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During the summer of 2008 ten students participated in the Research Experiences for Undergraduates pro-
gram in Mathematics at Indiana University. The program ran for eight weeks, from June 16 through August
8. Eight faculty served as research advisers. Two faculty mmabers oversaw pairs of related projects; all other
faculty advised one student each.

The program opened with an introductory pizza party. On the following morning, students began meeting
with their faculty mentors; these meetings continued reguérly throughout the rst few weeks. During week
one, there were short presentations by faculty mentors brig/ introducing the problem to be investigated.
Students also received orientations to the mathematics libary and to our computing facilities. We were
saddened during week two at the departure of participant BenSchweinhart, who returned home for medical
reasons. In week three, students gave short, informal preséations to each other on the status of work on
the project. Brief training sessions on using ATEXwere given during week four. During week six, we hosted
the Indiana Mathematics Undergraduate Research confererg; which featured 22 lectures by 33 students
from Rose-Hulman Institute of Technology, Goshen CollegeWabash College, and Indiana University. The
program concluded with the students giving formal, hourlong presentations to the REU students and faculty,
and the turning in of nal reports, contained in this volume.

It took the help and support of many di erent groups and indiv iduals to make the program a success.
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in coordinating the application process. We thank Indiana gaduate student Brent Stephens for serving as
IATEXconsultant and for compiling this volume.

We thank Professors Eric Bedford, Hari Bercovici, Jiri Daddk, James Davis, David Ho , Paul Kirk, Larry
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A.1 Introduction

Consider three unit vectors u, v, and w whereu + v+ w = 0. These vectors, which form an equilateral
triangle in the plane, generate a set ofattice points fiu +jv :i;j 2 Zg. De ne a small edgeas a unit segment
joining two nearest lattice points. Our research is concered with measuresas de ned in [1]junions of small
edges assigned positive densities, which satisfy the \bafee condition” that

m(@ m@)=mb) mb)=me m(c)

whenever the six edges, c¢® b, a% ¢, and b° are located in cyclic order around a single lattice point, aml
where m(e) denotes the density assigned to a small edge.

N/
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De ne the support of a measurem as the set of small edges in the measurde 2 m : m(e) > 0g. A
branch point is any lattice point incident to at least three edges in the sipport of a measure.

Consider in particular a closed triangle, denoted4 , for xed integral r 1, with vertices at O, ru, and
ru + rv. Name the lattice points on its bordersA; = ju, B; = ru + jv, and C; = rw jw. The lattice
points immediately outside its borders will be denotedX; = A; + w, Y; = Bj + u,and Z; = C; + v. A few
of these points are depicted below ort s.

De ne M, as the set of measures with all branch points contained it ; where
M(A;j Xj+1) = m(BjYj+1)= m(CYj+1)=0; j2f0;1:::;r0
Similarly, de ne M, as the set of measures with all branch points contained it , where

m(A;j X;)=m(B;Yj)= m(C;jY;)=0; j2f01L:::55rg
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M, can be considered a re ection ofM, across any angle bisector o# ,.

Note that all measures in M, are determined entirely by their restrictions on 4 ;. Indeed, because no
branch points are permitted outside of4 |, all densities outside the triangle must propagate as halfines.

De ne an attachment point of m 2 M, as any non-corner point on the border of4 , incident to an exterior
edge in the support ofm. More precisely, an attachment point is anyA; (or Bj, Cj) forj 2f1;2;:::;r 19
where m(A; X;) > 0 (or B} Y;, C;Z;). Attachment points are de ned analogously for M,. The number of
attachment points in a measurem will be denoted ap(m).

For a measurem 2 M, we de ne its weight ! (m) as

X X X
m(Aij)= m(Bij)= m(Cij):
i=0 j=0 i=0

The balance condition necessitates that these sums be equalhe weight of a measure inM, can be de ned
analogously, using the edge#\; X; .1 , etc.

De ne the boundary @mof m 2 M, as a triple of r-tuples, (; ; ) 2 (R")® where, fori 2f1;2;:::;rg,

X1 X1 X1
i = m(Aij); i = m(B,— YJ), i = m(CJ- Zj)Z
j=0 j=0 j=0

We are concerned withrigid measures, measures determined entirely by their weight antéoundary; for
the rest of this paper, we will only consider rigid measuresand indeed, many of the following results do not
hold for non-rigid measures.

A.2 Puzzles and Duality

In this section, we de ne the notions of in ating a measure m into an object termed a \puzzle," for reasons
to be made clear, and subsequently the notion of *de ating a zzle into a dual measurem .

De ne the ination of a measurem 2 M, as the following procedure. First, cut4 , along the edges of
the support of m, forming a collection of white puzzle pieces corresponding to the resulting shapes.

Translate each small edgee in m along segments 60 clockwise frome, with length m(e). Together, the
four resulting segments form a parallelogram with two edgesf €'s original length, parallel to e, and two
edges of lengthm(e), 60 clockwise frome. This parallelogram is termed thein ation of e, and is illustrated
as adark gray puzzle piece.

Translate the white puzzle pieces away from each other, tting the newly-created parallelograms in place
of their corresponding small edges. These pieces all t togher, leaving spaces corresponding to each branch
point in m, which are lled in as light gray puzzle pieces.

The resulting puzzleis a triangle of sizer + ! (m), consisting of three kinds of pieces, corresponding to
shapes carved out o4 ; by m, small edges ofm, and branch points of m.
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In the example above, the thinner lines in the support have desity one, and the thicker one density two.
The in ation is drawn to the right.

This puzzle can now be*de ated to yield a measure inM,, as follows. Remove the white pieces, and
de ate the dark gray pieces in the opposite direction as theywere in ated|shrink the original sides to points,
while maintaining the edges of lengthm(e). The light gray pieces remain, separated by edges correspding
to the dark gray pieces.

In the above gure, the puzzle is de ated to yield a dual measue. The thicker edge, again, has density
two; the borders of the triangle, as well as an inner edge, hadensity one.

This *de ation results in a triangle with sides of ! (m), and a measure inM, denoted m , the dual
measure of m. Each original edge is rotated 60 clockwise from its original location, and its length and
density have swapped places.

The original measurem can be generated fromm by applying *in ation followed by de ation, in the
opposite directions as in ation and *de ation. This replac es the original length and density of each small
edge.

A.3 Descendance and Skeletons
We now de ne a partial order on small edges. For incident smdledgese and f , we saye! f if either:
1. they are 120 apart, and the edge oppositee has zero density;

2. they are opposite, and an edge 120from e has zero density.
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e! f implies that m(e) m(f), as a simple consequence of the balance conditiorm(e) = m(f) only if
f 1 easwell

eze! e&! ! e, =1:

f is said to be adescendantof e, its ancestor. If e) f andf ) e, thene, f and the edges areequivalent
Edges that are minimal with respect to descendance are calderoot edges

In the skeleton below, all the thinner edges have density onand are equivalent root edges; the thicker
edge has density two and is not a root edge.

on f , the direction that f is traversed in its descendance path. As shown in [1], if is not a root edge, then
this orientation of f away from the root edgesds the same for any descendance path from any root edge that
is an ancestor off .

Asupports m=fe2 m:r) egcontaining all descendants of a root edge is called askeleton A
measure whose support is a skeleton is called axtremal measure It is a property of skeletons that they
contain no proper subset which can support a measure, whichmifact serves as a de nition in [1]. As a result,
an extremal measure is entirely determined by its density onany small edge.

By the nature of the partial ordering ) , all members of each equivalence class of root edges generat
the same skeleton. Clearly, every edge im is a descendant of at least one equivalence class of root edge
Thus, m can be treated simply as a sum of the skeletons generated by aaximal collection of inequivalent
root edges. This decomposition oim into a sum of skeletons is unique, and the number of skeletonis this
decomposition|alternatively, the number of equivalence c lasses of root edges|will be denoted sk(m).

Finally, we de ne an order relation on skeletons. For skelebnsS; and S, we sayS; ¢ S; if S; contains
collinear small edgesa and b and S, contains collinear small edges and d, such that a, b, ¢, and d are
incident at a single point, and a is 60 clockwise fromc. It is shown in [1] that ¢ is well-de ned for
skeletons contained in a rigid measure.

A.4 Results

Measures are a representation of the Horn inequalities frontinear algebra, as discussed in [1], [2], and [3].
This paper is concerned, however, with the combinatorial apects of measures, in particular, Bercovici's
conjecture that

sk(m) + sk(m ) = ap(m) +1
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for all rigid m. The proof for the casesk(m) = sk(m ) = 1 is located in [1]; here we use a much more general
approach to prove that
sk(m)+ sk(m ) ap(m)+1:

Two measures arehomologousif there exists a bijection between edges inm and m° that sends all edges
to parallel edges, and keeps all concurrent edges concurtenThe measuresm and m° are homologous if
and only if m and m® are homologous. Two puzzles are said to be homologous if thedle ations are
homologous.

Consider a measure

m= 1mp+ omy+ T sk(m)Msk(m)
and its dual,

m = 11+ 2 2% T sk(m ) sk(m )
where i; 2 R* and my; il Mgqm); 1;::1; sk(m ) are extremal measures.

Altering any ; changes the densities of small edges im, but this clearly results in a measure m°®
homologous tom, as long as ; remains positive.

Altering any ; changes the densities of small edges im , a ecting the lengths of edges inm, since
duality swaps lengths and densities. However, because theesulting m © is homologous to the originalm
mYis also homologous tom (again, as long as ; remains positive).

Adjusting any number of , is the only way to generate a measuren® homologous toml|it generates
all possible densities for the support ofm, and all possible lengths that maintain homology with the original
measure.

De ne Py, as the set of all puzzles homologous to the in ation of a rigidmeasurem.

Lemma A.4.1. There exists a bijection betweerP,, and (R* )sk(m)+sk(m )

Proof. We have just produced a bijection between the set of alm® homologous tom and the set of tuples

(10005 sk(m)ys 130505 sk(m )i s i 2R
Additionally, in ation is a bijection between all m° and all puzzles inP,,. These can be composed to form
a bijection between Py, and (R*)sk(m)+ sk(m ) O

The bijection described in Lemma A.4.1 is one way to distingish puzzles inPy,. We will need to introduce
one more set describing such puzzles.

Every attachment point corresponds to the edge of a puzzle gice on the border of its puzzle. Consider
the location of an attachment point on a puzzle to be the clockvise vertex of that edge, unless otherwise
stated, and number the attachment points counterclockwisestarting at Aj.

Let * denote the length of the side of a puzzle, and let; 2 (0; 1] denote the relative position of theith
attachment point in the puzzle, as a fraction of the side lengh. De ne Q; as the set of tuples

Cy 13 250005 ap(m)):

Clearly, dim Q,, ap(m) + 1.

We now construct a map from Qy, to Pp,.

We rst use a construction on two extremal measures 3; > 2 M, introduced in [1], called the stretch
of ; to the puzzle of ,. Essentially, » is in ated to yield a puzzle of sizer + ! ( ,), on which is placed
a \stretched" version of ; homologous to ;. This new measure ¢ 2 M, ( ») is then in ated by itself,
yielding a puzzle whose pieces correspond to the locationd edges in 1 in the in ation of 1+ .
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We will use this construction because it yields a puzzle thatcorresponds only to edges in ;, while
maintaining the positions of ;'s in ated edges in the ination of |+ 5. Specically, attachment points
have the same location in the in ation of § as in the ination of 1+ .

Note, however, that the procedure outlined in [1] is only posible if S, ¢ Si1, where S;, S, are the
supports of 1, ».

De ne the set of S; as the skeletons supporting the extremal measures; which comprisem. Order these
skeletons in a non-increasing order, suchtha; ¢S, o 0 Ssk(m)- Then, consider the stretch of each

i to the puzzle of .1 + +  sk(m)- Call this new measurem;.

Now we construct a certain extremal measurem? homologous tom;, located on the in ation of m;.
Choose an attachment point whose exterior edge is a root edge

Call that root edge r, and orient all other edges inm; according to their descendance paths fronr. In
the example below, the location of the exterior root edge is rarked by a dot.

Attach each edge to theright side, according to this orientation, of its in ation in the p uzzle. This results
in a collection of disconnected segments on the puzzle, as®@hkn below.

These segments will now be connected using the process outid in Lemma A.4.2.

Lemma A.4.2. Assumee, f are incident small edges inm; and have been placed on a puzzle as described.
Then the edges can be extended to intersect at a vertex, wititoentering the interior of a puzzle piece, as
long ase! f.

Proof. Using the de nition of e! f and the balance condition, we can easily enumerate all podse oriented
supports of m; around the lattice point to which e and f are incident, up to rotation. As shown below, in
all four cases, the edges can be extended to meet at a point Wibut entering a puzzle piece.
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Becausem; is extremal, every edge has a descendance path from Clearly, we can follow these de-
scendance paths, connecting every two consecutive edges@escribed by Lemma A.4.2, until every edge is
connected. It is easy to see that this procedure results in aew measurem? homologous tom; .

By this construction, all the attachment points of m? except our initial point are reached from interior
edges oriented outward, and thus these edges im{ always intersect the clockwise end of each attachment
point. Similarly, m? always intersects the original attachment point at its counterclockwise end.

Now suppose we perform this construction in reverse, given duple in Qy. Since their locations are
already known, we start at the clockwise end of each attachm&t point except one which has an exterior root
edge. By following the descendance paths in reverse, we cabtain the location of the counterclockwise end
of the one attachment point we omitted at the beginning.

Below is an example of how the reverse process would proceednterior vertices can be obtained by
intersecting lines extended from the attachment points. The arrows indicate the order in which those
vertices are determined.
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Notice also that the nal arrow determines the counterclockwise end of the initial attachment point.

By taking the di erence of the location of that counterclock wise end and the location of its corresponding
clockwise end, which as given by the tuple iQ,, , we obtain the width of that attachment point on the puzzle,
which is equal to the density of its exterior root edge. Becaesm; is extremal, knowing the density of this
one edge allows us to determine the densities of all its edges

Thus, from the tuple in Qn, we have determined the edge densities ah;, which correspond directly to
the densities of ;. Since we have fully determined ;, we now perform the same operation on ;.; .

determine m, which in turn determines the speci ¢ member of P, corresponding to the given tuple inQy,.

Therefore, this entire process determines a map fron@, to Py, . Since every puzzle inP, corresponds
to a tuple in Qn, this map must be surjective; indeed, this process must worlor every tuple corresponding
to a puzzle in Pp,. We can now use this fact to prove the upper bound asserted eber.

Theorem A.4.3. sk(m)+ sk(m ) ap(m)+1 for any rigid m.

Proof. We have just shown there exists a surjective map fromQy to Py, implying that dm Q, dimPq,.
But since dimPy, = sk(m) + sk(m ) and dim Qn, ap(m) + 1, this implies that sk(m) + sk(m )
ap(m) + 1. O

A.5 Future Research

Because the above proof was only recently discovered, it las some details which merit further investigation.
Most notably, we must prove that every extremal measure musthave an external root edge.

We believe it will be fairly straightforward to prove that di mQ, = ap(m) + 1, and that the map
demonstrated above is a bijection. The full conjecture shold follow directly from these additional facts. We
also hope to further study this map and related maps, in an e at to discover further properties of measures.

A.6 Acknowledgements

I would like to thank Hari Bercovici and Wing Suet Li for their great expertise and insight into this problem.
| would also like to thank the National Science Foundation fa funding this REU program, and Indiana
University for hosting it.



On the combinatorics of honeycombs A-9

Bibliography

1. H. Bercovici, B. Collins, K. Dykema, W. S. Li, and D. Timoti n, Intersections of Schubert varieties and
eigenvalue inequalities in an arbitrary nite factor, arXi v:math.OA/0805.4817v1.

2. A. Knutson and T. Tao, The honeycomb model of GL,(C) tensor products. |. Proof of the saturation
conjecture, J. Amer. Math. Soc. 12(1999), no. 4, 1055{1090.

3. A. Knutson, T. Tao, and C. Woodward, The honeycomb model of GL, (C) tensor products. Il. Puzzles
determine facets of the Littlewood-Richardson cone,J. Amer. Math. Soc. 17(2004), no. 1, 19{48.






Pure braid homomorphisms and complex dynamics

Annie Carter
Swarthmore College

Indiana University REU Summer 2008
Advisor: ADVISOR






Pure braid homomorphisms and complex dynamics B-1

B.1 Generalities

The braid group may be thought of as a group of equivalence ckses of sets of descending, non-intersecting
paths (strands) which begin at a given ( nite) set of points in the plane and end at the same set of points in
a copy of the plane which has been translated downwards. Theqeivalence relation is homotopy relative to
the endpoints; that is, two braids are equivalent if one can ke deformed into the other, leaving the endpoints
xed, without passing strands through each other. Two braids are multiplied by concatenation, joining the
bottom of the rst braid to the top of the second. The pure brai d group is the subset of the braid group for
which each strand returns to its original position in the new plane.

We can give the set of points a standard labeling which allowsis to identify sets of paths with particular
braid elements. The pure braid group onn strands P B, admits the following presentation [1][3]: it is
generated by elementsA; (see gure B.11), where 1 i< n, which correspond to twisting the ith

Figure B.1: The generatorA;

strand around the j th strand, subject to the following relations:

8 . o
ifr<s<ic<j
% A ori<r<s<j
ArslAij A = Ari Aij Afi . ifr<i =s<j
2 A AGA AGAL ifr=i<s<j
A AGATAGIA AGA AGTA Y ifr<i<s<
Call these relationsR;:::;Ry4. Forillustrations of the rsttwo Artin relations, see gur e B.2. Note that the
rst relation tells us that two pure braids commute if the str ands involved in each are completely disjoint (far
commutativity)lcompare gures B.2(a) and B.2(d)|or if the strands indexed by one lie strictly between

the strands indexed by the other|compare gures B.2(b) and B .2(e). For the second relation, imagine
pulling the rst strand in front (see gure B.2(c)) or behind (see gure B.2(f)) the others.

We can project the paths onto one of the planes (see gure B.3)In this case an oriented curve or curves
in the plane traces the path along which each strand travels.This will be our standard projection.

The center of the pure braid group is generated by the full twist D2 [2], which is given by

D?=(ApAEAL  A)(As  Ax)(Az Az (At 1n)

for the braid on n strands. Note that each parenthesized factor in this produ¢ corresponds to one loop
moving around all those numbered above it (see gure B.4). Sice no loop interacts with any of the others,
each loop and thus each factor commutes with the others.

1we have used the positive orientation of the plane, while Art in uses the negative orientation. However, the relations ar e
indi erent to the choice of orientation.
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(a) ArslAij A, wherer<s<i<j (b) ArSlAij A, Wherei<r<sc<j (© ArslAij A, Wherer<i = s<j
r 5 i i i r 5 i r i=z i
'h,____ __|
A~ T

(d) Aij,wherer<s<i<j (e) Aij,wherei<r<s<j ) ArinjA”-l,wherer<i =s<j

Figure B.2: lllustrations of the rst two Artin relations fo r pure braids

Figure B.3: The generatorA;
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Figure B.4: The full twist D? on four strands

Let f : C! C be the function f (z) = z?+ ¢ for somec 2 C such that the point O is periodic or
pre-periodic. We will primarily be concerned with functions for which the forward orbit of O consists of three
or four points. To nd examples of such functions we may simpy solve equations of the form

fm(c)= f"(c)

for ¢, choosing appropriate values ofm and n. For example, to nd a value of ¢ for which the orbit of O
enters a 2-cycle after two iterations, we set

G+cec=((+0?+0?+c
Putting all the terms on one side and factoring gives us
Ac+1)3(c+2)(2+1)=0:

The point 0 is a xed point for ¢ = 0, is periodic of period 2 forc = 1, and enters a 1-cycle after two
iterations for c= 2. So the two values ofc for which 0 enters a 2-cycle after two iterations arei and .

Let X = ff"(0)jn2 Ngandlet X°= X[ ( 1)X. Notethat f(X9=f(X) X.LetG= PByx denote
the group of pure braids based at the points inX . SayjXj= n,sothat G' PB,. Call the strand based at
the point ¢ the nth strand, and label the remaining strands 1;:::;n 1. Consider an oriented closed curve
based at a point in X f c¢g and not passing through any other points in X . This corresponds to a braid
in G (we may parametrize the curve so that it gives a path, and tred the other strands as moving straight
down). When we take its inverse image underf , we get either two oriented closed curves based at points
in X% or one oriented closed curve passing through two points oK ® and mapping by degree two. These
curves induce a permutation of the points ofX % in the natural way. This gives rise to a homomorphism

:G ! Syxo, where Sxo denotes the symmetric group onX © called the monodromy homomorphism.

In general, pure braid generatorsA; which do not have strands running around the singularity ¢ will be
sent under to the identity, while generators A;, will be sent to transpositions of the form (z  z), where
f () is the base point of theith strand. See gures B.5, B.8, B.9, and B.10?

2These gures were created using the OTIS applet at http:/ww  w.math.nagoya-u.ac.jp/ kawahira/programs/otis.html.
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We can give the image of explicitly. Since each generator of the formA; wherej 6 n is sent to the
identity, we need only consider the image of generators of th form Aj, . Suppose that (Ai,n) =(z1  z1)
and (Ai,n) =(z2 22). If zz = 2z, then f(z1) = f(z) is the base point of both the (i1)th and (i2)th
strands, and thusAj,, = Aj,,. So eachA;, permutes a pair of elements oX °which are not a ected by any
other generators. There aren 1 generators of the formAj, , so we have im() ' Z} L

We are interested in pure braids which are taken undeff ! to other pure braids; that is, elements in the
kernel of . We haveA; 2 ker( ) fori<j<n , and A2 2 ker( ) for i<n ;since ker() G, all conjugates
of these are also in ker(). We can give the generators for ker() explicitly.

Theorem B.1.1. Letf : C ! C be the quadratic functionf (z) = z? + ¢, where c is some complex
constant such that the orbit of 0 is nite. Let X be this orbit, let n = jXj, let X%= X [ ( 1)X, and let
G = PBx ' PB, be the group of pure braids based & . Call the strand based at the pointc the nth strand,
and label the remaining strandsl;:::;n 1. Let :G! Sxo be the monodromy homomorphism which sends
the pure braid A to the permutation induced byf 2(A), where we consider our standard projection ofA.
Then H = ker( ) is generated by the set of elements of the following form:

< A wherei<j<n
wherei<n
Ain Aj At wherei<j<n:

Proof. Let S be this set of elements and letK be the subgroup generated byS. The proof is in two parts.
The rst shows that all conjugates of these elements are inK, that is, that K is a normal subgroup. We
certainly have K H, so the second shows that all elements dfi are elements ofK , that is, that H K
and thus that H = K.

First, we show that K is a normal subgroup. It su ces to show that conjugating each element of S by
each generator ofG again gives an element oK , since ifs 2 S, xsx * = s; s¢ where eachs; 2 S or
s;12S,andg2 G, thengxsx g *=gs; g *=g9gsg 'g g 'gxg ® Eachgsg ! can then be
reduced once again to a product of elements db or their inverses.

We divide the argument into cases. Most of the cases depend arings of calculations using the relations

Conjugates of A;, where j & n
We want to show that elements A ¢ A; A, ! are products of elements ofS. We divide this further into
subcases depending on the values ofand s.

{ ns2[1n)

The elementA A; Al is trivially in K, sinceAs;A; 2 S.
{r2[L)[ Gin)is=n

By Ri, the elementsA,y and A; commute, so0A ¢ A; Al= Aj 2K.
{r=is=n

The element A A; Al isin K by construction.
{r2@j)s=n

By a long series of calculations, we havé\ s A; Al=

(Ainz)(Ain Aij Ainl)(Aizn )(Arj l)(Arnz)(Arn Arj Arnl)(Aij )(Ainz)

(Ain Ay AR AT (A A AR DAG (AR Ay AR (AR (A, )

(Ainz)(Ain Aij 1Ainl)(Aﬁ1 )(Aij )(Air 1)(Arn2)(Ain2)(Ain Air Ainl)
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(Ainz)(Arn Arj lArnl)(Ainz)(Ain Air lAinl)(Aizn )(Arnz)(Air )(Arj )

(A DAL)AL AL Ah(AZ), a product of elements ofS and their inverses and thus inK .
{r=js=n

By a shorter set of calculations we haveA A; At = (A2 (A, A A Y)(AZ), a product of

elements ofS and their inverses and thus inK .

Conjugates of A2
We want to show that elementsA A2 A ! are products of elements ofS. We divide this into subcases
depending on the values of and s.

{ rns2[Ln)
The elementA, A2 Al is trivially in K, sinceA ;A2 2 S.

{r2[Li);s=n
By another brief set of calculations, we haveA A2 At = (A, 1)(AZ)(A, ), a product of elements
of S and thus in K.

{r=is=n
In this case we haveA, Az Al = A2 2 K.
{r2(n);s=n
By another brief set of calculations we haveA (A2 AL = (A, 2)(A, A, AL DAZ )AL A AL D(AZ),
a product of elements ofS and their inverses and thus inK.
Conjugates of A, A; A", where j 6 n
We want to show that the elements A  Aj, A A, 'A.! are products of elements ofS. Once again we
divide into subcases depending on the values af and s.

rns2[Ln
{ As be]Eore,)in this case the elemen ¢ A, A; A A Lis trivially in K, sinceA 4 ; Ay, Aj At2s.
{r2[Li)s=n
By another calculation we haveArs Ain Aij AinlArsl = (Ari 1) (ArnlAri Arn )(Ain Aij Ainl)(ArnlAri 1Arn )(Ari )r
a product of elements ofS and their inverses and thus inK .
{r=is=n
We haveArs Ain Aij AinlArsl = (A|2n )(Aij )(Ainz) 2 K.
{r2(j)s=n
By another hideous calculation we haveA s A, A; AIAL =
(Ain)(Ain A "AR AL AAG AGDA AR A)
(Ain Arn Ainl)(Arj )(Ain ArnlAinl)(Arzj )(Aij l)(Ainz)(Ain Aij Ainl)
(AZADARDAGAZ) AN AR A A (ARD(A; )
(Ain A A DA A AL A AR A A (AL
(Ain Arn Ainl)(Arj l)(Ain Arnl)(Ainl)(Ainz)(Aizn )(Air 2)(Arnz)(Air )
(Ain A A DA AL ACADARD(AL A ARD(AZ), a product of elements of S and their
inverses and thus inK .
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r=js=n

{ By ):et another calculation we have A A, A;; AIAL =
(A2 (A Ay P ALDAZ)A (ARD)(AL A AP )(AZ), a product of elements of S and their in-
verses and thus inK ..

{r2@n)s=n
FinaIIy, we have Ars Ain Aij AinlArsl = (Ainz)(Ain Air 1Ainl)(Ai2n )
(A (A Ay ARDAL DAL)AL A A P)(AZ), a product of elements of elements of and their
inverses and thus an element oK .

So every element ofS, when conjugated by any generator and thus any element of5, remains in K ; so
K G.

Now we show that H K. First, recall that the image of is isomorphic to Z} 1 and that every
generator of the formA;, is mapped under to a transposition. We have G=H ' im( ), so the cosets oH
correspond exactly to ordered 6 1)-tuples of Os and 1s. There is a 1 in thdth position for the coset xH
whenever the generatorA;, appears an odd number of times as a factor of the coset repragative x. (Note
that the inverses of A;, may be either added or subtracted, since we are counting moda 2.) This also tells
us that any product of the generatorsA; is in H if each generatorA;, appears an even number of times
and each generatorA; wherej 6 n appears any number of times.

We will use an inductive argument on the length of an elementn the generatorsA; . Let jgj denote this
length, so that if g = A, Ai, i, then jgj = k, and say that j1j = 0. Supposeg 2 H. We want to show
that g2 K.

There are four base cases to consider. |§j = 0, then we haveg=1 2 K. If jgj = 1, then g must be of
the form g = A; wherej 6 n, and thus g2 K. If jgj = 2, then g is either of the formg= A; ; A;,;,, where
j1;j2 6 n, or of the form g= A2, both in K. If jgj = 3, then g may be of any form in which each generator
Aj, appears an even number of times; for example, we may haxe= A;, Ay Ai, = (A, A A D(AZ). The
rst part of the proof gives us that ( A;, A Aml) 2 K, and sog 2 K. The other cases are similar.

Now suppose that for anyh 2 H with jhj m 1 we haveh 2 K. Let g2 H be a word of lengthm.
We wish to show that g2 K.

Write g= A;{, Al . Let x be the rstfactor A; [ and lety be the second factorA,,,. If j1 6 n,
then we are done, forg;x2 H and soAizjlZ Aimljm , aword of lengthm 1, must also be inH and thus
in K. So consider the case whef; = n. Similarly, if j, 6 n, then g = xyx xA, ;A% , we have
g;xyx 12 H, and thus xAi3j13 Aimljm , aword of lengthm 1, is also inH and thus in K. So consider
the case whenj; = n.

Because the elementg is in H, the factors x and y must appear an even number of times and hence
at least once more. We will consider the two cases wher appears beforey and when x appears aftery
separately.

Supposex appears as the factorA, j, and y appears as the factorA; !. Letc= Al Al |,
d=A .. A, ,ande=A ', AL ;thatis, we haveg= xycx dy ‘e If we remove the
factors x and y, the remaining element cde must still be in H, since each factorA;, still occurs an even
number of times. So the elementd and e must be in the same coseuH . Recall that if the element A;,
appears as a factor of the coset representativa, then it must appear an odd number of times, and thus at
least once, in each of the elementsd and e. Thus, we must havejuj j cd and juj | €. Write e = ue’,
wheree’2 H.

If cd2 uH, then cx 'd 2 xuH ; but left and right cosets of normal subgroups are equal, so & can write
cx 'd2 xHu. Let cx *d= xku, wherek 2 H.

1j1
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Now we can write

g = xyxkuy lue®
= (xyxy)(y ‘ky)(y ‘uy *u)(€d: (B.1)
Each of the parenthesized factors is irH. We have
XyXy = Aik]r.1Ai|rJ1-Aik]r.1Ai|rj{
= éik%Ahrj{Aik]ﬁAikznAhrj{
3 Aik;Ah,l%AikillAizknAgg, by Rz it X = Ay, q andic <i
_ AikaiklhAilfAikhAiknAziknAhln* by R» !fx: Ain and!k <.I'
.B AilgAiliiAiITAili}iAilnAiknAgn’bystl |fX: Aikf and|| <!k
8 AiknAhnAi|ikAi|nAi|ikAi|nAiknAiknAi|n'by R3 |fX: Aikn and|| <|k
3 (Aik;)(Ah%Aikh'?_‘hr%)(AiuzAizknAl‘iu%Z) . ?f X = Aik? and !k < l |
= (Aikzn)(Aikh)('Al‘hnAlikhAihri)(AhnAiknAiknAhn 1 11 If X = Aikn and Ik <.I I
'B (Ai|g)(AhnZAhikAim)fAhnl )(A]EIii)(AilnAianlA:iLln)(Ailn If X = Alk:ll’-'l and !| < I k
(Aikn)(Ai|n)(Ai|nAi|ikAi|n)(Ai|n )(Ai|ik)(Ai|n ) if x = Aikn and I <l

Each parenthesized factor is a conjugate of an element d¢ and hence inK . We havek 2 H and
jki jox tex tdup joxj+jd+xj+jdi+jup joxj+ g+ jxj+jdi+je=m 2
sok 2 K and thusy 'ky 2 K. We havey 'uy 'u2 H and
jy tuy fuj joyi+juitiyi+iui joyi+icd+jyi+jei=m 2
soy luy 'u2 K. And we havee®2 H and
je] ju el jui+jg jcdi+je=m 4

soe’2 K. Thus all of the parenthesized factors in (B.1) are inK , so we haveg 2 K .
The other case is similar. Supposg appears as the factorAikjlk and x appears as the factorA

Al Al od= AL A, Lande= A Y AL thatis, we haveg = xycy 'dx e
Once again we must havecd and e in the same cosetuH, sojuj j cd and juj j €. Moreover we have
ycy 'd2 uH = Hu, and we write ycy 'd = ku, wherek 2 H, and e = ue’, wheree®2 H.

So we have

1 —
ij- Letc=

1,20

g= xkux “ue
= (xkx H(xux tu)(eY: (B.2)

We havek 2 H and
jkj joyey tdu tj joyj+ g+ jyj+di+juj joyj+jci+jyj+jdi+jeg=m 2

sok and thus xkx ! are in K. The case forxux !u is almost identical to the case fory 'uy 'u above, and
the case fore is the same as before. Thus, each of the parenthesized factomn (B.2) is in K, sog 2 K.
Therefore we haveH K, andthusH = K. O
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We now turn to the task of constructing homomorphisms betwee pure braid groups. We know that
the inverse image underf of a pure braid in H is a pure braid in PBxo. Let 7 : H ! PByxo be the
homomorphism that carries an element ofH to its inverse image underf. Let :PBxo! PBx be the
\forgetful map" which loses track of the strands based at poits in X ° X . This map is also a homomorphism.
Recalling that G= PBx,let ; :H! G be the homomorphism ; = ~t . A homomorphism is de ned
by its action on the generators of its domain, so we move to ouexamples to give ¢ explicitly.

B.2 The Rabbit; or, the 0-3 Case

For the braids on three strands, leta= A;,;b= Aj3;c= A,;. Let f (z) = z% + cr, Wherecg 1122561 +
:744862. Under this function, the point 0 is periodic of period 3. Figure B.5 shows the action off * on
the pure braid group generators. To illustrate how we evaludée  on the generators ofH, consider the

(@ A and f 1(A},) (b) Ajgand f 1(A;) (c) Ayy and f 1(A,3)

Figure B.5: The pure braid group generators and their inverg images underf for f (z) = z2+ cr. The blue
curves are the pure braid group generators, and the green cues are the inverse images of these generators.
The rst, second, and third strands are, respectively, thos based at the pointsc + cr;(C + Cr)? + Cr;Cr-

progression shown in gure B.6 for the elementk? and in gure B.7 for the element bab !. That is, we
evaluate 3 on elements ofH by tracing the paths along their inverse images. We then use to ignore the
strands based at cz and ¢ cr. Proceeding in this way for all of the generators ofH, we nd that

f(@=Db
1K) =c
()= a

¢ (bab 1) =1
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(@) As a reminder, the pure braid (b) ...and their inverse images under f
group generators...

(c) We start by tracing the curve for b (d) ...then apply 7¢, tracing the in- (e) ...then apply , forgetting the
twice... verse image of b twice... strands from extraneous points to
themselves

Figure B.6: An illustration of the evaluation of ; on the generatorb. The orange curve isa, the blue curve
is b, and the purple curve isc. All curves are oriented counter-clockwise.
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(a) We start by tracing the curves for (b) ...then apply 7f, tracing the in- (c) ...then apply , forgetting the

bab 1... verse image of these curves... strands from extraneous points to
themselves. These strands can be
pulled straight|so ¢ (bab 1) =1.

Figure B.7: An illustration of the evaluation of ¢ on the generatorbab *. The orange curve isa, the blue
curve is b, and the purple curve isc. All curves are oriented counter-clockwise.

We note that ¢ is surjective and not injective. We also examine where ; sends the center ofG. In general,
the elementD? is not in H, but the element D* is in H. On three strands we have

D* = (abg?
abcbca
aa ‘babéa

b labda

so that ¢ (D*) = D? for this case.

B.3 i; or, the 2-2 Case

Let f (z) = z?+ i. Under this function, the point 0 is enters a 2-cycle after two iterations. Figure B.8 shows
the action of f 1 on the pure braid group generators. For this case we will refce the generatorbab * with
the generatorb lab. As with the rabbit, we evaluate ¢ on the generators ofH by tracing inverse images
and discarding the strands based at points outside of the foward orbit of 0. In this case we nd that

f(@=Db
t(K)=c
1()=1

i(b lab = a
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(@ A, and f 1(A},) (b) Az and f 1(A3) (€) A,z and f 1(AL,)

Figure B.8: The pure braid group generators and their inverg images underf for f (z) = z? + i. The blue
curves are the pure braid group generators, and the green cues are the inverse images of these generators.
The rst, second, and third strands are, respectively, those based at the pointsi  1; i;i.

Once again, we have ¢ surjective and not injective, and ¢(D*) = (kb *abda) = cab= D?2.

B.4 The 3-1 Case

Let f (z) = z2 + c3, where c3 ;228155 + 1:11514. In this case the point O enters a 1-cycle after three
iterations of f. Figure B.9 shows the action off * on the pure braid group generators. Evaluating ; on
the generators ofH in the same way gives

i(@=Db
1(FF)=1
()= a
t(bab )= ¢

Once again: ¢ is surjective and not injective, and ¢ (D*%) = ¢ (b’b 'abda) = cab= D?.

B.5 The 0-4 Case

Let f(z) = z?+ ¢4, wherecy :15652 + 1:03225. In this case the point 0 is periodic of period 4. Figure
B.10 shows the action off * on the pure braid group generators. In this case we have
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(@ A, and f 1(A},) (b) Ajgand f 1(A3) (€) A,z and f 1(AL,)

Figure B.9: The pure braid group generators and their inverg images underf for f (z) = z? + c3. The blue
curves are the pure braid group generators, and the green cues are the inverse images of these generators.
The rst, second, and third strands are, respectively, those based at the pointsc + c3; (¢ + ¢3)? + C3; Cs.

(A1) = Ay
f(A3)=1
f(Agg) =1

f (A§4) = Az
t(A%) = Agg
t(A%) = Ay
t(AALAL) =1
f (A14A13A141) = Ay
f (A24A23A24l) = Ap

Once again, ¢ is surjective and not injective.

B.6 Extensions

We are interested in using our braid homomorphism to tell us nore about the long-term behavior of simple
closed curves under repeated iteration of 1. One principle we would like to verify is that of contraction of
word length; that is, given a word of a certain length in the generators of G, we would like to show that after

a certain number of iterations of ; the length of the resulting word has decreased by some de né factor.
The action of ¢ on the generators ofH certainly suggests this; the generatorA,, is the only one in each
case we have examined whose length is not immediately decrsad by application of ;. However, verifying
this property is not as simple as verifying it on the generatas, since, as was suggested above in proving the
generating set forH , writing an element which is in H as a product of generators oH has the potential to
dramatically increase word length.
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(@ A, and f 1(A},) (b) Az and f 1(A3) () A, and f 1(AL,)

(d) Ay and f 1(Ay) (€) Ay and f 1(Ay,,) (f) Agy and f 1(Ag,)

Figure B.10: The pure braid group generators and their invese images undef for f (z) = z2+ ¢;. The blue
curves are the pure braid group generators, and the green cues are the inverse images of these generators.
The rst, second, third, and fourth strands are, respectively, those based at the pointsc + cs; (¢ + ¢4)% +

Ca; (GG + Ca)® + Ca)? + Ca; Ca.
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Thus we introduce two extensions which have the potential fo use in verifying the contraction property.
The rst is an extension of . Consider the caselvheren = 3. The domain of ; is a subgroup of index 4
of G. We extend the homomorphism ; toamap ; : G! G as follows:

8

3 (W) if w2 H
— S ((bw)  ifw2bH
f(W)_g f(c tw) if w2 cH

¢(c b 'w) if w2 bcH:

Note that ; is not a homomorphism.

The second extension is an expanded form of the elements @&. Label the cosetsH;bH;cH;bcH 1
through 4, respectively. Let °: G ! S, give the permutation of the cosets induced by an element of.
Then the expanded form is

g= A9 1(9); 1(gb; 1(99; r(gby):

Consider a set containing the generators ofG, their inverses, and any product of two of these. For each
elements in this set, examine its expanded form. If any of the elements ¢ (s); :(sb); ¢ (sc) f(sbqg are not
in the set, add them and repeat. If eventually the set closes gthen we can show the contraction property.

We give the expanded forms of the generators for our three exaples wheren = 3.
For f (z) = z? + cg, we have

a=(bL1Lb

b=(12)@B4)(1;c;1;a *ca)

c=(13)(24)1;b;a;ab?l)
al=(bLLLb?Y
bl=12)@34)(c 1a tc ta)
cl=(13)@24)(a LbabLb Y

For f (z) = z? + i, we have

a=(b;a;a;h

b=(12)(34)1;c;1a ‘ca)

c=(13)(24)1;ba ;1;ab })
al=(btaalbl
bl=@12)@34)(c t1a tc ta;1)
cl=@3)(24)@1;ba t;1ab ?)
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For f (z) = z? + c3, we have
a=(b;c;a lca;b
b=(12)3 4)(1:L111)
c=(13)24)1;bc *;a;cab 1)
al=(b?Ycalclabl?
b1=(12)(34)1:;111)
cl=@13)(24)(a %bal;1ch?

We hope that further work in this direction will give us the de sired property.
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C.1 Preliminary De nitions in Coding Theory

Let F, denote the nite eld having two elements, namely f0,1g. The vector spaceF} consists of all lengthn
vectors with entries either 0 or 1. We de ne abinary linear code , C[n;Kk], to be ak dimensional subspace
of FJ, in which the vectors in C[n; k] are calledcodewords . We de ne the weight of a codeword to be the
number of places in which the codeword has a nonzero entry. Teee this, let's consider an example ifF3; let
u=(1;0;0;1;0;0;1;1) 2 F§. Clearly, the weight of u, denotedw(u), is 4. A code in which every codeword
has weight divisible by four is said to bedoubly even .

For any given code C[n;k] we de ne its dual, C’[n;n K], to be the set of vectorsv 2 F} that are
orthogonal to every codeword inC[n; k]. The concept of orthogonality is the same as always, excepsince
we are in F,, operations are performed modulo 2. A code is said to beelf dual if Cn;k] = C’[n;n  K].
It follows that a self dual code in F} has dimensionn=2. On the other hand, a code is said to beself
orthogonal if Cn;k] C’[n;n K], thus a self orthogonal code will have dimension less thanraequal to
n=2.

In the next section, we will de ne and discuss Hadamard matrces and their connection to codes. To see
this connection more clearly, we need to de ne what thegenerator matrix for a code is.

De nition C.1. Let Cn; k] be ak dimensional code whose codewords have lengtih. De ne a generator
matrix for Cto be ak n matrix whose rows are basis vectors focC.

De nition C.2. Let C[n; k] and G;[n; k] be two k dimensional codes. We say; is equivalentto G, if we
can permute the columns of their generator matrices so that hey have the same basis.

C.2 Introduction to Hadamard Matrices

Let H be ann n matrix with entries 1 that satises HH T = nl,. Such a matrix is called aHadamard
matrix and will exist and have maximal determinant n"? only if n=1;2,orn 0 (mod 4) [5]. Hadamard
matrices are non-singular and (by negating and permuting revs and columns) will contain a rst row and
column in which every entry is 1. Doing this is callednormalizing the matrix. The resulting matrix will be
equivalent to the non-normalized matrix, where equivalent means up to row and column permutaton and
negation.

For any Hadamard matrix, there is an equivalence class of biarly linear codes associated with it. To
obtain this code, we rst normalize the matrix, then replace the 1's with O's to obtain a f 0; 1g matrix. The
code is the linear span of these rows, and equivalent matrigegive rise to equivalent codes.

For this paper, we will nd the codes of certain Hadamard matrices and their subcodes in hopes that
they too will be the codes of a Hadamard matrix. The codes in gastion will be doubly even, self orthogonal
or self dual codes, because whem 0 (mod 8), wheren is the size of the Hadamard matrix, the resulting
code will be doubly even and self orthogonal [1]. Because offi¢ large number of possibilities of subcodes for
certain codes, we will make a de nition to narrow our search.

De nition C.3. A code Cis said to besuitable if it contains the all 1 vector and its generator matrix does
not contain duplicate columns.

Clearly, the code of a Hadamard matrix must contain the all 1 vector, since for any Hadamard matrix, we
can make the rst row have all 1's. Also, from a result found in [8], the code for ann n Hadamard matrix
must have dimensiond log, n + 1, therefore we only need to consider subcodes down to thisichension.
The generator matrix for the code may not have duplicate colunns because, if it did, every codeword in
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the code would have duplicate columns. This would translateto the associated Hadamard matrix having
duplicate columns, which we know is not true since Hadamard ratrices are non-singular.

As stated above, this paper will deal solely with binary linear codes, more speci cally doubly even self
dual and self orthogonal codes. Although we are not limitingourselves to codes only generated by weight
four codewords, special mention of them must be made. Any caalthat is generated by weight four codewords
is the direct sum of the following codes: the duadic codestg,), €;, and eg [2]. Therefore we will focus our
discussion on these codes to get a better picture of where theodes generated by weight four codewords
come from.

C.3 The Duadic Codes ( d,,), €7, and eg

We'll begin our discussion of codes generated by weight fourodewords with the duadic codes d,,. These
codes are of dimensiom 1 and length 2n, whose basis is formed as such:

don =h11110000 00;11001100 0C;
11000011 0C; ;11000000 11

where each codeword is of length 2n. As an example, the basisrfdg is h111100001100110011000011, and
contains the codewords

11110000
11001100
11000011
00111100
00001111
00110011
11111111
00000000

These codes respeaduads, or have aduadic structure. This means that we are free to permute columns 1
and 2, 3 and 4, 5 and 6, and so on. This is clear by how the basis fermed; column 1 is the same as column
2, column 3 is the same as column 4, and so on. It is also impond to note that d4 respectstetrads ,
meaning we are free to permute columns 1 through 4 and column§ through 8. Both notions of a code
respecting duads and tetrads will be used later.

The other codes generated only by weight four codewords are; and eg. To construct e;7, begin with the
basis for ds, adding a zero to the end of each codeword to make it length 7,rad add the self glue vector
1010101 to the basis. Adding a self glue vector (a vector noti the original code) to the basis of a code
increases its dimension by one and thus increases the amouaf words in the code by a factor of two. Note
that e; has length 7, though for the purposes of this paper, we will ad zeros to the end of each codeword to
make its length a multiple of 8 (this process is called \padding"). For example: to make every codeword of
e; have length 8, we will pad each codeword with a single zero, nkéng e; = h111100001100110010101010.
We construct eg in a similar way, glueing 10101010 tadg, thus eg ish11110000110011001100001110101010.

Note that adding a self glue vector to a code is di erent than adding a glue vector, a notion that will be
used when considering codes that have a direct sum structure

De nition C.4. LetC, G C« be a code formed by the direct sum ok codes. De ne aglue vector
x of the form (x1;X2;  Xk), wherex; 2G for1l | Kk, to be a vector that adds a dimension to the code,
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increases the number of words in the code by a factor of two, ahbreaks the direct sum structure of the
code.

Consider the examplehds  dg; (1010101010101010), which has the following basis

11110000 00000000
11001100 00000000
11000011 00000000
00000000 11110000
00000000 11001100
00000000 11000011
10101010 10101010

Notice that without the glue vector (10101010,10101010), any codeword of the code will retain the direct sm
structure. However, adding this glue vector essentially \dues" the two codesdg and dg together. Therefore,
with the addition of this glue vector, not every codeword in the code will retain this direct sum structure.
The following lemma is helpful in showing the uniqueness of Ige vectors within codes.

Lemma C.3.1. LetC=C G C« be a code made up of the direct sum d& codes. Letu and v be
codewods such that = u + ¢, wherec 2 C. Then the code formed by gluings to C is equivalent to the code
formed by gluingv to C.

The proof is trivial and not shown here, but to see its applicdion, let's consider an example. Consider
the above examplehds  dg; (1010101010101010). If we glue

(1010101010101010) + (1112000000000000) = (0101101010101010)

to dg dg instead of gluing (1010101010101010) todg  dg, we will clearly get a code equivalent tohdg
ds; (1010101010101010). This follows because we can just add (111100000000000) back to the glue
vector displayed above to make the last basis vector for the @de be (1010101010101010), thus the codes
are equivalent.

Because of the frequency with which certain glue componentappear, we will de ne the glue components
a = 10101010 andg = 11000011. Note that, with this de nition for g, the codeds is hdg; gi.

C.4 The Deletion Process

Given a dimensionk, doubly even, self orthogonal code, how can we nd all of the dnensionk 1 subcodes
of this code? When working inR", it is natural to nd the k 1 dimensional subcodes of & dimensional
code by nding the orthogonal complements of all the 1 dimensonal subspaces oR". However, since we
are working in F3, applying this process would yield the original code back agin, since every codeword is
orthogonal to both itself and every other codeword.

A process for nding the k 1 dimensional subcodes of a doubly even, self orthogonal dension k
code is as follows: letC[n;k] be a doubly even, self orthogonal code. Choose the basis f@n;k] to be
hCq1;Cy;  Cyi. Letv 2 F'§. Choosek 1 linearly independant vectors to form hvi? . Each of the vectors
in hvi? will correspond to a vector in Cn; k]. For example; (1;,0;0;  0) will correspond to Cy4, (0;1;0; 0)
will correspond to C,, (1;1;0; 0) will correspond to C; + C,, and so on. So, thek 1 dimensional space
hvi? will correspond to ak 1 dimensional subcode ofn; k].

To see this, let's consider the example of nding all the 3 dinensional subcodes of the doubly even, self
dual codeeg. Sinceeg is of dimension 4, we will chooser from F‘Z". Recall that ey is
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h11110000110011001100001110101010

Choosing v = (1;0;0;0) corresponds to the deletion of 11110000 from the basis fogg, as hvi® vyields
h(0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1)i . This will be H110011001100001110101010 in the code, which is equiv-
alent to e;. Thus the resulting 3 dimensional subcode okg is ;. As it turns out, there is only one other
dimension 3 subcode okg, namely dg, which can easily be shown by considering all2 1 = 15 choices of
v (we omit the all zero vector). The complete breakdown of dimasion 3, 2, and 1 subcodes ofg is shown
below and will be used later.

RN
_—
-~

6
d4 hy

e

d 2

dg
da
j i

Clearly, none of the above codes are suitable except faz. However, they will be important in our search
as we will need to know all possible subcodes @&, dg, e;, and so on.

For this paper we will be using the deletion process startingwith self dual codes and essentially working
our way down in dimension. There is a complete list of the selflual codes of length 8, 16, 24, and 32 given
in [2]. We also know that for anyn 0 (mod 8), a self dual code of dimensiom will exist, and that every
doubly even self orthogonal code is contained in some doublgven self dual code [6]. We'll also be working
with sizesn 0 (mod 16), since the codes for a Hadamard matrix can be eitheself dual or self orthogonal,
whereas in the 8 (mod 16) case, they are restricted only to sktlual codes.

C.5 The Complete Breakdown of the Self Dual, Doubly Even
Code e €5

Our goal here is to provide a complete list of suitable subcoés for the length 16, doubly even self dual code
es €g, Similar to that done for eg. This will be done by using the deletion process, but since 2 F8, a brute
force method will take quite some time as there are 255 posdib choices forv. So, we will use the following
results to provide the complete list.

For this rst result, recall from linear algebra that for som e spaceS", we can write S" as the sum of
s' s" ! wherel | n 1.

De nition C.5. Letletv2 F} = F, F) '. Dene eld one to be the rst | positions of the vectorv,
and de ne eld two to be the remainingn | positions ofv.

Before stating the lemma, let's rst consider an example to dearly show the meaning of eld one and
eld two. Let v=(0;1;1,0;0;0;0;0;0) and let u = (0;0;0;0;1;1,0;0;1). Both vandu are in F§ = F3 F3.
Thus eld one refers to the rst 4 positions of v and u and eld two refers to the last 5 positions of v and
u. Clearly, v has ones only in eld one, andu has ones only in eld two.
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Lemma C.5.1. Letv 2 FJ. Then the spacetvi? can be written as the span oh 1 vectors of weight 1 or
2, where at most one of which has a 1 in eld one and eld two.

Proof. To begin the proof, rst consider the two trival cases wherew(v) = w =1 or 2. When w = 1, we can
form hvi? with only weight one vectors, and whenw = 2, we can form hvi? with n 2 weight one vectors
and need only one vector of weight two (namely the vector itself), which may or may not have a one in
eld one and eld two.

For w 3, consider the process for formindvi” . Begin by including the weight one vectors that have a
one in a position wherev has a zero, and zeros everywhere else. Clearly, these vecare linearly independent
and orthogonal to v. Note that there are n  w of these, sincev has weightw, leavingn w positions where
v has a zero entry. Since all operations are performed modulo, 2he remaining vectors inhvi’ need only be
of weight two to be orthogonal to v.

Let v; be the number of ones in eld one ofv and let vo» be the number of ones in eld two of v.
Clearly, v1 + v, = w. From eld one alone, there arev; 1 linearly independent vectors orthogonal tov.
Similarly, from eld two alone, there are v, 1 linearly independent vectors orthogonal tov. We now have
(n w)+(vy 1)+ (v2 1) linearly independent vectors to form hvi? , none of which have a one in eld
one and eld two. Sincev; + vo = w, we have

(n w)y+(vy 1+(v2 1)
=n w+(vi+vy) 2
=n 2

linearly independent vectors to form hvi? , none of which have a one in eld one and eld two. We are now
free to choose the nal weight two basis vector forhvi” to have a one in eld one and a one in eld two.
O

It is important to note that we can break Fj into a direct sum of two vector spaces in a number of
di erent ways. In the above example, we could have saidF§ = F3 FS and de ned eld one to be the rst
three positions and eld two to be the last six positions. The above result will still hold no matter how
we break F} into a direct sum of two vector spaces, however it is importan to choose the correct vector
spaces in order for the lemma to be useful. How to choose the ttwector spaces correctly can be seen in the
following result:

Proposition C.5.2. Let C; be a code of dimensionl, and let C, be a code of dimensionn |. The n
dimensional code formed by their direct sumC; G, will have n 1 dimensional subcodes only of the
following forms:

(@ C G, whereC; isany!l 1 dimensional subcode ofc;

(b) & G, whereCyisanyn | 1 dimensional subcode ofC,

(c) &t G;(xy)i, wherex 2 C, butx 2 C,andy 2 G buty 2GC,
Furthermore, the resulting code is independent of the choe of x and .

Proof. For this proof, we will use the \deletion process" describedabove, wherev 2 F5. By Lemma C.5.1,
tvi? will either have no basis vectors with a 1 in eld one and a 1 in eld two, or at most one basis vector
witha 1 in eld one and a 1 in eld two. In this case, eld one is d e ned as the rst | positions of v, since
C, is of dimensionl, and eld two will be the last n | positoins of v, sinceC; is of dimensionn |. Since
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C. G is already broken up into a direct sum, the case wherdvi’ has no basis vectors with a 1 in eld
one and a 1 in eld two will yield either (a) or (b).

If hvi” does have a basis vector with a 1 in eld one and a 1 in eld two, his particular vector will
correspond to a glue vector in a subcode o€; GC,. Since there will be at most one of such vectors, the
remaining basis vectors of am 1 dimensional subcode off; G, will be determined by a direct sum of an
| 1 dimensional subcode o2, and ann | 1 dimensional subcode ofS,. It is clear from the de nition of
a glue vector that the glue vector will be of the form (x;y), wherex 2 C; but x 2 C; andy 2 G, but y 2 G,.
It is also clear from Lemma C.3.1 that the code is independenbf the choice ofx andy. O

We now have su cient results to nd all the dimension 7 subcodes ofeg eg, and they are

hdg  dg; (a; a)i
he;  dg;(q; a)i
he;  e7;(q;0i
e eg
ds es

Because we are only concerned with suitable codes, we needyoontinue nding subcodes ofhdg dg; (a; a)i,
since it is the only code that does not have duplicate columnsnd contains the all 1 vector.

When nding the dimension 6 subcodes oftdg dg; (a;a)i, we can essentially ignore the glue vectorq; a)
and only consider the dimension 5 subcodes afg dg. We are free to do this because addingd; a) to any
combination of vectors indg dg will yield a vector equivalent to (a;a). This is because we are free to swap
columns 1 with 2, 3 with 4, 5 with 6, and so on without changing ay of the vectors indg dg. Since adding
(a; @) to any combination of vectors in dg  dg will only change the vector with respect to those pairs of
columns, we will get a vector equivalent to @;a). By using the deletion process, one of three things can
happen; we will have a vectorv without a 1 in position 7, which will correspond to including (a;a) in the
basis for the subcode. Ifv is of weight one and has a 1 in position 7, this will result in the deletion of @; a)
from the code, resulting in the sub codedg dg. If v is of weight 2, and has a 1 in position 7, this will
correspond to a basis vector equivalent to §; a), since we are free to permute columns 1 and 2, 3 and 4, 5
and 6, and so on. Therefore, unless = (0;0;0; 0; 0; 0; 1), the deletion process will always yield a code with
(a; @) in the basis. So, to nd all the dimension 6 subcodes otdg dg;(a;a)i, we need only consider the
dimension 5 subcdoes ofls dg, since (@; a) will be a glue vector for any subcode ofdg  dg; (a;a)i. Thus
the dimension 6 subcodes ofdg dg; (a;a)i are

ds dg
hds dg; (a; a)i
ods  da; (a; )i

de ds; (0;0); (a; a)i
hds  2ds;(q; 9); (a; )i
Mdys; (9; 9; (a; a)i

Again, since we only want to consider the suitable codes, we W only need to nd the subcodes of
hds; (g; 9; (a; a)i, since it is the only code that does not have duplicate columa and that contains the all 1
vector.

By a similar argument used to show when &;a) will be in the basis for a dimension 6 subcode of
hdg dg;(a;a)i, we can show both &;a) and (g;g will be in the basis for any dimension 5 subcode of
hds; (g; 9; (a;a)i. This will be the case whenv 6 (0;0;0;0;1;0) and v 6 (0;0;0;0;0; 1), since of course this
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just corresponds to deleting @; a) or (q; g from the code. Therefore, we need only consider the 3 dimemal
subcodes of 4. So, the dimension 5 subcodes d#d,; (q; 9); (a;a)i are

hdy; (a; a)i
hd,; (q; Qi
h8ds; (a; 9; (a; )i
b 2ds;(a;9;(a;a)i
I CHOHCHYHCHEY
Ho da(piw);(0;9; (8 @)
hds  da; (w;w); (95 9); (a; @)
where] is the length 8, dimension 1 coden11111111, p is the length 8 vector 11110000, andv is the length
8 vector 00001111. Again, we only want the suitable codes, vith in this case ishj  j; (p;p); (9;9; (a; a)i.
In fact, this code is equivalent to the Reed Muller Code, whit can be found in [4].
We now have our complete list of the suitable dimension 7, 6, ad 5 subcodes of the doubly even, self
dual codeeg eg, and they are

hdg dg; (a; a)i

hdy; (9; 9; (a; a)i
Ho 0 (e p):(a:0;(a;a)i

C.6 The Other Doubly Even, Self Dual Code of Length 16: hdi6; (a; Q)i

By applying the deletion process again toldse; (a;a)i, we can nd the suitable subcodes of dimension 7, 6,
and 5. To show this, it is important to know all the possible dimensionn 2 subcodes of any duadic code
d2n .

Lemma C.6.1. Let dyy be the dimensionn 1, length 2n duadic code. Then then 2 dimensional subcodes
of do,, are:

don 2;02n 4 ds;don 6 ds; dn  dy if Nis even
or
don 2;02n 4 da;don 6 ds; dner Oy 1 if N is odd

Proof. Recall that the basis for do, is

1111000000 00
1100110000 00
1100001100 00
1100000011 OO0

1100000000 11

Note that there are n 1 basis vectors ford,, , and that we are free to use row operations to change the basis
and still get an equivalent code. If we keep the rst and last vector the same, and change the remaining
n 3 vectors to themselves plus the last basis vector (11000000 11), we will get a basis that resembles a
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ds don 4 with a glue vector (11000000 11). But, since this is still n 1 dimensional, we can remove the
last vector from the basis to get then 2 dimensional subcodal,; dy, 4 of don. In a similar way, if we keep
the rst two vectors and the last vector, and change the remaning n 4 vectors as we did above, we will get
the subcodeds dzn 6. In general, if we keep the rst k basis vectors as they are, where 1 k b ”2—1c, and
we perform the procedure as described above, we will get the 2 dimensional subcoded«2 k. dyn 1 k)-
Clearly, we ge t all the subcodes listed above excepd,, 2, which can be attained simply by keeping the
original basis and removing the last vector from it.

We now need to show that this list is in fact complete. Assume hen that this list were not complete.
There would then exist a codeC generated by weight 4 codewords that is not in the above listWe can say
this code must be generated by weight 4 code words by the way wehosetvi® in the deletion process. Recall
that we chosehvi? to only have weight 1 and weight 2 vectors. These will correspnd to weight 4 codewords
since adding any two codewords ird,, will result in a weight 4 codeword. Because every code gended by
weight 4 codewords is a direct sum ofl,,; e7; or eg [2], C would have to contain e; or eg. This is because
the above lists all possible ways to breald,, into a direct sum, while still retaining the desired dimension.
However, sinced,, respects duads, meaning we are free to swap columns 1 and 2, 8da4, 5 and 6, and
so on without changing the ¢ ode, any subcode if it would also &ve to respect duads. So if the list were
incomplete, C would have to contain e; or eg, which do not respect duads, thus contradicting the fact tha
any subcode of a code that respects duads will also respect dds, therefore the above list is complete. [

Lemma C.6.2. Let dy, be then 1 dimensional duadic code of lengtt2n. If any codeword or combination of
codewords is added to the glue vectar,,, the resulting codeword is equivalent t@,, by column permutations.

Proof. First note that ap, refers to the length 2n glue vector a = (:&0101(&0 19). Since all vectors in

don respect duads, we are free to swap columns 1 and 2, 3 and 4, 5 azgd and so on of the generator
matrix without changing the code. Adding az, to any vector in dz, will only swap entries of a;, within
duads, therefore we are free to permute the a ected columnsfahis \new" vector to produce a,, back again,
therefore this \new" vector is equivalent to ay. O

We now have su cient results to nd all the dimension 7 subcodes of the other length 16 self dual code
hdi6; (a; a)i.

Proposition C.6.3.  All possible dimension 7 subcodes didis; (a;a)i are

die
hd14; (a; a)i
hd, diz;(a;a)i
s  dio; (a;a)i
hdg dg; (a; a)i

Proof. By using the deletion process,v will be of the following forms: it will not have a 1 in position 8,
meaning we include @;a) in the basis for a subcode;v is of weight 1 with its 1 in position 8, meaning we
delete (a;a) from the code resulting in the subcoded;s; or v is of weight 2 with a 1 in position 8, which
by C.6.2 will result in a subcode having a glue vector equivant to (a; a) in the basis. Therefore, aside from
the case wherev is of weight 1 with its 1 in position 8, any subcode ofhdis; (a;a)i will have (a; a) as a basis
vector. Therefore we need only consider the subcodes dfig to nd all possible subcodes oftdsg; (a;a)i.
Applying C.6.1 will now get the above complete list of subcoes ofhdis; (a; a)i. O
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Again, since we only want suitable codes, this will narrow ou ndings down to hdg dg;(a;a)i, since
the other codes either do not contain the all 1 vector or have agenerator matrix with duplicate columns.
Obviously, we have already found all the subcodes ofdg dg;(a;a)i, thus we have our complete list of
suitable subcodes ogg ez and hdig; (a; @)i. We can now move to a discussion of their relevance to Hadamdr
Matrices.

C.7 Hadamard Matrices of Order 16

Hall proved in [3] that there are ve equivalence classes of lHdamard Matrices of order 16. This means that,
given a 16 16 Hadamard matrix, this matrix is equivalent to one of the v e matrices given in [3] up to row
and column permutation and negation.

Sloane's directory of Hadamard matrices gives these ve maices, labeled 160, 161, 162, 163, and
16:4 [7]. The codes associated with these matrices are our sulile codes found above, where 16 is h
i (p;p;(a;9; (a;a)i, 16:1isMdy; (q; 9; (a; )i, 16:2ishdg  dg; (a;a)i, 16:3 ishdie; (a;a)i, and 164 iseg  eg.
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D.1 Introduction

For a given vortex, the core is considered to contain a vorteXdine perpendicular to the plane the vortex
is in, around which particles in the uid rotate at some angular frequency. We consider a point vortex to
be a point singularity with some angular frequency placed atthe point the vortex line crosses the plane.
Vortices are of interest in uid dynamics, and are often studied when analyzing and modeling weather and
atmospheric patterns, ocean ows, and atomic interactions among other topics.

Though there has been a huge variety of projects researchingarious aspects of systems of vortices, there
is still much left unknown. The possible vortex con guratio ns that can develop in a system have been studied
for nearly 150 years, dating back to 1878-79 when the physisi Alfred Mayer performed experiments utilizing
magnets on oating corks in a magnetic eld in an e ort to demo nstrate atomic interactions [1]. Certain
steady states observed during this experiment proceeded ti@aunch many other research experiments involving
vortices in an e ort to model and observe many di erent phenomena. In 1978 and 1979, Campbell and Zi
published papers describing such equilibrium con guratians of vortices in the plane, primarily focusing on
stable con gurations [3]. Their well known report, often referred to as the \Los Alamos catalog", revealed
many nested ring equilibria con gurations [2]. While we have unfortunately been unable to obtain a copy
of the catalog itself, it is repeatedly referenced in sevedaother papers on point vortex research.

Equilibrium con gurations of point vortices are de ned as systems of vortices that move such that the size
and shape of the con guration do not change, so that the distaces between vortices is always the same [1].
More recently, in 1998, Aref and Vainchtein from the Universty of lllinois at Urbana-Champaign, published a
paper outlining a method of \growing" equilibrium con gura tions of point vortices of equal strength, through
which they found many con gurations not previously found in the Los Alamos Catalog [2]. The method
consists of two main steps. Assuming a valid equilibrium ofN vortices to be given, the method rst calls
for all co-rotating points for that system to be found. A co-rotating point is considered to have the same
angular frequency as the vortices given, but a strength of z®. In other words, it is essentially an additional
vortex, but with strength zero so that it does not a ect the sy stem. The second step is then to take the
strength of a given co-rotating point and increase it increnentally from zero to one, adjusting all vortices in
the system. As all vortices in the system are considered to ha strengths of one, the con guration found
when the strength of the co-rotating point is equal to one is dund to be the new equilibrium con guration
of N + 1 vortices. This method is described in full in this paper.

As the method outlined above has clearly been utilized in pasresearch projects, our goal is to rst verify
results found in past research so as to ensure the method isdeed working, and then shift our focus into
other areas of the problem that have not been so extensivelyesearched to this point. While we able to
successfully verify past results and analyze the process gfowing new con gurations fairly extensively, time
constraints have unfortunately not allowed our research toproceed much farther. However, the future of
point vortex research continues to look very promising, andthe stage is set to continue on to other aspects
of the problem.

D.2 Vortex Equations of Motion

An equilibrium con guration of N vortices of strength satis es the di erential equation [2 ]

dz, X 1

k=
dt 2i (=1 e Zj
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wherez; and zc are complex variablesk = 1;:::;;N, j 6 k, and the asterisk denotes complex conjugation.
If we consider such a con guration to rotate uniformly with a ngular frequency! - thatis z(t) = zc(0)e"
- then we see that this equation easily simpli es to an algebaic system.

dz it — X =
E L T O TG
_ 1
xO= 37 20 z0

j=1

We must multiply the complex conjugate by e " when we consider the rotation of the system, as this is
the conjugate of€' . This term then cancels from our equation, and we scale— = 1, yielding the greatly
simpli ed algebraic system

Because of the cancellation of theg't term in the equation, it is evident that a valid equilibrium s olution
is not dependent on the rotation of the system at a timet and we therefore can choosearbitrarily. Therefore,
given a valid equilibrium con guration of vortices z;;:::;zy, we see that any rotation of that con guration
is also a valid con guration. Therefore, while we take the vatex equations of motion to be satis ed by
z(t) = z(0)e' I, the algebraic system is satis ed byz(0). We take t = 0 to be implied in the algebraic
system. Because it is already apparent that any rotation of avalid con guration of vortices is also a
valid con guration, we consider any rotation of a valid equilibrium con guration to, in fact, be the same
con guration. This is important to consider when growing new con gurations.

D.3 Solving for Co-Rotating Points

In order to grow new con gurations of N + 1 vortices, we rst need a system of vorticesz;;:::;zy of equal
strength that satisfy the system

(D.1)

wherek =1;::;;N andj 6 k.
Given such a system that solves equation D.1, a valid co-rotiéng point zy+; is found that satis es the
system [2]
X 1
AR na  Z (D.2)
j=1 )
For any initial con guration, it is expected that several co -rotating points will be found, though the exact
number depends on the initial con guration. In order to solve equation D.2, we must rst convert the system
to be in terms of real variables. Because = a+ ib, we nd the system it terms of real variables as shown:
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IR
ZN+1 - . N1 Zj
ay +1 ile:Xq 1 (aner &) (e by)
+ + =1 (an+1 &)+ i(bv+sr B) (an+1 ) i(bys1 b))
a :X\I an +1 g
n j=1 (an+1  &)2+(bvsr  B)2
by X bve1 b
" i=1 (an+1 &)+ (bvsa  B)?
fi=a X an+1 @
1 N +1 . (aN+l aj)2+(b\|+l q>2
X
fa=Dbyva b B

(an+1 @)?+(bva  B)?

Notice that the i term cancels in the equation involvingby +; . We then solvef; and f, for ay+1 and
by +1 using Newton's method.

D.3.1 Newton's Method

Newton's method involves choosing an initial guess point, xtending the tangent line at that point to where
it crosses thex axis, and taking that x coordinate as the new guess point. The function and derivatie are
then calculated at that point, and the process is repeated. © nd the residual r that the x coordinate is
modi ed by at every iteration of the algorithm, we examine th e Taylor series expansion. Given an initial
guess pointxy 2 R and a function f : R! R, we then nd the Taylor series to be

f O+ 1) = f () + fF Yx)r + fO((TXk)rz +

Because we assume to be small, we take all nonlinear terms to be insigni cant and therefore we are
able to approximate, setting the function equal to zero

0 f(xk)+ fAxi)r

X
to be xx+1 = Xk + r and the method is repeated, This easily generalizes to multle dimensions, giving for

afunctionf :R"! R",r = %, where Df = % is the Jacobian matrix of f.

Solving forr, we nd r = f—g((x—kk)) For the next iteration of Newton's method, the x coordinate is taken
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While Newton's method is a very powerful root approximation algorithm, it is not without its shortcom-
ings. Though the method has a rapid rate of convergence, it imot guaranteed to converge, as this depends
upon the initial x coordinate and the derivative at that point. If x happens to fall on or near an extremum,
then the rst derivative will be found to be 0 or near 0, and the tangent line can be sent o to in nity,
resulting in a failure of convergence. It is also possible tat the residual will modify the x coordinate such
that xx = X+ and the algorithm will continually adjust between the same two points, and never converge.

D.3.2 Applying the Method

For the purposes of nding the co-rotating points for a given system of vortices, we have a functiorf de ned

from R2 | R?. This is because we take the initial con guration to be xed in the complex plane, and we
are only allowing the coordinates of our guess for the co-raiting point to be adjusted through Newton's

method. Our Jacobian matrix is then

@@fl @%fl i
q +1 +1
Df = 2 g :
@b @b
@al +1 @h +1

The partial derivatives are then found as follows:

0 1
et __@ g, . " ana g A
@a+a @anq (=1 (an+ @)+ (bva  B)?
L X v B (awa @)’
= 2 272
i=1 [(an +1 aj) +(byw t})]
0 1
@i :ﬂ@aN+1 X an +1 g A
@ha  @ha (=1 (an+ @)+ (bva )2

_ N 2@na a)(bva  b)
j=1 (B )2+ (v B)?P

0 1
@ _ @ X bva b A
@a+1 - @a+1 %+1 i=1 (an +1 rS‘j)z"'(bl\lﬂ h)z

X 2ana a)(bva  B)
j=1 (@ )2+ (v B)?P
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0 1
@ _ @ X by b A
@ha @b O [=1 (ana )2+ (bve  B)?

X (an +1 aj)2 (b +1 Q)Z
j= [(Gnva )2+ (v B)?P

To be con dent that all co-rotating points will be found, we w rote a program including methods similar to
selected subroutines from [5]. We developed the program shdhat an initial guess point is placed every 0.02
units along both the real and imaginary axes, starting from (-100, -100) and extending to (100, 100). Many
of these points yield the same result for the coordinates oftte co-rotating point and many diverge. When
all initial points have been run, however, we are left with a st of coordinates for several unique co-rotating
points, which we can then plot. Some examples are given in ston D.5 for several initial con gurations.

D.4 Growing New Con gurations of N + 1 Vortices

Once we have successfully found all co-rotating points for aalid equilibrium con guration, we then follow
a similar method for \growing" the new con guration of N + 1 vortices. First picking one of the co-rotating
points as our initial coordinate for Newton's method, we then solve the system [2]

X
Z, = + P (D.3)
Lk Z Zx  IN+1
j=1
wherek =1;::;;N,j 6 k, and p is increased from 0 to 1, as well as
X 1
z = _ D.4
N+l IN+1 4

When p = 0, equation D.3 is simply equivalent to equation D.1. As the strength p of the co-rotating point
is increased, however, all points in the system (including le initial vortices) are adjusted. We therefore have
a function f : R?N*2 | R2N+*2  Because we are interested in equilibrium con gurations wiere all vortices
are of equal strength, and we take the strength of all vortice in the initial system to be 1, we take the new
con guration of N +1 vortices to be the coordinates found whenp = 1. To solve, we must nd these systems
in terms of real variables. Taking odd terms (i.e. X2k 1) to be real components and even terms (i.exyx) to
be imaginary components, we nd:
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X (Xok 1 X2 1) p(X2k 1 Xon+1)

X2k 1

fox 1

R (X X2j) p(X2k XoN +2 )
h de

fak = Xok
i=1

f _ X Xon+1  X2j 1
2N+1 = X2N+1 h—
j:]_ ]
_ X XoN+2 X2

fon+2 = Xon+2 B
j=1 J

where hj = (Xak 1 Xzj 1)% + (Xak  X2)?, Ok = (Xak 1 Xon+1)? + (Xok  Xons+2)?, and b =
(Xon+1  X2j 1)% + (Xon +2 X2 2k =1;::;N, andj 6 k. The complete work for this conversion can be
found in section D.7.

While we again use Newton's method to solve these functionsywe do this through utilizing a software
package called AUTO. AUTO is an arc length continuation and bifurcation software package that incre-
mentally increases the parametemp from 0 to 1. Fortunately, AUTO has a program to numerically n d the
Jacobian matrix for our functions, though the necessary patial derivatives can also be user supplied if the
need arises.

The software reads the initial coordinates for the vorticesand the co-rotating point of interest from
a le, and then outputs data into three separate les. One le (fort.7) contains the data relevant to the
continuation curve up through six components of the points keing adjusted. This le also includes data for
the parameter p and the Euclidean norm. Another le (fort.8) gives complete information for points along
the continuation curve that AUTO singles out and assigns a type. These points are of special interest, and
include limit (turning) points, endpoints, user de ned poi nts (in this case, whenp = 1), points at a certain
frequency, and points at which it is apparent that the method will not converge. Finally, fort.9 includes
convergence information. While we have not had a need to exaime the convergence data, we are certainly
interested in the data given in fort.7 and fort.8, as this is the data used to create the bifurcation diagrams,
as well as give the actual coordinates of the vortices for thaew equilibrium con guration. Using this data,
we are then able to plot the new con gurations of N + 1 vortices.

D.5 Results and Analysis

D.5.1 The Trivial Case: N=3

The logical place to start when growing new equilibrium con gurations of vortices is the simplest con gu-
ration that can easily be veri ed by hand. In our case, we bega with three vortices placed equidistantly
from one another on the unit circle. As this is clearly a trivial case, we certainly did not expect to nd
particularly unique results. However, not only is this the most practical place to begin, but it also proved to
provide a great introduction to using AUTO, what we can exped in terms of the bifurcation diagrams found
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and plotting the new equilibrium con gurations, as well as an excellent test to assure us that the programs
used are indeed working.

Solving for all co-rotating points, we nd ten - four within t he unit circle and six around the initial
con guration. These are shown in gure D.1. Notice the symmery across the real axis.
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-2 15 1 0.5 0 0.5 1 15 2

Figure D.1: Co-rotating points for an initial con guration of three vortices placed equidistantly on the unit
circle.

Once we have found the coordinates for the co-rotating poirg, we then take each co-rotating point and
utilize AUTO to determine the new con guration that results from increasing the strength of that point
from 0 to 1. The resulting bifurcation diagrams of the correlation between p and a; for several co-rotating
points are given below in gures D.2 through D.5. It may at rs t seem that we have many con gurations
resulting even from one co-rotating point, as we often see aange of values fora; when p = 1. However,
upon plotting the new con gurations associated with these points on the diagram, we nd that many are
identical con gurations, and another vortex has simply switched places with the vortex that a; describes.
Though we have often found that not all con gurations given from one co-rotating point are exactly identical
in terms of the exact coordinates of the vortices, we do see #t they are all rotations of one another, and we
therefore take them to be the same equilibrium con guration (see section D.2). Up to this point, we have
not seen a case where one co-rotating point results in more #n one unique new equilibrium con guration.
In fact, we have found that several unique co-rotating points often result in growing the same con guration.

Even from this initial trivial case, it is apparent that the ¢ ontinuation curves can exhibit very unique
properties. While we would typically expect some variation of gure D.2, where some branches continue
through p = 1, some turn around, and some diverge, clearly there are man other possibilities. While we
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cannot immediately observe what con gurations will result from which points on the bifurcation diagram,
we can gain a better understanding of how the con guration derelops asp increases. The clearest example
is in gure D.5, when we see that all branches converge to 0 ap = 1. This shows us that the point of
interest represented in the diagram is located at the centempoint of (0;0). We could similarly analyze the
continuation curves given for other components to gain a moe complete picture of exactly how all of the
vortices are adjusted. However, as our primary interest is he resulting con gurations, we will not delve into
much detail in this report. Other unique bifurcation diagra ms are shown in gures D.3 and D.4. One shows
a continuation curve with nearly every branch having a limit point at p = 1, whereas the other shows a
continuation curve with no limit points at all and yields a di erent con guration than what we had previously
found. While we cannot say what is particularly special abou the points that would cause such behavior, it
is nevertheless intriguing and may be an area of interest inuture work.

Two unique con gHrgtions are found from this trivial case: three vortices equidistant from one another
on a circle of radius 2 around a center point at_(o; 0) (gures D.2, D.3, and D.5), and four vortices

equidistant from one another on a circle of radius % (gure D.4). Intriguingly, all continuation curves that

yield the latter con guration have similar properties to th ose seen in gure D.4 - namely, they all seem to
have no limit points. Not surprisingly, we see an increase irthe radius of the circular con gurations as more
vortices are introduced. To see exactly how the radius changs with each added vortex, however, we must
continue growing con gurations, taking the two con gurati ons of four vortices as our initial con gurations
and applying the same method.
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Figure D.2: Typical bifurcation diagram of a; vs. p. Each point where a branch crosses p=1 corresponds to
a valid new equilibrium con guration.
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Figure D.3: Bifurcation diagram with nearly all branches having limit points at p = 1. Despite this unique-
ness, we nd the same con guration previously found.
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Figure D.4: Bifurcation diagram with no limit points. This ¢ o-rotating point alao_yields a new con guration,

with four vortices placed equidistantly from one another ona circle of radius %
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Figure D.5: Bifurcation diagram showing all branches conveging to (and having limit points at) p=1. For
the con guration found, we see that a; correlates to the real component of the center point.
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D.5.2 Higher Values of N

As new con gurations are continually found and taken to be the new initial con guration in growing the
next set of systems, it is very easy to become inundated with ery large amounts of vortex con gurations,
for each of which we must test several co-rotating points. Seeral of these initial systems are shown with
their co-rotating points in gure D.6.
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Figure D.6: Examples of co-rotating points for several inifal systems of vortices. Filled circles represent
initial vortices while open circles are co-rotating points

Through a systematic and exhaustive search for equilibriumcon gurations of vortices for N = 3;:::; 6,
we feel con dent that we have found all equilibrium con gurations for these N values. These con gurations
are shown in gure D.7.

Upon measuring the radii of con gurations for N vortices on a circle andN 1 vortices rotating around a

center vortex, we ruj that a pattern appears to emerge. We nd that, for N vortices placed equidistantlyqola
circle the radius is % and that, for N 1 vortices on a circle around a center vortex, the radius is N7
Similar relations may emerge from other families, though tke systems' complexities make it considerably
more di cult to determine.

While previous research has shown con gurations that lack loth rotational and re ectional symmetry for
N 8, we see con gurations that lack only rotational symmetry for N 5 [2] [1]. We also see \families" of
con gurations emerge - systems that display similar pattems across di erent N values. While we cannot say

with certainty that these families will be apparent for all N values greater than that at which they initially
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Figure D.7: Con gurations grown for N = 3;:::; 6. Plots shown are from ( 3; 3)to (3;3). As N increases,
we see new \families" of con gurations - patterns that emerge and appear to be sustained even for di erent
(increasing) N values.
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appear, they seem to translate consistently to higherN values in our narrow scope of con gurations. As
gure D.7 clearly shows, it seems that every increase irN yields many more valid con gurations and many
more families of con gurations, making it di cult at best to  continue exhaustively nding all con gurations
for increasing N values. Fortunately, realizing that growing con guration s from a given co-rotating point
will yield identical con gurations to those found from that co-rotating point's symmetric counterpart, we
can considerably reduce the number of co-rotating points tlat we need to use as starting points in growing
our con gurations. Unfortunately, as we will see in the next section, there are cases when this does not
necessarily hold true.

D.5.3 Asymmetric Con gurations

As aforementioned, previous research has shown that asymrr& con gurations can be found for N 8.
We will brie y analyze one of these cases.

Consider the initial con guration of seven points given in gure D.8 with all co-rotating points. The
points labeled A and B are our primary points of interest.
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Figure D.8: Initial con guration of 7 vortices shown with al | co-rotating points. Our points of interest are
the co-rotating points labeled A and B.

Taking point A as our initial co-rotating point, we nd the as ymmetric con guration of eight points given
in gure D.9

Clearly asymmetric con gurations such as this are intriguing. Though we see no rotational or re ectional
symmetry, there are still vortices that share a common radits. However, more importantly, we see that, if
we take co-rotating point B (the symmetric counterpart of A), and choose to grow a con guration, we do
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Figure D.9: Asymmetric con guration of eight vortices obta ined from growing from co-rotating point A. The
circles drawn in are for convenience in seeing which vorticeshare a common radius.

not get the identical con guration as obtained from A, nor any rotation of it. We rather get a re ection of
the con guration obtained from A. While certainly similar, we see this is a unique con guration. The two
con gurations are given in gure D.10.

Figure D.10: Two unique asymmetric con gurations found from co-rotating points A and B.

This case tells us several things. First, it shows us that we an no longer assume that a co-rotating
point yields an identical con guration as its symmetric counterpart. This makes things more di cult still.
However, this example also shows that asymmetric con guraibns must always come in pairs, as the re ec-
tion of any asymmetric con guration also seems to be a valid on guration. We also nd (not surprisingly)
that the co-rotating points for an asymmetric initial con g uration seems to also be asymmetric. Finally,
we nd that growing an equilibrium con guration from an asym metric con guration can yield rotationally
and re ectionally asymmetric con gurations, as well as congurations with symmetric properties. Clearly,
asymmetric con gurations considerably complicate our pumpose of growing equilibrium con gurations sys-
tematically. The co-rotating points for an asymmetric con guration of eight points, as well as examples of
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both asymmetric and symmetric con gurations of nine points grown from the asymmetric con guration are
given in gure D.11.

Figure D.11: Co-rotating points for asymmetric con gurati on of eight points with two possible resulting
con gurations. Notice that both asymmetric and symmetric con gurations can be found.

D.6 Future Research

While at this point we have merely veri ed results found in pr evious research, the stage is now set to continue
in a number of di erent directions. An obvious course of action is simply to continue growing equilibrium
con gurations for larger values of N beyond what is currently known. It is also possible to reverg this
process, beginning with a system ofN vortices and decreasing the strength of one of them from 1 to 0
nding new con gurations of N 1 vortices. Through doing this, one could see if any new con grations
are found, as well as compare with the growing process desbed in this article to note major di erences
and comparative e ectiveness.

Another avenue could include comparing the stability of the con gurations found with this method with
stable con gurations found in the past, as well as to see if ap new stable con gurations can be found
through this method. Along similar lines, we can consider the energies of the systems and, more speci cally,
the change in energies when growing one con guration from asther. If we consider the entropies of the
systems in the same way, we can look speci cally for cases wiewe see con gurations being grown that
have a lower energy, yet higher entropy. While we have startd looking into this relatively untapped area of
research, we have not yet obtained substantial enough restd to present in this report.

Yet another interesting aspect to look at in future researchwould be to adjust the programs used for the
method described in this report for growing a system of vortces on a sphere. While the method described here
would essentially remain the same, we would primarily simpy be changing the equations being considered
for the vortex systems. Paul Newton gives the equations neestl to consider a system of vortices on a sphere
in [4]. His book also gives a very detailed overview of vortexsystems in general as well as areas of research
such as those mentioned here.

Though many of these areas have already been researched to mall extent, as in [1] and [3], there is
still clearly a wealth of possibilities for new discoverieto be made. Indeed, vortex systems have seen a rich
history of past research in a number of di erent applications, and it seems the topic will continue to provide
such opportunities in the future.
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D.7 Complete Work for Conversion to Real Variables

%
-

(Xok 1 Xzj 1) i(Xok X))

Michael Meaden

j=1 (Xak 1 Xzp 1)+ i(Xak  Xzj) (Xak 1 X3 1) 1(Xk  Xgzj)

R k1 X 1) i(Xak Xg)

=1 (Xok 1 Xz 1)2+(Xak  X2j)2

e X (Xok 1 Xgj 1)
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Recombining terms, we then nd:
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2k 1 X251 X2k 1 XoN+1
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whereh; = (Xak 1 Xzj 1)2+(Xak  X2j)%, dk =(Xak 1 Xons1)?+(Xak  Xon+2)?, k=1;:N, and
i 6 k.
Similarly, we nd

X 1
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i=1
wherefj = (Xaon+1  Xzj 1)2+(Xons2  Xgj)2.
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The ends of pants complexes of small genus E-1

E.1 De nitions

Denote the surface of genug with b boundary components by Sy, or simply Sy if b= 0.

De nition E.1. A curve on a surface isessential if it cannot be contracted to a point, and non-peripheral
if it is not isotopic to a boundary component.

De nition E.2. Say 3+ b>3,0rg=0;b=3. A pants decompositionof S = Sy, is a setfCy;:::;Cng
of essential, non-peripheral (isotopy classes of) curvesush that Sn(C; [ [ C,) is a disjoint union of
thrice-punctured spheres, or \pairs of pants".

The number of curvesn in a pants decomposition is + b 3 and the number of pairs of pants is
2g+ b 2. There is only one pants decomposition 0f5y.3 and that is the empty set.

De nition E.3.  The pants graph of a surfaceS is a graph whose vertices are the pants decompositions of

2. C; and C{ have minimal geometric intersection among all pairs of isadpy classes of essential, non-
peripheral curves on the component ofSn(C,[ [ C,) they belong to.

In particular, if C; and C? belong to a once-punctured torus, they intersect once, andfithey belong to a
four-punctured sphere they intersect twice. In the rst case they are said to di er by an \S-move" and in
the second by an \A-move".

One can add 2-cells to this graph to form a cell complex, calléthe pants complex we will be unconcerned
with these here. For a general overview of the pants complexe [1].

The pants graph of S will be denoted by PG(S) or simply PGy, if S = Sgp.

Given two vertices v; w of a graph, we may de ne the distance between them to be the snikest number
of edges in a path between them, or in nity if no such path exigs. In [2], Hatcher and Thurston show that
the pants graph is indeed connected, so the distance betwedwo decompositions is nite. Let B, (v) be the
ball of radius r aroud the vertex v.

De nition E.4. Let O be an arbitrary vertex of a graph G. Say a subgraph ofG is in nitely deep or has
in nite depth if it is unbounded when considered as a subset db. Let n, be the (possibly in nite) number
of connected components ofsnB, (O) with in nte depth, and let n=Ilim,; n,. G is said to haven ends

Remark E.1. For a subgraph of a graphG to be in nitely deep, it is necessary for it to be unbounded (when
considered as a graph by itself), but this is not su cient.

Remark E.2. Clearly this de nition is independent of the choice of basemint O.

Note that if S and T have nite diameter, and S T, then each in nitely deep component of GnS
will contain at least one in nitely deep component of GnT. Thus n; will never decrease becaus8, (O)
B:+1 (O), and the limit certainly exists (or approaches in nity). A Iso note that the choice of basepoint does
not matter in our de nition.

In [4] Masur and Schleimer show thatPG; has one end forg 3. Although they only show this for
closed surfaces, their arguments appear to be valid foP Gg;, with g 3 and arbitrary b 0. The pants
graphs PG4 and PGy.; are isomorphic and have in nitely many ends (in fact, there are already in nitely
many components when we removd1(O)).
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E.2 Possible number of ends

We show that a certain class of graphs, including the pants gaphs, can only have 0, 1, 2, ol ends. Since
the pants graphs have in nite diameter, they can thus have 1,2, or 1 ends.

Lemma E.2.1. Let G be a connected graph and say there exists @& > 0 such that for v 2 G, GnBr (V)
has at least 3 in nitely deep components. ThenG has in nitely many ends.

Proof. Say G hasn < 1 ends. Pick someO 2 G and somer such that GnB,.(v) has n in nitely deep
components forr® r. Choose some in nitely deep component ofGnBg(v) and a v° in that component
such that d(v;v® = D >r + R; note that B, (v9) is contained in that component. Then there are at least
n + 1 in nitely deep components of Gn(Bg(v) [ B;(vV9): n 1 innitely deep components of GnBg (V)
not containing v and at least 2 in nitely deep components of GnB, (v% which do not contain v. Bp+; (V)
contains B (v) [ B, (v9), so each in nitely deep component of Gn(Br (V) [ B, (v9) restricts to at least one
in nitely deep component GnBp.,(v). But by our choice of r, GnBp.((v) has only n components, a
contradiction. O

Lemma E.2.2. Let G be a connected graph whose automorphism grodyut (G) acts on its vertices co nitely,
that is, there are nitely many orbits of the vertices of G under the action of Aut(G). Then G has 0, 1, 2,
or 1 ends.

Proof. Say G has strictly more than 2 ends, so there existv 2 G and r > 0 such that GnB, (v) has some

there exists someD such thatd(v;v;) <D forl i n.ThenB,(v) B/:p(v)foreachi,soGnB.p(v)
has at leastn components. But then for anyv®2 G we can pick 2 Aut(G) such that (v;) = v°for somei,
and then (GnB;.p (vi)) = GnB;.p (V9 has at leastn components as well. Thus the conditions of lemma
E.2.1 hold and G has in nitely many ends. O

Theorem E.2.3. PGy has 1, 2, orl ends.

Proof. Note that a pants decomposition is determined up to homeomaphism by the combinatorics of how
its pairs of pants are connected; that is, for each pair of pats, we need only specify which pair of pants
(if any) each of its boundary components is attached to. Sine there are nitely many ways to determine
this, the homeomorphisms ofSy;, with itself act co nitely on the pants decompositions of Sy, and these
induce automorphisms ofPG,,,. Thus lemma E.2.2 applies; as noted abov®G;,, has in nite diameter and
therefore has at least one end. O

E.3 End calculations using end strucures of curve complexes

In this section we prove that PG, has at most as many ends as certain complexes of curves assded to
Sgib-

De nition E.5. The curve complex C(S) of a surface S is a simplicial complex whose vertices are the

realized by disjoint curves onS. If S = S;;; we instead require that each pair ;; ; intersect once, and if
S = Sp.4 We require that they intersect twice.
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Ifg 2 orifg=landb 1,orifg Oandb 4, then C(Sy;) is connected and unbounded (see [6]
lemma 1.21, exercise 1.31, and corollary 2.25).

We will need a result of Masur and Minsky to relate the curve canplex of a surfaceS to the pants graph
S. If V is a subsurface ofS and is an arc in W such that @ @V let N be a regular neighborhood
of [ @V Then @Nwill be a set of curves inV; de ne the curve surgery of to be the subset of these
curves which are essential and non-peripheral. If is a curve onS which intersectsV, de ne the subsurface
projection v ( ) of inV as follows: if V,thenset y( )= f g; otherwise, \ V is a disjoint union of
arcs, and vy () is the union of the curve surgeries of those arcs. IP is a pants decomposition onS, de ne

v (P) to be the union of all v ( ) where ranges over the curve inP; \ (P) has diameter at most 2 in
C(W) (see [3] lemma 2.3). All of these operations preserve homapy so there is no ambiguity in de ning
them.

A curve cuts a subsurfaceV if v ( ) is nonempty; equivalently, cuts V i it is not isotopic to any
curve carried by SnV. A subsurfaceV is essential if each of its boundary components are essential curves,
and it is not an annulus. If V is a non-pants essential subsurface an® is a pair of pants, then it contains
at least one curve which cutsV (so v (P) 6 ;).

Given two curves and %which cut V, de ne dy (P; P9 to be the distance between the sets y (P) and

v (P9 in C(V), and similarly, if P and P° are pants decompositions, de nedy (P; P9 to be the distance
between y (P)and v (P9 in C(V). When there is no subscript,d(P; P9 still denotes distance in the pants
complex. Let [x]c equalx if x C and O otherwise.

Then, there existsCo = Co(S) 1 suchthatif C Cp, there existK = K(C) CandE = E(C) 0,
such that for any pants decompositionsP and P%on S,

1 X X
v (P P9c E d(P;PY) K  [dv(P;P9c + E; (E.1)
v v

where the sums range over (isotopy classes of) essential rpants subsurfacesV of S (see theorem 6.12 and
section 8 in [3]).

Lemma E.3.1. Let S be a surface and x a basepointO 2 PG(S). Given R > 0, there existsR%> 0 such
that for any essentialW S, if cutsW, dw(;0)>R%andP 2 PES) contains , then d(P;0) >R

Proof. Fix someC Cy and someK;E satisfying (E.1), and setR°= K (R + E + C) + 2. Then we have

1 X
dPi0) o [(PONc E
\

Lo (POl E

Cdu(PiO) (E+C):

Thus, given R > 0, if dw (P;0) > K (R+ E + C), we will have d(P;0) > R. If ds(O; ) > R%and if
P 2 PGS) contains , then since  (P) has diameter 2, we haveds(P;0) >R? 2= K(R+ E + C), so
d(P;0) >R. O

Denition E.6. Let 02 PGES)andR > 0. Callacurve 2 C(S) R-far from O if any pants decomposition
P 2 PES) containing lies outsideBg (O).
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In this language, lemma E.3.1 states that for anyR > 0, any which satis es the conditions of the
theorem is R-far from O.
For the sake of convenience we expand the de nition of the pats graph slightly.

De nition E.7. If S is a disk or annulus, de ne PGES) to be the graph with one vertex and no edges.
If X be a disjoint union of surfaces, ‘
X =1k s,

then de ne _
PES)= [, PGst);

v are connected by an edge iPG(S())

Remark E.3. As long as none of theS() are annuli or disks, this provides the logical de nition of PGS),
since a pants decomposition of the whole surface is just a p&decomposition of each component, and a
single move corresponds to moving in just one surface. The ddtions for disks and annuli are only included
to simplify things.

We note that the product of connected graphs is also connecte so PES) is still always connected.

Lemma E.3.2. Let S be a surface. Choose a basepoi@ 2 PGS) andR > 0. If 2 C(S) is R-far from O,
then given two pants complexe®; P° both containing , there exists a path fromP to P° which lies outside
Br(O)

Proof. We construct a path from P to PC each of whose vertices contain . divides S into at most
two components, neither of which are a disk or annulus since is essential and non-peripheral. 1fS%is a
component ofSn then P de nes a pants decomposition onSn by taking those elements ofPnf g which
lie in S% similarly given an elementPg 2 PG(Sn ), we can add to the curves of thus Py to de ne a pants
decomposition of S which contains . Pnf gthus determines an element of P G(Sn ), and similarly so does
P,f g. SinceP G(Sn ) is connected there is a path fromPnf gto P%,f g. This de nes a path from P to
P%whose vertices all contain , so the path lies o utsideBg (O) by assumption. O

Corollary E.3.3. Let S be a surface. Choose a basepoi® 2 PGS) and R > 0. If o; 1;:::; 5 is a path
in C(S) such that each ; is R-far from O, P is a pants complex containing o, and P%is a pants complex
containing ,, then there exists a path fromP to P° which lies outsideBg (O).

Proof. For 0 i<n let P; be some arbitrary pants decomposition containing both ; and i.; . By lemma
E.3.2, there exist paths fromP to Py, P; to Pis; for 0 i<n, andP, 1 to P9 all of which lie outside
Br(0). Therefore there is a path fromP to P°which lies outside Bg (O). O

Theorem E.3.4. Let S be a surface. Choose a basepoi@ 2 PG(S). Given R > 0 there existsR?> 0 such
that if P; P are pants decompositions such that 2 P; °2 P% and and ©°belong to the same component
of C(S)nBro(0), then there is a path fromP to P%in PGS)nBg(O).

Proof. Apply lemma E.3.1to nd RCsuch that d(P;O) >R wheneverP contains a satisfying dw ( ;0 ) >
RY Say nowP and P are pants decompositions where 2 P; °2 P?, wW; © W,anddw (O; );dw (O; 9>
RY Then by assumption there exists a path = o; 1;:::; n = %in Q(W) such that d( ;O) > R °for each
i. Then each ; is R-far from O, so by corollary E.3.3 we are done. O
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Next we use the following result of Schleimer (see [7]):

Theorem E.3.5. Lletg 2. For any vertex 2 C(Sy;) andr > 0, the subcomplexC(Sy;1)nB,( ) is
connected.

Remark E.4. This is slightly stronger than the statement that C(Sg:.1) has one end, becaus€(Sg;1)nB; ( )
has only one component, in nitely deep or not.

Given this, we then have:

Corollary E.3.6. Letg 2. Given O 2 PG;; and R > 0, there exists R% > 0 such that if P1;P, are
pants decompositions with ; 2 P; and ds( ;;0) > R%for i = 1;2, then there is a path fromP; to P; in
PG;;1nBRO

Next we want to show that we can always move pants decompositins far out enough in the curve complex.
First we have a partial converse of lemma E.3.1.

Lemma E.3.7. Let S be a surface and x a basepointO 2 PG(S). Given A > 0, there existsA®> 0 such
that if d(P;0) > A %then dy (P;0) > A for some essential non-pants subsurfac¥ of S.

Proof. Pick someC > A and nd E = E(C) and K = K (C) satisfying (E.1). Set A°= E. Then if

d(P; 0) > A °we have X

K  [dv(P;P%c + E d(P;0)>E;
v

and so ply (P; P9]c must be strictly positive for some essential non-pantsv. By de nition this means that
dy (P;P9 C>A. O

We will also need the following result ([6] lemma 2.28).

Lemma E.3.8. Suppose thatV is an essential subsurface ofs, and letf o; 1;:::; ng be a path inC(S)
such that every j cutsV. Then dy( o; n) 6n.

Theorem E.3.9. letg 2andb O orletg=1andb 2 SayO 2 PGy, R> 0, and A> 0.
Then there existsA®> R such that if d(O;P) > A ?then there is a path in PG;,nBr(O) from P to some
P%2 PGy:pnBr(0) such that PP contains a curve satisfying ds(O; ) > A.

Proof. SetS = Syp. By lemma E.3.1 there existsR® > 0 such that if dy (O; ) > R?for essentialV S
which cuts, then is R-far from O. By lemma E.3.7 there existsA®> 0 such that if d(O;P) > A ° then
dy (O; P) > R %for some non-pants essential/  S; without loss of generality we can takeA°> R . Then we
can nd some 2 P which cuts V, so that dy (O; ) >R in particular  is R-far from O.

We show that without loss of generality is nonseparating. Say that separatesS = Sgy, into SW,
S@ . Sinceg 1, one of theS() has nonzero genus; call itv% VCis essential since its boundary is a union
of and boundary components ofS, and is not a pair of pants or annulus since it has nonzero gersa Now,
given any two curves ; and » on VY if there exists a homeomorphism fromV ; to V% ,, then we can
extend such a homeomorphism onto ; and »; thus any curve onV?is determined by the homeomorphism
class ofV% . There are nitely many such classes, since if is nonseparating, thenV%h is homeomorphic
to Sy 1p+2, and if it is separating, V% is a disjoint union of Sy,:b, and Sg,.,, Wheregy + g2 = g and
by + b+2 = b+2. Thus C(V9 is co nite under the action of homeomophisms ofS with itself. In particular,
any vertex of (V9 lies within a constant distance M of a nonseparating curve, so we can nd a curve °©
such that dyo(O; 9 > (M + RY, and then a nonseparating curve %within M of © sothat dyo(O; 9 >R,
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and so %is R-far from O. Since %does not separateV? it does not separateS. Since is R-far from O,
we can use lemma E.3.2 to mové® to somePP? containing both and ° Then we can replaceP with P
with 9 and V with V° Thus without loss of generality is nonseparating.

Let N( ) be a regular neighborhood of and setW = SnN( ). W is essential since its boundary
components consist of two curves isotopic to and the boundary components ofS. W is homeomorphic to
Sy 1p+2, Which is not an annulus or pair of pants because eithey 1> 0 orb+2 > 3. Then w (O) is
nonempty, and sinceC(W) is unbounded we can nd a curve o W such that

dw (O; o) > R%+12A +18: (E.2)

Choose then a pants decompositioPy containing and . By lemma E.3.2 there is a path connectingP
and Py which lies in PG(S)nBgr (O).

Any curve which does not cut W is isotopic to a curve onSnW = N( ), so the only curve which does
not cut W is itself. Connect ¢ to a vertex which is distance 2A + 3 away by a geodesic, that is, nd a

We show now that without loss of generality, each of the ; cut W, that is, none of the ; are . By
de nition, ¢ and are disjoint. If ; = fori> 1, then sinceds( o; ) =1, thereis a path o; i; i +

instead the pathD ( ¢);D ( 1);:::;D ( 2a+3), where D denotes the Dehn twist about . \ o=, s0
D ( o)= o. However, and intersect, soD ( 1) 6 1. Finally, Dehn twisting preserves distance, so for
the same reason as a bove we cannot ha ( ;) = fori> 1. In either case we have a geodesic of length
2A + 3 whose vertices cutW, so without loss of generality we can assume all of the; cut W.

Now, suppose thatds( ¢;0) A andds( 2a+3;0) A. Then gand »a+3 both lie within distance A of
the set s(O), which is a set with diameter 2. Butthen ds( o; 2a+3) 2A+2, a contradiction. Thus either
ds( 0;0) >A ords( 2a+3;0)>A. If ds( 0;0) > A, then Pq is our desired pants decomposition and we are
done. Thus supposeals( 2a+3;0) >A. Since each ; cuts W, we have by lemma E.3.8 thatdw ( o; i) 6i
for0 i 2A+3. By (E.2), we have by the triangle inequality that dw ( i;0) >R°%°+6(2A+3 i) RO
By our choice of R® this means that the ; are R-far from O. Then by corollary E.3.3 we can connectPy to
some arbitrary pants decomposition containing a+3 . Then ds( 2a+3;0) ds( 2a+3;0) >A and we are
done. O

Corollary E.3.10. For g 2, PG;;; has one end.

Proof. Fix a basepoint O and R > 0. Find an RO satisfying the conclusion of lemma E.3.1, and anA°
satisfying the conclusion of theorem E.3.9 withA = R% SayP; and P, lie in in nitely deep components of
PG;;1nBr(O). By de nition, for i =1;2 we can nd a path in PGy;;nBr(O) from P; to some P such that
d(O; P9 > A% By theorem E.3.9 we can nd a path in PGy.;nBg(O) connecting P’ to some P,%0 where P,
contains a curve ; satisfying d( i;O0) > R% By corollary E.3.6 there is a path in PG;.1nBg(O) from P °to
P Thus P, and P, lie in the same component. O

Of course, the reason we can prove this foPG,;; for g 2 is due to theorem E.3.5; if we had an analogous
theorem for some otherC(Sy;p) satisfyingg 2org=1and b 2 then we could show thatPG,, has one
end as well. However, none of these results are known. Alsohére are other proofs thatPGy,, has one end
forg=2;b 2,orforg 3, so the only cases for which this would be useful arg=1;b 2,org=2;b=0.
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E.4 End calculations using end structures of pants graphs of sub-
complexes

In the previous section we used the one-endedness of a comylef curves associated with a surface to
guarantee we stay away from a base pants decomposition, themsed the connectedness of the pants graphs
of subsurfaces to actually follow the paths we made in the cure complex. In this section we will still be
using the complexes of curves to provide a general course anging the pants graphs to follow this course,
but now we will use the one-endedness of the pants graphs toaf away from the basepoint.

Lemma E.4.1. Let S be a surface. Fix disjoint curves 1;:::; o onS. SetS°=Sn( ;[ [ =n). Then
there exist A; B > 0 such that for any pants decompositions?; P° such thatf 1;:::; ,g= P;PC

A degso(Pn ;PM) B deg(s)(P;P9  deg(sy(Pn ;P%h): (E-3)
Proof. Let SM;:::; S be the components ofS® and let P; be the pants decomposition ofS() induced

E; K1 such that

dv(P;PY  Ei  dpg(sy(P;P9 (E.4)

1
Kiy g

where the V range over essential non-pants/  S.
Similarly pick E;; K, large enough that

X
dPG(s<i>)((Pi)iPiO) K2 dv (Pi; PO+ Ez

v s
forall1 i k. Summing over for alli yields
X
de(sy (PN ;Ph) = dPG(s<i>)((Pi)§PiO) (E.5)
i=1
K2 dv (Pi; P + KE2
v s

where the sum now ranges over non-pant¥ which are essential subsurfaces of ang(). Since theS() are
themselves essential, so are all the subsurfac®s so we have

X
dv (Pi; P9 dv (P; P9): (E.6)
vV s V S

Combining equations (E.4), (E.5), and (E.6) give the result
A dpG(SO)(Pn ,P(h) B dpG(S)(P;PO)

for some choice ofA and B.
Clearly dpg(s)(P; P9  dpg(so(Pn ;P%), since any path from Pn to P% in PGSY de nes a path
of the same length fromP to P°by adding to each vertex. O
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Lemma E.4.2. Let S be a surface and lefO 2 PG(S) and R > 0. There exists R° such that if d(O;P) > R©
then P lies in an in nitely deep component of PG(S)nBg (O).

Proof. ChooseA > 0 be lemma E.3.1 such that ifdy (;O) > A for essential nonpantsV S then is
R-far from O. ChooseR®> 0 by lemma E.3.7 such that ifd(O; P) > R °then P contains a curve such that
dv (;0O) >A for some essential nonpants/ S.

Then let d(O;P) > R% P contains some curve which is R-far from O. For any N > 0 use lemma
E.3.1to nd some 5 Sn which is N-far from O, and let Py be some pants decompaosition containing
both and . Bylemma E.3.2 there is a path fromP to Py which lies outside ofBg (O). Thus whatever
component of PG(S)nBg (O) contains P must contain pants decompositions which are arbitrarily far from
O, and by de nition has in nite depth.

Lemma E.4.3. Let S be a surface and letO 2 PGS) and R > 0. There exists RY such that the following
holds: if and are curves onS such that PG(Sn ) and PG(Sn ) have one end, at least one component
Sn( [ ) has an unbounded curve complex, an®;P° are pants complexes such that 2 P; 2 P%and
P;P%2 PGS)nBro(0), then there is a path fromP to P°lying in PGS)nBg (O).

Proof. ChooseA by lemma E.3.1 so that ifdy (O; ) > A for some essential nonpanty/ Sthen is R-far
from O. ChooseR? by lemma E.3.1 so that any pair of pantsQ satisfying d(O;P) > R % contains a such
that dy (O; ) > A for some essential nonpants/ S, and in particular, is R-far from O.

Then let P;P%2 PG(S)nBro(O) with 2 P, 2 P% Choose a componenV of Sn( [ ) whose curve
complex has in nite diameter; note that V is essential and not a pair of pants. Choose some 2 C(V) such
that dy (O; ) >AP% so isR-far from O. We moveP to someP; containing and similarly P°to someP
containing . By our choice of R P contains a curve which isR-far from O. If this curve is , we can use
lemma E.3.2 to moveP to someP; containing both  and

Thus assuume that some curve °2 P is R-far from O and is not. Since is not R-far from O, there
is someQP containing  such that d(O; 0% R. ChooseA, B satisfying the results of lemma E.4.1, setting

= f g,S%= Sn . Then if Q is any other decomposition containing such that d(O;Q) R, we have by
the triangle inequality that d(0O%Q) 2R, so by lemma E.4.1,dpg(s9(0;Q n ) 2R =M.

We then nd a path from P to somePg such that 2 Py and Ponf glies in an in nitely deep component
of PES)nBy (O%f g), and this path stays outside of Bg (O). By assumption PG(Sn ) has one end, so it
is not Sp.4 or Sy.1, and there is at least one componenw of S( 9 whose curve complexC(W) has in nte
diameter. By lemma E.4.2 there is someVl ° such that any pants decomposition at leastM ® away from O%
lives in an in nitely deep component of PG(SYnBy (O%f g). Then by lemma E.3.1, we can choose some
curve 2 onW which is M %far from O%f g. By lemma E.3.2 we can moveP to some pants decomposition
Po containing ; © and 9 wit hout entering Bgr(O).

Let P; be any pants decomposition containing both and . Since was chosen to beR-far from O, we
can use the same argument to nd a path outsideBg (O) from P; to someP, such that P, contains and
Ponf g lies in an in nitely deep component of PG(S)nBy (O%f g). Since S®is assumed to have one end,
there is a path from Ponf gto P,nf g which stays outsideBy (O%f g). The path from Py to P, induced
by adding to each vertex then stays outsideBr (O) because by our earlier discussion, if som& on the
path lay in Bg(O), then Qnf g lies insideBy (O%f g).

Thus there is a path outside of Bg (O) from P to P; containing . Similarly P°can be moved toP}
containing ; since is R-far from O, we are done by lemma E.3.2. O

Theorem E.4.4. Let S be a surface andD be some complex whose vertices are curves &1 Suppose that
the following properties are true:
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1. D is connected.

2. Given O 2 PES), R > 0, each in nitely deep component ofPGS)nBg (O) contains someP containing
a curve which lies inD.

3. For each 2 D, PGSn ) has one end.

4. If ; 2 D are connected by an edge, then at least one component®h( [ ) has an unbounded curve
complex.

Then PES) has one end.

Proof. Suppose thatP; P? lie in some in nitely deep components ofPG(S)nBr (0). ChooseR? as in lemma
E.4.3. Move P far away from O to some Py in an in nitely deep component of PG S)nBro(O), and use
property 2 to move this to some P; containing some 2 D such that d(O;P;) > R % similarly move P° to
someP? containing some °2 D such that d(O; P >R?®
By property 1 there is some path = o;:::; = %inD.ForO<i<n ,Sn;[ i+ hasacomponent
with an unbounded curve complex, so in particular we can nd an R%far curve ; which is disjoint from
i and we let Qi be some pants complex which contains both ; and ;. By properties 3 and 4 there are
therefore paths outside ofBg (O) connecting P; to Q1, Qj to Qj+; for0<i<n 1,andQ, ;to P Thus
there is a path in PGS)nBr (O) from P to P; to PYto P% so PGS) has one end. O

For the next result we will use an approach of Putman, at the hart of which is this lemma ([5] lemma
2.1):

Lemma E.4.5. Let G be a group which acts on a simplicial compleX . Fix a basepointv 2 X © and a set
S of generators of G. Assume the following hold:

1. For all v02 X © | the orbit Gv intersects the connected component oX containing v°.
2. Forall s2 S 1, there is some path inX from vtos v.
Then X is connected.
Theorem E.4.6. Suppose that either
1.g 2andb 1,
2.g=1landb 3, or
3.g=0andb 6.
Then if PGSy;p) has one end then so doeBE(Syp+1 ).

D of curves onS = Syp+1 Which separateS into an homeomorphic copy ofSg;, and a pair of pants whose
boundary components are ;K p, and Kp+1 . We show this is connected using lemma E.4.5.

Recall that the pure mapping class groumf S is the group P Mod(S) of isotopy classes of homeomorphisms
of S with itself which have the additional property that they send eachK; to itself as well. PMod(S) is
generated by Dehn twists about the curves in gure E.1 (b); se e.g. [1] section 4.4.5. Let, shown in gure
E.1 (c) be our basepoint. We showP Mod(S) and D satisfy both of the properties of lemma E.4.5.
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Figure E.1: a. TheK; b. The generators of PMod(S) c¢. d.D e.V,withthe arcsof 9 e.Vnw
and

For the rst, let ©2 X©; say that separatesS into a subsurfaceV which is homeomorphic to Sy
and a pair of pants W whose boundary components are;K ,, and Ky,+1 , and  separatesS into V°which
is homeomorphic to Sy, and W whose boundary components are;K ,, and Kp.1 . SendV onto VO by a
homeomorphism sending eachk; to K; and similarly W onto W° by a homeomorphism sending eacl; to
Ki. Attach these homeomorphisms in a way that is consistent on ; this is a homeomorphism ofS which
sends eaclK; to K;, so it is an element ofP Mod(S), and it sends to °

Note that none of the curves in gure E.1 (b) intersect except for the curve , so only the Dehn twist
D ! does not leave xed. But D ( ) intersects four times (see gure E.1 (c) and (d)) so there is a
path from to D ( ) containing one edge; applyingD ! to these curves show that and D () also
only intersect four times. Thus the second property of lemmakE.4.5 is satis ed, soD is connected, which is
property 1 of lemma E.4.4.

As mentioned in the proof of theorem E.2.3, the group of homemorphisms S! S acts on the pants
graph co nitely. If we instead look at how PMod(S) acts on the pants graph, | claim the action is still
conite. Let n be the number of pairs of pants in any pants decomposition ofS. De ne a schemeto be
some speci cation, for each boundary component of each af pairs of pants, of which other pair of pants
that boundary component is attached to or which K; that boundary component is. Given any two pants
decomposition for which the pants are attached according tdhe same scheme, we can de ne homeomorphisms
from each pair of pants in one to a pair of pants in the other in away that respects this scheme; we extend
these homeomorphisms to the curves of the pants decompositis to de ne an element of PMod(S). Since
the number of schemes is nite, the number of orbits ofP Mod(S) on PES) is therefore als 0 nite. Then
if we x some scheme of attaching the pants for which one pair 6 pants has K; and Ki.; as boundary
components, some pants decompositions following this schee will lie within some constant M of any other
pants decomposition. Thus property 2 of lemma E.4.4 is satied.

Property 3 is satis ed by assumption, because for 2 D, we havePESyp+1 N ) = PGESgyp).

Finally, say and ©are connected by an edge irD, so they intersect four times. LetV be the pair of
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pants cut of by and W the pair of pants cut o by ¢ ©9then de nes two arcs in V, each of which has
both its endpoints on . Therefore they are isotopic to the arcs shown in gure E.1 (§; note that ©then
separatesV into two annuli and a disk. Since the annuli both contain one d the K; which W must contain,
W contains the annuli. If W also contained the disk, thenV W, which is impossible since and °are
not isotopic. Thus VnW is a single disk, which is the regular neighborhood inSnW of some arc whose
endpoints lie in % Consider now the subsurfaceSn(V [ W). SnW is by assumption homeomorphic toSg.p.
Sn(V [ W) = (Snw)n(VnW) is therefore some surface equal t&y;, minus the regular neighborhood of .
This will leave either Sy 1p+1 Or two surfacesSy, b, and Sg,;,, such that g1 + g = g;b + b, = b+ 1, and
;b 1. One can check that as long as the conditions of the theoremra satis ed, that in any case at
least one of the components oBn(V [ W), and therefore of Sn( [ 9, has a curve complex with in nite
diameter, so property 4 is satis ed as well. Thus all the criteria of theorem E.4.4 are satis ed and we are
done. O

In a similar vein, we have

Theorem E.4.7. Saythatg 2andb 0. If PG 1,+ has one end then so doeBG,.

Proof. We chooseD = Nonsep(Sg;p), the induced subcomplex of C(Sg;,) containing only those vertices
which are nonseparating curves onS. Property 1 of theorem E.4.4 is given by [5] theorem 1.2 (Putnan
proves this for b= 0, but the proofs for b > 0 are nearly identical). Property 2 follows as it did in theorem
E.4.6. For 2 D, since is nonseparating, Sgpn is homeomorphic t0 Sy 1p+2, and PG; 1,+2 has one
end by assumption, giving us property 3. Finally if and are connected by an edge, then 2 Sypn
S0SgpN( [ )= Sy 1p+2n ; this latter surface is either Sy 2.p+4 or a disjoint union Sg,;p, [ Sg,;0, Where
01+ g2 = 0, by + b = b+4. In either case, at least one ¢ omponent o5g,n( [ ) has an unbounded curve
complex, satisfying property 4. Thus theorem E.4.4 appliesand we are done. O

Combining theorems E.3.10, E.4.6, and E.4.7 yields
Corollary E.4.8. Letg 3;b Oorg=2;b 1. Then PGy, has one end.

As mentioned, this result is known forg 3, but this gives an alternate proof.
Theorem E.4.9. Say thatb 3. If PG, has one end then so doeBG,.,.

SetS = S;p and let D be the induced subcomplex ofC(S) whose vertices are the nonseparating curves
and separating curves such that neither component of Sn is a pair of pants. Recall that Mod(S) is the
group of isotopy classes of homeomorphismS ! S. Choose the base vertex of D (see gure E.2 (a)).
We show that D, , and Mod(S) satisfy the conditions of lemma E.4.5. Mod(S) acts co nitely on D so
the rst condition is ful lled. By the discussion in [1] 4.4. 5, we can choose our generators &flod(S) to be
the Dehn twists around the curves of E.1 (b) and certain maps vhich permute the boundary components of
S. In particular these maps can be chosen so that they are conaht on . Thus the only map which does
not leave xed is the Dehn twis t around  (gure E.2 (b)), but there is an intermediate path from to

%to D ( ), and similarly D () (gure E.2 (c) and (d)). Thus the second condition is ful ll ed andD is
connected, which is the property 1 of E.4.4.

Property 2 follows as it did in theorem E.4.6.

For 2 D, either is nonseparating, in which casePG(Sn ) = PGy, has one end by assumption,
or separatesS into surfaces S and S©@ which are not pairs of pants, and in particular PG(S()) has
in nite diameter; it is easy to show that the product of two gr aphs with in nite diameter has one end, so
PGSn )= PESW) PES®@) has one end. Thus property 3 is true.
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Figure E.2: a. b. cD () d. 9 which is disjoint from both andD ()

Finally, say and ©are connected by an edge irD, thatis, \ %= ;. If is nonseparating then
SN = Sppz,S0SN( [ 9 =(Sn )n %is two surfacesSpp, and Sop, Whereby + b, = (b+2)+2  7; it
follows that at least one of the by is at least 4, so at least one of the components has a curve cofeg with
in nite diameter. If  is separating, let S° be the component ofSn not containing % by assumption S®is
not a pair of pants. Then S %= S0 so it is a component ofSn( [ 9 whose curve complex has in nite
diameter. Thus property 4 is true and we are done. O
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F.1 Motivation and Overview

Ordinary di erential equations (ODEs) commonly arise in a variety of modeling contexts. Examples in-
clude periodically forced oscillators, which can model prdator-prey scenarios and sleep cycles, among other
systems, and the Lorenz system, which is a simple model of thatmosphere that exhibits interesting math-
ematical behaviors. du
—_ . n

i F(u; 2R
In this paper, we consider the case of a steady-statea (i.e. F(u ) = 0) where the Jacobian matrix DF (u )
has two positive and one negative eigenvectors. This givesise to a two-dimensional unstable invariant
manifold which we denoteU(u ). As a set U(u ) consists of all initial conditions ug for which the solution
to the ODE satises u(t;ug)! u ast! 1 . Itistangent at u to the plane spanned by the eigenvectors
associated with the positive eigenvalues. Analogously, tb stable manifold S(u ) is made up of all up for
which u(t;ug) ! u ast! +1. As S(u ) is essentially U(u ) under a reversal of time, any algorithm to
compute U(u ) can be applied as well toS(u ) .

Unstable manifolds play an important role in long term dynamics. For dissipative system, i.e. one
in which all trajectories eventually enter an absorbing ball unstable manifolds form the backbone of the
global attractor, the largest compact invariant set. Stable manifolds whichhave co-dimension one (i.e. are
associated withn 1 negative eigenvalues for in system of ODES) form a separatrix which divides phase
space(R") into two portions. Trajectories with initial conditions o n either side of the separatrix have di erent
fatesast ! 1 . When the stable manifold for one x point intersects with th e unstable manifold of another,
their intersection typically forms a curve that is an orbit ¢ onnecting the two states. In general, the onset of
such an intersection as a parameter is varied signals a globbifurcation, a dramatic change involving distinct
elements of the global attractor. It is therefore useful to visualize these manifolds. Generally, these manifolds
cannot be found analytically, so they must instead be \growr' or evolved from a local information.[9]

Previous methods for calculating these manifolds include pproximation by geodesic level sets [8, 7], BVP
continuation of trajectories [9], computation of fat traje ctories [6], PDE formulation [4], and box covering
[1, 2]. In this paper, we extend the process of approximatiorby level sets.

Consider, then, a closed curve of initial conditions paramterized by a variable

uo( ) =(xo( )iYo( )izo( ) 2[0; 1]; uo(0)= uo( 1):

Without loss of generality, we assume that the positive eigaspace is thex;y-plane and the steady state is
u =0. The initial closed curve is then taken to be a small circlearound the tangent point.

The evolution of this curve under the ow of the ODE over any n ite time period produces the two-
dimensional invariant manifold (with boundary), which we express as

u(;t)=(x(:t )yt )iz(it)), t2[tyts]:

The idea is demonstrated in Figure F.1.

If we evolve the points under the ow with no adjustment, however, the curve tends to elongate and not
represent the manifold evenly. See Figure F.2. This shows pits on trajectories of the ODE

dx dy dz

= =2X o= Y, =1 F1

dt at - Y (1)
starting from initial conditions along the circle x?+ y? =1;z = 0. It is shown in two dimensions for clarity
and becausez does not change as the ring evolves.
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i

X,y-plane

Figure F.1: One time-step from the original ring.

Since we are interested here only in the manifold, and not thalynamical process by which it is generated,
we may adjust the ow under which the points are evolved as lomy as they stay on the manifold. Thus,
we may change the component of the ow tangential to the curveas long as we preserve the normal and
binormal components, because the entire ring is on the maniid, and the tangential component simply moves
the point along the ring. One way to adjust the ow would be to set the tangential component of the ow
to zero, thereby preserving locally geodesic ow. This is tke approach taken in [5], and is recreated below.

Evolution of a Ring in the Plane

1 T T T T T T T T T

+
0.8 - -

0.6 | + + i

04 -

0.2 + —

-0.2 + + -

-0.6 - + + E

-0.8 | .

-1 1 1 1 1 1 1 1 1 1
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
X

Figure F.2: The graph is distorted when points are unevenly paced in arclength.
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F.2 Zeroing Out the Tangential Component

Given a closed curve

=(x(t)yGt)zGt)=u(;t);  2[0 4] (F.2)
we select the right hand coordinate system with unit tangentvector
1 P .
w= U where S = x2+y2+z2=juj; (F.3)
unit normal vector 1 1
n= S—W ; where = S—jW ] (F.4)
and unit binormal vector
b=w n: (F.5)

Figure F.3: The component unit vectors at a point.

The motion of the curve under local geodesic ow is given by
u=0w+ Un+ Vb (F.6)

where we keep
U=F n and V=F b: (F.7)

We apply this approach to the ODE in F.1 and display the results in Figure F.4. The ring of points is
increasingly elongated at each step, although the e ect is mach less severe than when the ow is unadjusted.

F.3 Adjusting the Tangential Component

Instead of zeroing out the tangential component, we directy calculate T to preserve equal distribution of
points in arclength.
ChoosingT so that the arclength spacing of a nite number of points on the curve remains constant (in
), is equivalent to satisfying, at eacht 2 [t1;t;], the condition

z
S (it)= zi 02 S (st)d~ for all 2[0;2 ]: (F.8)
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Figure F.4: Zeroing the tangential component does not preswe equal arclength distribution.

Suppose this holds att = 0. We ensure it holds at all other t by choosingT such that
142
St = — S;t d""' (Fg)
2 o

Di erentiating the second relation in (F.3) with respect to t, and then using (F.2) we nd that

Su= g (X Xty +z2) (F.10)
Uy w (F.11)
We then write
ug =Tw+Tw +Un+Un +V b+Vb : (F.12)
From (F.4) we have
w =S n: (F.13)

It will turn out, due to a projection in the direction of w, that U , and V do not e ect the calculation of
T. The remaining quantities, n and b , are obtained by

Theorem F.3.1. [10]
n =S (b w); b= Sn (F.14)



Parametric computation of 2-d invariant manifolds F-5

where the torsion is de ned as the determinant

1 SLXl 1 Siyl 1 SLZl
= 2 sH@sx SR@sY sh@sZ
5@ @5 x @ @5y 0@ @572
A proof of Theorem F.3.1 is found in [10].
Using the Frenet-Serret formulae in (F.12), we obtain
St = W Uy
=w [Tw+TS n+Un+US b US w+VDb VS n]
=T US
We can now express (F.9) as 7
2
T US = 1 T US d~
2
which by periodicity reduces to z
2
T =US 1 Us d~ (F.15)
2
Integrating both sides of (F.15), we arrive at
z zZ,
T(;t)= T@O;t) + Uus d-~ 5 Uus d= (F.16)
0 0
Using (F.13), we can rewrite (F.16) as
z zZ,
T(;t)=T@O;t)+ F wd~ 5 F wd~ (F.17)
0 0

Later we will make a speci c choice for the constant of rotation T (0;t), but any choice would still preserve
arclength parametrization. Note also that in a practical implementation, one need not even compute the
vectors n, and b. Instead one may write (F.6) as

u=F@u) [F(u w Tlw: (F.18)

F.4 Fourier Transform

Equation (F.17) is not simple to compute analytically, so we use a discrete Fourier transform (DFT) to
compute the derivatives and antiderivatives. We used a prewaritten Fast Fourier Transform algorithm. [3].
A DFT associates to a list of function valuesu( ;) at equally spaced points a list of Fourier coe cients {1

ful lling the following equation.
N

X _ 2i
U(j): (]ke'ik; j:_j

— N
k= —
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This is a useful transformation because it is simple to take he derivative and antiderivative of the right hand
side.

a
dl(-lj( ) - N |k0ke|k
k= ——

z g
O i k
u( )d = e
k= N

The FFT uses at mostN =the number of points on the ring di erent sine and cosine curves to approximate
the curve represented by those points. Since there are a n& number of discrete points rather than a true
curve input into the equation, the Fourier representation is necessarily an approximation.

F.5 Minimizing Error

The error involved in this approximation is large enough to be a practical barrier to creating a good graphical
representation of the manifold in question, particularly because repeated applications of the FFT exaggerate
the error. There are two types of error involved. The rst error occurs when the FFT tries to be too smart,
and in so doing gives too much weight to high frequency sinesra cosines when approximating the curve,
resulting in a "jumpy" representation. This is particularl y problematic when taking derivatives. See Figure
F.5 for an example.

To reduce the error, a process of Itering the data is introduced. To Iter the Fourier representations of

data points, we adjust
10

Ox = e lONL

The higher k is, the higher frequencyuy is contributing. Thus, our adjustment dampens the e ect more
ask increases. We don't throw away any data, but we limit the e ect that disruptive, high frequency data
in uences our nal result. Itis also possible to Iter data b y setting to zero any component curve of frequency
above some point, but for this application this form of lter ing was not found to be useful.

Another problem occurs because creating an exact represeation of the ring in Fourier space may require
summing an in nite series:

_ 2]

u( j)= oce 1K N

k=1
Since we have only a nite number of points, this is impossibé. This means that the components outside
the limits of the sum get incorrectly moved into that range. T his was not a large source of error for this
application. We addressed it simply by taking a relatively large number of points on the ring (e.g. 256 or
512) to minimize the error from this source.

F.6 Computational Results

To test the parametric approach in various geometric situaions we consider a couple examples of vector
elds in R® specied by
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Figure F.5: The derivative of x(2 pi x) computed using the FFT with and without lItering.

(i) the (decoupled) ow in two-variables

x = fi(xy)

y = fa(xyy);
(F.19)

(ii) an (attracting) invariant manifold expressed as the graph of a function z = ( x;y), so that
c(z ) ; (F.20)

for some positive numberc.
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F.6.1 The Dali

The rst choice for the invariant manifold resembles a warped clock face from the works of the artist Dali.
It is described in rectangular coordinates as the graph of

(xy)=1x3:

The vector eld is then determined by

X
2y,

< X
1

(F.21)

so that the \Dali" is the unstable manifold of the origin, whi ch is associated with real and distinct eigenvalues.

Figure F.6: We normalize the ow, but don't adjust the tangen tial component.

To demonstrate the need to do something more than simply intgrating a ring of initial conditions under
the ow of the original vector eld we plot in Figure F.6 the re sult of normalizing but not adjusting the
direction of the ow. This is not a complicated manifold, so straightforward integration of a ring of initial
data generates a reasonable representation of the manifaldbut the data points are far from evenly spaced.
Following the geodesic ow (see Figure F.7) is only a slight mprovement. Following the parametric ow
provides much a much better representation (see Figure F.8)

Figure F.9 demonstrates the di erences in point spacing on he outermost ring between the three methods.
The points are spaced much more evenly around the ring undergrametric ow than either of the other two
methods. Geodesic ow is only a slight improvement over no aglistment. On a more complicated manifold,
these di erences would cause a more severe problem in repergation.
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Figure F.7: We normalize the ow and set the tangential compment to zero.

Figure F.8: We normalize the ow and adjust the tangential component for equal spacing.

F-9
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Figure F.9: The distance between adjacent points on the ring

F.6.2 The Dial
The next choice for the invariant manifold resembles a sundil. It is a manifold with
(
(r )= r?(cos(20)+1) if jj
' 0 else

(z (rn))

z=ry (1)
We plot in Figure F.10 the result of using the original ow, neither normalizing nor adjusting the direction
of the ow. This is a more complicated manifold, and in particular it has a \spike," so it is the type of
manifold for which we expected parametric ow to be a consideable improvement over the original (see
Figure F.11) or geodesic (see Figure F.12) ow. As it turns o, however, original ow appears to give the
best representation. It is unclear whether this is the resul of human error in carrying out the procedure
described above, or whether this is a true artifact of using prametric ow on this manifold.
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oiels —

Figure F.10: We neither normalize the ow nor adjust the tangential component.

o008 —

Figure F.11: We normalize the ow and set the tangential component to zero.
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enfitdel§ —

Figure F.12: We normalize the ow and adjust the tangential component for equal spacing.

F.7 Future Research

This project suggests that research could be undertaken toxlore the possibility of adding points as the

ring expands in order to prevent the points from becoming toofar separated, even as the manifold grows.
This would be another adaptation to prevent distortion of th e general model of a ring evolving on a manifold.
There could also be interest in applying these techniques ta 2-D manifold in 4-space, or generalizing to even
higher dimensions. A systematic approach to deciding whichof the many methods for growing manifolds
found in the literature is best for speci c types of problemswould also be useful.
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G.1 Some Technical Lemmas

We begin with some general constructions which are used repé&dly in the next section.

Lemma G.1.1. Given functions ry(z) for z aandr,(z) for z b > a which are C2 and have positive
second derivative, and such that(b) >r %(a) and ry(a)+ r2a)(b a) <r(b) <r(a)+ rY(b)(b a), there
is a C? function r(z) de ned in [a,b] with positive second derivative such thatr(z) = ry(z) for z a and
r(z)=ry(z) forz b

Proof. We will show there is a positive, piecewise linear functiong(z) de ned on [a; b such that
1. g(a) = rRa), g(b) = rNb)
R
2. Jo(z)dz=r3() ri(a)
Rb RZ 0
3., L9(s9)dsdz=rz(b) ri(a) ri(a)b a).
Then we will de ne r(z) by 7

z Z S
r(z)=ri(a)+ ri@+ g()d ds

a a

R
for z 2 [a; 1. Then sincer%z) = r¥(a)+ [ g(s)ds and r®z) = g(z) we will have matched function values
and derivatives up to order two at a and b with r°{z) > 0. The function g(z) will be of the form shown in
Figure G.1 below. We will construct a family fg (z)g for 2 (0; 1) of such functions with properties 1 and

Figure G.1: The form of g(z)
2 above, then choose appropriately. First we let
c=a+(1 )b a)

@ )
b a

= min (3 r3(@); 3ri%a); 573y

Then we nd that Z. 1
g (z)dz = 5[(r?‘(a) ) +(c a +(c ari{a)

a
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Since <r Ra), we nd
Z [
0(2)dz> J[(Ra) Ja+(c ao+(c  arifa)]

1
_E(C a)

and} (¢ a) 31 )b @G0 @) <3 (b Q). HenceREfg(Z)d2< (r3()  ri(a)
for su ciently small and . Now

1

5[(r?‘ia) ) +(c @) +(c arfa)l= (r3(b) ri(a)
denesalinein(; )with —= 1 (a) < 0, so the -intercept 2 (r3(b) '?fl,ﬁ?;) (¢ arifa)
a, since (@;0) lies below the line. Hence we choose

1 2030 r¥@) (c afl((a))
2 )

is bigger than

=min

1
—(a+
+a ,2(a c)

Then, nally, we choose

_2(@3d) ri@) (Na ) (¢ arita)

c a

R,
sothat g (z)dz= (r3() rP(a)). Similar analysis leads to

OIS brdyb
=max 3 A0 RO Sy S
_ 21 )3 r@) ( rfb)  (brb) c)
b c

Ro — 0 0 Ry — 0 0 R, ;
sothat [ g(z2)dz=( )(rz(b) rj(a)) andthus g (z)dz=rj(b) r;(a). Next note that _ g(s)dsis
strictly increasing, so that

z bZ z
(c a0+(b o (r3(h) ri(@) < g(s)dsdz<(c a) (r3(H) ri@)+(b o)(ri() r2(a)
a a
z bZ z
(b a)(r3(h) ri(a) < g(s)dsdz< (2 (b a)(ra() ri(a)
a a
From this it follows that Z,Z,
lim g (s)dsdz=0
PO" a a
z bZ z
lim g (s)dsdz=(b a)(r3(b) ri(a)
: a a
We are given thatry(a)+ rl(?g(‘ge a)<ry(b)<ry(a)+rb(b a)andhence 0<r (b ri(a) rf@)(b a)<
(b a)(r(b) ria)). '%25 ; g(s)dsdz is a continuous function of ; ;c; ; and , while these depend
continuously on , so ? g (s)dsdz_is a continuous function of . Therefore by the intermediate value

theorem there is some for which ab azg (s)dsdz=rp(b) ri(a) r%a)(b a). We chooseg=g. O
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When we use this construction we will speak of \ramping" r(z) from r1(z) to r,(z). Next we examine
surfaces with circular cross sections of the form

x f@)*+y*=r(2)?
wherer(z) > 0 andr(z);f (z) 2 C?, yielding a C? surface.
Lemma G.1.2. A surface of the above form is negatively curved provided®{z) > jf °{z)j.
Proof. We parametrize the surface with
(x;y;2)=(r(z)cos + f(2);r(z)sin ;z)
It follows that (004 £ 000
r(L+ r®+cos? f +2r% Ocos )2

and thereforeK < 0 identically if for all and z

K =

rz)+ f%z)cos > 0

Now, for a givenz, f °{z) cos oscillates betweerjf °{z)j and j f °{z)j, soK < Oidentically if r°{z) j f 9{z)j >
0, ie. ifr9z) > jf Q2)j. 0

We will refer to the changex ! x f(z) as \skewing." Next we obtain a procedure for joining two
hyperboloids. Let a > 1, and place the axes of the hyperboloids at distance&®from one another. Then cut
out the parts of each hyperboloid on the opposite side of theritersection, to obtain a surface of the form

(i a)?+y?=1+ 22

We then smooth the intersection with a technique given inp[l](referred to here as the BVK construction).
When jxj<a 1we have {xj a)? 1> 0andsoz= (ixi a2 1+ y2 Thisis smooth except at
x =0, so we seek to replacejkj a)> 1with (x)? where (X)= co+ X%+ c4x* > 0Owhenjxj bandb
is some positive number less thara  a'=3. We require

Co+ G + bt = (b):p(a b2 1

2ob+ac = b = pwaT%
1

2c, +12¢42 = Q) = O

to match function values and derivatives up to second order.These equations have the unique solution
5 1
0= (B b A+ F M)

_3 qy logyo 1
@z B ;W=

mEi @ B @ ey
= o B+ g A
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Sinceb<a a',wehavef@ b®>a,whence@ b® (a b >band

3b+ Db
<

Then since %qx) = 2¢, + 12¢4x? and  %{b) is also negative, it follows that °{x) < 0 for all x 2 [ b;q.
Also, ( b= (b) sowe have (x) (b > O0forall x 2 [ b;{. Finally, we compute

3 00

K= (2+ 2 @40y2)2

<0

Thus we have smoothed out the intersection while retaining egative curvature. Note that since ane

transformations don't change the sign of the curvature, we nay join two hyperboloids of the form x? + y? =

1+ (cz)? by using the above construction and then transforming thez-coordinate. Next we obtain our main
theorems. Hyperboloids will be our building blocks in what bllows. (N.B. by \complete" we mean complete
in the extrinsic sense)

G.2 Main Theorems

Theorem G.2.1. Let g, Ncirc , and nNeysp be natural numbers such thangc 1if g=0, and Nngjc 2
if g > 0. Then there exists a complete, negatively curvedZ? surface embedded irR® with genusg, Neirc
circular ends and ncysp cuspidal ends.

Proof. We begin with the genus zero case. ¢ =1 and neusp = 0, we have the simple examplez = xy,
so we may assume thaigrc + Ncusp 2. We will construct these surfaces by lining up hyperboloid and
joining the bottoms using the BVK construction, then replacing the tops with narrower hyperboloids or
cusps using Lemma G.1.1, and nally skewing the tops using Lexma G.1.2 so they don't hit one another.
For de niteness we will use the minimum value of when applying Lemma G.1.1 (N.B. the set of possible
's is compact) andb= E";—(a a'™3) when applying the BVK construction, where k is the smallest positive

integer making b small enough for our needs. We begin witigic + Ncusp 1 hyperboloidsf H; gj”;‘{{ tNasp 2
with axes given by x = x;;y = 0, where xo = 0 and the x;'s are increasing (the values to be chosen later).

The top of Hj forj =0;:::;ncirc 2 will havB acircularend,j = ngre 15115 Neire + Neusp 2 @ cuspidal
end. For circular ends we ramp fromr;(z) = = 1+ z? to
r
—_ 1 2
ri(z) = 1+(4j+1 z)

betweenz =0 and z = % using Lemma G.1.1. For cuspidal ends, we begin with; (z) = P 1+ z2. See the

gure below. Sincer{z) > 0 we have

1+ DO (D <r©@=1<r( P

Also, (0; 1) lies on the liner; ( 1)+ 10’1‘(‘;%)(2 ( 1)) so that
6
N o111 (R 1
ri(0)=1<r;( 6)+ 20 (1) %) O ( é))
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Figure G.2: Constructing the slope to ramp to

Thus we may apply Lemma G.1.1 to rampr; (z) from P I+22t0 € "1( &7 betweenz= 1 andz=0.
Sincer?(z) < 0 at both points and r’{z) > 0, it follows that r; (z) > 0 during the transition. Next we skew

the surfacesH; using functions f; (z) (in the notation of Lemma G.1.2). For eachj and all z < % we
require
1

(1+ z2)3=2

First we de ne a continuous function h(z) as follows: h(z) =

it <rf2) =

1 - 12 - 5
Wbetweenz- Tandz= 3,

h(z)isanefor z2[a; #][ [ 5 3]and 0 elsewhere (there is a unique continuous function witfthese

characteristics). The number a is chosen close enough to 15—2 so that h(z) < W when z < 15—2

(a= 2:5suces). The form of h(z) is shown in the gure below. The red curve is W the blue is
h(z) (the region below the graph ofh(z) is shaded blue). Then

Figure G.3: The form of h(z)

Z 1 Z 5
12 1 7
. h(z)dz > . mdz =57

NI =
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Finally, we de ne the skewing functions:

1 o2 2z 2
f1@)= % + RE—ES h( )d ds
1 1 1

By the above we have

- =2

Then sincef™{z) = 0 when z > 3, it follows that jf *{z)j <r *{z) for all z, no matter what modi cations
were made torj (z). Now we have negatively curved surfaces$i; described by

(x f(2)*+y*=r1i(2)°

Next we wish to choose the spacings; x; 1 large enough so that theH; only intersect whenz <a. To
show this is possible, denote the least values of of the circular cross sections oH; by left; (z), the greatest
by right (z). Thatis to say, left;(z) = fj(z) r;(z)andright;(z) = fj(z)+ rj(z). When z > % we compute
fAz)= 3 % andr?(z) < zr and so

(leftj«  right;)%z) = f]-°+l (2) r]-°+l (2) fjo(z) rJ—O(z)
2 2 1 1 1
>FT Fw ga gwogw 0
It follows that if xj+1  X; is su ciently large, the circular cross sections of H;+; and H; will not intersect
when z > %. Hence, oncex; has been chosenx;.; may be chosen large enough so that they only intersect
whenz <a 1. We make these choices, then nally join theH; using the BVK construction, where the
parametersb are chosen small enough that the surgeries only a ect parts the surfaces wherez < a. This
is now easily extended to the positive genus case. Sint®jre 2, Ho is a hyperboloid on bottom and a
narrower hyperboloid on top. We simply line up g additional copies of Hy with axes aty = 0;x < 0, space
them far enough apart that they only intersect when jzj > 1, and join their tops and bottoms using separate
applications of the BVK construction, making sure that the surgeries only a ect parts of the surfaces where
jzj> % O

A typical such surface is illustrated below. The yellow indicates regions where smoothing has been
performed, while grey dashes are on the back side. Note that @vcan continue adding to these surfaces in
the same way to obtain surfaces with in nite g, ncirc , and/or neusp, although if we do so we will have a wild
end as well.

Theorem G.2.2. For any g > O there is a complete, negatively curvedC? surface embedded irR® with
genusg and one circular end.

Proof. Weqbegin with a hyperboloid and rip open one side of it. Whenx % we havex = P 1+ 22 y2
and jyj 22+ %. We keep this part of the surface and replace the rest with thegraph
1 1 11
- 4+ 2 W2 + 4+ —52 —
x=yte( 22 Dy (2t+ 527 D)

over the remainder of theyz plane. It is easily checked that function values and dera/alves up to second
order are matched, so we obtain aC? surface. The result is shown below. Wherjyj >  z2 + % we have
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Figure G.4: A surface with genus 1, 3 circular ends and 1 cusgal end

sgn(K) = sgn(XyyXzz  X5,)

XyyXzz X5, = 48y*+(96z%+16)y* +( 48" 16z° 1)

For xed z, we nd the roots of this polynomial in y:

)/2:—9622 16 8: 22+}'22+i
96 4’ 12
' 1 ' 1
y= 2 + 7 2 + P
h q q i q
All four roots are inside 22+ 3, 22+ 5 ,S0XyXzz X5, 6 0 when jyj > z2+ 3. Also, it is

dominated by 48y*, so in fact xyy Xz, x§z < 0 and thusK < 0. We now add genus by adding hyperboloids
with axesx = 3k;y =0 for k=1;:::;g and joining them using the BVK construction. O

A typical result of this construction is illustrated below.

Theorem G.2.3. For any g > 0 and nqsp > O there is a complete, negatively curvedC? surface embedded
in R3 with genusg, one circular end and Ncusp Cuspidal ends.

Proof. We will skew the surfaces from the previous theorem, add cuspand skew them in the opposite
direction. First we must gain some freedom to skew the rippedhyperboloid. Denote this surface byx =
Xo(Y; z). We will try replacing this with

X = Xo(y;2)+ f(2)

wheref (z) 2 C2. Now we nd that

2 2 0
XyyXzz  Xg, = Xoy, Xo,, X5, *f 12)x0,,
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Figure G.5: A ripped-open hyperboloid with negative curvature

Also, it is easily checked thatx,, > 0, soK < 0 as long as

2
(g < X Xox X6,
XOW

This must hold for all y, so we need to compute the minimHm of the quantity on the right, which we denote
by m(y; z), for some values ofz. By the above, whenjyj> z2+ % we have

48y* (9672 + 16)y? + (48z% + 1622 + 1)

m(y;z) = 122 42 1
11584+ ( 77622 192)y? +( 38Qz* 64z% +8)
y= 122 422 1)
We view the numerator above as a quadratic iny?; the discriminant is
145 1
4, 1592
23592966 + 262" 18437
This in turn has two imaginary roots and two real roots z= , where
4 —o S 1
i1lg 145 145 2 1
= — —+ - + - :
2 576 576 4 18432 014674

Thus the discriminant is negative whenz 2 ( ; ), so the numerator has no real roots. It is dominated by
the positive term 1156y4, so it is positive. Then, due to the factor ofy, my < 0 wheny < 0 andmy > 0
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Figure G.6: A surface with genus 2 and 1 circular end

q
wheny > 0. When insteadjyj z2+ 2, we have

1
1+22) 1+22 y?

m(y;z) =

my = y
T2y

so for ally we havemy < 0 wheny < 0 andmy > O wheny > 0. Thus, ifz2 ( ; ), the minimum of m
occurs aty = 0:

. N L 1
r)‘/nzer] m(y! Z) - m(O! Z) - (1 + 22)3:2
Therefore, we haveK < 0if 0 f%z) < W whenz 2 ( ; ) and f%z) = 0 elsewhere. Since
%p 1+ 22 = W by Lemma G.1.2 we may skew hyperboloids by the same functiomnd maintain
negative curvature. We de ne a function h(z) as follows: h(z) = +z+ $ whenz2[ ;0] h(z)= Zz+ 1
when z 2 [0; ] and h(z) = 0 elsewhere. Finally, we de ne the skewing function:
Z z Z S

f(z) = h( )d ds
1 1

Then, f%z) = h(z), so we maintain negative curvature. Next, we again addg hyperboloids with axes

x = 3k;y=0for k=1;:::;gand skew them using the same function. We join the bottoms usig the BVK
construction, choosing the parameterb smallgnough so that the surgeries only a ect parts of the sufaces
where z < . Now, whenz > , f9z) = i h(s)ds = % , so the tops are simply hyperboloids which

have been a nely skewed to one side. Thus we may join them, usig an a nely transformed version of the
BVK construction. Next, we add cusps; we must show that we carskew them quickly enough to escape the
skewed hyperboloids. First, we note that

, @l
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so we may choose;; ¢, such that ¢; <c, < 0 and
Z e, 1 1
7_(12 > 1 ey
o L+ 2D)32 8
Recall the function h(z) from the proof of Theorem G.2.1; we rede neh(z) here to be a similar function,
except that h(z) = W when z 2 [c;; ], a is chosen close enough te; so that h(z) < ———= when

(1+ z2)3=2
z <c3, and h(z) also goes to zero at%cg. We nd that

Z 1 Z C2 1
h(z)dz > ————dz>1 =
Finally we de ne the skewing functions for the cusps k =1;:::;Ncyusp):
zZ, Z
1 1+ 1 z S
p(m= Lredrzo) h( )d ds
p h(eds 1 1
1 @1+ 5ty
ipRz2)j= —R® XV h)< — =
P2 T his)ds (2) < 5o

When z %Cg we have the stronger conditionp{z) = 0. To make the cusps, we start with neusp hyperboloids:

r«(z) = 1+ z2. Recalling Figure G.2 and the associated argument, we may @sLemma G.1.1 to ramp
to r(z) = et r«(c2=2)z=ic) petweenz = 3c, and z = 0. We then skew the resulting surfaces using the
functions px(z). Now let left ((z) and right (z) be as in the proof of Theorem G.2.1 with these surfaces,
and similarly let Left (z) be the minimum values ofx of the cross sections of the leftmost hyperboloid added
in the rst part of the proof. That is,

p
Left (z)= 3g+ f(2) 1+ 22

When z > we have 1 1
IeftE(Z)= pE(Z) fE(Z)> (1 3 a+ ok 7))

. 1 1
right2(2) = pR(2)+ riR(x) < (1 3 1+ W))
1
Left z) = £ 9 Z_ s a =
eft (2) (2) F’W ( > )
From the above inequalities it follows that
(left  right +1)%2) > >0

8 2k
(Left  right 1)%z) > % >0

Thus if we place our cusps with axes (before skewing) at = 0 and small enoughx (decreasing ak increases),
they won't intersect one another or our other surface whenz > . Hence we may choose the spacings large
enough that in fact they don't intersect except whenz <a 1. Finally, we join the bottoms using the BVK
construction, choosing the parametersh small enough so that the surgeries only a ect parts of the sufaces
wherez < a. O
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Figure G.7: A surface with genus 1, 1 circular end and 2 cuspi ends

A typical result of this construction is shown below. These esults are summed up in the following
theorem:

Theorem G.2.4. Let g, Ngire, and Neysp be natural numbers such thatng. 1. Then there exists a
complete, negatively curvedC? surface embedded irR® with genusg, n¢rc circular ends and Neusp CUspidal
ends.

G.3 Cusp Ends Only

This result raises the question of whether there are comple, negatively curved surfaces with only cusp
ends. We begin by examining the following situation: we havea surface given in cylindrical coordinates by
r = r(;z). The signed curvature of a cross sectiorz = const: is given by

K = 22+ 12 v
R I

so it is strictly convex (ks > 0) if and only if 2r2+ r?2 rr > 0. The curvature of the surface is given by

(2r24 712 11 Yry (rr g, rory)?

K =
(r2+r2+7r2r2)?

soK < 0 if the cross section is strictly convex andr,; is positive. Next, suppose we have a corner at = 0:
for somezg > 0

1.r2C%in zg<z O0and0 z<zg
2. r;; > 0whenjzj2 (0;zp) and r (; +0) >r,(; 0)
3. the cross sectiong = const: are strictly convex

We have the following Lemma:
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Lemma G.3.1. In the above situation we may rede ner( ;z) whenjzj , where is an arbitrary positive
number less thanzo, so thatr 2 C? and the curvature remains negative.

We will refer to this as \ironing out." The proof is given in [2 ]. Note that, while the statement requires
C! , the proof only usesC?2. In what follows, we will say that a tube is properly contracting at a certain
cross section ifr; < 0 andr,; > 0. As a nal preliminary, consider a factorized form:

r(;z)=( )Z(2)

(2 @4 2 0() ZZOO

K= Z( 2+ @+ 4702

where ;Z > 0. We see thatk < 0 if ( ) is strictly convex and Z%z) > 0. We have the following
Theorem, which rules out a certain type of counterexample toMilnor's conjecture:

Theorem G.3.2. There is no complete, negatively curvedC? surface immersed inR® whose ends are a
nite collection of properly contracting cusps with strictly convex cross sections.

Proof. Suppose thatM is such a surface. For a particular end, choose coordinate®ghat r = r(;z) for z
in some neighborhood ofz = 0. Since r,=r is continuous, it assumes a maximum on each cross section. t_e
b be the maximum of r,=r when z = 0. Now we de ne

()=r(0
Z(z)=e "3

Finally, we redene r(;z)tobe ( )Z(z) whenz 0. Itis easy to see that the hypotheses of Lemma G.3.1
are satis ed, so we apply it to iron out the corner at z = 0. Then for all su ciently large z,

K = (2 @4 2 0() ZE
(2+ @ 4+ 4%bZe bZ)24

This attains a (negative) maximum at each cross section. Theonly z dependence is in the denominator,
and it decreases with increasingz, so the absolute value ofK only increases with increasingz. Thus K is
bounded away from zero on the end. Repeating this procedureof each end in turn, we obtain an immersed
surface with curvature negative and bounded away from zerowhich is precisely what is forbidden by E mov's
Theorem. O

Notice that the above argument only requires a single stricly convex cross section on each end where it
is properly contracting. We now apply this Theorem to a classcal example.
Example G.1 (Six-punctured Sphere) The equation for this surface, which is shown below, is

x2y2 + X222 + y?72 = 3

It is easy (though tedious) to show that this surface is negaively curved everywhere except the eight marked
points x;y;z = 1. One might suppose that a bounded surgery could excise thegints of zero curvature,

but the above Theorem proves that this is not the case, sincelte ends are properly contracting with strictly

convex cross sections.

It seems that convex cross sections may be something of a hirghce to having only cuspidal ends. We
have the following example:
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Figure G.8: The six-punctured sphere

Example G.2 (Vaigant's Surface). This surface, due to Vaigant[3], is given by
(z u+Vv)?@+u+v)?2 M?2 (u (v 1)]=0

— P —— . . .
whereu = P 1+x2,v= 1+yZandM 2 (0; E&—i). It is negatively curved, and has four cuspidal ends.
Note that the cross sections are not convex.

Figure G.9: Vaigant's surface and a (blown-up) cross sectio

G.4 Space at In nity

Negatively curved surfaces may not be compact, so if one is omplete (in the extrinsic sense) then it is
unbounded. To study the behavior at large distances we compaify R3 in the following way: de ne the map
on R2 in polar coordinates by

(r: N=C2tn 'r; )
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With this identi cation of R® with the open unit ball, we identify the points of the unit sph ere with points
at in nity. We now de ne the points at in nity of a surface to b e the limit points on the unit sphere of the
image of the surface under . The gure below illustrates thi s for the hyperboloid. The red circles are not

Figure G.10: Behavior of the hyperboloid at in nity

in the image of ; they are the points at in nity of the hyperbo loid. We have the following Theorem about
the points at in nity:

Theorem G.4.1. The points at in nity are not contained in any open hemisphere.

Proof. SupposeM is a negatively curved surface violating this. By rotational symmetry we may assume the
points at in nity lie below the equator (at negative z). Now let

Zmax =supfz:9x9y(x;y;z) 2 Mg

First suppose that zmax = 1 . Then we may choose a sequence of pointg{;yn;z,) of M such that z, > n.
Then kK(Xn;Vn;zn)k ' 1, sok(( Xn;¥n;Zn))k ! 1. Since the unit ball is compact, we may choose a
convergent subsequence (& (n);Y (n);Z (n))), and

MmO X )y )iz m))z 0

Thus, limpn (( X (ny:Y (n):Z (n))) is @ point atin nity of M which is not below the equator, contradicting
our assumption, s0znax must be nite. Now a negatively curved surface can not lie on me side of a plane
that touches it, so for all (x;y;z) 2 M we havez < znhax . Next, we choose a sequence of pointx; yn; zn)
of M such that zmax >z > Z max % Again we choose a convergent subsequence X((n);Y (n);Z (n))) Of
(( Xn;Yn:zn)). Let

p= I!i!rln (€ X ()Y (m):Z (ny)

If pis on the unit sphere then limyiy  K(X (ny;Y (n);Z (n))k=1 so

Ztan TK(X (n);Y (n);Z (m)K _

0
k(x (n):Y (n):Z (n))k

Pz = r!i!rln Zm

Thus, p is a point at in nity of M which is not below the equator, again contradicting our assmption, so p
must not be on the unit sphere, and hence is in the image of . Shce is a homeomorphism, it follows that

dm ¢y iz @)= (P
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so  Y(p)is a limit point of M. SinceM is complete, (p) 2 M. However,
l(p)z = rli!l:‘Ln Z (n) = Zmax
soM lies to one side of a plane touching it, which is impossible. O

As an application of this result, we derive a result concernig skewing in two di erent ways, the second
more general. Consider a negatively curved horn with equatin

X2 + y2 - r(Z)2

where r%z) ! kasz! 1 andr%z) ! Oasz!1 . How far can we move the point at in nity
corresponding to the cusp by skewing the surface? If we maiain negative curvature with skewing function
f () (initially zero), we have
Z, Z,
Jim f9z) = fQz)dz < . rYz)dz

[r%2) A 2)]1=k

333' -

= li
z

so the point at in nity must lie within the circle opposite th e other points at in nity (which form a circle at
polar angle = tan 1Kk), as shown in the gure below. Using the space at in nity we can put this more

Figure G.11: Cusp skewing limit

generally:

Proposition G.4.2. Let M be a negatively curved surface whose set of points at in nitys S[f pg. If Sis
contained in the (not great) circle C, then p is contained in its opposite circle C°.

Proof. Suppose not. By rotational symmetry we may assume thatC lies in a plane below and parallel to
the xy plane, while p lies in the xz plane with positive x, as shown in the gure below. We then describe
the great circle D (shown below in yellow) through the leftmost point of C and its antipodal point, the
rightmost point of C° with normal vector in the xz plane. Now we simply tilt D slightly toward p, so that
all the points at in nity lie on an open hemisphere (delimite d by D), which contradicts Theorem G.4.1. O

With this and Theorem G.4.1, we can also rule out negatively arved surfaces with one cusp end or two
which are not antipodal, since cusp ends get a single point ah nity. Furthermore, we can also rule out three
linearly independent cusps as follows: let/;; v»; v be the three directions of the points at in nity. We simply
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Figure G.12: More general cusp skewing limit

apply a linear transformation (which doesn't change the sign of the curvature) to move those directions to
the standard basis vectors, and we have three points at in nfy which t on an open hemisphere. Finally,
we give an argument which can be used to rule out various symntec geometries.

Proposition G.4.3  (Symmetry Argument). If C is a curve in a plane of symmetry of a negatively curved
surface M, then C is a principle curve.

Proof. Let p2 C. By symmetry, the normal vector N at p is in , so the tangent plane to M is spanned
by the tangent vector to C and the normal vector to . The principle directions (really lines) must still
be principle after re ection across , and are distinguishable from one another by the sign of the normal
curvature, so they must in fact be invariant under re ection across . Hence the tangent vector to C and
the normal vector to are principle. Since this is true for every pin C, C is principle. O

From this it follows that C has no points of zero curvature, since this would imply normé curvature
zero. Hence we can rule out certain symmetric arrangementsybinspecting a curve of symmetry. In the
following examples, the o ending curves are shown in yellow Approximate points of zero curvature are
marked. Assume the drawings have the obvious symmetries.

Figure G.13: Symmetric geometries (not negatively curved)
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H.1 Preliminaries

Throughout our discussion, we will say that a sequenceA, is binary if its only entries are 1 and 1. Likewise,
a matrix is binary if its only entries are 1 and 1. Given ann n binary matrix, H, it is well known what
the maximum attainable determinant is of that size. This bound depends not only onn, but also the value
of n (mod 4). We are particularly interested in the case thatn 0 or 2 (mod 4). If n 0 (mod 4), the
maximum possible determinant isnz; this bound is achieved if and onlyHH T = nl, wherel, isthen n
identity matrix [10]. A matrix satisfying this property is s aid to be Hadamard, and it is conjectured that
a Hadamard matrix exists for every multiple of 4. If n 2 (mod 4), the maximum possible determinant
is2(n 1)(n 2)¥ which Ehlich and Wojtas independently derived. However, the Ehlich/Wojtas bound
can only be achieved ifn 1 is a sum of two squares [6], [13]. Since there are many pos# integersn 2
(mod 4) with n 1 not equal to a sum of two squares, we may consider how close tbe Ehlich/Wojtas
bound the determinant of a binary matrix of this size can be. Before we can answer this question, however,
we require the following preliminary results and de nition s.

De nition H.1. Let A =(ag;a1;:::;a 1)be acomplex-valued sequence of length then the k- th periodic
autocorrelation of A is
K1
Pa(k) = Qi+
i=0
wherei + k is taken modulo| for everyk =0;1;:::;1 1.

We can easily generalize this de nition to any nite number of complex-valued sequences of length If

the sum of the periodic autocorrelations of theA;. That is,

X
Px (k) = Pa, (k):
i=1

B = (hp;by;:::;h 1). Accordingly, we will assume these conditian hold whenesr we discussA and B in
the future, unless speci ed otherwise. It is clear in this cae that :zol(ai ai+kx + bb+y) =21 for k =0.

De nition H.2. Suppose there exists & 2 Z such that Pa (k) + Pg (k) = c for every nonzerok, then A
and B are said to becompatible If ¢=0, then A and B form a periodic Golay pair.

Example H.1. Let A=(1;1)and B =(1; 1),thenPa(l)+ Pg(1)=(1+1)+( 1 1)=0. Thus, A and
B form a periodic Golay pair.

De nition H.3. Let A=(ap;:::;a 1), thenthel | matrix
2

a a; I oa 1
§a| 1 @ oA o
a; a i a

is called the circulant matrix obtained from A.

With this basic understanding, we are now able to modify our ¢k nition of a periodic Golay pair. This
will create a new type of pair which has not been studied befar and has applications to the maximal
determinant problem described above.
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H.2 Properties of Periodic and Alternating Golay Pairs

We now generalize the notion of a compatible pair by allowingthe non-trivial periodic autocorrelations of
a pair to take on multiple values. As we shall see, these genalized pairs share many of the same desirable
properties present in periodic Golay pairs. Moreover, suctpairs have been used to create binary matrices of
record determinant, speci cally of sizes 22, 34, 70, and 10fL1], [12].

De nition H.4. We say that the binary pair A = (ap;:::;a 1) and B = (bp;:::;bh 1) is alternating
compatible with odd constants and even constantt if

8
X1 < 21 ifk=0;
(aia+x + bb+x)= s if kis odd;
i=0 "t ifkiseven,k80:

If s= 4andt =0, then we say A and B form an alternating Golay pair.
Example H.2. Let A=(1;1; 1, 1)andB =(1; 1;1; 1). Then, PAo(1)+ Pg(1)= 4= Pa(3)+ Pg(3)
and PA(2) + Pg(2) =0, so A and B form an alternating Golay pair.

From the de nition of alternating compatible sequences it is immediate that if s and t are distinct, then |
must be even. This is becaus®, (k) + Pg (k) = Pa(k+ 1)+ Pg(k+ I), and the value of the nonzero periodic
autocorrelation depends only on whetherk is even or odd. It is worth noting, however, that if s = t (that
is, if A and B are compatible in the usual sense), ther need not be even.

Proposition H.2.1.  SupposeA = (ap;:::;a 1) andB = (lp;:::;h 1) form an alternating compatible pair
with distinct odd constant s and even constantt. Then,

I'o

Xl ' Xl S t
a + h = 2+ §+ > It
i=0 i=0
Proof. Straightforward calculations show that
ki 2 ox1 7o K 1
a + h = a’+b? +  (Pa(i)+ Ps(i))
i=0 i=0 i=0 i=1
I I
=2l+s-+t - 1
27 2
s t
2+ -+ - |
2 2

O

Corollary H.2.2. If A and B form an alternating Golay pair of length I, then precisely'z entries in both
A and B are 1.

P P
Proof. Letting s= 4 andt =0, Proposition H.2.1 shows that ( ; ai)2 +( h)2 = 0. Thus, the sum of
the entries of A and B must both be zero, which occurs if and only if precisely'z entries of both A and B
are 1. O
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SupposeA and B form a periodic Golay pair of length I, and let denote the sum of the components
of A and denote the sum of the components oB. Then, it is well known that 21 = 2+ 2 and hence
I =( ; )2+ ( T)Z (this fact also follows from Proposition H.2.1, since the lagth of a periodic Golay pair
must be even). The following theorem presents the analogousondition in the case of alternating Golay
sequences.

Theorem H.2.3. SupposeA = (ap;:::;& 1) and B = (Ip;:::;h 1) form an alternating Golay pair of
length I, then

0 2 1,
32 1 32
1= @ a2|A + @ b2|A
i=0 i=0
Proof. Let M and N be thel I circulant matrices obtained from A and B respectively, and let
M N
H = N T M T

We wish to compute the product HH THH T in two separate ways: rst by calculating (HH T)(HH T) and
then by determining H(HTH)H . The desired result comes from comparing the (1,1)- entriesf these two
products, which we denote by .

Let =( ) bethel | matrix dened by
8 o
< 2 ifi=j;
i = . 4 ifi+j is odd;
0 ifi+jiseven,i6j:

Because circulant matrices commute, we have

0 0
T Ty — — .
(HH ")(HH ") = 0 = 5
Hence, ifv2 R'isv=(21; 4;0;:::; 4), then
=v v=4I12+8l: (H.1)
P21 P21
Let EA = |; @y andEg = .5 ~Ipi. Observe that
I% 1 I% 1 I% 1 X 1
Ea + i+ = ag + i+ = a=0
i=0 i=0 i=0 i=0
P P -
by Corollary H.2.2, and thus :;g 1a2i+1 = Ea. Likewise, :;g 1b2i+1 = Eg. We see
M N 0 MT N

NT MT 0 NT M
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and hence
0 3R 1 1 0 3R 1
=a@la, 4 ainA+ +a 1@la ; 4 a A
i=0 i=0
0 1 0
3R 1 3R 1
+ by @by 4 binA+ +h @b ; 4 bpi A
i=0 i=0
0
K1 R 1 e 1 R 1 1
=21  (a?+h? 4@ a Azt +2 by bpi+1 A
i=0 i=0 i=0 i=0 i=0
=412+ 8EA? +8Eg%: (H.2)

Combining (H.1) and (H.2), we have that 412+ 81 =412+ 8Ex2 + 8Eg 2 and thereforel = Ex2+ Eg2. O

The results of Theorem H.2.3 lead us to consider if there exis a relationship between the sum of the even

form a periodic Golay pair, and let

|3€ 1 |3€ 1 |3@ 1 |3€ 1
Ea = az; Da= agi+1; Eg = bi; Dg = fpi+1 : (H.3)
i=0 i=0 i=0 i=0

Consider the complex-valued polynomialsQa (x) = ap + aix + +a 1x' Tand Qg (x) = b+ byx + +
b 1x' 1, then for any I- th root of unity,

Qa()Qa( H+ Qs()Qs( hH=2L

Hence, if ;=1and ,= 1, then

4=Qa(1)Qa( 1N+ Qe(1)Qe(1H)+ Qal(2)Qal ")
+Qe(2)Qs(,")
=(Ea+Da)*+(Eg + Dg)*+(Ea Da)’+(Es Dg)’
=2 Ea?+ Da’+ Eg?+ Dg? :
Thus,
2l = Ea2+ Da?+ Eg?+ Dp?

which provides a nice property regarding the length of any peodic Golay pair. Notice that this property is
equivalent to stating that
EaDa = EgDsg: (H.4)

This gives rise to the following result which greatly improves the e ciency of the search described in Section
4,

Theorem H.2.4. AssumeA = (ap;:::;a 1) and B = (hp;:::;hh 1) form a periodic Golay pair of length
| =2m for some oddm 2 Z, and assume further that there is a unique decomposition dfinto a sum of two
squares of nonnegative integers. Then, iEa;Da;Eg; and Dg are as in (H:3), then

| = EA2+ DA2: EBZ+ DBZZ
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Proof. Let and be the respective sums of the entries oA and B, then 2l = 2+ 2. Furthermore, this
decomposition into a sum of squares is unique, since the demposition of | into a sum of squares is unique.
By (H4), EADa = EgDg = forsome 2Z,so = Ea+ e and likewise = Eg = Multiplying
the rst equation by E, and the second byEg gives

p _
2 2
%; Eg = —+4; (H.5)

EA:

BecauseE, and Eg must both be integers, it follows that 2 4 = p?and 2+4 = ¢ for some integers
p and q. Therefore,p? + ¢ = 2+ 2=21I,soeitherp’= 2andg?® = 2 or vice versa by the uniqueness
hypothesis.

Supposep? = 2, then Ex = 0 or . However, this is impossible because then eitheEx or D4 is 0,
which contradicts the assumption that m is odd. Thus,p?= 2 and ¢ = 2. Substituting these values into
(H.5) gives

En= ——; Da=——; Eg= ——; Dp= ——
A 2 A 2 8 2 8 2
Without loss of generality, we may assumeEs = Eg = ; since shifting the entries of an individual
sequence in a periodic Golay pair does not aect its periodicautocorrelation. Hence,Da = —— and
Dg = ——, and the result follows from taking Ex + Da? and Eg* + Dg°. O

Arasu and Xiang proved that if | = p?'u is the length of a periodic Golay pair for some primep 3 (mod 4)
and positive integerst and u with u relatively prime to p, then u  2p' [1]. Because of the close similarity
between the properties of alternating Golay pair lengths aml periodic Golay pair lengths, we conjecture a
similar result holds for alternating Golay pairs.

H.3 Implementing Alternating Golay Pairs to Construct Bina ry
Matrices of Record Determinant
With this basic understanding of the properties of alternating Golay pairs, we return to the issue of maximal

determinants; our objective is to apply these pairs to creaé binary matrices of record determinant. The
following is a well known result whose proof is omitted.

Theorem H.3.1. AssumeA and B form a periodic Golay pair of lengthl, and let M and N be the circulant
matrices obtained from A and B, respectively. Then,

M N

H = NT MT

forms a2l 21 Hadamard matrix.

2

As mentioned previously, ifn 2 (mod 4), then for any binary n n matrix H, det(H) 2(n 1)(n 2)*z
[6], [13]; we denote this bound by (n). We wish to use a similar construction of circulant matrices as in
Theorem H.3.1 to generaten n binary matrices of record determinant wheren 2 (mod 4) but with
alternating Golay pairs. However, we rst require the following lemma:
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Lemma H.3.2. Let S=(s;) be then n matrix de ned by

k ifi+] is even;

Si Tk ifi+] is odd

forsomek 2 Cand 1 ij n, and let R = S+ dl, wherel, is the n n identity matrix. Then,
det(R) = (kn + d)d" 1.

Proof. SinceS is not invertible, 0 is an eigenvalue ofS. The dimension of its eigenspace is 1, because every

1 andn 1, respectively. By the Spectral Theorem, there exists andrvertible n n matrix Q such that
Q 'SQisthen n matrix which has kn in its (1,1)- entry and zeroes everywhere else. Thus,

det(R) = det(OS+ dl,) =det(Q 1(SZ+ dl)Q) = det( %118Q+ dly)

2 3

kn 0 ::: O d 0 :: 0

0O 0 ::: O .. :

oo o 0

0O 0 ::: 0 0 ::- 0 d
=(kn+ d)d" *:

O

With this lemma, it is now possible to determine how close matix constructions from alternating Golay
pairs come to reaching the Ehlich/Wojtas bound.

Theorem H.3.3. Suppose thatA and B form an alternating Golay pair of length|. Let M and N denote
thel | circulant matrices obtained from A and B, respectively, and letX, J, and K be the following2 2
and 2 | matrices:

If H isthe2l+2 2l +2 matrix given by

then det(H) = 2(21)"**.
Proof. Observe that 2 3
2r+2)1, P Q
HHT =4 PT R 05
QT 0 R
wherel, is the 2 2 identity matrix, P and Q are the 2 | matrices
2 2 _ 0 =0
P_O:::O’ Q_2:::2’
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and R =(rj )isthel | matrix de ned by
8 o
< 2+2 ifi=j;
ri =, 2 ifi+j isodd;
' 2 ifi+ ] iseven,i 6|

Let Y be the 2 2l matrix obtained by gluing P and Q together, and let

_ R 0 |
Z= 0 R
then

- @1 +2)1, Y
det(H )~ = det vT 7

_ 2r+2)1, Y I2 0

= det YTz Z YTy

Cget @*212 YZ YT Y

0 z
=det(Z)det 21+2)1, Yz YT

It is straightforward to verify that

0
1
Z =9
where =( j)isthel | matrix given by
8
< 2I4|_21 ifi=j;
i = ﬁ if i +j is odd;

[N

if i +j iseven,i 6 j:

N
™)

Thus, YZ YT =215, s0@+2)l, YZ YT =2ll,. By Lemma H.3.2, det(R) = 2(21)', so det@Z) =
det(R)? = 22(21)?'. Therefore,

q q
det(H)= det(Z)det(z Yz 1YT)= 22(21)2(21)2 = 2(21)"*:

O
If H isann n matrix constructed from an alternating Golay pair of length | as in the previous theorem,
det(H) _ n 2
then = & and therefore
det(H)
=1:
nil (n)

Hence, alternating Golay pairs are excellent for producingn  n binary matrices of large determinant for
n 2 (mod 4) whenever the Ehlich/Wojtas bound is not attainable. As mentioned before, the construction
of H as in Theorem H.3.3 has been used to generate binary matricad record determinant for n = 22, 34,
70, and 106 [11], [12].
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H.4 The Search for Alternating and Periodic Golay Pairs

In 1997 and 1998 papers, Gysin and Seberry provide a methodrftocating D -optimal designs using general-
ized cyclotomy [8], [9]. We utilized this method to search fo a variety of pairs. A description of the method
is provided below.

Let x and | be positive integers with x relatively prime to |. De ne the i- th generalized coset of with
respect tox to be

[
Ci = ix* (mod 1)
k2z=1Z

fori =0;1;:::;t for somet 2 Z. Note that these generalized cosets are only cosets in the wal algebraic
sense ifl is prime. In fact, if | is composite, then there will be nonzero generalized cosets di erent lengths.
They do, however, form a partition of Z=IZ regardless of their lengths. Letv; 2 Z' be the incidence vector
corresponding to Cj; that is, the k- th entry of v; is 1 if k 2 C; and 0 otherwise fork = 0;1;:::;1 1.
Then, by choosing appropriate sums and di erences of thev;, we obtain a list of possible sequence pairs
satisfying the desired periodic autocorrelation. By apprgriate sums and di erences, we refer to the linear
combinations of thev; with weights 1 and 1 which result in the requisite sums of the entries of the potatial

A and B sequences. I is even, then each element in a given coset is either even or d@d This fact and
Theorems H.2.3 and H.2.4 greatly reduce the number of poteml alternating and periodic Golay pairs to
be tested.

Example H.3. Suppose we would like to search for an alternating Golay pair denoted by A and B, of
length | = 10. If x =9, then Co = (0);Cs = (5) and C;j = (i;10 i) for i = 1;2;3, and 4. Since
we are searching for alternating Golay pairs, exactly ve erries of A and B must be 1 and the other
ve must be 1. In fact, Theorem H.2.3 requires that four of the even-ordeed entries of A must be 1,
and three of the even-ordered entries o8B must be 1. Thus, the only possibility for A in this case is
A= vy vi+Vvy v3+ vg+ vs. Likewise, B must be obtained by adding the incidence vectors of one
even coset of size 2, one odd coset of size 2, amgl and subtracting o the remaining incidence vectors.
Hence,A =( 1, 1;1; 1;1;1,1, 1;1;, 1)andB =(1;1;, 1; 1;1;, 1;1; 1; 1;1)form an alternating
Golay pair of length 10. In this case,B = vp+ vi Vo Vz+ Vs Vs.

Due to the exible nature of the program, it is possible to seach for several di erent types of sequences
with various periodic autocorrelations. However, we focusd our search on three types of pairs: periodic
Golay, alternating Golay, and generalized Legendre pairsA generalized Legendre paiiis two binary sequences
whose entry sums are both 1 and whose periodic autocorrelans sum to 2. Generalized Legendre pairs
are of special interest as the only known restriction of thei lengths is that they be odd. Moreover, ifl is
the length of a generalized Legendre pair, then al2 2| Hadamard matrix exists. Therefore, if there exists
a generalized Legendre pair for every positive, odd integerthen there exists a Hadamard matrix of size
4n  4n for every positive integern.

The results of the search are provided below in addition to tvo previously known pairs which were not
found via generalized cyclotomy; they are included for comfeteness. Missing lengths in the generalized
Legendre case up to 51 can be located in [7]. In the tables, weplace 1 by + and 1 by for clarity, and
x denotes the relatively prime element used to generate the geeralized cosets.

ly indicates the pair is listed in [12]
z indicates the pair is listed in [2].
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mentary pair if

fork =1;2;:::;1 1.

|>(( 1
aa+k+t bbby =0
i=0

does not admit any Golay complementary pairs [2].

Table H.1: Alternating Golay Pairs

It is straightforward to verify that every Golay complementary pair is a periodic

Golay pair. In 1998 and 2007, Dokovic found periodic Golay pas of lengths 34 and 50 which are known to
possess no Golay complementary pairs [4], [3]. This is the st time a periodic Golay pair of length 82 has
been found and only the third time that a periodic Golay pair has been discovered for a given length which

Length X Pair
2 1 +
+
4 1 ++
+ +
8 1 ++ +
++ + +
10 9 ++ + + +:
++ + + +
16 1 + 4+t + +
+ 4+ + + + ++
20 9 ++ + ++ + + + + +:
+ 4+ + + ++ + ++
26 3 Attt ++ + + ++
++ + + + + + ++ ++
34y n/a ++ ++ ++++ + + + + +++++
++ + + ++ + + + 4+ + 4+ + ++
52 9 + 4+t ++ + + 4+ + + + + +
++ + ++ ++
++ ++ + + ++ + o+ ++ + o+
+ 4+ + ++ + +
Table H.2: Periodic Golay Pairs
Length X Pair
2 1 ++;
+
4 1 ++ +
++
8 1 ++ A+
++ + +
10 1 4+t +
++ + ++
16 7 ++ 4+ + 4+ + +
+ 4+ + 4+ ++ ++
20z n/a + 4+ + ++ ++ + +
+ 4+ +4 o+t + + ++
26 3 + 4+ ++ + 4+ + ++ + + +
+ 4+ +++ + + ++ 4 ++ ++
82 37 +H o+ttt + 4+ + + + + ++
++ ++ + +++ ++ + + + + + + ++
++ + + ++;
++ o+ ++ + ++ + ++ ot +
+ 4+ +4 4+ + +++ ++ + 4+ + + +
++ + ++
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Table H.3: Generalized Legendre Pairs

Length X Pair
3 2 ++ R
++
5 4 ++ +
+ ++
7 2 + 4+ + H
+++ +
9 1 ++ 4+ + H
++ + ++
11 3 ++ ++ + + H
++ +++ +
13 3 ++ 4+ ++ + H
++ + ++ 4 +
15 2 + 4+ + + + + + H
++++ + ++ +
17 2 + 4+ + ++ + + +;
+ + + 4+ + 4+ +
19 4 ++ ++ o+ + + ++ H
++ + 4+ + + ++
23 2 + 4+ + ++ ++ + + H
+ 44+ + + ++ ++ + +
29 4 ++ ++ o+ + + + + ++++ +
+ ++ + + 4+ ++ + 4+ + ++
31 4 + 4+ +++ + + ++ + ++ + H
+ 44+ + +++ + + ++ + ++ +
37 3 ++ ++ + +++ o+ + + +++ + + ++
+
+ + ++ + +++ + 4+t + 4+ + ++
+
41 3 + 4+ ++ ++ + + + ++ + + + ++ +
++ + 4
+ + ++ +H + + + + +H +
+ + H
43 4 ++ + + ++ + + + ++ ++++ + + +
+ + ++;
+ 4+ + ++ + + + ++ 4+t + +
+ + ++
47 4 + 4+t + 4+ + + ++ o+ + ++ ++ + +
++ +
+ 44+ + +++ 4 + + ++ + + ++ ++ + +
++ +
49 18 +A+ ++ ++ ++ ++ + ++ +
+ + + ++;
+ 4+ + + 4+t ++ ++ + + 4+ + +
++ + + + + +
53 4 ++ + ++ + 4+ + ++ + ++ ++
+ 4+ + + 4+ ++ + +
+ ++ + + + A+ ++ +H
+ + + + + ++

Adam Vollrath
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.1 Introduction

The syllogistic fragment we deal with rst, L (all; most), requires the following de nitions:

\Syntax" We start with a set of variables X, Y, :::, representing plural common nouns. These variables
are used in sentences of the following form:

All X are Y ;Most X are Y

These are the only types of sentences allowed, and there is mecursion whatsoever.

Notation  If is a set of sentences inL (all; most), we write 4 for the subset of containing only sen-
tences of the formAll X are Y. We do this for Most as well, writing  most -

A proof in L (all; most) consists of a two-dimensional proof tree.

Denition I.1. A proof tree over is a nite tree T whose nodes are labeled with sentences in our fragment,
with the additional property that each node is either an element of or comes from its parent(s) by an
application of one of the rules. ~ S means that there is a proof treeT for over whose root is labeled S.

Example 1.1.1. Suppose we wanted to see
fAll X are Y,All Y are Z, MostY are Xg ™ Most Y are Z:
All X areY AllY areZ

Most Y are X All X are Z
Most Y are Z

Semantics One starts with a set M, a subset K] M for each variable X . This gives amodel M =
(M; [ D- We then de ne

M E Al X are Y i [X] [Y]
M F Most X are Y i GIXTN IYD > 300X

We allow [X] to be empty, and in this case, recall thatM F All X are Y vacuously. Also, note that Most
requires strictly more than half of one set to intersect with the other. And if i s a nite or in nite set of
sentences, then we writeM F to meanthat M F Sforall S2 .

Semantic de nition F S means that every model which makes all sentences in the set rue also
makesS true. This is the relevant form of semantic entailment for this paper.

[.2 (Partial) Completeness of L (all;most)

Before we move on to the completeness of our system, we noteahit is easily sound.
Lemma I.2.1 (Soundness) If ~ S,then E S.
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All X areZ All Z areY Most X are Y
All X are X All X are Y Most X are X
Most X are Y Most X are Z All Z areY
Most X are X Most X are Y

Most Z areY All X areZ All Z are X
Most X are Y

All Y are X All X areZ MostZ are Y
Most X are Y

Figure 1.1: The logic of All and Most.

Proof. The soundness of this system follows easily by induction on noof trees. The base case involves
verifying the soundness of the rules of inference themselse For instance, the soundness of the last rule in
Figure 1.1 can be seen as follows (we omit the semantic bracke the di erence between variables and sets
is understood): givenjZ\ Yj > %ij, Y X,andX Z,weseeY Z,s0jZ\ Yj=jYj=jX\ Yj,and
alsojXj j Zj, giving jX \ Yj=jZ\ Yj> %ij %ij. The rest of the rules are straighforward. O

We can split the proof of completeness folL (all; most) into two separate proofs: one in which we prove
F Most X are Y =) * Most X are Y, and a similar result for All X are Y. The latter case is much
easier, and we will examine it rst. Note that throughout, we 're assuming that is a nite set, and that all
the models we use are nite (but perhaps an arbitrarily large size).

Theorem 1.2.1. Let L(all;most). Thenif F All X areY,then ~ Al X areY

Proof. In this case, we note the following simple result from [1]: tle fragment L (all) is complete. That is,
the fragment which consists only ofAll statements is complete, and indeed, our current system incides the
old system's syntax, semantics, and rules of inference. Thefore, if we were to show that 4 F S, where
S = All X are Y, then citing this result, 4 ~ S. Our de nition of proof clearly allows for expansion of
hypotheses, i.e. ~ S. Soitsucestoshow 4 E S.

To see this, letM = (M; [ ]) be a model of 4. The main idea of this proof is that, for any two nite
setsA and B, we can choose a nite set of element®), disjoint to A and B, so that j(A[ Q)\ (B[ Q)j>
%j(A[ Q)j. Consider the collectionC = f[U] Y 2 V() g, where V() is collection of variables which
appear in . We can pick a set Q, disjoint from  C, whose size is su ciently large. Now we construct a
new modelM®= (M%[ Jwo) whereM®= M [ Q, and for any U, [U]uo=[U]m [ Q. Given that we picked
Q to be suciently large, for any sentence Most U are W2 , M%F Most U are W. It is also clear that
if M E All X are Y, then M°F All X are Y. SOM°F . Thus, M°F S. But S is an All statement, so
sinceM %interprets all variables with the same added subset, as comgred to M, S must have held inM. So
M E S, and we have shown that 5 F S. O

The other half of the completeness result has proved more esive. We present here the proof of a couple
special cases, hopefully towards the proof of completeness

Theorem 1.2.2. Let L (all;most), S beMost X areY. Giventhat ~ All X areY,then F S=)
TS
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Proof. We prove the implication by contrapositive: so assume, alog with ~ All X are Y, that 6  S.
We wish to show 6] S. To do this, we need to nd a model of which falsies S.

Consider the modelM = (fg ;[ 1), with [X] = ;,andif ~ All Z are X then [Z] = ;. Otherwise,
[Z]1= M = fg . To see that M F , note that the only way we could have M 6 Most U are W s if one
of [ULLIW]is;. If[U]=;,then ~ All U are X. But given Most U are W, our rules give usMost U
are U. But with All U are X, this gives Most U are X, henceMost X are X, hence, from our assumption
that ~ All X are Y, we would end up with Most X are Y, which contradicts our contrapositive as-
sumption. The case is similarif W] = ;. Thus, if T = Most U are W is aMost statementin ,then M E T.

SupposeP = All U are W is a sentence in and M 6] P. This is only possible if U]= M = fg and
[W]=;. Butthen we must have had ~ All W are X . But then this combined with P gives usAll U are
X, from which it follows that [ U] = ;, a contradiction. SoM E P.

So we have shown thatM | . But obviously M & S, since [X]= ;. So we have show &j S. O

Here is the proof of another subcase. We may now assume that6 All X are Y.

Theorem 1.2.3. Let L (all;most), S beMost X areY. Giventhat ~ All Y areX,then F S=)
TS

Proof. Again, we're going to take a contrapositive approach to thisproof. So assume that 6'Most X are Y.
So we're looking for a modelM which satises but falsies S. Let M = f1;2;:::;79, A = f1,2;3g,
B = f1;2;3;4g. The variable assignments are as follows: letf] = M, [Y] = A. Now for all other Z we
case three cases: if ~ All X are Z, thenlet[Z]= M. If ~ All Z areY, thenlet[Z] = A. Note that we
can't have both, because then we'd have ~ All X are Y, which we assumed we didn't. If neither of these
hold for Z, then let [Z] = B.

Now we want to see that this model satis es . There are only three ways that our model could falsifyAll
U are V, and they are all impossible, given thatAll U are V isin . Forif[ V] = A,then ~ All V are Y,
so that then ~ All U are Y, so that by denition [ U] = A. If [V] = B, then we'd be in trouble if
[U]= M; but this is impossible, since this would require ~ All X are U, and hence ~ All X are V, so
that [V] = M as well. So this shows thatM sati es any All sentence in .

The only way for our model to falsify Most U are V would be to have U] = M and [V] = A. But
if Most U are V is in this is impossible. To see this: in order to have those @signments, we must have

T All X areU and © All V are Y. Now we also are given that ~ All Y are X. From these, we get

the following proof tree:

All VareY All Y are X
All X are U Most U are V All V are X
Most X are V All V are Y
Most X are Y

Thus, we would have * Most X are Y, which is contrary to our assumption. Thus, M F . But clearly
M & S. So therefore 6 S, and we're done. O
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.3 Verbs: A Hilbert System

In his paper [2], Prof. Moss describes a syllogistic fragmerwhich includes sentences of the forrNP V NP,
where any occurence\P is noun phrase of the formAIll X or SomeX, and V is some verb which takes a
direct object. In this paper, | outline a complete Hilbert style system which includes such sentences. We
will refer to this system as H (all; some verbs.

Syntax  We have variablesX, Y, Z, etc. representing plural nouns. The basic sentences in thifragment
are of the following forms: All X are Y, SomeX are Y, and Q:X V Q.Y, where Q; and Q; can take the
form Someor All. The verb V, for the purposes of this paper, will only take formseeand not see where not
seewill act as a complement to see When mixing existential and universal phrases, ambiguity may arise:
for instance, we could take \All students write some paper" to mean either that each student writes his or
her own paper, or to mean that there is some paper which all stdents helped to write. For sentences with
verbs, and in which Q; 6 Q2, we will include a notion of scope: the scope of a basic sentea will tell us

how to read it. We denote subject wide scope with arswstag, and object wide scope with anowstag. For

example, All X see some Y )qus should be read as \For eachx 2 X, there is ay 2 Y such that x seesy",

whereas theows version would be read as \There is some 2 Y such that, for all x 2 X, x seesy."

The language of the systemH (all; some verbg consists of the boolean combinations of these basic sen-
tences, using the usual boolean connectives, _, and : . It is understood that A ! B is just convenient
shorthand for: A _ B.

Now we introduce some more shorthand. We will identify the veb sentences with symbols of the form

iuw , sometimes dropping the U and W when they are clear from contet. The associations are as follows:

All U see allW) 1.uw (SomeU see allW)sws) 20w
(All U see soméW)ons) suw (SomeU see allW)ows)  auw
(All U see someéW)sws)  s:uw SomeU see someW )  suw

For the corresponding sentences with \not see”, we put a bar wer the symbol. For example, 71.u.w
would stand for All U not see allW. Given this, we use a mneumonic for the negation of the 's which
arises from their natural interpretation: : 1 ~%,: 2 Ts5,: 3 4, and then three more in which the
roles of the subscripts are switched.

Just like any Hilbert style system, H (all; some verbg has axioms. As the reader may expect, there are a
lot of axioms for this system. A full list is contained in the appendix. Here are a few examples:

Al X areYMAIlY areZz! All X areZ
(SomeX see allY)sws! (SomeX see allY)ows
SomeX areY ! SomeY are X

Note that the system L (all; most) had many rules of inference and no axioms (one rule of inferee
happened to have no antecedents). The systerH (all; some verbg, on the other hand, has many axioms and
just one rule of inference, and that isModus Ponens . It states that, given A and A! B, we can inferB.
A proof from hypotheses in the system H (all; some verbg would be a nite list of boolean formulas, say

f 1; 2;::5; ng, suchthat for all i, ;isanaxiom, ;2 ,or ;isthe result of an application of modus
ponens on two formulas from the setf 1; 2;:::; i 10. We say that ~ S if S is the last line in some
proof from . We can now de ne, for any variables U andV, Th (U;V):=f uv @ ° iuv g, where

i can stand for ; or: ;.
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Semantic notions  As with the fragment L (all; most), the semantics is based on models. Given a model
M=(M;[ ), wehave e M M is a binary relation on M, and we de ne [not segf = M M n[seq].
We can then de ne the following:

M E All X areY
M E SomeX are Y

[ X1 [¥I1
X1V [Y] 6 ;

i

[
MF 1xv i (8x2[X]8y2[Y] x[sedy
MFE axv i (9% 2 [X]8y 2 [Y]) x[sedy
MFE axvy i (9y2[Y]8x2[X]) x[sedy
ME axy i (8y2[Y]ox2[X]) x[sedy
ME sxy i (8x2[X]9 2 [Y]) x[sedy
ME exy i (9% 2 [X]9 2 [Y]) x[sedy

[.3.1 Basic Observations

From here forward, by basic sentence we mean anyAll, Some or Verb sentence, or a negation of a sentence.
It is the same idea as a \literal" in boolean algebra.

The following observations are key to the completeness of i fragment. First note that, since our system
has negation, the proof of completeness is equivalent to a pof that any consistent set is satis able. A set
is consistent if there is some formula which is doesn't proveWe may also invoke theLindenbaum lemma
(see [4]), which states that for any consistent set , there exists a consistent, set such that and,
for every formula ' , either' 2 or :' 2 . We call such aset complete . So it suces to show that
every complete consistent set inH (all; some verbg is satis able.

We need one more observation: that is that any boolean combiation has an equivalent boolean combi-
nation is disjunctive normal form. This is a standard result, so it will be assumed here.

Now for any complete consistent set ,let := fS:S2 and S basim.

Lemmal.3.1. F

Proof. Let M E ,and say ' 2 . We know that has a disjunctive normal form, so let' °be in DNF and
' ' 9 To showM E ' © we just need to see that one of it's disjuncts holds. Well, sice is complete and
consistent, at least one disjunct, say , isin . So is a conjunction of basic sentences. Thus each conjunct
of isin , else be inconsistent, and so furthermore, each conjunct of isin by de nition. So M E
and so thereforeM F ' % SoM F . O

So nally, given a complete consistent set, we need only nd amodel for the basic sentences therein.
Note that this set is also consistent, and complete in terms bbasic sentences.

1.3.2 Completeness of H(all;some;verbs)

Let be our complete consistent set of basic sentences. We ostruct a model as follows.
Let M = fU;;Uz;Us: "9 Ug[ff A;Bg: ~ SomeA are Bg. So we take three copies of each variable
for which proves the existence, and some sort of representive to satisfy Somesentences.
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The semantics are as follows:

W; 2 U] [ T Al W are U

fA;Bg2[U] [ Al AareU,or " All B are U

UiV 1w, i 99U, T9Vi(Ui; W) 2 Rywth (uw)

fU; ZglV W2 I uw Or T 1zw

fu;ZglVv ]W, i fU;Zg[VIW2, 0r 7 guw . Of T szw

fU; Zg[V W3 i fUZgIVIW2, 0o ° suw of T szw

Uz[V JfW; Zg i 7 uw or T 1uz

UiV IfW; Zg i U[VIfW;Zg,or  ° 2uw,0r  2uz

Us[V IfW; Zg i U[VIfW;Zg, or  ° suw,0r  azw
[

fABOIVIfC:Dg LAC,Of  1aD,OF  1mc,Of 1D

whereRy.w.th (uw) refersto the subset off Uy; Up; Uzg f W1; W»; W3g determined by the setTh (U; W)
and its corresponding diagram in Figure 1.2.

This is a full description of our model. Now we must see that on model satis es the complete consistent
set of basic sentences .

SupposeAll X are Y isin . Then it is a simple monotonicity pointthat M E All X are Y. If Z; 2 [X],
then ~ All Z are X. So using the axiom for transitivity of All, and modus ponens, we get = All Z are
Y, hencez; 2 [Y ]. Itis a similar pointif fA;Bg2 [X].

If : (Al X are Y)isin , we need to show that [X]n[Y ] 6 ;. Axiom 15 yields that °~ SomeX are
X, so we will have [X] 6 ;. Furthermore, we will have X1 2 [X] but X, 62[Y ], because if it was, then

* All X are Y, and since is complete, anything it proves is indeed alread inside . So then would be
inconsistent. So we concludeXn[Y]6 ;.

It's easy to see that if SomeX are Y is in , then it will be satis ed by our model. This is due to the
elementsfA;Bg. If : (SomeX are Y)isin , we must show [X]J\ [Y]=;. If ~ Al Z are X and
All Z are Y, then we can't have ~ SomeZ are Z, otherwise we would be able to proveSomeX are Y,
which would contradict the consistency of . Without SomeZ are Z, Z; 62M , soZ won't add any common
elements to [X] and [Y ]. In a similar way we can see thatf A;Bg 2 [X] and fA;Bg 2 [Y ] is impossible.

So we have seen that amyAll or Somebasic sentence in is satis ed by M.

We want to show that, for any variables X and Y, sentences of the form ;x.y 2 are satis ed. Here,
we are going to consider four cases.

SupposeSome X are X and : (SomeY are Y) are in . Then from the axioms outlined in axiom
scheme 16 (see appendix), we get that proves 1; 2;: 3; 4;: s5;: ¢ Where each is understood to
carry the subscripts f X;Y g as well. Thus these are all in , and they account for all the  x.y in
by consistency. To see that our model satis es all of them, nte that since : (SomeY are Y) is in , we
will have [Y] = ;. Then it is easy to see that by the de nition of our semantics, and the mneumonics

3:X:Y “axy = (SomeX not see allY)ows, that an empty [Y ] and a nonempty [X ] will satisfy this
sentence: it is vacuously true. This also shows the soundne®f the axioms outlined in axiom scheme 16.

The cases in which: (SomeX are X) and SomeY are Y are in and : (SomeX are X) and : (Some
Y are Y) are in are examined similarly, and the reader is encouragé to consider the axiom schemes 17
and 18 to see that, in these cased XY

Now the only case we have left to consider is that bothSome X are X and SomeY are Y are in .
This involves even more casework. Suppose thaty.x.y 2 . Then from "9X and " 9Y we see that
ix:y foreachi (see axioms 2-5), which completely classi es the ixvy in .
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U1 EE— W1
U, W,

U3 — W3
f.o150 25 35 4 s 60
U —W;

U — W,

U3 — W3

f:o10 20 30 4 55 60
U]_*)W]_
U, W
Us W3
foo10 200 30 4l s 60

f:

1;:

15

Uu—w; U]_\W]_
U, Wo

U W

Us Wa Us —— W3
fro1 20 s

1 2100 60 b2 3

4, 5, 60

Us W53

f: ; D3]
v 21+ 3y 4,7 5, 60 . i. 5.2 693
U—w; Ul/Wl
U, W, U, W

Us — W3

e e 1,0 25+ 3,
2;° 35 4, 5, 60 2 s g
Ui W,

U, W,
U3 W3

2+ 33+ 4y 5. 69

Figure 1.2: These are the possible complete sets (give®U and 9W) and the de nition of special relations

used in the completeness proof.
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Now suppose that: gxy 2 . We noted in the mneumonics that this is equivalent to —1.xvy . So,
similar to above, it follows that —i.x.y isin for every i, since we haveSomeX are X and SomeY are Y.
This is the same as saying ixy 2 forevery i.

So these are two possible combinations of x.v 's under the big case thatSome X are X and Some
Y are Y are in . Now, with axioms 2-5, and 9X, 9Y, we have that , will prove 4, 3 will prove 5, and
that all of these will prove . The same is true of the™s, since these have precisely the same structure, but
a di erent (complimentary) verb. | claim that in our consist ent, complete , there are nine other combina-
tions of  ix.y 's which will work under this last, big case. All of them include: 1.xv and exy , Since
the negation of either one would point us to two the combinations previously considered. All nine other
combinations appear in Figure 1.2, below a diagram.

These are the only combinations of the ;x.v 's we can have givenSome X are X and SomeY are
Y. We can check that the model satis es them case by case. | prest here some important cases; note
that, given non-empty assignments (which we do in this case)if a model satis es ,, then it will satisify 4;
likewise, if it satis es 3, it will satisfy 5. Negate all the 's and reverse the statements to obtain two more
truths. Thus, we can save time while checking.

Case 1. If we have + jx,y for eachi, then by inspection of the diagram, it is clear that X;[sedY; for all
iandj. If fA;Bg2[X]andfC;Dg 2 [Y ] then from the monotonicity axioms, we will get something like

" 1xc and ° qav,aswellas * j.ac, where the A and C could have beenB or D resp., and it
would work all the same. So 1.x.v is satis ed, and since [X] and [Y ] are non-empty, it is clear that the
rest of the 's will be satis ed as well.

Case 2: |In this case, we havef: 1; 2;: 3; 4; 5; 0. Itis clearto see that: i1x.y is satised by our
model, as in the associated picture for this setX s[not seg]Ys. For », clearly X 1[segW; for everyW; 2 [Y ].
If fC;Dg 2 [Y], then it is a monotonicity point to see ~ ,.x.c , WLOG, since we have ,.x.y . Therefore
Xq[sedfC;Dg. So » is satised. For : 3xv “axyy , suppose thatW; 2 [Y]. So ~ All W areY.
Supposej = 1. Then if X;[segW; for all i, we must have ~ 3.x.w , which gives 3.x.yv , which isn't
possible. Ifj =2 and all X; sawW,, the only way this is possible is if ~ 1,x;.w , which from 9W lead tos
axw , then axy . If j =3, then similarly *  1xw . Thus, W; is not seen by someX;.
As for fC;Dg 2 [Y ], we will have that X,[not se€]f C; Dg, for otherwise we would have something like
" 1xc,and with  ° All D are Y, and the fact that ~ SomeC are D, with axiom 3, we see that
3:x:p and monotonicity would give ~  3.x.v , which is a contradiction. So indeed, each element of
[Y 1 is \not seen" by something in [X]. As for 4, itis clear from the diagram that each Y; is seen by some
element of [X]. For fC;Dg, since we have 4x.v , we can easily get 4.x.c , or possibly with D instead of
C, either of which would give X 3[sedlf C;Dg. So 4.xy Wwill be satis ed by our model. With s5.x.v , again
the only issue might befA; B g 2 [X ], but monotonicity will give us fA;B g[sedYs pretty easily. So indeed
the model will satisfy sx.v . Itis trivial to see that the model satises ¢x.y . So in this case, our model
M satis es all such  ix.y .

Case 3: It would be instructive to now consider the case in which we hae : x.y for all i except, of
course, . The idea that : 3 is satis ed is similar to the idea above, where we considered in case 2. In
fact, as noted above, showing that: s.x.y holds implies that : 3.x.y holds anyway. To see that: s.x.y

holds, | claim that X, is a witness for To;x.y . Suppose we hadX [sedW; for All W are Y. Ifj =1
then from the diagrams we can conclude that s.x.w is provable, from which monotonicity would give us
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s:x;y Which is impossible. Ifj =2, we also get s, which is impossible. And if j = 3, then the only
way this is possible is if ~ 1,x.w , which will clearly give us sy . So indeedXz[not segW,; .

If fC;Dg 2 [Y ], then we will have X [not sedf C;Dg, because otherwise we would have, say,1x.c ,
and with the existence of X and C and monotonicity (with possibly using SomeC are D, we would arrive
at s.x:y , which is impossible. So.  s.x:y is de nitely satis ed. To see : 4x.y would be satis ed, we show
that Y, is a witness for this rule. Clearly from the diagram X;[not seg]Y, for any i. If fA;Bg 2 [X], then
it will not \see" Y,. For if it did, then WLOG © 1Ay , Which with 9A, 9Y gives 4ay (we might need
to turn that A into B, which is possible fromSomeA are B), which by monotonicity leads to 4.x.y , which
is impossible. So:  4.x:y holds, and therefore so does ,.x.y . Since: i1xy and exy are obvious, this
case is taken care of.

Case 4: Now let's consider the case in which we have 1.xv and: 2xv , with the rest of the XY
being positive. To see that: ,xy is satisied, say Z; 2 [X]. If it was the case that Z;[sedY; for each
j: wellif i =1, then we must have ,.zy from the diagrams, which by monotonicity gives ».x.y , which is
impossible. Ifj =2;3 then the diagrams tell us the only way this is possible isif ~ 1.2y , from which we
get ,zv andso 2xv . So thereis somg such that Z;j[not sedY;. If fA;Bg 2 [X]. Thenif fA; B g[sedY-
we would have WLOG ~ 1.4y , which from which can easily obtain ,.x.v . So clearlyf A; B g[not sedY>,
and so our model satises: ,.xy .

Now we will see that our model satises 3.x.y . | claim our witness is Y;. Say Z; 2 [X]. Suppose
Zi[not seqY;. If i =1, then we would have to have: 4zy by the diagrams, which would give: 3.7y ,
from which it follows : 3.x.y which is bad. Likewise, ifi = 2 we get by inspection that proves : 3zv ,
and again: 3.y . The same goes foi = 3. So this shows that Z; [sed]Y; for eachi. If fA;Bg 2 [X], then
since ~  s.xvy , itis a simple monotonicity point to see that fA;Bg[in]Y1. SOM F  3.xv .

In previous cases, we have examined the modelling of, and s, and | claim that here there is no di er-
ence. As of now, we have seen all possible ix.y veried in some context or another, and in any other of
the 11 cases, the veri cation would be similar. We thereforeleave it to the reader to con rm the rest of the
cases, but we hope that this casework has been su ciently covincing.

The preceding discussion is the essence of the proof of thelfving theorem:

Theorem 1.3.1. The systemH (all; some verbs) is complete.

.4 A system for in

The third and nal system | present in this paper is a syllogistic fragment with a transitive preposition. If
Ais in B, and B is in C, then we would say that A is in C. The idea for making a logic based on such a
preposition came from the paper by Zwarts and Winter [5]. We dcenote this fragment by L (all; some in).

Syntax  As with the last two systems, we use a countable number of vadbles, X, Y, etc. The sentences
of this fragment are of the following form:
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All X are 'Y

SomeX are Y

All X areinall Y =) 1xv

All X are in someY =)  axyv
SomeX areinall Y =) 3xyv
SomeX are in someY =)  axy

where the 's will serve as a notational short cut. Unlike in the verbs fragment, all sentences within will
be assumed to be subject wide scope. Sdl X are in someY should be read as8x9y such that x is iny.

Proofs in this system are the same as in the systenh (all; most), proof trees. The rules of inference
for this system are listed on a separate page in the appendixAs a reminder, the root is labeled with the
sentence to be proven, and the leaves are labeled with elemsnof some set of hypotheses . If there is a
proof tree with root S and leaves from , then we write =~ S.

We make a similar to de nition as in verbs: we dene Th (X;Y ) to be the setf ixy : = ixy 0. We
de ne the downward closure of Th (X;Y)tobef ixy : [f9 X;9Yg ~ ixy g, thatis the set of in
sentences provable from plusSomeX are X and SomeY are Y. We denote this set by#Th (X;Y ). For
example, if 12 Th (X;Y), we must have#Th (X;Y)=f 1; 2; 3; 40

Semantics  As with the above two systems, inL (all; somein) we will use a model based semantics. We
interpret variables as being subsets of some \universe" (4% and we interpret in as [in], sometransitive
binary relation on M M, where M is our universe. So forM to be a model, if x[in]y and y[in]z, then
x[inJz. We have already seen howAll and Most sentences should be interpreted. As fom sentences, using
the shorthand:

ME 1xvy i (8x2[X]8y2[Y]) x[in]y
ME  2xvy i (8x2[X]9y2[Y]) x[in]y
MF  axy i (9 2 [X]8y2[Y]) x[in]y
MF  axy i (9 2 [X]9y2[Y]) x[in]y

1.4.1 Completeness of L (all;some;in)

To prove the completeness of this fragment, the plan is to exibit a model M, in the spirit of the model for
H (all; some verbg, which depends on our set L (all; somein), which will satisfy . Then, given that
F S, we would haveM E S, and the nature of the model will allow us to conclude that ~ S.

Suppose we have a set L (all;somein). Let E() be the set fS: ~ SomeX are X g We will call a
set of sentences closed if E() S, andif * All X are in someY, whereX 2 S, thenY 2 S.

So given and a closed setS, we will de ne a model M( ;S) as follows: we letM = fU;;U, : U 2
S [ff A;Bg: ~ SomeA are Bg, i.e. two copies of every variable inS, and a representative for sentences
of the form SomeA are B. The setsRyws f Ui;U.g f Wq;Wog come from the arrow diagrams, where
the diagram is chosen based os. The model assignments are as follows:
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U ——w; U—W; U]_/Wl

U2*>W2 Uz W2 U2*>W2

fo10000 49 f 2, 49 f 3 49

Ul/Wl U ——wWwW Us Wi

U, W, U —— W, U, W,
f 49 f 2, 35 40

-11

Figure 1.3: These are the arrow diagrams for the model M( ;S). The Ryw:s in the model de nition refer to the
[in] relationship speci ed by the arrow diagram correspondin g to the downward closed set s.

W; 2 [U] [ Al W are U
fA;Bg2[U] [ Al AareU,or " All B areU
Ui|[in]|Wj | ( Uj;Wj) 2 RU;W;\#Th (U:W)
fA; B g[in]w> I 1,AwW Or 1;B;W
fA;Bg[in]w; i fA;Bg[in]w,, or 2AW , OF  ~ 2pw
Ui[in]fC; Dg [ Y ouc OF T 1up
Uz[in]fC; Dg i Upin]fC;Dg, or 3uc,O0r  ~ 3uD
: R .

fA;Bg[in]fC;Dg

Before we attempt to show that this model will satisfy , we mu st rst show that this model satis es the
transitivity requirement we place on models in L (all; somein).

1;A,C » OF 1,AD » OF 1BCc, O~ 18D

Lemma 1.4.1 (Transitivity) . For any
[in]w ¢ ;s) is transitive.

L (all; somein) and any set S which is closed with respect to ,

Proof. Due to the fact that both elements of the form Z; and f A; B g appear in our model, this proof has
many cases. We will consider some of them here, so su ce it to @ that the rest are fairly similar. So
consider this a sketch.

Case: Zi[in]wk and Wi [in]V,;. We want to see that Z;[in]V;. So we just take subcases over the indices
i,j,andk.

Supposei = j = k = 1. By the construction of the model, and by looking at the diagrams, Z;[in Wy
only if zw 2# Th (Z;W). Similarly, wv 2# Th (W;V). Now, there are several possibilities. If
T 2zw s 2wy , then we could use the89 89 rule from the gure, that is the rule in the diagram whose
antecedents are89 89 , to conclude ~ ,zv . Sothen ,zyv 2# Th (Z;V) so by the model de nition

Z]_[in]lvl.
We might also have that ~ 12w ; 1wv . Then we would simply invoke the 88 88 rule to get
* 1.zv , which by model de nition gives Z;[in]V;. Otherwise we could have either 1LZW 5 2WV
or  2zw . 1wv,in which case we invoke the88 89 rule and 89 88 rule, respectively to arrive at
similar conclusions. So in the case that = j = k =1, we have shown [n] is transitive.
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Now supposei = k =2 and j = 1. So by looking at the diagrams we can conclude that z.zw 2#
Th (Z;W) and 4wv 2# Th (W;V). So there are many possibilites. Say = 3zw and = 4wy .
Then using the98 99 rulewe get ~ 4zv . Therefore 4zv 2# Th (Z;V), so by our model construction
and inspection of the diagrams,Z,[in]V1, as required. To see that other possibilities work out, justnote
that either ~ 32w or ~ 1.zw , and no matter which ; we can show betweeW and V, each of 3.z.w
and 1.zw can be used to deduce that 4.zv 2# Th (Z;V).

The subcases in which we consider di erent values adf j; k proceed in a similar fashion. Let us consider a
di erent case: supposef A;Bg[in]fC;Dg, and fC;Dg[in]f E; F g. Then looking at our model construction,
there are several 1's which might prove. Suppose we had ~ 1ac and ~ 1.ce . Then we can easily
apply the 88 88 ruletoget ~ i1.ae andsofA;B([in]fE;Fg. However, we might only have ~ 1.ac
and ° 1.0 . Now we cannot use a single application of a rule to get the rest, but use the fact that

" SomeC are D to see that ~ ,ap . Now we can use the89 88 ruletoget ~ 1.ae . So we still
havefA; B g[in]f E; F g. These two possibilites are representative of any ; situation we could have, thus we
can safely conclude that transitivity holds.

In this way, we can proceed with the casework, the remainder fowhich is quite similar to the above. O

Now that we've see thatM( ;S) is de nitely a valid model, we can now check that it will sati sfy .
Lemma 1.4.2. For any L (all; somein), and any set S which is closed with respectto , M( ;9 F .

Proof. SupposeAll X are Y isin . If Z; 2 [X], then by the model construction, ~ All Z are X. So
T Al Z areY,sothatz; 2 [Y]. If fA;Bg 2 [X], itis asimilar monotonicity point. So M E All X are Y.
If SomeX are Y isin , then this is clearly satis ed, via the element fX;Y g.

Suppose 1.xy 2 . Ifeither [ X] or [Y] is empty, ; is satis ed vacuously, so we assume otherwise.
SupposeZ; 2 [X], W; 2 [Y]. So ~ All Z areX and ~ All W are Y. Then, using the monotonicity
rules of our logic, we get ~  1.zw . Thus sinceTh (Z;W) # Th (Z;W), 1zw 2# Th (Z;W), which
by our model construction means thatZ;[inJW;. If fA;Bg 2 [X], WLOG say that ~ All A are X. So

* 1ay . Now, again, °~ Al WareY,so ~ 1aw, from which it follows by construction that
fA;Bg[in]W;. The cases in whichf C;Dg 2 [Y ] are quite similar. Thus with these casesM F 1.xy .

Now suppose »x.y 2 . We can assume that [X]6 ;. SayZ;;Z, 2 [X]. So ~ All Z are X, which
by monotonicity gives ~ ,.zv . Now by closednessy 2 S, sothat[Y] 6 ;. Also, »zy 2# Th (Z;Y),
and looking at the diagrams, we see that we must have1[in]Y: and Z,[in]Y:. If fA;Bg 2 [X] we can
show similarly that fA; B g[in]Y1 by model construction. SOM F  2.xy .

Now suppose s.x;y 2 . By ourlogic, X 2 S and if [Y] = ; then we're done. So assumeY[] 6 ;,
ie. Y2S LetW; 2[Y]. Then ~ Al WareY. So ~ 3zxw . SO zxw 2# Th (X;W), so by the
model construction via the diagrams, X ,[inJW, and X,[inJwW,. If fC;Dg 2 [Y ] the case is similar. So
MF axy -

Finally, suppose 4xy 2 . Soboth X;Y 2 S, and so given that 4x.vy 2# Th (X;Y), it is clear from
the diagrams that we'll have X,[in]Y1. SOM F  axv . O

Theorem 1.4.1. The systemL (all; somein) is complete.

Proof. Let L (all; somein). We want to show for any sentenceS that E S =) *S. We will do so
by cases, depending on what kind of sentenc8 is.

First suppose thatS 2 L(all;somég. Let = fS2 L(all;some: °~ Sg. We will showthat F S. Let
N be a model of . So let's de ne a model N°which extends toin sentences by letting [n]= N N. Now,
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if N°F , then NCE S, and sinceN®is equal toN on variables, we would haveN F S, asS does not involve
\in." Note that if [ U] and [V ] are non-empty, then certainly any in sentence bewteen them will hold, by
construction. So suppose 1.uv 2 . This sentence is satis ed trivially by N°, because if either ] or [V ]
is empty, the sentence is satisi ed, and if both are non-empy, then the \full" [ in] will give N°E 1.4y .
If 2.uv 2 , then things are a bit trickier; [ U] = ; is vacuous, so considerJ] 6 ;. We may then safely
assume that ~ SomeU are U. If it did not, then there would exist a model N in which [U] was empty,
and is equivalent toN, in the sensethatNF i N . Sowe assume ~ SomeU are U. So along with
2:.uv , this gives 4.u.v , which in turn gives SomeV are V. So[V] 6 ;, so ..y Wwill be satis ed. The case
of zuv is similar, and the case of 4y is trivial. So N°f , and from above, N F S. Sosince E S,
we cite a previous result featured in Moss [1] which says thak (all; some is complete. So ~ S, hence ° S.

The rest of the proof is split into cases.

Case: Sis 1xv
S=fU: "9Ug[fU: " Al X areinsomeU or ~ All Y are in someUg[f X;Yg

We need to show that this Sis closed for so we can use it to build a model. ObviouslyS contains all U
suchthat "9U. IfU2 Sand ~ ,uz,we wantto seethatZ 2 S. There are three ways thatU could
be in S, looking at the above equation. IfU is such that 9 U, then we can use one of the rules to directly
to derive 4uz,andso "9Z,s0Z22S If U= X orU =Y, then Z ts into the second set in the union
which denes S, and soitin S. So if U is such that ~ ,.x.u , then we could use one of the rules of our
logic to combine ,.x.y and »uz toget ° .xz ,S0Z 2 S SoSis closed, and we consideM( ;S).

As we know, from the lemma aboveM  ,so M E S. Now by the de nition of the model, using the S
above, [X] and [Y ] are non-empty. So sinces is satis ed, we must haveX 1[in]Y2. Examining the diagrams,
however, we see that this is only possible if 1.x.y 2# Th (X;Y ), which indeed implies that = 1.xv .
That is all.

Case: Sis a2xv
S=fU: "9Ug[f U: ~ Al X areinsomeUg[f Xg

The idea that Sis closed is the same as the last case. So let's considdi( ;S). [X] 6 ; by de nition
of the model, and the same is true ofY. So we know that X is in something in Y. Say X[in]Z; where
T All Z areY. If j =1, then by looking at the diagrams, we must have ,.x.; 2# Th (X;Z). So by
de nition of the downward closure there are two possibilities: either ~ ,.x.z or perhaps we only have
T oaxz - Wellif 7 2.x.z , then by monotonicity we would have ~ ,xvy . If 1.z , then since
we know that Z 2 S, we have three possibilities: 1) ~9Z: then ~ ,xz , and as above we are done. 2)
© All X are in someZ: again, we're done. 3) IfZ = X, well one of our rules gives us that ;.x.x proves
2x:x , which with All Z areY = All X areY gives ~ ,xv .
Now if j = 2, then by inspection of diagrams we see that 1.xz 2# Th (X;Z)i.e. ~ 1xz . Thenthe
above discussion leads us to ©  2.xv .
The last possibility is that X1[in]JfC;Dg. WLOG suppose that = i1xp . If ~ All C are Y, well we
also have °~ SomeC are D,

1.xp SomeD are C
2:X:C All C areY

2;X;Y
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So 2:X:Y -

Case: Sis 3xv
S=fU: "9Ug[fU: " AlY areinsomeUg|[f Yg

Again, Siis closed. [¥ ] 6 ; by de nition. Since our model satises S, we must have [X] 6 ;, and so
X 2 S SupposeX; is our witness. ThenXi[in]Y2. So 1.xy 2# Th (X;Y),i.e. ~ 1xy . Combined
with  ~ 9 X this gives = 3xv .

Suppose X, is our witness. Then X,[in]Y2, so by examining the diagrams we conclude 3.x.y 2#

Th (X;Y). If  ° 3xvy then we're done, so say = 1.xy . Then as above we have " 9 X which gives
33Xy -
Finally, suppose fA;Bg is our witness. ThenfA;Bg[in]Y> Say WLOG that oAy . f
All A are X, we can rstusethat "9 A (since °~ SomeA are B)toget ~ 3.av ,thenuse monotonicity

toget ° sxv .If " Al B are X, we canuse ~ SomeA are B toget ~ 3gy Then monotonicity
will give us =~ 3xy -

Thusly, h 3XY -

Case: Sis axv
S=fU: "9Ug

Clearly Sis closed for . Notice [X];[Y]6 ;. So we can conclude thatX;Y 2 S
Suppose that Z; 2 [X] is our witness. Suppose further thatZ;[in]W; is in relation we have. So
* All Z are X; All W are Y. By examining the diagram, we must have ,.zw 2# Th (Z;W). No matter
if ° 2zw Or ° 1zw,thefactthat Z;W 2 Stellsusthat ~9Z; ~9W, which in either case will

give us ~  4zw , from which monotonicity yields ~  4.x.v
Now, still supposing Z; 2 [X] is our witness, assumeZ,[inJW; is our in relation. The deal is similar to
above, with the only possibility being that = 12w , yielding ~ 4zw , monotoningto ~ 4xv .

Finally, still under the in uence of Z; witnessing, supposeZ;[in]f C;Dg is our witnessing relation. We

might very wellhave ~ All CareY, ~ All Z are X,and °~ 1zp.Now, ° SomeC are D, thus from

17D, 2zc, SO0 by monotonicity =~ .zy;with ~9Z,weget ° 4zv . Finally, monotonicity
from All Z are X givesus ~ 4x.v . All other possibilities regarding how f C; Dg 2 [Y ] are similar.

And now we're catapulted into a veritable cornucopia of othea cases. In the case thatZ, is our witness,
for some Z, the work is quite similar. Things also work out with fA;B g the witness, but the author does
not wish to bore the reader, and so will not list these cases. Bce it to say that they are similar, and
unremarkable.

In this way, = 4xv -

So indeed, we see that the very fact that F S, whereS is any sentence at all inL (all; somein), su ces
to conclude that ~ S, via a well picked model. O
.5 Appendix

This is a list of the tons of axioms for H (all; some verbg. Here, | abbreviate All X as A(X), SomeX as
S(X), and All X are Y and SomeX are Y asA(X;Y ), S(X;Y ) respectively. Here,V indicates a verb
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which takes an object; for example, in the paper we consideseeand its complementnot see There are also
so axioms using the notation de ned in the paper.

1. Tautologies of the propositional calculus

2. ((A(X) V NP)sws™ S Y) T ((S(Y) V NP))sus
3. (NP V AX))ows™ S(X;Y )1 (NP V S(Y))ows
4. ((SX)V A D sws ! ((S(X) V A(Y))) ows

5. (AX)V S(YN)ows ! ((A(X) V S(Y))) sws

6. ((S(X)V NP)sws! S(X;X)

7. (NP V S(X))ows ! S(X; X))

8. (AX)V AXD)sws!  ((A(X) V S(X))) sws

9. A(X;X)

10. A(X;Z)NA(ZY) ! AXY)

11. S(X;Y) ! S(Y;X)

12. S(X;Y) ! S(X;X)

13. A(Y;Z) A S(X;Y) ! S(X;Z)

14.: SOGY)NMACK Y ) $: S(XX)

15. 0 A Y) ! S(X;X)

In the following, we use commas to abbreviate many axioms. Tl subscripts of the 's are understood
to include fX;Y g.

16. SOGX )N S(Y;Y) L 15 25t 3 4t s o6

17. 0 SOGX)AS(Y;Y) D 15t 25 8t 4 st 6

18. : SO X )N S(Y;Y) D 10 250 35 4 50 6
Monotonicity axiom schema

19. A(X*) V A(Y#)

20. (S(X™) V A(Y#))sws

21. (AX*)V S(Y"))ows

22. (S(X™) V. AY#)) ows

23. (AX*)V S(Y"))sws

24. S(X") V S(Y")



I-16 Sam Ziegler

The notation for the monotonicity axioms is taken from Johan van Benthem [3]. These six schema
represent twelve rules. The up-arrow next to a variableX " indicates that we can take supersets o , and
a down arrow X # indicates we can take subsets. For example (X ") V A(Y#))sws stands for

(S(X) V A(Y))sws™ ACX;Z) Y (S(Z) V A(Y)) sws

(S(X) V A(Y))sws™ A(Z;Y) D (S(X) V A(Z))sws

These are the rules for the fragment_ (all; some in). We use the following abbreviations: 8X 8Y stands
for All X are in all Y, 8X 9Y stands forAll X are in someY, etc. In the top rules, we simplify even further
by assuming that the variables involved in the top sentence bthe antecedents areX then Y, and that the
variables appearing in the second sentence of the antecedsrare Y then Z. The conclusion featuresX then
Z. The quanti ers with arrows are monotonicity rules, just as appear in the axioms for the verbsfragment.

88 88 88 88
88 89 98 99
88 89 88 89
89 89 98 98
88 89 88 89
88 89 98 99
98 98 99 99
98 99 88 89
98 99 98 99
All X areY All Y areZ All X areY SomeZ are X
All X are Z All X are X SomeZ are Y
SomeX are Y SomeX are Y
SomeY are X SomeX are X
8#8* 98"
8*9" 9’9"
9X 9Y 9X 9Y 9X 8Y
SomeX are X SomeY are Y SomeX are X

8X9Y SomeX areZ 8X8Y SomeX areZ 8X8Y SomeY are”Z
97 9Y 978Y 8X 97

9X 8Y SomeY are Z 8X8Y All X areY
9X 97 8X 9Y




Completeness results in syllogistic logic 1-17

Bibliography

1.

Lawrence S. Moss. Completeness Theorems for Syllogistfragments. To appear in F. Hamm and
S. Kepser (eds.)Festschrift for Uwe Mennich, Mouton de Gruyter, 2008.

. Lawrence S. Moss. Syllogistic Logic with Verbs. To appeam Journal of Logic and Computation, special

issue of papers from a conference o@rder, Algebra, Logic.

. Johan van Benthem. Essays in Logical Semantics Reidel, Dordrecht, 1986,

. lan Pratt-Hartmann and Lawrence S. Moss. Logics for the réational syllogistic. Ms., University of

Manchester, 2008.

. Joost Zwarts and Yoad Winter. Vector Space Semantics: a Mdeltheoretic Analysis of Locative Prepo-

sitions. Journal of Logic, Language and Information, 2000



