. There exists R0 such that the following
holds: if � and � are curves onS such that PG(Sn� ) and PG(Sn� ) have one end, at least one component
Sn(� [ � ) has an unbounded curve complex, andP; P0 are pants complexes such that� 2 P; � 2 P0 and
P; P0 2 PG(S)nBR 0(O), then there is a path from P to P0 lying in PG(S)nBR (O).

Proof. ChooseA by lemma E.3.1 so that if dV (O; 
 ) > A for some essential nonpantsV � S then 
 is R-far
from O. ChooseR0 by lemma E.3.1 so that any pair of pantsQ satisfying d(O; P) > R 0 contains a 
 such
that dV (O; 
 ) > A for some essential nonpantsV � S, and in particular, is R-far from O.

Then let P; P0 2 PG(S)nBR 0(O) with � 2 P, � 2 P0. Choose a componentV of Sn(� [ � ) whose curve
complex has in�nite diameter; note that V is essential and not a pair of pants. Choose some� 2 C(V ) such
that dV (O; � ) > A 0, so � is R-far from O. We move P to someP1 containing � and similarly P0 to someP0

1
containing � . By our choice of R0, P contains a curve which isR-far from O. If this curve is � , we can use
lemma E.3.2 to moveP to someP1 containing both � and � .

Thus assuume that some curve� 0 2 P is R-far from O and � is not. Since � is not R-far from O, there
is someO0 containing � such that d(O; O0) � R. ChooseA, B satisfying the results of lemma E.4.1, setting
� = f � g, S0 = Sn� . Then if Q is any other decomposition containing� such that d(O; Q) � R, we have by
the triangle inequality that d(O0; Q) � 2R, so by lemma E.4.1,dPG(S0) (O0n�; Q n� ) � 2R+ B

A = M .
We then �nd a path from P to someP0 such that � 2 P0 and P0nf � g lies in an in�nitely deep component

of PG(S0)nBM (O0nf � g), and this path stays outside of BR (O). By assumption PG(Sn� ) has one end, so it
is not S0;4 or S1;1, and there is at least one componentW of S0n(� 0) whose curve complexC(W ) has in�nte
diameter. By lemma E.4.2 there is someM 0 such that any pants decomposition at leastM 0 away from O0n�
lives in an in�nitely deep component of PG(S0)nBM (O0nf � g). Then by lemma E.3.1, we can choose some
curve � 0

M on W which is M 0-far from O0nf � g. By lemma E.3.2 we can moveP to some pants decomposition
P0 containing �; � 0, and � 0

M wit hout entering BR (O).
Let P1 be any pants decomposition containing both� and � . Since� was chosen to beR-far from O, we

can use the same argument to �nd a path outsideBR (O) from P1 to someP2 such that P2 contains � and
P2nf � g lies in an in�nitely deep component of PG(S0)nBM (O0nf � g). Since S0 is assumed to have one end,
there is a path from P0nf � g to P2nf � g which stays outsideBM (O0nf � g). The path from P0 to P2 induced
by adding � to each vertex then stays outsideBR (O) because by our earlier discussion, if someQ on the
path lay in BR (O), then Qnf � g lies insideBM (O0nf � g).

Thus there is a path outside of BR (O) from P to P1 containing � . Similarly P0 can be moved toP0
1

containing � ; since� is R-far from O, we are done by lemma E.3.2.

Theorem E.4.4. Let S be a surface andD be some complex whose vertices are curves onS. Suppose that
the following properties are true:
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1. D is connected.

2. Given O 2 PG(S), R > 0, each in�nitely deep component ofPG(S)nBR (O) contains someP containing
a curve 
 which lies in D.

3. For each 
 2 D, PG(Sn
 ) has one end.

4. If �; 
 2 D are connected by an edge, then at least one component ofSn(� [ 
 ) has an unbounded curve
complex.

Then PG(S) has one end.

Proof. Suppose thatP; P0 lie in some in�nitely deep components ofPG(S)nBR (O). ChooseR0 as in lemma
E.4.3. Move P far away from O to some P0 in an in�nitely deep component of PG(S)nBR 0(O), and use
property 2 to move this to some P1 containing some
 2 D such that d(O; P1) > R 0; similarly move P0 to
someP0

1 containing some
 0 2 D such that d(O; P0
1) > R 0.

By property 1 there is some path
 = 
 0; : : : ; 
 n = 
 0 in D. For 0 < i < n , Sn
 i [ 
 i +1 has a component
with an unbounded curve complex, so in particular we can �nd an R0-far curve � i which is disjoint from

 i and we let Qi be some pants complex which contains both� i and 
 i . By properties 3 and 4 there are
therefore paths outside ofBR (O) connecting P1 to Q1, Qi to Qi +1 for 0 < i < n � 1, and Qn � 1 to P0

1. Thus
there is a path in PG(S)nBR (O) from P to P1 to P0

1 to P0, so PG(S) has one end.

For the next result we will use an approach of Putman, at the heart of which is this lemma ([5] lemma
2.1):

Lemma E.4.5. Let G be a group which acts on a simplicial complexX . Fix a basepoint v 2 X (0) and a set
S of generators ofG. Assume the following hold:

1. For all v0 2 X (0) , the orbit Gv intersects the connected component ofX containing v0.

2. For all s 2 S� 1, there is some path inX from v to s � v.

Then X is connected.

Theorem E.4.6. Suppose that either

1. g � 2 and b � 1,

2. g = 1 and b � 3, or

3. g = 0 and b � 6.

Then if PG(Sg;b) has one end then so doesPG(Sg;b+1 ).

Proof. Let K 1; : : : ; K b+1 are the boundary components ofSg;b+1 (see �gure E.1 (a)). Consider the complex
D of curves
 on S = Sg;b+1 which separateS into an homeomorphic copy ofSg;b and a pair of pants whose
boundary components are
; K b, and K b+1 . We show this is connected using lemma E.4.5.

Recall that the pure mapping class groupof S is the groupP Mod(S) of isotopy classes of homeomorphisms
of S with itself which have the additional property that they sen d each K i to itself as well. P Mod(S) is
generated by Dehn twists about the curves in �gure E.1 (b); see e.g. [1] section 4.4.5. Let
 , shown in �gure
E.1 (c) be our basepoint. We showP Mod(S) and D satisfy both of the properties of lemma E.4.5.
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Figure E.1: a. The K i b. The generators of PMod(S) c.
 d.D � 
 e. V , with the arcs of � 0 e. V nW
and �

For the �rst, let 
 0 2 X (0) ; say that 
 separatesS into a subsurfaceV which is homeomorphic to Sg;b

and a pair of pants W whose boundary components are
; K b, and K b+1 , and 
 separatesS into V 0 which
is homeomorphic to Sg;b and W 0 whose boundary components are
; K b, and K b+1 . Send V onto V 0 by a
homeomorphism sending eachK i to K i and similarly W onto W 0 by a homeomorphism sending eachK i to
K i . Attach these homeomorphisms in a way that is consistent on
 ; this is a homeomorphism ofS which
sends eachK i to K i , so it is an element ofP Mod(S), and it sends 
 to 
 0.

Note that none of the curves in �gure E.1 (b) intersect 
 except for the curve � , so only the Dehn twist
D � 1

� does not leave
 �xed. But D � (
 ) intersects 
 four times (see �gure E.1 (c) and (d)) so there is a
path from 
 to D � (
 ) containing one edge; applyingD � 1

� to these curves show that
 and D � 1
� (
 ) also

only intersect four times. Thus the second property of lemmaE.4.5 is satis�ed, soD is connected, which is
property 1 of lemma E.4.4.

As mentioned in the proof of theorem E.2.3, the group of homeomorphisms S ! S acts on the pants
graph co�nitely. If we instead look at how P Mod(S) acts on the pants graph, I claim the action is still
co�nite. Let n be the number of pairs of pants in any pants decomposition ofS. De�ne a schemeto be
some speci�cation, for each boundary component of each ofn pairs of pants, of which other pair of pants
that boundary component is attached to or which K i that boundary component is. Given any two pants
decomposition for which the pants are attached according tothe same scheme, we can de�ne homeomorphisms
from each pair of pants in one to a pair of pants in the other in away that respects this scheme; we extend
these homeomorphisms to the curves of the pants decompositions to de�ne an element ofP Mod(S). Since
the number of schemes is �nite, the number of orbits ofP Mod(S) on PG(S) is therefore als o �nite. Then
if we �x some scheme of attaching the pants for which one pair of pants has K i and K i +1 as boundary
components, some pants decompositions following this scheme will lie within some constant M of any other
pants decomposition. Thus property 2 of lemma E.4.4 is satis�ed.

Property 3 is satis�ed by assumption, because for
 2 D, we havePG(Sg;b+1 n
 ) = PG(Sg;b).
Finally, say � and � 0 are connected by an edge inD, so they intersect four times. Let V be the pair of
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pants cut of by � and W the pair of pants cut o� by � 0; � 0 then de�nes two arcs in V , each of which has
both its endpoints on � . Therefore they are isotopic to the arcs shown in �gure E.1 (e); note that � 0 then
separatesV into two annuli and a disk. Since the annuli both contain one of the K i which W must contain,
W contains the annuli. If W also contained the disk, thenV � W , which is impossible since� and � 0 are
not isotopic. Thus V nW is a single disk, which is the regular neighborhood inSnW of some arc� whose
endpoints lie in � 0. Consider now the subsurfaceSn(V [ W ). SnW is by assumption homeomorphic toSg;b.
Sn(V [ W ) = ( SnW )n(VnW ) is therefore some surface equal toSg;b minus the regular neighborhood of� .
This will leave either Sg� 1;b+1 or two surfacesSg1 ;b1 and Sg2 ;b2 such that g1 + g2 = g; b1 + b2 = b+ 1, and
b1; b2 � 1. One can check that as long as the conditions of the theorem are satis�ed, that in any case at
least one of the components ofSn(V [ W ), and therefore of Sn(� [ � 0), has a curve complex with in�nite
diameter, so property 4 is satis�ed as well. Thus all the criteria of theorem E.4.4 are satis�ed and we are
done.

In a similar vein, we have

Theorem E.4.7. Say that g � 2 and b � 0. If PGg� 1;b+2 has one end then so doesPGg;b.

Proof. We chooseD = Nonsep(Sg;b), the induced subcomplex ofC(Sg;b) containing only those vertices
which are nonseparating curves onS. Property 1 of theorem E.4.4 is given by [5] theorem 1.2 (Putman
proves this for b = 0, but the proofs for b > 0 are nearly identical). Property 2 follows as it did in theorem
E.4.6. For 
 2 D, since 
 is nonseparating, Sg;bn
 is homeomorphic to Sg� 1;b+2 , and PGg� 1;b+2 has one
end by assumption, giving us property 3. Finally if � and 
 are connected by an edge, then
 2 Sg;bn� ,
so Sg;bn(� [ 
 ) = Sg� 1;b+2 n
 ; this latter surface is either Sg� 2;b+4 or a disjoint union Sg1 ;b1 [ Sg2 ;b2 where
g1 + g2 = g, b1 + b2 = b+ 4. In either case, at least one c omponent ofSg;bn(� [ 
 ) has an unbounded curve
complex, satisfying property 4. Thus theorem E.4.4 appliesand we are done.

Combining theorems E.3.10, E.4.6, and E.4.7 yields

Corollary E.4.8. Let g � 3; b � 0 or g = 2 ; b � 1. Then PGg;b has one end.

As mentioned, this result is known for g � 3, but this gives an alternate proof.

Theorem E.4.9. Say that b � 3. If PG0;b+2 has one end then so doesPG1;b.

Set S = S1;b and let D be the induced subcomplex ofC(S) whose vertices are the nonseparating curves
and separating curves� such that neither component of Sn� is a pair of pants. Recall that Mod(S) is the
group of isotopy classes of homeomorphismsS ! S. Choose the base vertex
 of D (see �gure E.2 (a)).
We show that D, 
 , and Mod(S) satisfy the conditions of lemma E.4.5. Mod(S) acts co�nitely on D so
the �rst condition is ful�lled. By the discussion in [1] 4.4. 5, we can choose our generators ofMod(S) to be
the Dehn twists around the curves of E.1 (b) and certain maps which permute the boundary components of
S. In particular these maps can be chosen so that they are constant on 
 . Thus the only map which does
not leave 
 �xed is the Dehn twis t around � (�gure E.2 (b)), but there is an intermediate path from 
 to

 0 to D � (� ), and similarly D � 1

� (� ) (�gure E.2 (c) and (d)). Thus the second condition is ful�ll ed and D is
connected, which is the property 1 of E.4.4.

Property 2 follows as it did in theorem E.4.6.
For 
 2 D, either 
 is nonseparating, in which casePG(Sn
 ) = PG0;b+2 has one end by assumption,

or 
 separatesS into surfaces S(1) and S(2) which are not pairs of pants, and in particular PG(S( i ) ) has
in�nite diameter; it is easy to show that the product of two gr aphs with in�nite diameter has one end, so
PG(Sn
 ) = PG(S(1) ) � PG(S(2) ) has one end. Thus property 3 is true.
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Figure E.2: a. 
 b. � c.D � (
 ) d. 
 0, which is disjoint from both 
 and D � (
 )

Finally, say � and � 0 are connected by an edge inD, that is, � \ � 0 = ; . If � is nonseparating then
Sn� = S0;b+2 , so Sn(� [ � 0) = ( Sn� )n� 0 is two surfacesS0;b1 and S0;b2 where b1 + b2 = ( b+ 2) + 2 � 7; it
follows that at least one of the bi is at least 4, so at least one of the components has a curve complex with
in�nite diameter. If � is separating, let S0 be the component ofSn� not containing � 0; by assumption S0 is
not a pair of pants. Then S0n� 0 = S0, so it is a component ofSn(� [ � 0) whose curve complex has in�nite
diameter. Thus property 4 is true and we are done.
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F.1 Motivation and Overview

Ordinary di�erential equations (ODEs) commonly arise in a variety of modeling contexts. Examples in-
clude periodically forced oscillators, which can model predator-prey scenarios and sleep cycles, among other
systems, and the Lorenz system, which is a simple model of theatmosphere that exhibits interesting math-
ematical behaviors.

du
dt

= F (u); 2 Rn

In this paper, we consider the case of a steady-stateu� (i.e. F (u� ) = 0) where the Jacobian matrix DF (u� )
has two positive and one negative eigenvectors. This gives rise to a two-dimensional unstable invariant
manifold which we denoteU(u� ). As a set U(u� ) consists of all initial conditions u0 for which the solution
to the ODE satis�es u(t; u0) ! u� as t ! �1 . It is tangent at u� to the plane spanned by the eigenvectors
associated with the positive eigenvalues. Analogously, the stable manifold S(u� ) is made up of all u0 for
which u(t; u0) ! u� as t ! + 1 . As S(u� ) is essentially U(u� ) under a reversal of time, any algorithm to
compute U(u� ) can be applied as well toS(u� ) .

Unstable manifolds play an important role in long term dynamics. For dissipative system, i.e. one
in which all trajectories eventually enter an absorbing ball, unstable manifolds form the backbone of the
global attractor, the largest compact invariant set. Stable manifolds whichhave co-dimension one (i.e. are
associated with n � 1 negative eigenvalues for in system ofn ODEs) form a separatrix which divides phase
space(Rn ) into two portions. Trajectories with initial conditions o n either side of the separatrix have di�erent
fates ast ! 1 . When the stable manifold for one �x point intersects with th e unstable manifold of another,
their intersection typically forms a curve that is an orbit c onnecting the two states. In general, the onset of
such an intersection as a parameter is varied signals a global bifurcation, a dramatic change involving distinct
elements of the global attractor. It is therefore useful to visualize these manifolds. Generally, these manifolds
cannot be found analytically, so they must instead be \grown" or evolved from a local information.[9]

Previous methods for calculating these manifolds include approximation by geodesic level sets [8, 7], BVP
continuation of trajectories [9], computation of fat traje ctories [6], PDE formulation [4], and box covering
[1, 2]. In this paper, we extend the process of approximationby level sets.

Consider, then, a closed curve of initial conditions parameterized by a variable � :

u0(� ) = ( x0(� ); y0(� ); z0(� ) ; � 2 [0; � 1] ; u0(0) = u0(� 1) :

Without loss of generality, we assume that the positive eigenspace is thex; y-plane and the steady state is
u� = 0. The initial closed curve is then taken to be a small circlearound the tangent point.

The evolution of this curve under the 
ow of the ODE over any �n ite time period produces the two-
dimensional invariant manifold (with boundary), which we express as

u(�; t ) = ( x(�; t ); y(�; t ); z(�; t )) ; t 2 [t1; t2] :

The idea is demonstrated in Figure F.1.

If we evolve the points under the 
ow with no adjustment, however, the curve tends to elongate and not
represent the manifold evenly. See Figure F.2. This shows points on trajectories of the ODE

dx
dt

= 2 x;
dy
dt

= � y;
dz
dt

= z (F.1)

starting from initial conditions along the circle x2 + y2 = 1 ; z = 0. It is shown in two dimensions for clarity
and becausez does not change as the ring evolves.
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x,y-plane

Figure F.1: One time-step from the original ring.

Since we are interested here only in the manifold, and not thedynamical process by which it is generated,
we may adjust the 
ow under which the points are evolved as long as they stay on the manifold. Thus,
we may change the component of the 
ow tangential to the curveas long as we preserve the normal and
binormal components, because the entire ring is on the manifold, and the tangential component simply moves
the point along the ring. One way to adjust the 
ow would be to set the tangential component of the 
ow
to zero, thereby preserving locally geodesic 
ow. This is the approach taken in [5], and is recreated below.
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Figure F.2: The graph is distorted when points are unevenly spaced in arclength.
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F.2 Zeroing Out the Tangential Component

Given a closed curve
� = ( x(�;t ); y(�;t ); z(�;t )) = u(�;t ) ; � 2 [0; � 1] (F.2)

we select the right hand coordinate system with unit tangent vector

w =
1

S�
u� ; where S� =

p
x2

� + y2
� + z2

� = ju� j ; (F.3)

unit normal vector
n =

1
�S �

w� ; where � =
1

S�
jw� j (F.4)

and unit binormal vector
b = w � n : (F.5)

w

n

b

Figure F.3: The component unit vectors at a point.

The motion of the curve under local geodesic 
ow is given by

ut = 0 w + Un + V b (F.6)

where we keep
U = F � n and V = F � b : (F.7)

We apply this approach to the ODE in F.1 and display the results in Figure F.4. The ring of points is
increasingly elongated at each step, although the e�ect is much less severe than when the 
ow is unadjusted.

F.3 Adjusting the Tangential Component

Instead of zeroing out the tangential component, we directly calculate T to preserve equal distribution of
points in arclength.

ChoosingT so that the arclength spacing of a �nite number of points on the curve remains constant (in
� ), is equivalent to satisfying, at eacht 2 [t1; t2], the condition

S� (�; t ) =
1

2�

Z 2�

0
S� (~�; t )d~� ; for all � 2 [0; 2� ] : (F.8)
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Figure F.4: Zeroing the tangential component does not preserve equal arclength distribution.

Suppose this holds att = 0. We ensure it holds at all other t by choosingT such that

S�t =
1

2�

Z 2�

0
S�;t d~� (F.9)

Di�erentiating the second relation in (F.3) with respect to t, and then using (F.2) we �nd that

S�t =
1

S�
(x � x �t + y� y�t + z� z�t ) (F.10)

= u�t � w (F.11)

We then write

u�t = T� w + T w� + U� n + Un� + V� b+ V b� : (F.12)

From (F.4) we have
w� = �S � n : (F.13)

It will turn out, due to a projection in the direction of w, that U� , and V� do not e�ect the calculation of
T . The remaining quantities, n� and b� , are obtained by

Theorem F.3.1. [10]
n� = S� (�b � �w ) ; b� = � �S � n (F.14)
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where the torsion � is de�ned as the determinant

� = � 2
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:

A proof of Theorem F.3.1 is found in [10].
Using the Frenet-Serret formulae in (F.12), we obtain

S�t = w � u�t

= w � [T� w + T �S � n + U� n + US� �b � US� �w + V� b� V �S� n]

= T� � U �S �

We can now express (F.9) as

T� � U �S � =
1

2�

Z 2�

0
T� � U �S � d~� ;

which by periodicity reduces to

T� = U�S � �
1

2�

Z 2�

0
U�S � d~� : (F.15)

Integrating both sides of (F.15), we arrive at

T(�;t ) = T(0;t) +
Z �

0
U�S � d~� �

�
2�

Z 2�

0
U�S � d~� : (F.16)

Using (F.13), we can rewrite (F.16) as

T(�;t ) = T(0;t) +
Z �

0
F � w� d~� �

�
2�

Z 2�

0
F � w� d~� : (F.17)

Later we will make a speci�c choice for the constant of rotation T(0;t), but any choice would still preserve
arclength parametrization. Note also that in a practical implementation, one need not even compute the
vectors n, and b. Instead one may write (F.6) as

ut = F (u) � [F (u) � w � T ]w : (F.18)

F.4 Fourier Transform

Equation (F.17) is not simple to compute analytically, so we use a discrete Fourier transform (DFT) to
compute the derivatives and antiderivatives. We used a pre-written Fast Fourier Transform algorithm. [3].
A DFT associates to a list of function valuesu(� j ) at equally spaced points a list of Fourier coe�cients ûk

ful�lling the following equation.

u(� j ) =

N
2X

k= � N
2

ûk ei� j k ; � j =
2�j
N
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This is a useful transformation because it is simple to take the derivative and antiderivative of the right hand
side.

du(� )
d�

=

N
2X

k= � N
2

ik ûk ei�k

Z
u(� )d� =

N
2X

k= � N
2

ûk

ik
ei�k

The FFT uses at mostN =the number of points on the ring di�erent sine and cosine curves to approximate
the curve represented by those points. Since there are a �nite number of discrete points rather than a true
curve input into the equation, the Fourier representation is necessarily an approximation.

F.5 Minimizing Error

The error involved in this approximation is large enough to be a practical barrier to creating a good graphical
representation of the manifold in question, particularly because repeated applications of the FFT exaggerate
the error. There are two types of error involved. The �rst err or occurs when the FFT tries to be too smart,
and in so doing gives too much weight to high frequency sines and cosines when approximating the curve,
resulting in a "jumpy" representation. This is particularl y problematic when taking derivatives. See Figure
F.5 for an example.

To reduce the error, a process of �ltering the data is introduced. To �lter the Fourier representations of
data points, we adjust

ûk = ûk e� 10 k
N

10

The higher k is, the higher frequencyûk is contributing. Thus, our adjustment dampens the e�ect more
as k increases. We don't throw away any data, but we limit the e�ect that disruptive, high frequency data
in
uences our �nal result. It is also possible to �lter data b y setting to zero any component curve of frequency
above some point, but for this application this form of �lter ing was not found to be useful.

Another problem occurs because creating an exact representation of the ring in Fourier space may require
summing an in�nite series:

u(� j ) =
1X

k= �1

ûk ei� j k ; � j =
2�j
N

Since we have only a �nite number of points, this is impossible. This means that the components outside
the limits of the sum get incorrectly moved into that range. T his was not a large source of error for this
application. We addressed it simply by taking a relatively large number of points on the ring (e.g. 256 or
512) to minimize the error from this source.

F.6 Computational Results

To test the parametric approach in various geometric situations we consider a couple examples of vector
�elds in R3 speci�ed by
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Figure F.5: The derivative of x(2 � pi � x) computed using the FFT with and without �ltering.

� (i) the (decoupled) 
ow in two-variables

_x = f 1(x; y)

_y = f 2(x; y) ;

(F.19)

� (ii) an (attracting) invariant manifold expressed as the graph of a function z = �( x; y), so that

_z = r � �
�
f 1

f 2

�
� c(z � �) ; (F.20)

for some positive numberc.
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F.6.1 The Dali

The �rst choice for the invariant manifold resembles a warped clock face from the works of the artist Dali.
It is described in rectangular coordinates as the graph of

�( x; y) = :1x3 :

The vector �eld is then determined by

_x = x

_y = 2 y ;

(F.21)

so that the \Dali" is the unstable manifold of the origin, whi ch is associated with real and distinct eigenvalues.

Figure F.6: We normalize the 
ow, but don't adjust the tangen tial component.

To demonstrate the need to do something more than simply integrating a ring of initial conditions under
the 
ow of the original vector�eld we plot in Figure F.6 the re sult of normalizing but not adjusting the
direction of the 
ow. This is not a complicated manifold, so straightforward integration of a ring of initial
data generates a reasonable representation of the manifold, but the data points are far from evenly spaced.
Following the geodesic 
ow (see Figure F.7) is only a slight improvement. Following the parametric 
ow
provides much a much better representation (see Figure F.8).

Figure F.9 demonstrates the di�erences in point spacing on the outermost ring between the three methods.
The points are spaced much more evenly around the ring under parametric 
ow than either of the other two
methods. Geodesic 
ow is only a slight improvement over no adjustment. On a more complicated manifold,
these di�erences would cause a more severe problem in representation.
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Figure F.7: We normalize the 
ow and set the tangential component to zero.

Figure F.8: We normalize the 
ow and adjust the tangential component for equal spacing.
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Figure F.9: The distance between adjacent points on the ring.

F.6.2 The Dial

The next choice for the invariant manifold resembles a sundial. It is a manifold with

�( r; � ) =

(
r 2(cos(20� ) + 1) if j� j � �

20

0 else

_z = r r;� �( r; � ) �
�

_r
_�

�
� (z � �( r; � ))

We plot in Figure F.10 the result of using the original 
ow, ne ither normalizing nor adjusting the direction
of the 
ow. This is a more complicated manifold, and in particular it has a \spike," so it is the type of
manifold for which we expected parametric 
ow to be a considerable improvement over the original (see
Figure F.11) or geodesic (see Figure F.12) 
ow. As it turns out, however, original 
ow appears to give the
best representation. It is unclear whether this is the result of human error in carrying out the procedure
described above, or whether this is a true artifact of using parametric 
ow on this manifold.
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Figure F.10: We neither normalize the 
ow nor adjust the tangential component.
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Figure F.11: We normalize the 
ow and set the tangential component to zero.
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Figure F.12: We normalize the 
ow and adjust the tangential component for equal spacing.

F.7 Future Research

This project suggests that research could be undertaken to explore the possibility of adding points as the
ring expands in order to prevent the points from becoming toofar separated, even as the manifold grows.
This would be another adaptation to prevent distortion of th e general model of a ring evolving on a manifold.
There could also be interest in applying these techniques toa 2-D manifold in 4-space, or generalizing to even
higher dimensions. A systematic approach to deciding whichof the many methods for growing manifolds
found in the literature is best for speci�c types of problems would also be useful.
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G.1 Some Technical Lemmas

We begin with some general constructions which are used repeatedly in the next section.

Lemma G.1.1. Given functions r1(z) for z � a and r2(z) for z � b > a which are C2 and have positive
second derivative, and such thatr 0

2(b) > r 0
1(a) and r1(a) + r 0

1(a)(b � a) < r 2(b) < r 1(a) + r 0
2(b)(b � a), there

is a C2 function r (z) de�ned in [a,b] with positive second derivative such thatr (z) = r1(z) for z � a and
r (z) = r2(z) for z � b.

Proof. We will show there is a positive, piecewise linear functiong(z) de�ned on [a; b] such that

1. g(a) = r 00
1 (a), g(b) = r 00

2 (b)

2.
Rb

a g(z)dz = r 0
2(b) � r 0

1(a)

3.
Rb

a

Rz
a g(s)dsdz = r2(b) � r1(a) � r 0

1(a)(b� a).

Then we will de�ne r (z) by

r (z) = r1(a) +
Z z

a

�
r 0

1(a) +
Z s

a
g(� )d�

�
ds

for z 2 [a; b]. Then since r 0(z) = r 0
1(a) +

Rz
a g(s)ds and r 00(z) = g(z) we will have matched function values

and derivatives up to order two at a and b with r 00(z) > 0. The function g(z) will be of the form shown in
Figure G.1 below. We will construct a family f g� (z)g for � 2 (0; 1) of such functions with properties 1 and

Figure G.1: The form of g(z)

2 above, then choose� appropriately. First we let

c = a + (1 � � )(b� a)


 = min
�

� (1 � � )
b� a

(r 0
2(b) � r 0

1(a)) ;
1
2

r 00
1 (a);

1
2

r 00
2 (b)

�

Then we �nd that Z c

a
g� (z)dz =

1
2

[(r 00
1 (a) � 
 )� + ( c � a)� + ( c
 � ar00

1 (a))]



G-2 John Ullman

Since
 < r 00
1 (a), we �nd

Z c

a
g� (z)dz >

1
2

[(r 00
1 (a) � 
 )a + ( c � a)0 + ( c
 � ar00

1 (a))]

=
1
2


 (c � a)

and 1
2 
 (c � a) � 1

2 (1 � � )(b� a) � (1 � � )
b� a (r 0

2(b) � r 0
1(a)) < 1

2 � (r 0
2(b) � r 0

1(a)). Hence
Rc

a g� (z)dz < � (r 0
2(b) � r 0

1(a))
for su�ciently small � and � . Now

1
2

[(r 00
1 (a) � 
 )� + ( c � a)� + ( c
 � ar00

1 (a))] = � (r 0
2(b) � r 0

1(a))

de�nes a line in (�; � ) with � �
� � = � r 00

1 (a) � 

c� a < 0, so the � -intercept 2� ( r 0

2 (b) � r 0
1 (a)) � (c
 � ar 00

1 (a))
r 00

1 (a) � 
 is bigger than
a, since (a; 0) lies below the line. Hence we choose

� = min
�

1
2

�
2� (r 0

2(b) � r 0
1(a)) � (c
 � ar00

1 (a))
r 00

1 (a) � 

+ a

�
;

1
2

(a + c)
�

Then, �nally, we choose

� =
2� (r 0

2(b) � r 0
1(a)) � (r 00

1 (a) � 
 )� � (c
 � ar00
1 (a))

c � a

so that
Rc

a g� (z)dz = � (r 0
2(b) � r 0

1(a)). Similar analysis leads to

� = max
�

1
2

�
2(1 � � )( r 0

2(b) � r 0
1(a)) � (br00

2 (b) � c
 )

 � r 00

2 (b)
+ b

�
;

1
2

(b+ c)
�

� =
2(1 � � )( r 0

2(b) � r 0
1(a)) � (
 � r 00

2 (b)) � � (br00
2 (b) � c
 )

b� c

so that
Rb

c g� (z)dz = (1 � � )( r 0
2(b) � r 0

1(a)) and thus
Rb

a g� (z)dz = r 0
2(b) � r 0

1(a). Next note that
Rz

a g� (s)ds is
strictly increasing, so that

(c � a)0 + ( b� c)� (r 0
2(b) � r 0

1(a)) <
Z b

a

Z z

a
g� (s)dsdz < (c � a)� (r 0

2(b) � r 0
1(a)) + ( b� c)( r 0

2(b) � r 0
1(a))

� 2(b� a)( r 0
2(b) � r 0

1(a)) <
Z b

a

Z z

a
g� (s)dsdz < (2� � � 2)(b � a)( r 0

2(b) � r 0
1(a))

From this it follows that

lim
� ! 0+

Z b

a

Z z

a
g� (s)dsdz = 0

lim
� ! 1�

Z b

a

Z z

a
g� (s)dsdz = ( b� a)( r 0

2(b) � r 0
1(a))

We are given that r1(a)+ r 0
1(a)(b� a) < r 2(b) < r 1(a)+ r 0

2(b)(b� a) and hence 0< r 2(b) � r1(a) � r 0
1(a)(b� a) <

(b� a)( r 0
2(b) � r 0

1(a)). Also,
Rb

a

Rz
a g(s)dsdz is a continuous function of �; �; c; 
; � and � , while these depend

continuously on � , so
Rb

a

Rz
a g� (s)dsdz is a continuous function of � . Therefore by the intermediate value

theorem there is some� for which
Rb

a

Rz
a g� (s)dsdz = r2(b) � r1(a) � r 0

1(a)(b � a). We chooseg = g� .
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When we use this construction we will speak of \ramping" r (z) from r1(z) to r2(z). Next we examine
surfaces with circular cross sections of the form

(x � f (z))2 + y2 = r (z)2

where r (z) > 0 and r (z); f (z) 2 C2, yielding a C2 surface.

Lemma G.1.2. A surface of the above form is negatively curved providedr 00(z) > jf 00(z)j.

Proof. We parametrize the surface with

(x; y; z) = ( r (z) cos� + f (z); r (z) sin �; z )

It follows that

K = �
r 00+ f 00cos�

r (1 + r 02 + cos2 �f 02 + 2 r 0f 0cos� )2

and thereforeK < 0 identically if for all � and z

r 00(z) + f 00(z) cos� > 0

Now, for a givenz, f 00(z) cos� oscillates betweenjf 00(z)j and �j f 00(z)j, soK < 0 identically if r 00(z)�j f 00(z)j >
0, i.e. if r 00(z) > jf 00(z)j.

We will refer to the change x ! x � f (z) as \skewing." Next we obtain a procedure for joining two
hyperboloids. Let a > 1, and place the axes of the hyperboloids at distance 2a from one another. Then cut
out the parts of each hyperboloid on the opposite side of the intersection, to obtain a surface of the form

(jxj � a)2 + y2 = 1 + z2

We then smooth the intersection with a technique given in [1](referred to here as the BVK construction).
When jxj < a � 1 we have (jxj � a)2 � 1 > 0 and soz = �

p
(jxj � a)2 � 1 + y2. This is smooth except at

x = 0, so we seek to replace (jxj � a)2 � 1 with � (x)2 where � (x) = c0 + c2x2 + c4x4 > 0 when jxj � b and b
is some positive number less thana � a1=3. We require

c0 + c2b2 + c4b4 = � (b) =
p

(a � b)2 � 1

2c2b+ 4 c4b3 = � 0(b) = �
a � b

p
(a � b)2 � 1

2c2 + 12c4b2 = � 00(b) = �
1

((a � b)2 � 1)3=2

to match function values and derivatives up to second order.These equations have the unique solution

c0 = � (b) �
5
8

b� 0(b) +
1
8

b2� 00(b)

c2 =
3
4b

� 0(b) �
1
4

� 00(b) =
1

4b� (b)3 (� 3((a � b)3 � (a � b)) + b)

c4 = �
1

8b3 � 0(b) +
1

8b2 � 00(b)
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Sinceb < a � a1=3, we have (a � b)3 > a , whence (a � b)3 � (a � b) > b and

c2 <
� 3b+ b
4b� (b)3 < 0

Then since � 00(x) = 2 c2 + 12c4x2 and � 00(b) is also negative, it follows that � 00(x) < 0 for all x 2 [� b; b].
Also, � (� b) = � (b) so we have� (x) � � (b) > 0 for all x 2 [� b; b]. Finally, we compute

K =
� 3� 00

(� 2 + � 2� 02 + 2 y2)2 < 0

Thus we have smoothed out the intersection while retaining negative curvature. Note that since a�ne
transformations don't change the sign of the curvature, we may join two hyperboloids of the form x2 + y2 =
1 + ( cz)2 by using the above construction and then transforming thez-coordinate. Next we obtain our main
theorems. Hyperboloids will be our building blocks in what follows. (N.B. by \complete" we mean complete
in the extrinsic sense)

G.2 Main Theorems

Theorem G.2.1. Let g, ncirc , and ncusp be natural numbers such thatncirc � 1 if g = 0 , and ncirc � 2
if g > 0. Then there exists a complete, negatively curved,C2 surface embedded inR3 with genus g, ncirc

circular ends and ncusp cuspidal ends.

Proof. We begin with the genus zero case. Ifncirc = 1 and ncusp = 0, we have the simple examplez = xy,
so we may assume thatncirc + ncusp � 2. We will construct these surfaces by lining up hyperboloids and
joining the bottoms using the BVK construction, then replac ing the tops with narrower hyperboloids or
cusps using Lemma G.1.1, and �nally skewing the tops using Lemma G.1.2 so they don't hit one another.
For de�niteness we will use the minimum value of � when applying Lemma G.1.1 (N.B. the set of possible
� 's is compact) and b = 1

2k (a � a1=3) when applying the BVK construction, where k is the smallest positive

integer making b small enough for our needs. We begin withncirc + ncusp � 1 hyperboloidsf H j gn circ + n cusp � 2
j =0

with axes given by x = x j ; y = 0, where x0 = 0 and the x j 's are increasing (the values to be chosen later).
The top of H j for j = 0 ; : : : ; ncirc � 2 will have a circular end, j = ncirc � 1; : : : ; ncirc + ncusp � 2 a cuspidal
end. For circular ends we ramp fromr j (z) =

p
1 + z2 to

r j (z) =

r

1 + (
1

4j +1 z)2

betweenz = 0 and z = 1
6 using Lemma G.1.1. For cuspidal ends, we begin withr j (z) =

p
1 + z2. See the

�gure below. Since r 00
j (z) > 0 we have

r j (�
1
6

) + r 0
j (�

1
6

)(0 � (�
1
6

)) < r j (0) = 1 < r j (�
1
6

)

Also, (0; 1) lies on the line r j (� 1
6 ) + 1� r j ( � 1

6 )
0� ( � 1

6 ) (z � (� 1
6 )) so that

r j (0) = 1 < r j (�
1
6

) +
1
2

1 � r j (� 1
6 )

0 � (� 1
6 )

(0 � (�
1
6

))
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Figure G.2: Constructing the slope to ramp to

Thus we may apply Lemma G.1.1 to rampr j (z) from
p

1 + z2 to e3(1 � r j ( � 1
6 )) z betweenz = � 1

6 and z = 0.
Sincer 0

j (z) < 0 at both points and r 00
j (z) > 0, it follows that r j (z) > 0 during the transition. Next we skew

the surfacesH j using functions f j (z) (in the notation of Lemma G.1.2). For each j and all z < � 1
6 we

require

jf 00
j (z)j < r 00

j (z) =
1

(1 + z2)3=2

First we de�ne a continuous function h(z) as follows: h(z) = 1
(1+ z2 )3= 2 between z = � 12

5 and z = � 5
12 ,

h(z) is a�ne for z 2 [a; � 12
5 ] [ [� 5

12 ; � 1
3 ] and 0 elsewhere (there is a unique continuous function withthese

characteristics). The number a is chosen close enough to� 12
5 so that h(z) < 1

(1+ z2 )3= 2 when z < � 12
5

(a = � 2:5 su�ces). The form of h(z) is shown in the �gure below. The red curve is 1
(1+ z2 )3= 2 , the blue is

h(z) (the region below the graph ofh(z) is shaded blue). Then

Figure G.3: The form of h(z)

Z 1

�1
h(z)dz >

Z � 5
12

� 12
5

1
(1 + z2)3=2

dz =
7
13

>
1
2
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Finally, we de�ne the skewing functions:

f j (z) = x j +
1
2 � 2

4j +1R1
�1 h(s)ds

� Z z

�1

Z s

�1
h(� )d�ds

�

By the above we have

f 00
j (z) =

1
2 � 2

4j +1R1
�1 h(s)ds

h(z) �
1=2
7=13

h(z) <
1

(1 + z2)3=2

Then since f 00
j (z) = 0 when z > � 1

3 , it follows that jf 00
j (z)j < r 00

j (z) for all z, no matter what modi�cations
were made tor j (z). Now we have negatively curved surfacesH j described by

(x � f j (z))2 + y2 = r j (z)2

Next we wish to choose the spacingsx j � x j � 1 large enough so that theH j only intersect when z < a . To
show this is possible, denote the least values ofx of the circular cross sections ofH j by lef t j (z), the greatest
by right j (z). That is to say, lef t j (z) = f j (z) � r j (z) and right j (z) = f j (z)+ r j (z). When z > 1

6 we compute
f 0

j (z) = 1
2 � 2

4j +1 and r 0
j (z) < 1

4j +1 and so

(lef t j +1 � right j )0(z) = f 0
j +1 (z) � r 0

j +1 (z) � f 0
j (z) � r 0

j (z)

>
2

4j +1 �
2

4j +2 �
1

4j +1 �
1

4j +2 =
1

4j +2 > 0

It follows that if x j +1 � x j is su�ciently large, the circular cross sections of H j +1 and H j will not intersect
when z > 1

6 . Hence, oncex j has been chosen,x j +1 may be chosen large enough so that they only intersect
when z < a � 1. We make these choices, then �nally join theH j using the BVK construction, where the
parametersb are chosen small enough that the surgeries only a�ect parts of the surfaces wherez < a . This
is now easily extended to the positive genus case. Sincencircle � 2, H0 is a hyperboloid on bottom and a
narrower hyperboloid on top. We simply line up g additional copies of H0 with axes at y = 0 ; x < 0, space
them far enough apart that they only intersect when jzj > 1, and join their tops and bottoms using separate
applications of the BVK construction, making sure that the surgeries only a�ect parts of the surfaces where
jzj > 1

6 .

A typical such surface is illustrated below. The yellow indicates regions where smoothing has been
performed, while grey dashes are on the back side. Note that we can continue adding to these surfaces in
the same way to obtain surfaces with in�nite g, ncirc , and/or ncusp , although if we do so we will have a wild
end as well.

Theorem G.2.2. For any g > 0 there is a complete, negatively curved,C2 surface embedded inR3 with
genusg and one circular end.

Proof. We begin with a hyperboloid and rip open one side of it. Whenx � � 1
2 we havex = �

p
1 + z2 � y2

and jyj �
q

z2 + 3
4 . We keep this part of the surface and replace the rest with thegraph

x = y4 + ( � 2z2 �
1
2

)y2 + ( z4 +
1
2

z2 �
11
16

)

over the remainder of the yz plane. It is easily checked that function values and derivatives up to second

order are matched, so we obtain aC2 surface. The result is shown below. Whenjyj >
q

z2 + 3
4 we have
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Figure G.4: A surface with genus 1, 3 circular ends and 1 cuspidal end

sgn(K ) = sgn(xyy xzz � x2
yz )

xyy xzz � x2
yz = � 48y4 + (96 z2 + 16)y2 + ( � 48z4 � 16z2 � 1)

For �xed z, we �nd the roots of this polynomial in y:

y2 =
� 96z2 � 16 � 8

� 96
= z2 +

1
4

; z2 +
1
12

y = �

r

z2 +
1
4

; �

r

z2 +
1
12

All four roots are inside
h
�

q
z2 + 3

4 ;
q

z2 + 3
4

i
, so xyy xzz � x2

yz 6= 0 when jyj >
q

z2 + 3
4 . Also, it is

dominated by � 48y4, so in fact xyy xzz � x2
yz < 0 and thus K < 0. We now add genus by adding hyperboloids

with axes x = � 3k; y = 0 for k = 1 ; : : : ; g and joining them using the BVK construction.

A typical result of this construction is illustrated below.

Theorem G.2.3. For any g > 0 and ncusp > 0 there is a complete, negatively curved,C2 surface embedded
in R3 with genusg, one circular end and ncusp cuspidal ends.

Proof. We will skew the surfaces from the previous theorem, add cusps and skew them in the opposite
direction. First we must gain some freedom to skew the rippedhyperboloid. Denote this surface byx =
x0(y; z). We will try replacing this with

x = x0(y; z) + f (z)

where f (z) 2 C2. Now we �nd that

xyy xzz � x2
yz = x0yy x0zz � x2

0yz
+ f 00(z)x0yy



G-8 John Ullman

Figure G.5: A ripped-open hyperboloid with negative curvature

Also, it is easily checked that x0yy > 0, soK < 0 as long as

f 00(z) < �
x0yy x0zz � x2

0yz

x0yy

This must hold for all y, so we need to compute the minimum of the quantity on the right, which we denote

by m(y; z), for some values ofz. By the above, whenjyj >
q

z2 + 3
4 we have

m(y; z) =
48y4 � (96z2 + 16)y2 + (48 z4 + 16z2 + 1)

12y2 � 4z2 � 1

my = y
1156y4 + ( � 776z2 � 192)y2 + ( � 380z4 � 64z2 + 8)

(12y2 � 4z2 � 1)2

We view the numerator above as a quadratic iny2; the discriminant is

2359296(z4 +
145
576

z2 �
1

18432
)

This in turn has two imaginary roots and two real roots z = � � , where

� =

vu
u
u
t

1
2

0

@�
145
576

+

s �
145
576

� 2

+ 4
�

1
18432

�
1

A � :014674

Thus the discriminant is negative when z 2 (� �; � ), so the numerator has no real roots. It is dominated by
the positive term 1156y4, so it is positive. Then, due to the factor of y, my < 0 when y < 0 and my > 0
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Figure G.6: A surface with genus 2 and 1 circular end

when y > 0. When instead jyj �
q

z2 + 3
4 , we have

m(y; z) =
1

(1 + z2)
p

1 + z2 � y2

my =
y

(1 + z2)(1 + z2 � y2)3=2

so for all y we havemy < 0 when y < 0 and my > 0 when y > 0. Thus, if z 2 (� �; � ), the minimum of m
occurs at y = 0:

min
y2 R

m(y; z) = m(0; z) =
1

(1 + z2)3=2

Therefore, we haveK < 0 if 0 � f 00(z) < 1
(1+ z2 )3= 2 when z 2 (� �; � ) and f 00(z) = 0 elsewhere. Since

d2

dz 2

p
1 + z2 = 1

(1+ z2 )3= 2 , by Lemma G.1.2 we may skew hyperboloids by the same functionand maintain

negative curvature. We de�ne a function h(z) as follows: h(z) = 1
2� z + 1

2 when z 2 [� �; 0], h(z) = � 1
2� z + 1

2
when z 2 [0; � ] and h(z) = 0 elsewhere. Finally, we de�ne the skewing function:

f (z) =
Z z

�1

Z s

�1
h(� )d�ds

Then, f 00(z) = h(z), so we maintain negative curvature. Next, we again addg hyperboloids with axes
x = � 3k; y = 0 for k = 1 ; : : : ; g and skew them using the same function. We join the bottoms using the BVK
construction, choosing the parameterb small enough so that the surgeries only a�ect parts of the surfaces
where z < � � . Now, when z > � , f 0(z) =

Rz
�1 h(s)ds = 1

2 � , so the tops are simply hyperboloids which
have been a�nely skewed to one side. Thus we may join them, using an a�nely transformed version of the
BVK construction. Next, we add cusps; we must show that we canskew them quickly enough to escape the
skewed hyperboloids. First, we note that

Z 0

�1

1
(1 + z2)3=2

dz = 1
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so we may choosec1; c2 such that c1 < c 2 < 0 and
Z c2

c1

1
(1 + z2)3=2

dz > 1 �
1
8

�

Recall the function h(z) from the proof of Theorem G.2.1; we rede�neh(z) here to be a similar function,
except that h(z) = 1

(1+ z2 )3= 2 when z 2 [c1; c2], a is chosen close enough toc1 so that h(z) < 1
(1+ z2 )3= 2 when

z < c1, and h(z) also goes to zero at12 c2. We �nd that
Z 1

�1
h(z)dz >

Z c2

c1

1
(1 + z2)3=2

dz > 1 �
1
8

�

Finally we de�ne the skewing functions for the cusps (k = 1 ; : : : ; ncusp ):

pk (z) = �
1 � 1

8 � (1 + 1
2k � 1 )

R1
�1 h(s)ds

Z z

�1

Z s

�1
h(� )d�ds

jp00
k (z)j =

1 � 1
8 � (1 + 1

2k � 1 )
R1

�1 h(s)ds
h(z) <

1
(1 + z2)3=2

When z � 1
2 c2 we have the stronger conditionp00

k (z) = 0. To make the cusps, we start with ncusp hyperboloids:
r k (z) =

p
1 + z2. Recalling Figure G.2 and the associated argument, we may use Lemma G.1.1 to ramp

to r k (z) = e(1 � r k (c2 =2)) z=jc2 j between z = 1
2 c2 and z = 0. We then skew the resulting surfaces using the

functions pk (z). Now let lef t k (z) and right k (z) be as in the proof of Theorem G.2.1 with these surfaces,
and similarly let Lef t (z) be the minimum values ofx of the cross sections of the leftmost hyperboloid added
in the �rst part of the proof. That is,

Lef t (z) = � 3g + f (z) �
p

1 + z2

When z > � we have

lef t 0
k (z) = p0

k (z) � r 0
k (z) > � (1 �

1
8

� (1 +
1

2k � 1 ))

right 0
k (z) = p0

k (z) + r 0
k (z) < � (1 �

1
8

� (1 +
1

2k � 1 ))

Lef t 0(z) = f 0(z) �
z

p
1 + z2

> � (1 �
1
2

� )

From the above inequalities it follows that

(lef t k � right k+1 )0(z) >
�

8 � 2k > 0

(Lef t � right 1)0(z) >
1
4

� > 0

Thus if we place our cusps with axes (before skewing) aty = 0 and small enoughx (decreasing ask increases),
they won't intersect one another or our other surface whenz > � . Hence we may choose the spacings large
enough that in fact they don't intersect except when z < a � 1. Finally, we join the bottoms using the BVK
construction, choosing the parametersb small enough so that the surgeries only a�ect parts of the surfaces
where z < a .
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Figure G.7: A surface with genus 1, 1 circular end and 2 cuspidal ends

A typical result of this construction is shown below. These results are summed up in the following
theorem:

Theorem G.2.4. Let g, ncirc , and ncusp be natural numbers such thatncirc � 1. Then there exists a
complete, negatively curved,C2 surface embedded inR3 with genusg, ncirc circular ends and ncusp cuspidal
ends.

G.3 Cusp Ends Only

This result raises the question of whether there are complete, negatively curved surfaces with only cusp
ends. We begin by examining the following situation: we havea surface given in cylindrical coordinates by
r = r (�; z ). The signed curvature of a cross sectionz = const: is given by

ks =
2r 2

� + r 2 � rr ��

(r 2 + r 2
� )3=2

so it is strictly convex (ks > 0) if and only if 2r 2
� + r 2 � rr �� > 0. The curvature of the surface is given by

K =
� (2r 2

� + r 2 � rr �� )rr zz � (rr �z � r � r z )2

(r 2 + r 2
� + r 2r 2

z )2

so K < 0 if the cross section is strictly convex andr zz is positive. Next, suppose we have a corner atz = 0:
for somez0 > 0

1. r 2 C2 in � z0 < z � 0 and 0� z < z 0

2. r zz > 0 when jzj 2 (0; z0) and r z (�; +0) > r z (�; � 0)

3. the cross sectionsz = const: are strictly convex

We have the following Lemma:
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Lemma G.3.1. In the above situation we may rede�ner (�; z ) when jzj � � , where � is an arbitrary positive
number less thanz0, so that r 2 C2 and the curvature remains negative.

We will refer to this as \ironing out." The proof is given in [2 ]. Note that, while the statement requires
C1 , the proof only usesC2. In what follows, we will say that a tube is properly contract ing at a certain
cross section ifr z < 0 and r zz > 0. As a �nal preliminary, consider a factorized form:

r (�; z ) = �( � )Z (z)

K =
� (2� 02 + � 2 � �� 00)� 2Z 00

Z (� 2 + � 02 + � 4Z 02)2

where � ; Z > 0. We see that K < 0 if �( � ) is strictly convex and Z 00(z) > 0. We have the following
Theorem, which rules out a certain type of counterexample toMilnor's conjecture:

Theorem G.3.2. There is no complete, negatively curved,C2 surface immersed in R3 whose ends are a
�nite collection of properly contracting cusps with strict ly convex cross sections.

Proof. Suppose thatM is such a surface. For a particular end, choose coordinates so that r = r (�; z ) for z
in some neighborhood ofz = 0. Since r z =r is continuous, it assumes a maximum on each cross section. Let
� b be the maximum of r z =r when z = 0. Now we de�ne

�( � ) = r (�; 0)

Z (z) = e� bz=2

Finally, we rede�ne r (�; z ) to be �( � )Z (z) when z � 0. It is easy to see that the hypotheses of Lemma G.3.1
are satis�ed, so we apply it to iron out the corner at z = 0. Then for all su�ciently large z,

K =
� (2� 02 + � 2 � �� 00)� 2

(� 2 + � 02 + � 4 1
4 b2e� bz)2

b2

4

This attains a (negative) maximum at each cross section. Theonly z dependence is in the denominator,
and it decreases with increasingz, so the absolute value ofK only increases with increasingz. Thus K is
bounded away from zero on the end. Repeating this procedure for each end in turn, we obtain an immersed
surface with curvature negative and bounded away from zero,which is precisely what is forbidden by E�mov's
Theorem.

Notice that the above argument only requires a single strictly convex cross section on each end where it
is properly contracting. We now apply this Theorem to a classical example.

Example G.1 (Six-punctured Sphere). The equation for this surface, which is shown below, is

x2y2 + x2z2 + y2z2 = 3

It is easy (though tedious) to show that this surface is negatively curved everywhere except the eight marked
points x; y; z = � 1. One might suppose that a bounded surgery could excise the points of zero curvature,
but the above Theorem proves that this is not the case, since the ends are properly contracting with strictly
convex cross sections.

It seems that convex cross sections may be something of a hindrance to having only cuspidal ends. We
have the following example:
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Figure G.8: The six-punctured sphere

Example G.2 (Vaigant's Surface). This surface, due to Vaigant[3], is given by

(z � u + v)2(8 + u + v)2 � M 2[2 � (u � 1)(v � 1)] = 0

where u =
p

1 + x2, v =
p

1 + y2 and M 2 (0; 1
2

p
2
). It is negatively curved, and has four cuspidal ends.

Note that the cross sections are not convex.

Figure G.9: Vaigant's surface and a (blown-up) cross section

G.4 Space at In�nity

Negatively curved surfaces may not be compact, so if one is complete (in the extrinsic sense) then it is
unbounded. To study the behavior at large distances we compactify R3 in the following way: de�ne the map
� on R3 in polar coordinates by

�(( r; �; � )) = (
2
�

tan � 1 r; �; � )
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With this identi�cation of R3 with the open unit ball, we identify the points of the unit sph ere with points
at in�nity. We now de�ne the points at in�nity of a surface to b e the limit points on the unit sphere of the
image of the surface under �. The �gure below illustrates thi s for the hyperboloid. The red circles are not

Figure G.10: Behavior of the hyperboloid at in�nity

in the image of �; they are the points at in�nity of the hyperbo loid. We have the following Theorem about
the points at in�nity:

Theorem G.4.1. The points at in�nity are not contained in any open hemisphere.

Proof. SupposeM is a negatively curved surface violating this. By rotational symmetry we may assume the
points at in�nity lie below the equator (at negative z). Now let

zmax = supf z : 9x9y(x; y; z) 2 M g

First suppose that zmax = 1 . Then we may choose a sequence of points (xn ; yn ; zn ) of M such that zn > n .
Then k(xn ; yn ; zn )k ! 1 , so k�(( xn ; yn ; zn ))k ! 1. Since the unit ball is compact, we may choose a
convergent subsequence �((x � (n ) ; y� (n ) ; z� (n ) )), and

lim
n !1

�(( x � (n ) ; y� (n ) ; z� (n ) )) z � 0

Thus, limn !1 �(( x � (n ) ; y� (n ) ; z� (n ) )) is a point at in�nity of M which is not below the equator, contradicting
our assumption, sozmax must be �nite. Now a negatively curved surface can not lie on one side of a plane
that touches it, so for all (x; y; z) 2 M we havez < z max . Next, we choose a sequence of points (xn ; yn ; zn )
of M such that zmax > z n > z max � 1

n . Again we choose a convergent subsequence �((x � (n ) ; y� (n ) ; z� (n ) )) of
�(( xn ; yn ; zn )). Let

p = lim
n !1

�(( x � (n ) ; y� (n ) ; z� (n ) ))

If p is on the unit sphere then limn !1 k(x � (n ) ; y� (n ) ; z� (n ) )k = 1 so

pz = lim
n !1

z� (n )

2
� tan � 1 k(x � (n ) ; y� (n ) ; z� (n ) )k

k(x � (n ) ; y� (n ) ; z� (n ) )k
= 0

Thus, p is a point at in�nity of M which is not below the equator, again contradicting our assumption, so p
must not be on the unit sphere, and hence is in the image of �. Since � is a homeomorphism, it follows that

lim
n !1

(x � (n ) ; y� (n ) ; z� (n ) ) = � � 1(p)
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so � � 1(p) is a limit point of M . SinceM is complete, � � 1(p) 2 M . However,

� � 1(p)z = lim
n !1

z� (n ) = zmax

so M lies to one side of a plane touching it, which is impossible.

As an application of this result, we derive a result concerning skewing in two di�erent ways, the second
more general. Consider a negatively curved horn with equation

x2 + y2 = r (z)2

where r 0(z) ! � k as z ! �1 and r 0(z) ! 0 as z ! 1 . How far can we move the point at in�nity
corresponding to the cusp by skewing the surface? If we maintain negative curvature with skewing function
f (z) (initially zero), we have

lim
z!1

f 0(z) =
Z 1

�1
f 00(z)dz <

Z 1

�1
r 00(z)dz

= lim
z!1

[r 0(z) � r 0(� z)] = k

so the point at in�nity must lie within the circle opposite th e other points at in�nity (which form a circle at
polar angle � = � � tan � 1 k), as shown in the �gure below. Using the space at in�nity we can put this more

Figure G.11: Cusp skewing limit

generally:

Proposition G.4.2. Let M be a negatively curved surface whose set of points at in�nityis S [ f pg. If S is
contained in the (not great) circle C, then p is contained in its opposite circle C0.

Proof. Suppose not. By rotational symmetry we may assume thatC lies in a plane below and parallel to
the xy plane, while p lies in the xz plane with positive x, as shown in the �gure below. We then describe
the great circle D (shown below in yellow) through the leftmost point of C and its antipodal point, the
rightmost point of C0, with normal vector in the xz plane. Now we simply tilt D slightly toward p, so that
all the points at in�nity lie on an open hemisphere (delimite d by D), which contradicts Theorem G.4.1.

With this and Theorem G.4.1, we can also rule out negatively curved surfaces with one cusp end or two
which are not antipodal, since cusp ends get a single point atin�nity. Furthermore, we can also rule out three
linearly independent cusps as follows: letv1; v2; v3 be the three directions of the points at in�nity. We simply
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Figure G.12: More general cusp skewing limit

apply a linear transformation (which doesn't change the sign of the curvature) to move those directions to
the standard basis vectors, and we have three points at in�nity which �t on an open hemisphere. Finally,
we give an argument which can be used to rule out various symmetric geometries.

Proposition G.4.3 (Symmetry Argument) . If C is a curve in a plane of symmetry� of a negatively curved
surface M , then C is a principle curve.

Proof. Let p 2 C. By symmetry, the normal vector N at p is in �, so the tangent plane to M is spanned
by the tangent vector to C and the normal vector to �. The principle directions (really lines) must still
be principle after re
ection across �, and are distinguisha ble from one another by the sign of the normal
curvature, so they must in fact be invariant under re
ection across �. Hence the tangent vector to C and
the normal vector to � are principle. Since this is true for ev ery p in C, C is principle.

From this it follows that C has no points of zero curvature, since this would imply normal curvature
zero. Hence we can rule out certain symmetric arrangements by inspecting a curve of symmetry. In the
following examples, the o�ending curves are shown in yellow. Approximate points of zero curvature are
marked. Assume the drawings have the obvious symmetries.

Figure G.13: Symmetric geometries (not negatively curved)
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H.1 Preliminaries

Throughout our discussion, we will say that a sequence,A, is binary if its only entries are 1 and� 1. Likewise,
a matrix is binary if its only entries are 1 and � 1. Given an n � n binary matrix, H , it is well known what
the maximum attainable determinant is of that size. This bound depends not only onn, but also the value
of n (mod 4). We are particularly interested in the case that n � 0 or 2 (mod 4). If n � 0 (mod 4), the
maximum possible determinant isn

n
2 ; this bound is achieved if and onlyHH T = nI n where I n is the n � n

identity matrix [10]. A matrix satisfying this property is s aid to be Hadamard, and it is conjectured that
a Hadamard matrix exists for every multiple of 4. If n � 2 (mod 4), the maximum possible determinant
is 2(n � 1)(n � 2)

n � 2
2 which Ehlich and Wojtas independently derived. However, the Ehlich/Wojtas bound

can only be achieved ifn � 1 is a sum of two squares [6], [13]. Since there are many positive integersn � 2
(mod 4) with n � 1 not equal to a sum of two squares, we may consider how close tothe Ehlich/Wojtas
bound the determinant of a binary matrix of this size can be. Before we can answer this question, however,
we require the following preliminary results and de�nition s.

De�nition H.1. Let A = ( a0; a1; : : : ; al � 1) be a complex-valued sequence of lengthl , then the k- th periodic
autocorrelation of A is

PA (k) =
l � 1X

i =0

ai ai + k

where i + k is taken modulo l for every k = 0 ; 1; : : : ; l � 1.

We can easily generalize this de�nition to any �nite number of complex-valued sequences of lengthl . If
X = A1; A2; : : : ; An is a collection of sequences of lengthl , then its k- th periodic autocorrelation is simply
the sum of the periodic autocorrelations of theA i . That is,

PX (k) =
nX

i =1

PA i (k):

We are speci�cally interested in the case when there are two binary sequences,A = ( a0; a1; : : : ; al � 1) and
B = ( b0; b1; : : : ; bl � 1). Accordingly, we will assume these conditions hold whenever we discussA and B in
the future, unless speci�ed otherwise. It is clear in this case that

P l � 1
i =0 (ai ai + k + bi bi + k ) = 2 l for k = 0.

De�nition H.2. Suppose there exists ac 2 Z such that PA (k) + PB (k) = c for every nonzerok, then A
and B are said to becompatible. If c = 0, then A and B form a periodic Golay pair.

Example H.1. Let A = (1 ; 1) and B = (1 ; � 1), then PA (1) + PB (1) = (1 + 1) + ( � 1 � 1) = 0. Thus, A and
B form a periodic Golay pair.

De�nition H.3. Let A = ( a0; : : : ; al � 1), then the l � l matrix

M =

2

6
6
6
4

a0 a1 : : : al � 1

al � 1 a0 : : : al � 2
...

...
. . .

...
a1 a2 : : : a0

3

7
7
7
5

is called the circulant matrix obtained from A.

With this basic understanding, we are now able to modify our de�nition of a periodic Golay pair. This
will create a new type of pair which has not been studied before and has applications to the maximal
determinant problem described above.



H-2 Adam Vollrath

H.2 Properties of Periodic and Alternating Golay Pairs

We now generalize the notion of a compatible pair by allowingthe non-trivial periodic autocorrelations of
a pair to take on multiple values. As we shall see, these generalized pairs share many of the same desirable
properties present in periodic Golay pairs. Moreover, suchpairs have been used to create binary matrices of
record determinant, speci�cally of sizes 22, 34, 70, and 106[11], [12].

De�nition H.4. We say that the binary pair A = ( a0; : : : ; al � 1) and B = ( b0; : : : ; bl � 1) is alternating
compatible with odd constants and even constantt if

l � 1X

i =0

(ai ai + k + bi bi + k ) =

8
<

:

2l if k = 0;
s if k is odd;
t if k is even,k 6= 0 :

If s = � 4 and t = 0, then we say A and B form an alternating Golay pair.

Example H.2. Let A = (1 ; 1; � 1; � 1) and B = (1 ; � 1; 1; � 1). Then, PA (1) + PB (1) = � 4 = PA (3) + PB (3)
and PA (2) + PB (2) = 0, so A and B form an alternating Golay pair.

From the de�nition of alternating compatible sequences it is immediate that if s and t are distinct, then l
must be even. This is becausePA (k) + PB (k) = PA (k + l) + PB (k + l), and the value of the nonzero periodic
autocorrelation depends only on whetherk is even or odd. It is worth noting, however, that if s = t (that
is, if A and B are compatible in the usual sense), thenl need not be even.

Proposition H.2.1. SupposeA = ( a0; : : : ; al � 1) and B = ( b0; : : : ; bl � 1) form an alternating compatible pair
with distinct odd constant s and even constantt. Then,

 
l � 1X

i =0

ai

! 2

+

 
l � 1X

i =0

bi

! 2

=
�

2 +
s
2

+
t
2

�
l � t:

Proof. Straightforward calculations show that

 
l � 1X

i =0

ai

! 2

+

 
l � 1X

i =0

bi

! 2

=
l � 1X

i =0

�
ai

2 + bi
2�

+
l � 1X

i =1

(PA (i ) + PB (i ))

= 2 l + s
l
2

+ t
�

l
2

� 1
�

=
�

2 +
s
2

+
t
2

�
l � t:

Corollary H.2.2. If A and B form an alternating Golay pair of length l , then precisely l
2 entries in both

A and B are 1.

Proof. Letting s = � 4 and t = 0, Proposition H.2.1 shows that (
P

i ai )
2 + (

P
i bi )

2 = 0. Thus, the sum of
the entries of A and B must both be zero, which occurs if and only if precisely l

2 entries of both A and B
are 1.
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SupposeA and B form a periodic Golay pair of length l , and let � denote the sum of the components
of A and � denote the sum of the components ofB . Then, it is well known that 2 l = � 2 + � 2 and hence
l = ( � + �

2 )2 + ( � � �
2 )2 (this fact also follows from Proposition H.2.1, since the length of a periodic Golay pair

must be even). The following theorem presents the analogouscondition in the case of alternating Golay
sequences.

Theorem H.2.3. SupposeA = ( a0; : : : ; al � 1) and B = ( b0; : : : ; bl � 1) form an alternating Golay pair of
length l , then

l =

0

@
l= 2� 1X

i =0

a2i

1

A

2

+

0

@
l= 2� 1X

i =0

b2i

1

A

2

:

Proof. Let M and N be the l � l circulant matrices obtained from A and B respectively, and let

H =
�

M N
� N T M T

�
:

We wish to compute the product HH T HH T in two separate ways: �rst by calculating ( HH T )(HH T ) and
then by determining H (H T H )H T . The desired result comes from comparing the (1,1)- entriesof these two
products, which we denote by� .

Let � = ( � ij ) be the l � l matrix de�ned by

� ij =

8
<

:

2l if i = j ;
� 4 if i + j is odd;

0 if i + j is even,i 6= j:

Because circulant matrices commute, we have

(HH T )(HH T ) =
�
� 0
0 �

� 2

=
�
� 2 0
0 � 2

�
:

Hence, if v 2 Rl is v = (2 l; � 4; 0; : : : ; � 4), then

� = v � v = 4 l2 + 8 l: (H.1)

Let EA =
P l= 2� 1

i =0 a2i and EB =
P l= 2� 1

i =0 b2i . Observe that

EA +
l= 2� 1X

i =0

a2i +1 =
l= 2� 1X

i =0

a2i +
l= 2� 1X

i =0

a2i +1 =
l � 1X

i =0

ai = 0

by Corollary H.2.2, and thus
P l= 2� 1

i =0 a2i +1 = � EA . Likewise,
P l= 2� 1

i =0 b2i +1 = � EB . We see

H (H T H )H T =
�

M N
� N T M T

� �
� 0
0 �

� �
M T � N
N T M

�
;
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and hence

� = a0

0

@2la0 � 4
l= 2� 1X

i =0

a2i +1

1

A + � � � + al � 1

0

@2la l � 1 � 4
l= 2� 1X

i =0

a2i

1

A

+ b0

0

@2lb0 � 4
l= 2� 1X

i =0

b2i +1

1

A + � � � + bl � 1

0

@2lbl � 1 � 4
l= 2� 1X

i =0

b2i

1

A

= 2 l
l � 1X

i =0

(ai
2 + bi

2) � 4

0

@2
l= 2� 1X

i =0

a2i

l= 2� 1X

i =0

a2i +1 + 2
l= 2� 1X

i =0

b2i

l= 2� 1X

i =0

b2i +1

1

A

= 4 l2 + 8 EA
2 + 8 EB

2: (H.2)

Combining (H.1) and (H.2), we have that 4l2 + 8 l = 4 l2 + 8 EA
2 + 8 EB

2 and therefore l = EA
2 + EB

2.

The results of Theorem H.2.3 lead us to consider if there exists a relationship between the sum of the even
and odd entries of a periodic Golay pair and its length. SupposeA = ( a0; : : : ; al � 1) and B = ( b0; : : : ; bl � 1)
form a periodic Golay pair, and let

EA =
l= 2� 1X

i =0

a2i ; DA =
l= 2� 1X

i =0

a2i +1 ; EB =
l= 2� 1X

i =0

b2i ; DB =
l= 2� 1X

i =0

b2i +1 : (H.3)

Consider the complex-valued polynomialsQA (x) = a0 + a1x + � � � + al � 1x l � 1 and QB (x) = b0 + b1x + � � � +
bl � 1x l � 1, then for any l- th root of unity, � ,

QA (� )QA (� � 1) + QB (� )QB (� � 1) = 2 l:

Hence, if � 1 = 1 and � 2 = � 1, then

4l = QA (� 1)QA (� � 1
1 ) + QB (� 1)QB (� � 1

1 ) + QA (� 2)QA (� � 1
2 )

+ QB (� 2)QB (� � 1
2 )

= ( EA + DA )2 + ( EB + DB )2 + ( EA � DA )2 + ( EB � DB )2

= 2
�
EA

2 + DA
2 + EB

2 + DB
2�

:

Thus,
2l = EA

2 + DA
2 + EB

2 + DB
2

which provides a nice property regarding the length of any periodic Golay pair. Notice that this property is
equivalent to stating that

EA DA = � EB DB : (H.4)

This gives rise to the following result which greatly improves the e�ciency of the search described in Section
4.

Theorem H.2.4. Assume A = ( a0; : : : ; al � 1) and B = ( b0; : : : ; bl � 1) form a periodic Golay pair of length
l = 2 m for some oddm 2 Z, and assume further that there is a unique decomposition ofl into a sum of two
squares of nonnegative integers. Then, ifEA ; DA ; EB ; and DB are as in (H:3), then

l = EA
2 + DA

2 = EB
2 + DB

2:
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Proof. Let � and � be the respective sums of the entries ofA and B , then 2l = � 2 + � 2. Furthermore, this
decomposition into a sum of squares is unique, since the decomposition of l into a sum of squares is unique.
By (H.4), EA DA = � EB DB = 
 for some
 2 Z, so � = EA + 


E A
and likewise � = EB � 


E B
. Multiplying

the �rst equation by EA and the second byEB gives

EA =
� �

p
� 2 � 4

2

; EB =
� �

p
� 2 + 4 

2

: (H.5)

BecauseEA and EB must both be integers, it follows that � 2 � 4
 = p2 and � 2 + 4 
 = q2 for some integers
p and q. Therefore, p2 + q2 = � 2 + � 2 = 2 l , so either p2 = � 2 and q2 = � 2 or vice versa by the uniqueness
hypothesis.

Supposep2 = � 2, then EA = 0 or � . However, this is impossible because then eitherEA or DA is 0,
which contradicts the assumption that m is odd. Thus, p2 = � 2 and q2 = � 2. Substituting these values into
(H.5) gives

EA =
� � �

2
; DA =

� � �
2

; EB =
� � �

2
; DB =

� � �
2

:

Without loss of generality, we may assumeEA = EB = � + �
2 since shifting the entries of an individual

sequence in a periodic Golay pair does not a�ect its periodicautocorrelation. Hence, DA = � � �
2 and

DB = � � �
2 , and the result follows from taking EA

2 + DA
2 and EB

2 + DB
2.

Arasu and Xiang proved that if l = p2t u is the length of a periodic Golay pair for some primep � 3 (mod 4)
and positive integerst and u with u relatively prime to p, then u � 2pt [1]. Because of the close similarity
between the properties of alternating Golay pair lengths and periodic Golay pair lengths, we conjecture a
similar result holds for alternating Golay pairs.

H.3 Implementing Alternating Golay Pairs to Construct Bina ry
Matrices of Record Determinant

With this basic understanding of the properties of alternating Golay pairs, we return to the issue of maximal
determinants; our objective is to apply these pairs to create binary matrices of record determinant. The
following is a well known result whose proof is omitted.

Theorem H.3.1. AssumeA and B form a periodic Golay pair of length l , and let M and N be the circulant
matrices obtained from A and B , respectively. Then,

H =
�

M N
� N T M T

�

forms a 2l � 2l Hadamard matrix.

As mentioned previously, ifn � 2 (mod 4), then for any binary n� n matrix H , det(H ) � 2(n� 1)(n� 2)
n � 2

2

[6], [13]; we denote this bound by� (n). We wish to use a similar construction of circulant matrices as in
Theorem H.3.1 to generaten � n binary matrices of record determinant where n � 2 (mod 4) but with
alternating Golay pairs. However, we �rst require the following lemma:
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Lemma H.3.2. Let S = ( sij ) be then � n matrix de�ned by

sij =
�

k if i + j is even;
� k if i + j is odd

for some k 2 C and 1 � i; j � n, and let R = S + dI n where I n is the n � n identity matrix. Then,
det(R) = ( kn + d)dn � 1.

Proof. SinceS is not invertible, 0 is an eigenvalue ofS. The dimension of its eigenspace isn� 1, because every
row of S is a multiple of its �rst row. Moreover, kn is an eigenvalue ofS with eigenvector v = ( x1; : : : ; xn )
wherex i = ( � 1)i +1 for i = 1 ; : : : ; n. Thus, kn and 0 are the only eigenvalues ofS with algebraic multiplicities
1 and n � 1, respectively. By the Spectral Theorem, there exists and invertible n � n matrix Q such that
Q� 1SQ is the n � n matrix which has kn in its (1,1)- entry and zeroes everywhere else. Thus,

det(R) = det( S + dI n ) = det( Q� 1(S + dI n )Q) = det( Q� 1SQ + dI n )

= det

0

B
B
B
B
@

2

6
6
6
4

kn 0 : : : 0
0 0 : : : 0
...

...
. . .

...
0 0 : : : 0

3

7
7
7
5

+

2

6
6
6
6
4

d 0 : : : 0

0 d
. . .

...
...

. . .
. . . 0

0 : : : 0 d

3

7
7
7
7
5

1

C
C
C
C
A

= ( kn + d)dn � 1:

With this lemma, it is now possible to determine how close matrix constructions from alternating Golay
pairs come to reaching the Ehlich/Wojtas bound.

Theorem H.3.3. Suppose thatA and B form an alternating Golay pair of length l . Let M and N denote
the l � l circulant matrices obtained from A and B , respectively, and letX , J , and K be the following2 � 2
and 2 � l matrices:

X =
�

1 1
1 � 1

�
; J =

�
1 : : : 1
1 : : : 1

�
; K =

�
1 : : : 1

� 1 : : : � 1

�
:

If H is the 2l + 2 � 2l + 2 matrix given by

H =

2

4
X J K
J T M N
K T � N T M T

3

5 ;

then det(H ) = 2(2 l) l +1 .

Proof. Observe that

HH T =

2

4
(2l + 2) I 2 P Q

PT R 0
QT 0 R

3

5

where I 2 is the 2� 2 identity matrix, P and Q are the 2� l matrices

P =
�

2 : : : 2
0 : : : 0

�
; Q =

�
0 : : : 0
2 : : : 2

�
;
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and R = ( r ij ) is the l � l matrix de�ned by

r ij =

8
<

:

2l + 2 if i = j ;
� 2 if i + j is odd;

2 if i + j is even,i 6= j:

Let Y be the 2� 2l matrix obtained by gluing P and Q together, and let

Z =
�
R 0
0 R

�
;

then

det(H )2 = det
��

(2l + 2) I 2 Y
Y T Z

��

= det
��

(2l + 2) I 2 Y
Y T Z

� �
I 2 0

� Z � 1Y T I 2l

��

= det
��

(2l + 2) I 2 � Y Z � 1Y T Y
0 Z

��

= det ( Z ) det
�
(2l + 2) I 2 � Y Z � 1Y T �

It is straightforward to verify that

Z � 1 =
�
� 0
0 �

�

where � = ( 
 ij ) is the l � l matrix given by


 ij =

8
<

:

2l � 1
4l 2 if i = j ;

1
4l 2 if i + j is odd;
� 1
4l 2 if i + j is even,i 6= j:

Thus, Y Z � 1Y T = 2 I 2, so (2l + 2) I 2 � Y Z � 1Y T = 2 lI 2. By Lemma H.3.2, det(R) = 2(2 l) l , so det(Z ) =
det(R)2 = 2 2(2l )2l . Therefore,

det(H ) =
q

det(Z ) det(Z � Y Z � 1Y T ) =
q

22(2l )2l (2l )2 = 2(2 l) l +1 :

If H is an n � n matrix constructed from an alternating Golay pair of length l as in the previous theorem,
then det( H )

� (n ) = n � 2
n � 1 and therefore

lim
n !1

det(H )
� (n)

= 1 :

Hence, alternating Golay pairs are excellent for producingn � n binary matrices of large determinant for
n � 2 (mod 4) whenever the Ehlich/Wojtas bound is not attainable. As mentioned before, the construction
of H as in Theorem H.3.3 has been used to generate binary matricesof record determinant for n = 22, 34,
70, and 106 [11], [12].
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H.4 The Search for Alternating and Periodic Golay Pairs

In 1997 and 1998 papers, Gysin and Seberry provide a method for locating D-optimal designs using general-
ized cyclotomy [8], [9]. We utilized this method to search for a variety of pairs. A description of the method
is provided below.

Let x and l be positive integers with x relatively prime to l . De�ne the i - th generalized coset ofl with
respect tox to be

Ci =
[

k2 Z=l Z

ix k (mod l)

for i = 0 ; 1; : : : ; t for somet 2 Z. Note that these generalized cosets are only cosets in the usual algebraic
sense ifl is prime. In fact, if l is composite, then there will be nonzero generalized cosetsof di�erent lengths.
They do, however, form a partition of Z=lZ regardless of their lengths. Letvi 2 Z l be the incidence vector
corresponding to Ci ; that is, the k- th entry of vi is 1 if k 2 Ci and 0 otherwise for k = 0 ; 1; : : : ; l � 1.
Then, by choosing appropriate sums and di�erences of thevi , we obtain a list of possible sequence pairs
satisfying the desired periodic autocorrelation. By appropriate sums and di�erences, we refer to the linear
combinations of thevi with weights 1 and � 1 which result in the requisite sums of the entries of the potential
A and B sequences. Ifl is even, then each element in a given coset is either even or odd. This fact and
Theorems H.2.3 and H.2.4 greatly reduce the number of potential alternating and periodic Golay pairs to
be tested.

Example H.3. Suppose we would like to search for an alternating Golay pair, denoted by A and B , of
length l = 10. If x = 9, then C0 = (0) ; C5 = (5) and Ci = ( i; 10 � i ) for i = 1 ; 2; 3, and 4. Since
we are searching for alternating Golay pairs, exactly �ve entries of A and B must be 1 and the other
�ve must be � 1. In fact, Theorem H.2.3 requires that four of the even-ordered entries of A must be 1,
and three of the even-ordered entries ofB must be 1. Thus, the only possibility for A in this case is
A = � v0 � v1 + v2 � v3 + v4 + v5. Likewise, B must be obtained by adding the incidence vectors of one
even coset of size 2, one odd coset of size 2, andv0, and subtracting o� the remaining incidence vectors.
Hence, A = ( � 1; � 1; 1; � 1; 1; 1; 1; � 1; 1; � 1) and B = (1 ; 1; � 1; � 1; 1; � 1; 1; � 1; � 1; 1) form an alternating
Golay pair of length 10. In this case,B = v0 + v1 � v2 � v3 + v4 � v5.

Due to the 
exible nature of the program, it is possible to search for several di�erent types of sequences
with various periodic autocorrelations. However, we focused our search on three types of pairs: periodic
Golay, alternating Golay, and generalized Legendre pairs.A generalized Legendre pairis two binary sequences
whose entry sums are both 1 and whose periodic autocorrelations sum to � 2. Generalized Legendre pairs
are of special interest as the only known restriction of their lengths is that they be odd. Moreover, if l is
the length of a generalized Legendre pair, then a 2l � 2l Hadamard matrix exists. Therefore, if there exists
a generalized Legendre pair for every positive, odd integer, then there exists a Hadamard matrix of size
4n � 4n for every positive integer n.

The results of the search are provided below in addition to two previously known pairs which were not
found via generalized cyclotomy; they are included for completeness1. Missing lengths in the generalized
Legendre case up to 51 can be located in [7]. In the tables, we replace 1 by + and � 1 by � for clarity, and
x denotes the relatively prime element used to generate the generalized cosets.

If A = ( a0; : : : ; al � 1) and B = ( b0; : : : ; bl � 1) are two binary sequences, then they form aGolay comple-

1y indicates the pair is listed in [12]
z indicates the pair is listed in [2].
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mentary pair if
l � k � 1X

i =0

ai ai + k + bi bi + k = 0

for k = 1 ; 2; : : : ; l � 1. It is straightforward to verify that every Golay complementary pair is a periodic
Golay pair. In 1998 and 2007, Dokovic found periodic Golay pairs of lengths 34 and 50 which are known to
possess no Golay complementary pairs [4], [3]. This is the �rst time a periodic Golay pair of length 82 has
been found and only the third time that a periodic Golay pair has been discovered for a given length which
does not admit any Golay complementary pairs [2].

Table H.1: Alternating Golay Pairs
Length x Pair

2 1 + � ;
+ �

4 1 + + �� ;
+ � + �

8 1 + + + � + � �� ;
+ + � + � + ��

10 9 + + � + � � � + � +;
+ + � � + � + � � +

16 1 + + + + + � + � � � + � + � �� ;
+ + + � + � � + � + � � + + ��

20 9 + + � + � + + + � + � + � � + � � � � +;
+ + + + � � � + � + + � � + � � � + + �

26 3 + + + + + + + � � + + � + � � + � � + + � � � � �� ;
+ + � + � + � + � + � + � � + + + � � + � + + � ��

34 y n/a + + � + + � + + + + � + � + � + � � � + � � � � � + + + + + � � �� ;
+ + � � + � + � + + � � � � + � � + � + + + � � + + + � + � + + ��

52 9 + + + + + � + + � + � + + + � � � � + � � + � + � � � + � + � � � +
+ + + + � � � � � + � � + + � � ++;
+ + � + + � � � � + � � + � + + + � � + � + + + � � + + � + � + � +
� + + + � � + � + + � � � � + � � +

Table H.2: Periodic Golay Pairs
Length x Pair

2 1 ++;
+ �

4 1 + + + � ;
+ + + �

8 1 + + + + + + �� ;
+ + � + � + ��

10 1 + + + + + + � + �� ;
+ + + � + � + + ��

16 7 + + + + � + + + + � + � � � + � ;
+ + + � � � + + + � + + � + + �

20 z n/a + + + + � + � � � + + � � + + � + � � +;
+ + + + � + + + + + � � � + � + � + + �

26 3 + + + + + � + + � + + + + � � � � + + � � + � + � +;
� + + + � + + + � + � + � � + + + � + + � + + � ��

82 37 + + + + + + � + + + + � � + � � + + + + + + � + � + � � � + � + + �
� � + + � + + � + � � + + + � + + + � � � + � + � + � � + � + � ++
� � � + + � + � � � + � ++;
+ + + � � + + + � � � + + + � � + � + + � � + � + + � + + + + + � +
� + + + � � � � � + + + + + � + + + � + + � + + + + � + � � � � + �
� + + � � + � � � � � + + �
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Table H.3: Generalized Legendre Pairs
Length x Pair

3 2 + + � ;
+ + �

5 4 + + � � +;
+ � + + �

7 2 + + + � + � � ;
+ + + � + � �

9 1 + + + + � + � � � ;
+ + � + � + + � �

11 3 + + � + + + � � � + � ;
+ + � + + + � � � + �

13 3 + + + + � + + � � + � � � ;
+ + � + � � � + + + � + �

15 2 � + + + + � + � + + � � + � � ;
+ + + + � + � + + � � + � � �

17 2 + + + � + � � � + + � � � + � + +;
+ � � + � + + + � � + + + � + � �

19 4 + + � � + + + + � + � + � � � � + + � ;
+ + � � + + + + � + � + � � � � + + �

23 2 + + + + + � + � + + � � + + � � + � + � � � � ;
+ + + + + � + � + + � � + + � � + � + � � � �

29 4 + + � � + + + + � + � � � + � � + � � � + � + + + + � � +;
+ � + + � � � � + � + + + � + + � + + + � + � � � � + + �

31 4 + + + + + � + + + � � � + � + � + + � + � � � � + + � � + � � ;
+ + + + + � + + + � � � + � + � + + � + � � � � + + � � + � �

37 3 + + � + + � � + � + + + + � � � + � � � � + � � � + + + + � + � � + +
� +;
+ � + � � + + � + � � � � + + + � + + + + � + + + � � � � + � + + � �
+ �

41 3 + + + � + + � � + + + � � � � � + � + � + + � + � + � � + � � � + + +
� � + + � + +;
+ � � + � � + + � � � + + + + + � + � + � � + � + � + + + + + � � � +
+ � � + �� ;

43 4 + + + � + � � + + � � + � � � � + � + � � + + � � � + + + + + � + � +
+ � � � + � ++;
+ + + � + � � + + � � + � � � � + � + � � + + � � � + + + + + � + � +
+ � � � + � ++

47 4 + + + + + � + + + + � � + � + � + + + � � + � � + + � + + � � � + � +
� + + � � � � + � � �� ;
+ + + + + � + + + + � � + � + � + + + � � + � � + + � + + � � � + � +
� + + � � � � + � � ��

49 18 + + + + + + + + � � + + � + + � � � + + � � + + � � � � + � + + � + �
� + � + � � + � � � � � ++;
+ + + � � � � + � � � + + + + � � + + � + + � � + � + + + � + � � � +
+ + � + � + � + � � + � + �

53 4 + + � � + � + + � + + + � + � + + + � � � � � � + + � � + + � � � � �
� + + + � + � + + + � + + � + � � +;
+ � + + � + � � + � � � + � + � � � + + + + + + � � + + � � + + + + +
+ � � � + � + � � � + � � + � + + �
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I.1 Introduction

The syllogistic fragment we deal with �rst, L (all; most), requires the following de�nitions:

\Syntax" We start with a set of variables X , Y , : : :, representing plural common nouns. These variables
are used in sentences of the following form:

All X are Y ;Most X are Y

These are the only types of sentences allowed, and there is norecursion whatsoever.

Notation If � is a set of sentences in L (all; most), we write � all for the subset of � containing only sen-
tences of the formAll X are Y . We do this for Most as well, writing � most .

A proof in L (all; most) consists of a two-dimensional proof tree.

De�nition I.1. A proof tree over � is a �nite tree T whose nodes are labeled with sentences in our fragment,
with the additional property that each node is either an element of � or comes from its parent(s) by an
application of one of the rules. � ` S means that there is a proof treeT for over � whose root is labeled S.

Example I.1.1. Suppose we wanted to see

f All X are Y,All Y are Z , Most Y are X g ` Most Y are Z :

Most Y are X
All X are Y All Y are Z

All X are Z
Most Y are Z

Semantics One starts with a set M , a subset [[X ]] � M for each variable X . This gives a model M =
(M; [[ ]]). We then de�ne

M j= All X are Y i� [[ X ]] � [[Y ]]
M j= Most X are Y i� j[[X ]] \ [[Y ]]j > 1

2 j[[X ]]j

We allow [[X ]] to be empty, and in this case, recall that M j= All X are Y vacuously. Also, note that Most
requires strictly more than half of one set to intersect with the other. And if � i s a �nite or in�nite set of
sentences, then we writeM j= � to mean that M j= S for all S 2 �.

Semantic de�nition � j= S means that every model which makes all sentences in the set � true also
makesS true. This is the relevant form of semantic entailment for this paper.

I.2 (Partial) Completeness of L (all ; most )

Before we move on to the completeness of our system, we note that it is easily sound.

Lemma I.2.1 (Soundness). If � ` S, then � j= S.
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All X are X
All X are Z All Z are Y

All X are Y
Most X are Y
Most X are X

Most X are Y
Most X are X

Most X are Z All Z are Y
Most X are Y

Most Z are Y All X are Z All Z are X
Most X are Y

All Y are X All X are Z Most Z are Y
Most X are Y

Figure I.1: The logic of All and Most.

Proof. The soundness of this system follows easily by induction on proof trees. The base case involves
verifying the soundness of the rules of inference themselves. For instance, the soundness of the last rule in
Figure I.1 can be seen as follows (we omit the semantic brackets- the di�erence between variables and sets
is understood): givenjZ \ Y j > 1

2 jZ j, Y � X , and X � Z , we seeY � Z , so jZ \ Y j = jY j = jX \ Y j, and
also jX j � j Z j, giving jX \ Y j = jZ \ Y j > 1

2 jZ j � 1
2 jX j. The rest of the rules are straighforward.

We can split the proof of completeness forL (all; most) into two separate proofs: one in which we prove
� j= Most X are Y =) � ` Most X are Y , and a similar result for All X are Y . The latter case is much
easier, and we will examine it �rst. Note that throughout, we 're assuming that � is a �nite set, and that all
the models we use are �nite (but perhaps an arbitrarily large size).

Theorem I.2.1. Let � � L (all ; most). Then if � j= All X are Y , then � ` All X are Y

Proof. In this case, we note the following simple result from [1]: the fragment L (all) is complete. That is,
the fragment which consists only ofAll statements is complete, and indeed, our current system includes the
old system's syntax, semantics, and rules of inference. Therefore, if we were to show that �all j= S, where
S = All X are Y , then citing this result, � all ` S. Our de�nition of proof clearly allows for expansion of
hypotheses, i.e. � ` S. So it su�ces to show � all j= S.

To see this, let M = ( M; [[ ]]) be a model of � all . The main idea of this proof is that, for any two �nite
setsA and B , we can choose a �nite set of elementsQ, disjoint to A and B , so that j(A [ Q) \ (B [ Q)j >
1
2 j(A [ Q)j. Consider the collection C = f [[U ]] : U 2 V(�) g, where V (�) is collection of variables which
appear in �. We can pick a set Q, disjoint from

S
C, whose size is su�ciently large. Now we construct a

new modelM 0 = ( M 0; [[ ]]M 0) where M 0 = M [ Q, and for any U, [[U ]]M 0 = [[ U ]]M [ Q. Given that we picked
Q to be su�ciently large, for any sentence Most U are W 2 �, M 0 j= Most U are W . It is also clear that
if M j= All X are Y , then M 0 j= All X are Y. So M 0 j= �. Thus, M 0 j= S. But S is an All statement, so
sinceM 0 interprets all variables with the same added subset, as compared to M , S must have held in M . So
M j= S, and we have shown that �all j= S.

The other half of the completeness result has proved more elusive. We present here the proof of a couple
special cases, hopefully towards the proof of completeness.

Theorem I.2.2. Let � � L (all ; most), S be Most X are Y . Given that � ` All X are Y , then � j= S =)
� ` S.
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Proof. We prove the implication by contrapositive: so assume, along with � ` All X are Y , that � 6` S.
We wish to show � 6j= S. To do this, we need to �nd a model of � which falsi�es S.

Consider the modelM = ( f�g ; [[ ]]), with [[ X ]] = ; , and if � ` All Z are X then [[Z ]] = ; . Otherwise,
[[Z ]] = M = f�g . To see that M j= �, note that the only way we could have M 6j= Most U are W is if one
of [[U ]],[[W ]] is ; . If [[U ]] = ; , then � ` All U are X . But given Most U are W , our rules give usMost U
are U. But with All U are X , this gives Most U are X , henceMost X are X , hence, from our assumption
that � ` All X are Y , we would end up with � ` Most X are Y , which contradicts our contrapositive as-
sumption. The case is similar if [[W ]] = ; . Thus, if T = Most U are W is a Most statement in �, then M j= T.

SupposeP = All U are W is a sentence in � and M 6j= P. This is only possible if [[U ]] = M = f�g and
[[W ]] = ; . But then we must have had � ` All W are X . But then this combined with P gives usAll U are
X , from which it follows that [[ U ]] = ; , a contradiction. So M j= P.

So we have shown thatM j= �. But obviously M 6j= S, since [[X ]] = ; . So we have show �6j= S.

Here is the proof of another subcase. We may now assume that �6`All X are Y .

Theorem I.2.3. Let � � L (all ; most), S be Most X are Y . Given that � ` All Y are X , then � j= S =)
� ` S.

Proof. Again, we're going to take a contrapositive approach to thisproof. So assume that � 6`Most X are Y .
So we're looking for a modelM which satis�es � but falsi�es S. Let M = f 1; 2; : : : ; 7g, A = f 1; 2; 3g,
B = f 1; 2; 3; 4g. The variable assignments are as follows: let [[X ]] = M , [[Y ]] = A. Now for all other Z we
case three cases: if �̀ All X are Z , then let [[Z ]] = M . If � ` All Z are Y, then let [[Z ]] = A. Note that we
can't have both, because then we'd have �` All X are Y , which we assumed we didn't. If neither of these
hold for Z , then let [[Z ]] = B .

Now we want to see that this model satis�es �. There are only three ways that our model could falsifyAll
U are V, and they are all impossible, given thatAll U are V is in �. For if [[ V ]] = A, then � ` All V are Y ,
so that then � ` All U are Y , so that by de�nition [[ U ]] = A. If [[V ]] = B , then we'd be in trouble if
[[U ]] = M ; but this is impossible, since this would require � ` All X are U, and hence � ` All X are V , so
that [[ V ]] = M as well. So this shows thatM sati�es any All sentence in �.

The only way for our model to falsify Most U are V would be to have [[U ]] = M and [[V ]] = A. But
if Most U are V is in � this is impossible. To see this: in order to have those assignments, we must have
� ` All X are U and � ` All V are Y . Now we also are given that � ` All Y are X . From these, we get
the following proof tree:

All X are U Most U are V
All V are Y All Y are X

All V are X
Most X are V All V are Y

Most X are Y

Thus, we would have � ` Most X are Y , which is contrary to our assumption. Thus, M j= �. But clearly
M 6j= S. So therefore � 6j= S, and we're done.
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I.3 Verbs: A Hilbert System

In his paper [2], Prof. Moss describes a syllogistic fragment which includes sentences of the formNP V NP,
where any occurenceNP is noun phrase of the formAll X or SomeX , and V is some verb which takes a
direct object. In this paper, I outline a complete Hilbert st yle system which includes such sentences. We
will refer to this system as H (all; some; verbs).

Syntax We have variablesX , Y , Z , etc. representing plural nouns. The basic sentences in this fragment
are of the following forms: All X are Y , SomeX are Y , and Q1X V Q2Y, where Q1 and Q2 can take the
form Someor All . The verb V , for the purposes of this paper, will only take formseeand not see, wherenot
seewill act as a complement to see. When mixing existential and universal phrases, ambiguitymay arise:
for instance, we could take \All students write some paper" to mean either that each student writes his or
her own paper, or to mean that there is some paper which all students helped to write. For sentences with
verbs, and in which Q1 6= Q2, we will include a notion of scope: the scope of a basic sentence will tell us
how to read it. We denote subject wide scope with answstag, and object wide scope with anowstag. For
example, (All X see some Y )sws should be read as \For eachx 2 X , there is a y 2 Y such that x seesy",
whereas theowsversion would be read as \There is somey 2 Y such that, for all x 2 X , x seesy."

The language of the systemH (all; some; verbs) consists of the boolean combinations of these basic sen-
tences, using the usual boolean connectiveŝ, _, and : . It is understood that A ! B is just convenient
shorthand for : A _ B .

Now we introduce some more shorthand. We will identify the verb sentences with symbols of the form
� i;U;W , sometimes dropping the U and W when they are clear from context. The associations are as follows:

All U see allW ) � 1;U;W (SomeU see allW )sws ) � 2;U;W

(All U see someW )ows ) � 3;U;W (SomeU see allW )ows ) � 4;U;W

(All U see someW )sws ) � 5;U;W SomeU see someW ) � 6;U;W

For the corresponding sentences with \not see", we put a bar over the � symbol. For example, � 1;U;W

would stand for All U not see all W . Given this, we use a mneumonic for the negation of the� 's which
arises from their natural interpretation: : � 1 � � 6, : � 2 � � 5, : � 3 � � 4, and then three more in which the
roles of the subscripts are switched.

Just like any Hilbert style system, H (all; some; verbs) has axioms. As the reader may expect, there are a
lot of axioms for this system. A full list is contained in the appendix. Here are a few examples:

All X are Y ^ All Y are Z ! All X are Z
(SomeX see allY )sws ! (SomeX see allY )ows

SomeX are Y ! SomeY are X

Note that the system L (all; most) had many rules of inference and no axioms (one rule of inference
happened to have no antecedents). The systemH (all; some; verbs), on the other hand, has many axioms and
just one rule of inference, and that isModus Ponens . It states that, given A and A ! B , we can inferB .
A proof from hypotheses � in the system H (all; some; verbs) would be a �nite list of boolean formulas, say
f � 1; � 2; : : : ; � n g, such that for all i , � i is an axiom, � i 2 �, or � i is the result of an application of modus
ponens on two formulas from the setf � 1; � 2; : : : ; � i � 1g. We say that � ` S if S is the last line in some
proof from �. We can now de�ne, for any variables U and V , T h� (U; V) := f� � i;U;V : � ` � � i;U;V g, where
� � i can stand for � i or : � i .
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Semantic notions As with the fragment L (all; most), the semantics is based on models. Given a model
M = ( M; [[ ]]), we have [[see]] � M � M is a binary relation on M , and we de�ne [[not see]] = M � M n[[see]].
We can then de�ne the following:

M j= All X are Y i� [[ X ]] � [[Y ]]
M j= SomeX are Y i� j[[X ]] \ [[Y ]]j 6= ;
M j= � 1;X;Y i� ( 8x 2 [[X ]]8y 2 [[Y ]]) x[[see]]y
M j= � 2;X;Y i� ( 9x 2 [[X ]]8y 2 [[Y ]]) x[[see]]y
M j= � 3;X;Y i� ( 9y 2 [[Y ]]8x 2 [[X ]]) x[[see]]y
M j= � 4;X;Y i� ( 8y 2 [[Y ]]9x 2 [[X ]]) x[[see]]y
M j= � 5;X;Y i� ( 8x 2 [[X ]]9y 2 [[Y ]]) x[[see]]y
M j= � 6;X;Y i� ( 9x 2 [[X ]]9y 2 [[Y ]]) x[[see]]y

I.3.1 Basic Observations

From here forward, by basic sentence we mean anyAll , Some, or Verb sentence, or a negation of a sentence.
It is the same idea as a \literal" in boolean algebra.

The following observations are key to the completeness of this fragment. First note that, since our system
has negation, the proof of completeness is equivalent to a proof that any consistent set is satis�able. A set
is consistent if there is some formula which is doesn't prove. We may also invoke theLindenbaum lemma
(see [4]), which states that for any consistent set �, there exists a consistent, set � such that � � � and,
for every formula ' , either ' 2 � or : ' 2 �. We call such a set � complete . So it su�ces to show that
every completeconsistent set inH (all; some; verbs) is satis�able.

We need one more observation: that is that any boolean combination has an equivalent boolean combi-
nation is disjunctive normal form. This is a standard result, so it will be assumed here.

Now for any complete consistent set �, let � := f S : S 2 � and S basicg.

Lemma I.3.1. � j= �

Proof. Let M j= �, and say ' 2 �. We know that ' has a disjunctive normal form, so let' 0 be in DNF and
' � ' 0. To show M j= ' 0, we just need to see that one of it's disjuncts holds. Well, since � is complete and
consistent, at least one disjunct, say� , is in �. So � is a conjunction of basic sentences. Thus each conjunct
of � is in �, else � be inconsistent, and so furthermore, each conj unct of � is in � by de�nition. So M j= � ,
and so thereforeM j= ' 0. So M j= �.

So �nally, given a complete consistent set, we need only �nd amodel for the basic sentences therein.
Note that this set is also consistent, and complete in terms of basic sentences.

I.3.2 Completeness of H (all ; some; verbs )

Let � be our complete consistent set of basic sentences. We construct a model as follows.
Let M = f U1; U2; U3 : � ` 9 Ug [ ff A; B g : � ` SomeA are B g. So we take three copies of each variable

for which � proves the existence, and some sort of representative to satisfy Somesentences.
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The semantics are as follows:

Wi 2 [[U ]] i� � ` All W are U
f A; B g 2 [[U ]] i� � ` All A are U, or � ` All B are U
Ui [[V ]]Wj i� � ` 9 U; � ` 9 V;(Ui ; Wj ) 2 RU;W;T h � (U;W )

f U; Zg[[V ]]W2 i� � ` � 1;U;W or � ` � 1;Z;W

f U; Zg[[V ]]W1 i� f U; Zg[[V ]]W2, or � ` � 3;U;W , or � ` � 3;Z;W

f U; Zg[[V ]]W3 i� f U; Zg[[V ]]W2, or � ` � 5;U;W or � ` � 5;Z;W

U2[[V ]]f W; Z g i� � ` � 1;U;W or � ` � 1;U;Z

U1[[V ]]f W; Z g i� U2[[V ]]f W; Z g, or � ` � 2;U;W , or � ` � 2;U;Z

U3[[V ]]f W; Z g i� U2[[V ]]f W; Z g, or � ` � 4;U;W , or � ` � 4;Z;W

f A; B g[[V ]]f C; Dg i� � ` � 1;A;C , or � ` � 1;A;D , or � ` � 1;B;C , or � ` � 1;B;D

whereRU;W;T h � (U;W ) refers to the subset off U1; U2; U3g�f W1; W2; W3g determined by the setT h� (U; W)
and its corresponding diagram in Figure I.2.

This is a full description of our model. Now we must see that our model satis�es the complete consistent
set of basic sentences �.

SupposeAll X are Y is in �. Then it is a simple monotonicity point that M j= All X are Y . If Z i 2 [[X ]],
then � ` All Z are X . So using the axiom for transitivity of All , and modus ponens, we get �` All Z are
Y , henceZ i 2 [[Y ]]. It is a similar point if f A; B g 2 [[X ]].

If : (All X are Y ) is in �, we need to show that [[ X ]]n[[Y ]] 6= ; . Axiom 15 yields that � ` SomeX are
X , so we will have [[X ]] 6= ; . Furthermore, we will have X 1 2 [[X ]] but X 1 62[[Y ]], because if it was, then
� ` All X are Y , and since � is complete, anything it proves is indeed already inside �. So then � would be
inconsistent. So we conclude [[X ]]n[[Y ]] 6= ; .

It's easy to see that if SomeX are Y is in �, then it will be satis�ed by our model. This is due to the
elementsf A; B g. If : (SomeX are Y ) is in �, we must show [[ X ]] \ [[Y ]] = ; . If � ` All Z are X and � `
All Z are Y , then we can't have � ` SomeZ are Z , otherwise we would be able to proveSomeX are Y ,
which would contradict the consistency of �. Without SomeZ are Z , Z i 62M , soZ won't add any common
elements to [[X ]] and [[Y ]]. In a similar way we can see thatf A; B g 2 [[X ]] and f A; B g 2 [[Y ]] is impossible.

So we have seen that anyAll or Somebasic sentence in � is satis�ed by M .

We want to show that, for any variables X and Y , sentences of the form� � i;X;Y 2 � are satis�ed. Here,
we are going to consider four cases.

SupposeSome X are X and : (Some Y are Y ) are in �. Then from the axioms outlined in axiom
scheme 16 (see appendix), we get that � proves� 1; � 2; : � 3; � 4; : � 5; : � 6 where each� is understood to
carry the subscripts f X; Y g as well. Thus these are all in �, and they account for all the � � i;X;Y in �
by consistency. To see that our model satis�es all of them, note that since : (Some Y are Y ) is in �, we
will have [[Y ]] = ; . Then it is easy to see that by the de�nition of our semantics, and the mneumonics
: � 3;X;Y � � 4;X;Y = ( SomeX not see allY )ows, that an empty [[Y ]] and a nonempty [[X ]] will satisfy this
sentence: it is vacuously true. This also shows the soundness of the axioms outlined in axiom scheme 16.

The cases in which: (SomeX are X ) and SomeY are Y are in � and : (SomeX are X ) and : (Some
Y are Y) are in � are examined similarly, and the reader is encouraged to consider the axiom schemes 17
and 18 to see that, in these cases,M j= � � i;X;Y .

Now the only case we have left to consider is that bothSome X are X and Some Y are Y are in �.
This involves even more casework. Suppose that� 1;X;Y 2 �. Then from � ` 9 X and � ` 9 Y we see that
� ` � i;X;Y for each i (see axioms 2-5), which completely classi�es the� � i;X;Y in �.
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U1 W1

U2 W2

U3 W3

f � 1; : : : ; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; � 2; : : : ; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; � 2; : � 3;
� 4; � 5; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; : � 2; � 3; � 4; � 5; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; � 2; : � 3; � 4; : � 5; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; : � 2; � 3;
: � 4; � 5; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; : � 2; : � 3; � 4; � 5; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; : � 2; : � 3; � 4; : � 5; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; : � 2; : � 3;
: � 4; � 5; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; : � 2; : � 3; : � 4; : � 5; � 6g

U1 W1

U2 W2

U3 W3

f: � 1; : � 2; : � 3; : � 4; : � 5; : � 6g

Figure I.2: These are the possible complete sets (given9U and 9W ) and the de�nition of special relations
used in the completeness proof.
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Now suppose that : � 6;X;Y 2 �. We noted in the mneumonics that this is equivalent to � 1;X;Y . So,
similar to above, it follows that � i;X;Y is in � for every i , since we haveSomeX are X and SomeY are Y .
This is the same as saying: � i;X;Y 2 � for every i .

So these are two possible combinations of� � i;X;Y 's under the big case that SomeX are X and Some
Y are Y are in �. Now, with axioms 2-5, and 9X , 9Y, we have that � 2 will prove � 4, � 3 will prove � 5, and
that all of these will prove � 6. The same is true of the� 's, since these have precisely the same structure, but
a di�erent (complimentary) verb. I claim that in our consist ent, complete �, there are nine other combina-
tions of � � i;X;Y 's which will work under this last, big case. All of them include : � 1;X;Y and � 6;X;Y , since
the negation of either one would point us to two the combinations previously considered. All nine other
combinations appear in Figure I.2, below a diagram.

These are the only combinations of the� � i;X;Y 's we can have givenSome X are X and Some Y are
Y . We can check that the model satis�es them case by case. I present here some important cases; note
that, given non-empty assignments (which we do in this case), if a model satis�es � 2, then it will satisify � 4;
likewise, if it satis�es � 3, it will satisfy � 5. Negate all the � 's and reverse the statements to obtain two more
truths. Thus, we can save time while checking.

Case 1: If we have +� i;X;Y for each i , then by inspection of the diagram, it is clear that X i [[see]]Yj for all
i and j . If f A; B g 2 [[X ]] and f C; Dg 2 [[Y ]] then from the monotonicity axioms, we will get something like
� ` � 1;X;C and � ` � 1;A;Y , as well as � ` � 1;A;C , where the A and C could have beenB or D resp., and it
would work all the same. So� 1;X;Y is satis�ed, and since [[X ]] and [[Y ]] are non-empty, it is clear that the
rest of the � 's will be satis�ed as well.

Case 2: In this case, we havef: � 1; � 2; : � 3; � 4; � 5; � 6g. It is clear to see that : � 1;X;Y is satis�ed by our
model, as in the associated picture for this set,X 3[[not see]]Y3. For � 2, clearly X 1[[see]]Wj for every Wj 2 [[Y ]].
If f C; Dg 2 [[Y ]], then it is a monotonicity point to see � ` � 2;X;C , WLOG, since we have� 2;X;Y . Therefore
X 1[[see]]f C; Dg. So � 2 is satis�ed. For : � 3;X;Y � � 4;X;Y , suppose that Wj 2 [[Y ]]. So � ` All W are Y .
Supposej = 1. Then if X i [[see]]W1 for all i , we must have � ` � 3;X;W , which gives � 3;X;Y , which isn't
possible. If j = 2 and all X i saw Wj , the only way this is possible is if � ` � 1;X;W , which from 9W lead tos
� 3;X;W , then � 3;X;Y . If j = 3, then similarly � ` � 1;X;W . Thus, Wj is not seen by someX i .

As for f C; Dg 2 [[Y ]], we will have that X 2[[not see]]f C; Dg, for otherwise we would have something like
� ` � 1;X;C , and with � ` All D are Y, and the fact that � ` SomeC are D, with axiom 3, we see that
� ` � 3;X;D and monotonicity would give � ` � 3;X;Y , which is a contradiction. So indeed, each element of
[[Y ]] is \not seen" by something in [[X ]]. As for � 4, it is clear from the diagram that each Yj is seen by some
element of [[X ]]. For f C; Dg, since we have� 4;X;Y , we can easily get� 4;X;C , or possibly with D instead of
C, either of which would give X 3[[see]]f C; Dg. So � 4;X;Y will be satis�ed by our model. With � 5;X;Y , again
the only issue might bef A; B g 2 [[X ]], but monotonicity will give us f A; B g[[see]]Y3 pretty easily. So indeed
the model will satisfy � 5;X;Y . It is trivial to see that the model satis�es � 6;X;Y . So in this case, our model
M satis�es all such � � i;X;Y .

Case 3: It would be instructive to now consider the case in which we have : � i;X;Y for all i except, of
course,� 6. The idea that : � 3 is satis�ed is similar to the idea above, where we consideredit in case 2. In
fact, as noted above, showing that: � 5;X;Y holds implies that : � 3;X;Y holds anyway. To see that: � 5;X;Y

holds, I claim that X 2 is a witness for � 2;X;Y . Suppose we hadX 2[[see]]Wj for All W are Y . If j = 1
then from the diagrams we can conclude that� 5;X;W is provable, from which monotonicity would give us
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� ` � 5;X;Y which is impossible. If j = 2, we also get � 5, which is impossible. And if j = 3, then the only
way this is possible is if � ` � 1;X;W , which will clearly give us � 5;X;Y . So indeedX 2[[not see]]Wj .

If f C; Dg 2 [[Y ]], then we will have X 2[[not see]]f C; Dg, because otherwise we would have, say,� 1;X;C ,
and with the existence ofX and C and monotonicity (with possibly using SomeC are D, we would arrive
at � 3;X;Y , which is impossible. So: � 5;X;Y is de�nitely satis�ed. To see : � 4;X;Y would be satis�ed, we show
that Y2 is a witness for this rule. Clearly from the diagram X i [[not see]]Y2 for any i . If f A; B g 2 [[X ]], then
it will not \see" Y2. For if it did, then WLOG � ` � 1;A;Y , which with 9A, 9Y gives � 4;A;Y (we might need
to turn that A into B , which is possible fromSomeA are B ), which by monotonicity leads to � 4;X;Y , which
is impossible. So: � 4;X;Y holds, and therefore so does: � 2;X;Y . Since: � 1;X;Y and � 6;X;Y are obvious, this
case is taken care of.

Case 4: Now let's consider the case in which we have: � 1;X;Y and : � 2;X;Y , with the rest of the � � i;X;Y

being positive. To see that : � 2;X;Y is satisi�ed, say Z i 2 [[X ]]. If it was the case that Z i [[see]]Yj for each
j : well if i = 1, then we must have � 2;Z;Y from the diagrams, which by monotonicity gives � 2;X;Y , which is
impossible. If j = 2 ; 3 then the diagrams tell us the only way this is possible is if � ` � 1;Z;Y , from which we
get � 2;Z;Y and so� 2;X;Y . So there is somej such that Z i [[not see]]Yj . If f A; B g 2 [[X ]]. Then if f A; B g[[see]]Y2

we would have WLOG � ` � 1;A;Y , which from which can easily obtain � 2;X;Y . So clearlyf A; B g[[not see]]Y2,
and so our model satis�es: � 2;X;Y .

Now we will see that our model satis�es � 3;X;Y . I claim our witness is Y1. Say Z i 2 [[X ]]. Suppose
Z i [[not see]]Y1. If i = 1, then we would have to have : � 6;Z;Y by the diagrams, which would give : � 3;Z;Y ,
from which it follows : � 3;X;Y which is bad. Likewise, if i = 2 we get by inspection that � proves : � 3;Z;Y ,
and again : � 3;X;Y . The same goes fori = 3. So this shows that Z i [[see]]Y1 for eachi . If f A; B g 2 [[X ]], then
since � ` � 3;X;Y , it is a simple monotonicity point to see that f A; B g[[in ]]Y1. So M j= � 3;X;Y .

In previous cases, we have examined the modelling of� 4 and � 5, and I claim that here there is no di�er-
ence. As of now, we have seen all possible� � i;X;Y veri�ed in some context or another, and in any other of
the 11 cases, the veri�cation would be similar. We thereforeleave it to the reader to con�rm the rest of the
cases, but we hope that this casework has been su�ciently convincing.

The preceding discussion is the essence of the proof of the following theorem:

Theorem I.3.1. The systemH (all ; some; verbs) is complete.

I.4 A system for in

The third and �nal system I present in this paper is a syllogistic fragment with a transitive preposition. If
A is in B, and B is in C, then we would say that A is in C. The idea for making a logic based on such a
preposition came from the paper by Zwarts and Winter [5]. We denote this fragment by L (all; some; in).

Syntax As with the last two systems, we use a countable number of variables,X , Y , etc. The sentences
of this fragment are of the following form:
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All X are Y
SomeX are Y
All X are in all Y =) � 1;X;Y

All X are in some Y =) � 2;X;Y

SomeX are in all Y =) � 3;X;Y

SomeX are in some Y =) � 4;X;Y

where the � 's will serve as a notational short cut. Unlike in the verbs fragment, all sentences within will
be assumed to be subject wide scope. SoAll X are in some Y should be read as8x9y such that x is in y.

Proofs in this system are the same as in the systemL (all; most), proof trees. The rules of inference
for this system are listed on a separate page in the appendix.As a reminder, the root is labeled with the
sentence to be proven, and the leaves are labeled with elements of some set of hypotheses �. If there is a
proof tree with root S and leaves from �, then we write � ` S.

We make a similar to de�nition as in verbs: we de�ne T h� (X; Y ) to be the set f � i;X;Y : � ` � i;X;Y g. We
de�ne the downward closure of T h� (X; Y ) to be f � i;X;Y : � [ f9 X; 9Yg ` � i;X;Y g, that is the set of in
sentences provable from � plusSomeX are X and SomeY are Y. We denote this set by# T h� (X; Y ). For
example, if � 1 2 T h� (X; Y ), we must have# T h� (X; Y ) = f � 1; � 2; � 3; � 4g.

Semantics As with the above two systems, in L (all; some; in) we will use a model based semantics. We
interpret variables as being subsets of some \universe" (set), and we interpret in as [[in ]], some transitive
binary relation on M � M , where M is our universe. So forM to be a model, if x[[in ]]y and y[[in ]]z, then
x[[in ]]z. We have already seen howAll and Most sentences should be interpreted. As forin sentences, using
the shorthand:

M j= � 1;X;Y i� ( 8x 2 [[X ]] 8y 2 [[Y ]]) x[[in ]]y
M j= � 2;X;Y i� ( 8x 2 [[X ]] 9y 2 [[Y ]]) x[[in ]]y
M j= � 3;X;Y i� ( 9x 2 [[X ]] 8y 2 [[Y ]]) x[[in ]]y
M j= � 4;X;Y i� ( 9x 2 [[X ]] 9y 2 [[Y ]]) x[[in ]]y

I.4.1 Completeness of L (all ; some; in )

To prove the completeness of this fragment, the plan is to exhibit a model M , in the spirit of the model for
H (all; some; verbs), which depends on our set � � L (all; some; in), which will satisfy �. Then, given that
� j= S, we would haveM j= S, and the nature of the model will allow us to conclude that � ` S.

Suppose we have a set �� L (all; some; in). Let E(�) be the set f S : � ` SomeX are X g We will call a
set of sentencesS closed if E(�) � S, and if � ` All X are in some Y , where X 2 S, then Y 2 S.

So given � and a closed setS, we will de�ne a model M (� ; S) as follows: we let M = f U1; U2 : U 2
Sg [ ff A; B g : � ` SomeA are B g, i.e. two copies of every variable inS, and a representative for sentences
of the form SomeA are B . The sets RU;W;s � f U1; U2g � f W1; W2g come from the arrow diagrams, where
the diagram is chosen based ons. The model assignments are as follows:
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U1 W1

U2 W2

f � 1; : : : ; � 4g

U1 W1

U2 W2

f � 2; � 4g

U1 W1

U2 W2

f � 3; � 4g

U1 W1

U2 W2

f � 4g

U1 W1

U2 W2

f � 2; � 3; � 4g

U1 W1

U2 W2

;

Figure I.3: These are the arrow diagrams for the model M (� ; S). The RU;W;s in the model de�nition refer to the
[[in ]] relationship speci�ed by the arrow diagram correspondin g to the downward closed set s.

Wi 2 [[U ]] i� � ` All W are U
f A; B g 2 [[U ]] i� � ` All A are U, or � ` All B are U
Ui [[in ]]Wj i� ( Ui ; Wj ) 2 RU;W; #T h � (U;W )

f A; B g[[in ]]W2 i� � ` � 1;A;W or � ` � 1;B;W

f A; B g[[in ]]W1 i� f A; B g[[in ]]W2, or � ` � 2;A;W , or � ` � 2;B;W

U1[[in ]]f C; Dg i� � ` � 1;U;C or � ` � 1;U;D

U2[[in ]]f C; Dg i� U1[[in ]]f C; Dg, or � ` � 3;U;C , or � ` � 3;U;D

f A; B g[[in ]]f C; Dg i� � ` � 1;A;C , or � ` � 1;A;D , or � ` � 1;B;C , or � ` � 1;B;D

Before we attempt to show that this model will satisfy �, we mu st �rst show that this model satis�es the
transitivity requirement we place on models in L (all; some; in).

Lemma I.4.1 (Transitivity) . For any � � L (all; some; in) and any set S which is closed with respect to �,
[[in ]]M (� ;S) is transitive.

Proof. Due to the fact that both elements of the form Z i and f A; B g appear in our model, this proof has
many cases. We will consider some of them here, so su�ce it to say that the rest are fairly similar. So
consider this a sketch.

Case: Z i [[in ]]Wk and Wk [[in ]]Vj . We want to see that Z i [[in ]]Vj . So we just take subcases over the indices
i , j , and k.

Supposei = j = k = 1. By the construction of the model, and by looking at the diagrams, Z1[[in ]]W1

only if � 2;Z;W 2# T h� (Z; W ). Similarly, � 2;W;V 2# T h� (W; V ). Now, there are several possibilities. If
� ` � 2;Z;W ; � 2;W;V , then we could use the89 � 89 rule from the �gure, that is the rule in the diagram whose
antecedents are89 � 89 , to conclude � ` � 2;Z;V . So then � 2;Z;V 2# T h� (Z; V ) so by the model de�nition
Z1[[in ]]V1.

We might also have that � ` � 1;Z;W ; � 1;W;V . Then we would simply invoke the 88 � 88 rule to get
� ` � 1;Z;V , which by model de�nition gives Z1[[in ]]V1. Otherwise we could have either � ` � 1;Z;W ; � 2;W;V

or � ` � 2;Z;W ; � 1;W;V , in which case we invoke the88 � 89 rule and 89 � 88 rule, respectively to arrive at
similar conclusions. So in the case thati = j = k = 1, we have shown [[in ]] is transitive.
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Now supposei = k = 2 and j = 1. So by looking at the diagrams we can conclude that� 3;Z;W 2#
T h� (Z; W ) and � 4;W;V 2# T h� (W; V ). So there are many possibilities. Say � ` � 3;Z;W and � ` � 4;W;V .
Then using the 98�99 rule we get � ` � 4;Z;V . Therefore � 4;Z;V 2# T h� (Z; V ), so by our model construction
and inspection of the diagrams,Z2[[in ]]V1, as required. To see that other possibilities work out, justnote
that either � ` � 3;Z;W or � ` � 1;Z;W , and no matter which � i we can show betweenW and V , each of� 3;Z;W

and � 1;Z;W can be used to deduce that� 4;Z;V 2# T h� (Z; V ).
The subcases in which we consider di�erent values ofi; j; k proceed in a similar fashion. Let us consider a

di�erent case: supposef A; B g[[in ]]f C; Dg, and f C; Dg[[in ]]f E; F g. Then looking at our model construction,
there are several� 1's which � might prove. Suppose we had � ` � 1;A;C and � ` � 1;C;E . Then we can easily
apply the 88 � 88 rule to get � ` � 1;A;E and sof A; B g[[in ]]f E; F g. However, we might only have � ` � 1;A;C

and � ` � 1;D;E . Now we cannot use a single application of a rule to get the result, but use the fact that
� ` SomeC are D to see that � ` � 2;A;D . Now we can use the89 � 88 rule to get � ` � 1;A;E . So we still
have f A; B g[[in ]]f E; F g. These two possibilites are representative of any� 1 situation we could have, thus we
can safely conclude that transitivity holds.

In this way, we can proceed with the casework, the remainder of which is quite similar to the above.

Now that we've see that M (� ; S) is de�nitely a valid model, we can now check that it will sati sfy �.

Lemma I.4.2. For any � � L (all; some; in), and any set S which is closed with respect to �, M (� ; S) j= �.

Proof. SupposeAll X are Y is in �. If Z i 2 [[X ]], then by the model construction, � ` All Z are X . So
� ` All Z are Y , so that Z i 2 [[Y ]]. If f A; B g 2 [[X ]], it is a similar monotonicity point. So M j= All X are Y .
If SomeX are Y is in �, then this is clearly satis�ed, via the element f X; Y g.

Suppose� 1;X;Y 2 �. If either [[ X ]] or [[Y ]] is empty, � 1 is satis�ed vacuously, so we assume otherwise.
SupposeZ i 2 [[X ]], Wj 2 [[Y ]]. So � ` All Z are X and � ` All W are Y. Then, using the monotonicity
rules of our logic, we get � ` � 1;Z;W . Thus since T h� (Z; W ) �# T h� (Z; W ), � 1;Z;W 2# T h� (Z; W ), which
by our model construction means that Z i [[in ]]Wj . If f A; B g 2 [[X ]], WLOG say that � ` All A are X . So
� ` � 1;A;Y . Now, again, � ` All W are Y , so � ` � 1;A;W , from which it follows by construction that
f A; B g[[in ]]Wj . The cases in whichf C; Dg 2 [[Y ]] are quite similar. Thus with these cases,M j= � 1;X;Y .

Now suppose� 2;X;Y 2 �. We can assume that [[X ]] 6= ; . Say Z1; Z2 2 [[X ]]. So � ` All Z are X , which
by monotonicity gives � ` � 2;Z;Y . Now by closedness,Y 2 S, so that [[Y ]] 6= ; . Also, � 2;Z;Y 2# T h� (Z; Y ),
and looking at the diagrams, we see that we must haveZ1[[in ]]Y1 and Z2[[in ]]Y1. If f A; B g 2 [[X ]] we can
show similarly that f A; B g[[in ]]Y1 by model construction. SoM j= � 2;X;Y .

Now suppose� 3;X;Y 2 �. By our logic, X 2 S, and if [[Y ]] = ; then we're done. So assume [[Y ]] 6= ; ,
i.e. Y 2 S. Let Wj 2 [[Y ]]. Then � ` All W are Y . So � ` � 3;X;W . So � 3;X;W 2# T h� (X; W ), so by the
model construction via the diagrams, X 2[[in ]]W1 and X 2[[in ]]W2. If f C; Dg 2 [[Y ]] the case is similar. So
M j= � 3;X;Y .

Finally, suppose � 4;X;Y 2 �. So both X; Y 2 S, and so given that � 4;X;Y 2# T h� (X; Y ), it is clear from
the diagrams that we'll have X 2[[in ]]Y1. So M j= � 4;X;Y .

Theorem I.4.1. The systemL (all ; some; in) is complete.

Proof. Let � � L (all; some; in). We want to show for any sentenceS that � j= S =) � ` S. We will do so
by cases, depending on what kind of sentenceS is.

First suppose that S 2 L (all; some). Let � = f S 2 L (all; some) : � ` Sg. We will show that � j= S. Let
N be a model of �. So let's de�ne a model N0 which extends to in sentences by letting [[in ]] = N � N . Now,
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if N0 j= �, then N0 j= S, and sinceN0 is equal to N on variables, we would haveN j= S, asS does not involve
\in." Note that if [[ U ]] and [[V ]] are non-empty, then certainly any in sentence bewteen them will hold, by
construction. So suppose� 1;U;V 2 �. This sentence is satis�ed trivially by N0, because if either [[U ]] or [[V ]]
is empty, the sentence is satisi�ed, and if both are non-empty, then the \full" [[ in ]] will give N0 j= � 1;U;V .
If � 2;U;V 2 �, then things are a bit trickier; [[ U ]] = ; is vacuous, so consider [[U ]] 6= ; . We may then safely
assume that � ` SomeU are U. If it did not, then there would exist a model N in which [[U ]] was empty,
and is equivalent to N, in the sense thatN j= � i� N j= �. So we assume � ` SomeU are U. So along with
� 2;U;V , this gives � 4;U;V , which in turn gives SomeV are V . So [[V ]] 6= ; , so� 2;U;V will be satis�ed. The case
of � 3;U;V is similar, and the case of� 4;U;V is trivial. So N0 j= �, and from above, N j= S. So since � j= S,
we cite a previous result featured in Moss [1] which says thatL (all; some) is complete. So � ` S, hence � ` S.

The rest of the proof is split into cases.

Case: S is � 1;X;Y

S = f U : � ` 9 Ug [ f U : � ` All X are in some U or � ` All Y are in some Ug [ f X; Y g

We need to show that this S is closed for � so we can use it to build a model. ObviouslyS contains all U
such that � ` 9 U. If U 2 S and � ` � 2;U;Z , we want to see that Z 2 S. There are three ways that U could
be in S, looking at the above equation. If U is such that � ` 9 U, then we can use one of the rules to directly
to derive � 4;U;Z , and so � ` 9 Z , so Z 2 S. If U = X or U = Y , then Z �ts into the second set in the union
which de�nes S, and so it in S. So if U is such that � ` � 2;X;U , then we could use one of the rules of our
logic to combine � 2;X;U and � 2;U;Z to get � ` � 2;X;Z , so Z 2 S. So S is closed, and we considerM (� ; S).

As we know, from the lemma above,M j= �, so M j= S. Now by the de�nition of the model, using the S
above, [[X ]] and [[Y ]] are non-empty. So sinceS is satis�ed, we must haveX 1[[in ]]Y2. Examining the diagrams,
however, we see that this is only possible if� 1;X;Y 2# T h� (X; Y ), which indeed implies that � ` � 1;X;Y .
That is all.

Case: S is � 2;X;Y

S = f U : � ` 9 Ug [ f U : � ` All X are in some Ug [ f X g

The idea that S is closed is the same as the last case. So let's considerM (� ; S). [[X ]] 6= ; by de�nition
of the model, and the same is true ofY . So we know that X 1 is in something in Y . Say X 1[[in ]]Z j where
� ` All Z are Y . If j = 1, then by looking at the diagrams, we must have � 2;X;Z 2# T h� (X; Z ). So by
de�nition of the downward closure there are two possibilities: either � ` � 2;X;Z or perhaps we only have
� ` � 1;X;Z . Well if � ` � 2;X;Z , then by monotonicity we would have � ` � 2;X;Y . If � ` � 1;X;Z , then since
we know that Z 2 S, we have three possibilities: 1) � ` 9 Z : then � ` � 2;X;Z , and as above we are done. 2)
� ` All X are in some Z : again, we're done. 3) IfZ = X , well one of our rules gives us that� 1;X;X proves
� 2;X;X , which with All Z are Y = All X are Y gives � ` � 2;X;Y .

Now if j = 2, then by inspection of diagrams we see that� 1;X;Z 2# T h� (X; Z ) i.e. � ` � 1;X;Z . Then the
above discussion leads us to �̀ � 2;X;Y .

The last possibility is that X 1[[in ]]f C; Dg. WLOG suppose that � ` � 1;X;D . If � ` All C are Y , well we
also have � ` SomeC are D,

� 1;X;D SomeD are C
� 2;X;C All C are Y

� 2;X;Y
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So � ` � 2;X;Y .

Case: S is � 3;X;Y

S = f U : � ` 9 Ug [ f U : � ` All Y are in some Ug [ f Y g

Again, S is closed. [[Y ]] 6= ; by de�nition. Since our model satis�es S, we must have [[X ]] 6= ; , and so
X 2 S. SupposeX 1 is our witness. Then X 1[[in ]]Y2. So � 1;X;Y 2# T h� (X; Y ), i.e. � ` � 1;X;Y . Combined
with � ` 9 X this gives � ` � 3;X;Y .

SupposeX 2 is our witness. Then X 2[[in ]]Y2, so by examining the diagrams we conclude� 3;X;Y 2#
T h� (X; Y ). If � ` � 3;X;Y then we're done, so say � ` � 1;X;Y . Then as above we have �` 9 X which gives
� ` � 3;X;Y .

Finally, suppose f A; B g is our witness. Then f A; B g[[in ]]Y2 Say WLOG that � ` � 1;A;Y . If � `
All A are X , we can �rst use that � ` 9 A (since � ` SomeA are B ) to get � ` � 3;A;Y , then use monotonicity
to get � ` � 3;X;Y . If � ` All B are X , we can use � ` SomeA are B to get � ` � 3;B;Y Then monotonicity
will give us � ` � 3;X;Y .

Thusly, � ` � 3;X;Y .

Case: S is � 4;X;Y

S = f U : � ` 9 Ug

Clearly S is closed for �. Notice [[X ]]; [[Y ]] 6= ; . So we can conclude thatX; Y 2 S.
Suppose that Z1 2 [[X ]] is our witness. Suppose further that Z1[[in ]]W1 is in relation we have. So

� ` All Z are X; All W are Y . By examining the diagram, we must have� 2;Z;W 2# T h� (Z; W ). No matter
if � ` � 2;Z;W or � ` � 1;Z;W , the fact that Z; W 2 S tells us that � ` 9 Z; � ` 9 W , which in either case will
give us � ` � 4;Z;W , from which monotonicity yields � ` � 4;X;Y

Now, still supposing Z1 2 [[X ]] is our witness, assumeZ1[[in ]]W2 is our in relation. The deal is similar to
above, with the only possibility being that � ` � 1;Z;W , yielding � ` � 4;Z;W , monotoning to � ` � 4;X;Y .

Finally, still under the in
uence of Z1 witnessing, supposeZ1[[in ]]f C; Dg is our witnessing relation. We
might very well have � ` All C are Y , � ` All Z are X , and � ` � 1;Z;D . Now, � ` SomeC are D, thus from
� 1;Z;D , � ` � 2;Z;C , so by monotonicity � ` � 2;Z;Y ; with � ` 9 Z , we get � ` � 4;Z;Y . Finally, monotonicity
from All Z are X gives us � ` � 4;X;Y . All other possibilities regarding how f C; Dg 2 [[Y ]] are similar.

And now we're catapulted into a veritable cornucopia of other cases. In the case thatZ2 is our witness,
for someZ , the work is quite similar. Things also work out with f A; B g the witness, but the author does
not wish to bore the reader, and so will not list these cases. Su�ce it to say that they are similar, and
unremarkable.

In this way, � ` � 4;X;Y .

So indeed, we see that the very fact that � j= S, whereS is any sentence at all inL (all; some; in), su�ces
to conclude that � ` S, via a well picked model.

I.5 Appendix

This is a list of the tons of axioms for H (all; some; verbs). Here, I abbreviate All X as A(X ), Some X as
S(X ), and All X are Y and Some X are Y as A(X; Y ), S(X; Y ) respectively. Here, V indicates a verb
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which takes an object; for example, in the paper we considerseeand its complementnot see. There are also
so axioms using the� notation de�ned in the paper.

1. Tautologies of the propositional calculus

2. ((A(X ) V NP)) sws ^ S(X; Y ) ! ((S(Y ) V NP)) sws

3. ((NP V A(X ))) ows ^ S(X; Y ) ! ((NP V S(Y ))ows

4. ((S(X ) V A(Y ))) sws ! ((S(X ) V A(Y ))) ows

5. ((A(X ) V S(Y ))) ows ! ((A(X ) V S(Y ))) sws

6. ((S(X ) V NP)) sws ! S(X; X )

7. ((NP V S(X ))) ows ! S(X; X )

8. ((A(X ) V A(X ))) sws ! ((A(X ) V S(X ))) sws

9. A(X; X )

10. A(X; Z ) ^ A(Z; Y ) ! A(X; Y )

11. S(X; Y ) ! S(Y; X )

12. S(X; Y ) ! S(X; X )

13. A(Y; Z) ^ S(X; Y ) ! S(X; Z )

14. : S(X; Y ) ^ A(X; Y ) $ : S(X; X )

15. : A(X; Y ) ! S(X; X )

In the following, we use commas to abbreviate many axioms. The subscripts of the� 's are understood
to include f X; Y g.

16. S(X; X ) ^ : S(Y; Y) ! � 1; � 2; : � 3; � 4; : � 5; : � 6

17. : S(X; X ) ^ S(Y; Y) ! � 1; : � 2; � 3; : � 4; � 5; : � 6

18. : S(X; X ) ^ : S(Y; Y) ! � 1; : � 2; : � 3; � 4; � 5; : � 6

Monotonicity axiom schema :

19. A(X #) V A(Y #)

20. (S(X " ) V A(Y #)) sws

21. (A(X #) V S(Y " ))ows

22. (S(X " ) V A(Y #))ows

23. (A(X #) V S(Y " )) sws

24. S(X " ) V S(Y " )
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The notation for the monotonicity axioms is taken from Johan van Benthem [3]. These six schema
represent twelve rules. The up-arrow next to a variableX " indicates that we can take supersets ofX , and
a down arrow X # indicates we can take subsets. For example, (S(X " ) V A(Y #)) sws stands for

(S(X ) V A(Y )) sws ^ A(X; Z ) ! (S(Z ) V A(Y )) sws

(S(X ) V A(Y )) sws ^ A(Z; Y ) ! (S(X ) V A(Z )) sws

These are the rules for the fragmentL (all; some; in). We use the following abbreviations: 8X 8Y stands
for All X are in all Y , 8X 9Y stands for All X are in someY, etc. In the top rules, we simplify even further
by assuming that the variables involved in the top sentence of the antecedents areX then Y , and that the
variables appearing in the second sentence of the antecedents are Y then Z . The conclusion featuresX then
Z . The quanti�ers with arrows are monotonicity rules, just as appear in the axioms for theverbsfragment.
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88
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99

99
88
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89

99

All X are Y All Y are Z
All X are Z All X are X

All X are Y SomeZ are X
SomeZ are Y

SomeX are Y
SomeY are X

SomeX are Y
SomeX are X

8#8# 9" 8#

8#9" 9" 9"

9X 9Y
SomeX are X

9X 9Y
SomeY are Y

9X 8Y
SomeX are X

8X 9Y SomeX are Z
9Z 9Y

8X 8Y SomeX are Z
9Z 8Y

8X 8Y SomeY are Z
8X 9Z

9X 8Y SomeY are Z
9X 9Z

8X 8Y All X are Y
8X 9Y
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