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Preface

During the summer of 2018 eight students participated in the Research Experi-
ence for Undergraduates program in Mathematics at Indiana University. This
program was sponsored by the National Science Foundation through the Re-
search Experience for Undergraduates grant #1757857 and the Department of
Mathematics at Indiana University, Bloomington. The program ran for eight
weeks, from June 4 through July 27, 2018. Eight faculty served as research
advisers to the students from Indiana University:

• Eric Albers was advised by Nicholas Miller.

• Emi Brawley was advised by Noah Snyder.

• Cornell Holmes was advised by Chris Connell.

• Matisse Peppet was advised by Alex Kruckman.

• Jacob Prinz was advised by Nachiket Karnick and Noah Snyder.

• James Reber was advised by Graham White.

• Ben Riley was advised by Carmen Rovi.

• Fan Zhou was advised by Chris Connell.

Following the introductory pizza party, students began meeting with their
faculty mentors and continued to do so throughout the next eight weeks. The
students also participated in a number of social events and educational oppor-
tunities and field trips.

Individual faculty gave talks throughout the program on their research,
about two a week. Students also received LaTeX training in a series of work-
shops. Other opportunities included the option to participate in a GRE and
subject test preparation seminar. Additional educational activities included
tours of the library, the Slocum puzzle collection at the Lilly Library, and self
guided tours of the art museum. Students presented their work to faculty men-
tors and their peers at various times. This culminated in their presentations
both in poster form and in talks at the statewide Indiana Summer Undergrad-
uate Research conference which we hosted at the Bloomington campus of IU.
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On the lighter side, students were treated to weekly board game nights as
well as the opportunity to do some local hiking. They also enjoyed a night of
“laser tag” courtesy of the Department of Mathematics.

The summer REU program required the help and support of many different
groups and individuals to make it a success. We foremost thank the National
Science Foundation and the Indiana University Bloomington Department of
Mathematics without whose support this program could not exist. We espe-
cially thank our staff member Mandie McCarty for coordinating the complex
logistical arrangments (housing, paychecks, information packets, meal plans,
frequent shopping for snacks). Additional logistical support was provided by
the Department of Mathematics and our chair, Elizabeth Housworth. We are in
particular thankful to Jeff Taylor for the computer support he provided. Thanks
also go to those faculty who served as mentors and those who gave lectures. We
thank David Baxter of the Center for Exploration of Energy and Matter (nee
IU cyclotron facility) for past personal tours of the LENS facility and his infor-
mative lectures. Thanks to Andrew Rhoda for his tour of the Slocum Puzzle
Collection.

Chris Connell
September, 2018
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Figure 1: REU Participants, from left to right: Cornell Holmes, James Re-
ber, Jacob Prinz, Emi Brawley, Chris Connell, Ben Riley, Matisse Peppet, Eric
Albers, Fan Zhou.



GENERA OF CONGRUENCE SURFACES

ERIC ALBERS

Abstract. The purpose of this paper is to show the impossibility of a genus 212 congruence
surface constructed from a maximal order in a quaternion algebra using bounds on the values for

ζK(−1) and Sage to computationally check all possible number fields up to our bounds. From
this data, we obtain a list of all possible number fields in which the zeta function allows for the

possibility of a genus 212 surface and provide an argument for these remaining fields as to why

no such construction exists.

1. Introduction

Denote the Teichmüller space of genus g with n cusps by Tg,n. An open question in geometry is
to find the manifolds M ∈ Tg,n which maximize the length of the systole for arbitrary g, n. Schmutz
showed in [8] that in the noncompact setting, congruence surfaces maximize the systole in their
Teichmüller spaces. In the compact setting, it is not unreasonable to expect a similar result can be
obtained, as Katz, Schaps, and Vishne provided a particularly sharp lower bound on the length of
the systole of a compact congruence surface in [3]. Our knowledge of congruence surfaces, however,
is still incomplete. While Sebbar classified all genus 0 congruence subgroups of PSL2(R) in [9], it
is still not known whether congruence surfaces exist in every genus. As a result, Reid asked the
following.

Question 1.1. Let M be a congruence surface. What is the genus of M , in particular if we denote
by S the set of all such congruence surfaces, is it true that

T = {gen(M)|M ∈ S}
consists of all natural numbers ≥ 2.

In order to answer this question, one must first understand the genus of an arbitrary congruence
surface which is constructed from a maximal order in a quaternion algebra. Thus, in an attempt
to understand Question 1.1, this paper analyzes the following related question.

Question 1.2. Let M be a congruence surface constructed from a maximal order in a quaternion
algebra. If S is the set of all such surfaces, is it true that

T = {gen(M)|M ∈ S}
consists of all natural numbers ≥ 2.

The purpose of this paper is to answer Question 1.2 negatively with a proof of the following
theorem.

Theorem 1.3. There is no congruence surface constructed from a maximal order of genus 212.

Acknowledgements The author would like to thank Indiana University - Bloomington for their
hospitality and accommodations during this REU, specifically Professor Chris Connell for organizing
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a fantastic program. They would also like to thank the National Science Foundation for their grant
which funded this project. Finally they would like to thank Professor Miller for his mentorship and
general guidance throughout the entirety of the project.

2. Background Material

2.1. Arithmetic. A number field K is a finite extension of Q, its degree we will denote by [K : Q],
and K is totally real if for any embedding σ : K ↪→ C (of which there are [K : Q]), σ(K) ⊂ R.
The ring of algebraic integers OK ⊂ K is the ring consisting of elements of K which are the root
of a monic polynomial with integer coefficients. It is well known that for any number field K, its
integer ring OK is a free abelian group of rank [K : Q] under addition, giving that it has a basis
{β1, . . . , βn} over Z, and such a basis is also a basis for K over Q. We say {β1, . . . , βn} is an integral
basis. Let K be a number field of degree n, {β1, . . . , βn} an integral basis, and σ1, . . . , σn be the n
embeddings K → C. The discriminant for {β1, . . . , βn} is given by

disc(β1, . . . , βn) = |σi(βj)|2

and a simple matrix argument shows that for a given number field K, the discriminant of any two
integral bases is equal. We denote by ∆K the discriminant for any integral basis of K.
OK is also a Dedekind domain giving that ideals in OK factor uniquely into a product of prime

ideals. Let L/K be an extension of number fields p ⊂ OK some prime ideal and denote by pOL the
ideal in OL generated by elements of p. Unique factorization tells us that

pOL = qe11 . . . qenn

We say qi lies over p or p lies under qi, often notated qi|p, for i = 1, . . . , n and the exponent
ei = e(qi|p) is known as the ramification index for qi over p. p is said to be ramified in L, or
ramifies in L, if there exists a qi lying over p with e(qi|p) > 1. It is a standard result that any prime
q ⊂ OL lies over a unique prime p ⊂ OK , and that the integral primes that ramify in a number
field K, are precisely those p ∈ Z such that p|∆K . We also have a natural injection OK/p ↪→ OL/qi
and since quotients of Dedekind domains by prime ideals are finite fields, we see that OL/qi is a
finite extension of OK/p. The degree of this extension [OL/qi : OK/p] = f = f(qi|p) is called the
inertial degree of qi over p. A fundamental result of number theory is the following

Theorem 2.1. Let L/K be an extension of number fields, p ⊂ OK some prime, q1, . . . , qn ⊂ OL
the distinct primes lying over p. Then

[L : K] =

n∑

i=1

eifi

The norm of an ideal I ⊂ OK is given by N(I) = |OK/I|. Since prime ideals p ⊂ OK lie over
unique primes in Z,OK/p is a finite extension of Z/pZ and hence N(p) = pf where f is the inertial
degree f(p|p).

A place v on a number field K is an equivalence class of valuations on K, and it is a theorem of
Onstrowski that the unique places on K are given by vσ(x) = |σ(x)| for any of the [K : Q] distinct
embeddings K ↪→ C and the p-adic valuations where p ⊂ OK is a prime ideal. The places given
by embeddings are said to be infinite and the p-adic places finite. For any infinite place v, the
completion Kv

∼= R or C depending on whether σ(K) ⊂ R and we will denote by Kp the p-adic
completion of K.
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Definition 2.2. The ring of integers, Op, of Kp is the valuation ring

{x ∈ Kp|ν(x) ≥ 1}
where ν is the logarithmic p-adic valuation.

Let K be a number field, p ⊂ OK be prime, Kp the corresponding completion of K. The ring
of integers, Op of Kp has a unique maximal ideal I = {x ∈ Op|ν(x) > 1} which is generated by a
single element, often called the uniformiser, by which we will denote π.

Definition 2.3. Let K be a number field. The Dedekind zeta function for K is given by

ζK(s) =
∑

I⊂OK

1

N(I)s

where I runs through all non-zero ideals in the ring of integers OK , s ∈ C.

Like the Riemann zeta function, there is a product expression in terms of prime ideals, as ideals
factor uniquely into primes in integer rings, given by

ζK(s) =
∏

p⊂OK

1

1− 1
N(p)s

where p runs through all prime ideals in OK .

2.2. Quaternion Algebras over Number Fields.

Definition 2.4. An F -quaternion algebra A is a 4-dimensional vector space over F with basis
{1, i, j, ij} where multiplication is extended linearly such that 1 is the multiplicative identity and

i2 = a j2 = b ij = −ji
for some a, b ∈ F ∗

Quaternion algebras are central and simple and are the only 4-dimensional central simple alge-

bras. We will use the notation
(
a,b
F

)
to denote the F -quaternion algebra where i2 = a, j2 = b.

Definition 2.5. Given α = x0 + x1i + x2j + x3ij ∈ A , its conjugate is given by α = x0 − x1i −
x2j − x3ij. The norm of α ∈ A is given by n(α) = αα and the trace by tr(α) = α+ α.

The norm 1 elements, denoted A 1, of a quaternion algebra form a group under multiplication.
There is a corresponding notion of integral elements in quaternion algebras over number fields. α ∈
A is an integer ifOK [α] is finitely generated, which is equivalent to requiring both n(α), tr(α) ∈ OK .
We have the following classification of quaternion algebras over R

Theorem 2.6. Let A =
(
a,b
R

)
be a quaternion algebra over R. Then

A ∼= M2(R) or H
where A ∼= M2(R) if either one of a, b > 0 and otherwise A ∼= H, where H denotes Hamilton’s
quaternions.

Let K be a totally real number field, A =
(
a,b
K

)
, σ be an embedding into R, and v the place

corresponding to σ, then

A ⊗K Kv
∼=
(
φ(a), φ(b)

R

)



4 ERIC ALBERS

where by φ we mean the map φ : K → R which is the composition of the inclusion map into Kv

and the isomorphism between Kv and R. A is said to be split at v if A ⊗K Kv
∼= M2(R) and

ramified if A ⊗K Kv
∼= H. For p-adic completions we have a similar analogue.

Theorem 2.7. Let K be a number field, p ⊂ OK be prime, A be a Kp-quaternion algebra. Then

A ∼= M2(Kp) or

(
π, u

Kp

)

where Kp(
√
u) is the unique unramified quadratic extension of Kp.

By unramified we mean the unique prime ideal I ⊂ Op does not ramify in the extension. Likewise
A is said to split at the place corresponding to p if A ⊗K Kp

∼= M2(Kp) and ramifies otherwise.
The set of places at which A ramifies, denoted Ram(A ), is always finite and of even cardinality
and, in fact, all quaternion algebras over a number field K can be classified based on their local
behavior via the following theorem.

Theorem 2.8. Let A ,A ′ be quaternion algebras over a number field K. A ∼= A ′ if and only if
Ram(A ) = Ram(A ′). Moreover, there is a bijection between quaternion algebras over K and finite,
even cardinality, subsets of the set of places on K.

Definition 2.9. Let A be a quaternion algebra over a number field K. An ideal I ⊂ A is a
complete OK-lattice. An order O is an ideal that is a ring with 1.

3. Hyperbolic Surfaces via Quaternion Algebras

In this section, we detail the way a hyperbolic surface is constructed from a quaternion algebra,
define the congruence condition and provide the covolume formula that will be the focus of the rest
of the paper. To begin we need the following theorem from Maclachlan–Reid [5, Theorem 8.1.1]

Theorem 3.1. Let A be a quaternion algebra over a totally real number field K, of degree n, that
is ramified at all but one of its real places. Then

A ⊗Q R ∼= M2(R)⊕ (n− 1)H
where H denotes Hamilton’s quaternions.

Using this theorem we can now construct lattices in PSL2(R) as follows. Let A be a quaternion
algebra over a totally real number field K, of degree n, that is ramified at all but one of its real
places. We may assume the embedding at which A splits is the identity, as otherwise the resultant
lattice would differ only by a conjugate of the lattice formed via the identity. Let ρ : A → M2(R)
be given by the composition of the inclusion map A → A ⊗Q R and the projection onto the first
term of the direct sum above. Given an order O ⊂ A , ρ|O1 : O1 ↪→ M2(R) is an injective group

homomorphism. Since A splits at the identity, if A =
(
a,b
K

)
, we must have at least one of a, b > 0.

Assuming a > 0 we can define ρ explicitly by the assignment

α = x0 + x1i+ x2j + x3ij 7→
(
x0 + x1

√
a b(x2 − x3

√
a)

(x2 − x3
√
a) x0 − x1

√
a

)

where we note n(α) = det(ρ(α)) whether or not b > 0. Thus we actually have O1 ↪→ SL2(R). Let
P : SL2(R) → PSL2(R) be the canonical quotient map. Then via the construction above, for any
order O ⊂ A , P (ρ(O1)) ≤ PSL2(R). Moreover P (ρ(O1)) is discrete and of finite covolume, and
provided A is a division algebra, P (ρ(O1)) is also cocompact [5, Theorem 8.1.2]. We remark here
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our algebra certainly must split at at least one infinite place in order to have such an embedding
into M2(R), but if our algebra split at more than one place, the image of O1 in any copy of M2(R)
would be dense and thus not discrete [5, Theorem 8.1.2]. Thus our assumption that K must split
at only 1 infinite place is not only sufficient but also necessary. For the remainder of the paper,
when we say a congruence surface is constructed from a maximal order we mean it is the surface
given by the quotient of H2 by P (ρ(O1)) where P and ρ are as above and O1 is the group of norm
1 elements of a maximal order O.

Definition 3.2. An arithmetic Fuchsian group is a subgroup Γ ⊂ PSL2(R) that is commensurable
with some P (ρ(O1)) where O ⊂ A is an order in a quaternion algebra over a totally real number
field K that ramifies at all but one real place and P (ρ(O1)) is as described above.

Where Γ1,Γ2 are commensurable if there exists a space N that serves as a finite covering space
for both H2/Γ1 and H2/Γ2. To simplify and slightly abuse notation, in the future when we write
H2/O1, we implicitly mean H2/(P (ρ(O1)).

Definition 3.3. Let A be a quaternion algebra, O ⊂ A some maximal order, I ⊂ O an integral
two-sided, ideal. The principal congruence subgroup of level I in O1 is given by

O1(I) = {x ∈ O1|x− 1 ∈ I}
That is to say O1 is the kernel of the homomorphism O1 → (O/I)∗.

An arithmetic Fuchsian group Γ is a congruence subgroup if it contains a principal congruence
subgroup of some level. For a maximal order, O ⊂ A , P (ρ(O1)) is necessarily a congruence
subgroup, as, by definition, it contains all principal congruence subgroups of O1. However, in
general, not all arithmetic Fuchsian groups are congruence subgroups. To conclude this section,
we provide the formula for the covolume of H2/P (ρ(O1)) where O ⊂ A is a maximal order, from
Borel [1]

Theorem 3.4. Let K be a totally real number field, A a K-quaternion algebra that is ramified
at all but one of its infinite places, O ⊂ A some maximal order. Then the covolume of H2/O1 is
given by

(1)
8πζK(2)

(4π2)[K:Q]

∏

p∈Ramf (A )

(N(p)− 1)

where Ramf (A ) denotes the set of finite primes at which A ramifies.

The Gauss–Bonnet Theorem tells us, provided our surface is indeed a surface, this quantity
should be an integer multiple of 4π. This leads to a necessary discussion on torsion in quaternion
algebras. Elements of torsion in O1 lead to metric singularities in H2/O1, i.e. points where a smooth
hyperbolic metric cannot be defined. We have the following relevant theorem from Maclachlan–Reid
[5, Theorem 12.5.4] classifying when torsion occurs in the quaternion algebras we are interested in.

Theorem 3.5. Let A be a quaternion division algebra over a number field K. The group P (ρ(A 1))
contains an element of order n

⇔ ξ2n + ξ−12n ∈ K, ξ2n /∈ K, and L = K(ξ2n) embeds in A .
⇔ ξ2n + ξ−12n ∈ K, ξ2n /∈ K and if p ∈ Ramf (A ) then p does not split in K(ξ2n).

where ξ2n denotes the 2nth root of unity. Moreover, if P (ρ(A 1)) contains an element of n-torsion,
then for all maximal orders O ⊂ A , P (ρ(O1)) contains an element of n-torsion.



6 ERIC ALBERS

By a simple degree argument, one easily sees that it must hold that [L : K] ≤ 2 in order for L to
embed into K, and since our fields are totally real, [L : K] 6= 1. For any totally real number field
K(ξ4) = K(i)/K and K(ξ6) = K(

√
−3)/K always have degree 2 over K and as a result we must

always verify our algebra has no 2/3−torsion. The second part of Theorem 3.5 tells us that the
only way to avoid elements of torsion is to ramify at some prime p which splits in K(ξ2n), so from
here forward when we speak of eliminating torsion, we precisely mean ramifying at such a prime p.

4. Congruence Conditions on Torsion in Quaternion Algebras

We begin this section by working through the simplest concrete case, where K = Q, in order to
understand the relation between torsion in A and the formula for the area of the resultant surface.
∆K = [K : Q] = 1, ζ(2) = π2

6 , and the prime ideals in Z are just the ideals generated by the rational
primes, hence N(p) = p. Thus, for an arithmetic surface constructed from a maximal order in a
quaternion algebra over Q we get its area to be

8π3

24π2

∏

p∈Ramf (A )

(p− 1)

and the Gauss–Bonnet Theorem tells us this quantity is 4π(g − 1), giving

(2) g − 1 =
1

12

∏

p∈Ramf (A )

(p− 1)

We present now a lemma which will be useful in the case of general K, and will also help explain
the connection between torsion and the denominators in our area formula.

Lemma 4.1. For a totally real number field K, p ⊂ K a non-dyadic prime ideal, if p splits in
K(i)/K, then N(p) ≡ 1 (mod 4).

Proof. This is trivially true if p lies over a prime p ≡ 1 (mod 4). If p lies over some prime p ≡
3 (mod 4), N(p) ≡ 1 (mod 4) if and only if f(p|p) ≡ 0 (mod 2). Thus, suppose, by way of
contradiction, p ⊂ K lies over a prime p ≡ 3 (mod 4), f(p|p) ≡ 1 (mod 2), and p splits in K(i)/K.
Since K(i)/K is a degree 2 extension over K, this means p = qq where f(q|p) = f(q|p) = 1. By
multiplicativity of inertial degrees in towers we have f(q|p) = f(p|p) which is odd by hypothesis.
On the other hand since p ≡ 3 (mod 4), we know p = p′ ⊂ Q(i) (i.e. p is inert), giving f(p′|p) = 2.
But now, since q must lie over p′, using multiplicativity of inertial degrees in towers again we have
f(q|p) = f(q|p′)f(p′|p) = 2f(q|p′) contradicting the fact that we already showed it was odd. �

An identical argument shows for any p ⊂ K not lying over 3, p splits in K(
√
−3)/K implies

N(p) ≡ 1 (mod 3).

Corollary 4.2. Suppose p ⊂ K splits in both K(i)/K and K(
√
−3)/K. Then one of the following

holds

• p|2 and N(p) ≡ 1 (mod 3)
• p|3 and N(p) ≡ 1 (mod 4)
• N(p) ≡ 1 (mod 12)

For K = Q, we have both 2 and 3 are ramified in K(i)/K,K(
√
−3)/K respectively, so eliminating

2, 3 torsion requires ramifying at primes p, q such that N(p) ≡ 1 (mod 4), N(q) ≡ 1 (mod 3),
necessarily eliminating the 12 in the denominator of Equation 2. We provide one last lemma
relevant to eliminating 2/3-torsion in our algebras.
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Lemma 4.3. Suppose p is a dyadic prime in a number field K, that splits in K(i)/K. Then
e(p|2) ≡ 0 (mod 2).

Proof. As 2 ramifies in Q(i), we have that e(q|2) ≡ 0 (mod 2) for any q ⊂ K(i)/K lying over p. By
assumption p = q1q2 in K(i)/K giving e(q1|p) = e(q2|p) = 1 and by multiplicativity of e in towers
it then must hold that e(p|2) ≡ 0 (mod 2). �

Likewise, primes lying over 3 that split in K(
√
−3)/K must have even e, since 3 ramifies in

Q(
√
−3).

5. Dedekind Zeta Function Bounds and Computation

In order to understand the achievable quantities from 1, we must understand values of the
Dedekind zeta function for arbitrary number fields. To do this, we first rewrite 1 in terms of ζK(−1)
as the Siegel-Klingen Theorem [4, 10] tells us this value is always rational. Using the functional
equation for the Dedekind zeta function we arrive at the following reformulation of Equation 1

Area(H2/O1) =
πζK(−1)

2[K:Q]−3
∏

p∈Ramf (A )

(N(p)− 1)

giving

(3) g − 1 =
ζK(−1)

2[K:Q]−1
∏

p∈Ramf (A )

(N(p)− 1)

We note that a prime p ∈ Z can only be achieved in 3 in two ways: Either ζK(−1)
2[K:Q]−1 is a rational

number with p as its numerator and the term from the product is precisely equal to the denominator,

or ζK(−1)
2[K:Q]−1 has numerator 1 and p is achieved by the terms of the product. Moreover, if ζK(−1)

2[K:Q]−1 = 1
n

for some n ∈ N, and p 6= 2k − 1, then since N(p) is a prime power and p+ 1 is even, we see that for
any number field K, there is no prime p such that N(p) = p+ 1. Hence for p 6= 2k − 1, only strict
multiplies of p, i.e. pk for k > 1, can arise from the product in 3 and in order to achieve g − 1 = p
we must have k|n.

We now present the bounds used in order to computationally search for Dedekind zeta function
values of the above form.

Lemma 5.1. For any number field K we have

1 ≤ ζK(2) ≤ ζ(2)[K:Q]

where ζ(2) denotes the Riemann-zeta function evaluated at 2.

Proof. Using the product expression, ζK(2) ≥ 1 is trivial. Note

ζK(2) =
∏

p⊂OK

1

1− 1
N(p)2

=
∏

p∈Z

∏

p|p

1

1− 1
N(p)2

=
∏

p∈Z

g∏

i=1

1

1− 1
p2fi



8 ERIC ALBERS

where on the second line we index through all primes p ∈ Z and in the third line, g is the number of
primes into which p splits and fi = f(pi|p) for 1 ≤ i ≤ g. We will show for each fixed prime p ∈ Z

(
1

1− 1
p2

)[K:Q]

≥
∏

p|p

1

1− 1
N(p)2

By taking reciprocals and multiplying by p2[K:Q], this is equivalent to showing

(
p2 − 1

)[K:Q] ≤
g∏

i=1

(
p2eifi − p2eifi−2fi

)

Claim: For any prime p, (p2 − 1)k ≤ p2k − p2k−2, for all k ∈ N.
Proof: We prove this by induction on k. The base case, k = 1 gives strict equality. Suppose the
claim holds for k. Then

(p2 − 1)k+1 ≤ (p2 − 1)(p2k − p2k−2)

= p2(k+1) − p2k − p2k + p2k−2

≤ p2(k+1) − p2k

as desired.
Now, we can rewrite

(p2 − 1)[K:Q] =

g∏

i=1

(p2 − 1)eifi

Then for fixed i, setting k = eifi we see from the claim

(p2 − 1)eifi ≤ p2eifi − p2eifi−2 ≤ p2eifi − p2eifi−2fi

which implies

(p2 − 1)[K:Q] =

g∏

i=1

(p2 − 1)eifi ≤
g∏

i=1

(
p2eifi − p2eifi−2fi

)

�

Using the functional equation to convert this inequality from an expression of ζK(2) to one of
ζK(−1)
2[K:Q]−1 , we obtain

(4)
2∆

3/2
K

π2[K:Q]4[K:Q]
≤ ζK(−1)

2[K:Q]−1 ≤
∆

3/2
K

2[K:Q]−112[K:Q]

We also have the following bounds on the discriminant of a number field K from Takeuchi [11],
originally due to Odlyzko [7].

Proposition 5.2. Let K be a totally real number field of degree n. The following inequality holds

∆K > ane−b

where a = 29.099, b=8.3185

Combining this bound on ∆K based on the degree of K, with 4, we achieve that ζK(−1)
2[K:Q]−1 ≤ 211

2

only if [K : Q] ≤ 11 and the lower bound in 4 provides an upper bound on ∆K in each degree
which we provide in Table 2 in the appendix. Using these bounds we used Sage [12], specifically

the work of Voight [13] and Jones–Roberts [2], to enumerate all number fields where ζK(−1)
2[K:Q]−1 ≤ 211

2 ,
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with [K : Q] ≥ 3, as we will address the quadratic case in a separate section. For those interested

in the full table see this page. We simply provide a list of all number fields with ζK(−1)
2[K:Q]−1 = 211

n for

some n ∈ N, or ζK(−1)
2[K:Q]−1 = 1

n where there exists some k|n such that 211k + 1 is a prime power, in
Table 1.

We now prove the impossibility of a genus 212 surface for a certain class of fields in Table 1.

Proposition 5.3. There is no congruence surface of genus g = 212 constructed from a maximal

order in a quaternion algebra over a totally real number field K where ζK(−1)
2[K:Q]−1 = 1

n for some n ∈ N.

Proof. As discussed above, we must ramify at some prime p such that N(p) = 211k + 1 for some
k > 1, k|n. The only k|10, 30, 60, 84 such that 211k+ 1 is a prime power are 10, 42. Since 4 - 10, 42,
we have 211k+ 1 ≡ 3 (mod 4). Hence by Lemma 4.1 ramifying at such a prime does not eliminate
2 torsion. Moreover, in each of these fields 2 - ∆K and hence by Lemmas 4.1 and 4.3 we must
ramify at some q such that N(q) ≡ 1 (mod 4) in order to eliminate 2 torsion. This implies after
ramifying at p such that N(p) = 211k + 1 and q such that N(q) = 4k′ + 1 we have

g − 1 ≥ (211k)4k′ζK(−1)

n

∏

r∈Ramf (A )\{p,q}
(N(r)− 1)

but since 4 is the highest power of 2 dividing n in each field, and k = 10, 42 is even, there is at least
an extra factor of 2 left in the numerator, implying that after eliminating all torsion g−1 ≥ 422. �

6. The Quadratic Case

In this section we address separately the impossibility of a genus 212 congruence surface con-
structed from a maximal order in a quaternion algebra over a quadratic totally real number field
K. In [14] Zagier showed for all quadratic fields K 6= Q(

√
5), 12 clears the denominator of ζK(−1).

Thus in our case, the denominator of ζK(−1)
2 will always be a divisor of 24.

Proposition 6.1. There is no congruence surface constructed from a maximal order in a quaternion

algebra over a totally real quadratic number field K, where ζK(−1)
2 = 211

n for some n|24, n 6= 12, 24.

Proof. Begin by noting, since [K : Q] = 2, by construction, A over K must ramify at one of its

infinite places and, by Theorem 2.8, this means that |Ramf (A )| must be odd. If ζK(−1)
2 = 211

n ,
then we must see that

(5)
∏

p∈Ramf (A )

(N(p)− 1) = n

in order to achieve a surface of genus 212. First suppose ζK(−1)
2 = 211

6 . Either

• Ramf (A ) = {p, q1, . . . , qn} where N(p) = 7, N(qj) = 2

• Ramf (A ) = {p1, p2, q1, . . . , qn} where N(p1) = 4, N(p2) = 3, N(qj) = 2

by Equation 5. In the former case, since 7 ≡ 3 (mod 4), by Lemma 4.1, p does not split in K(i)/K.
Thus we must have qj splits in K(i)/K for some j, in order for our algebra to have no 2-torsion.
But by Lemma 4.3 then qj must ramify in K, giving that qj is the only prime in K over 2. Hence
Ramf (A ) = {p, q} but this is not possible since Ramf (A ) must be of odd cardinality. If instead
Ramf (A ) = {p1, p2, q1, . . . , qn} where N(p1) = 4, N(p2) = 3, N(qj) = 2, then N(p1) = 4 implies
2 is inert in K. Thus p1 is the only prime in K lying over 2 implying Ramf (A ) = {p1, p2} but,
again, as this set must have odd cardinality, this is not possible.

Next, suppose ζK(−1)
2 = 211

4 . Then by equation 5 we must see either
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• Ramf (A ) = {p, q1, . . . , qn} where N(p) = 5, N(qj) = 2

• Ramf (A ) = {p1, p2, q1, . . . , qn} where N(p1) = 3 = N(p2) = 3, N(qj) = 2

Supposing the former case, simply note that by Lemma 4.1 no primes in Ramf (A ) split in

K(
√
−3)/K, and thus a ramification set of this form defines an algebra with 3-torsion. In the

latter case, N(p1) = N(p2) = 3, implies there are two primes lying over 3 and by Lemma 4.3 these
primes do not split in K(

√
−3)/K, so again this ramification set defines an algebra with 3-torsion.

Now, suppose ζK(−1)
2 = 211

3 . Then we must see

Ramf (A ) = {p, q1, . . . , qn} where N(p) = 4, N(qj) = 2

In this caseN(p) = 4 gives that 2 is inert with p being the only prime lying over 2 giving Ramf (A ) =
{p}. But by Lemma 4.3 p does not split in K(i)/K so this ramification defines an algebra with
2-torsion.

Finally suppose ζK(−1)
2 = 211

2 . Then we must see

Ramf (A ) = {p, q1, . . . , qn} where N(p) = 3, N(qj) = 2

By 4.1 p does not split in K(i)/K. Hence there must be some 1 ≤ j ≤ n such that qj splits in
K(i)/K. But by Lemma 4.3, such a qj must ramify implying there is only one prime lying over 2.
This means Ramf (A ) = {p, q} but this set must have odd cardinality, so no such A exists with
this ramification set. �

Now using the bounds from Equation 4 we get that ζK(−1)
2 > 211

12 whenever ∆K > 574. For

quadratic fields, Q(
√
d),

∆K =

{
d, d ≡ 1 (mod 4)

4d, d ≡ 2, 3 (mod 4)

Table 4 in the appendix lists all quadratic number fields up to Q(
√

574) and the value of ζK(−1)
2 .

Since none of these fields have numerator 211, this table along with Propositions 6.1 and 5.3 prove
there is no congruence surface of genus 212 constructed from a maximal order in a quaternion
algebra over a totally real quadratic number field.

7. The Different Ideal and the Discriminant

In the case where [K : Q] > 2, an analysis like the one in the previous section is impossible as the
splitting behavior of primes becomes much more complicated in arbitrary number fields. Instead
we use results about the discriminant of a number field K to describe the splitting behavior of 2
and 3 in the fields in Table 1 in order to show the impossibility of a genus 212 surface in most of the
remaining fields. We first define the different ideal. Given a number field K, we have a symmetric
bilinear form on K given by 〈x, y〉 = tr(xy). Viewing K as a Q-vector space, a lattice L in K is a
Z-module which is finitely generated by a Q-span of K and the dual lattice L∨ is defined to be

L∨ = {x ∈ K|〈x, y〉 ∈ Z, ∀y ∈ L}
Definition 7.1. Let K be a number field. Its different ideal DK is given by

DK = O∨K
−1

= {x ∈ K|xO∨K ⊂ OK}
We are particularly interested in the following properties of the different, one can find proofs of

these properties in [6, Chapter 3, Section 2]
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Theorem 7.2. For any number field K

N(DK) = ∆K

Theorem 7.3. A prime p ⊂ K is ramified if and only if p|DK . Moreover if a is the exact power
which p divides DK and if e = e(p|p) is the ramification index of p over the unique prime p ∈ Z
lies under p, then

• a = e− 1 if e 6≡ 0 (mod p), i.e. p is tamely ramified

• a ≥ e if e ≡ 0 (mod p), i.e. p is wildly ramified

Since the norm of an ideal is multiplicative this gives that if p ramifies in K, then N(p)a|∆K ,
where a is as above. From the analysis in the previous section we see the following.

Proposition 7.4. In order to achieve a surface of genus 212 in the following fields we must see

• If ζK(−1)
2[K:Q]−1 = 211

6 then either Ramf (A ) = {p, q1, . . . , qn} where N(p) = 7, N(qi) = 2, or
Ramf (A ) = {p1, p2, q1, . . . , qn} where N(p1) = 4, N(p2) = 3, N(qi) = 2

• If ζK(−1)
2[K:Q]−1 = 211

4 , then Ramf (A ) = {p1, p2, q1, . . . , qn} where N(p1) = N(p2) = 3, N(qi) =
2

• If ζK(−1)
2[K:Q]−1 = 211

3 then Ramf (A ) = {p, q1, . . . , qn} where N(p) = 4, N(qi) = 2

• If ζK(−1)
2K:Q]−1 = 211

2 then Ramf (A ) = {p, q1, . . . , qn} where N(p) = 3, N(qi) = 2

As some of these primes ramify in order to eliminate torsion in A , we can use Theorem 7.3 to
give conditions on ∆K , in order for the ramification sets indicated above to be realized. First note
in all of these cases, none of the primes p - 2 split in K(i)/K by Lemma 4.1, and thus Lemma 4.3
combined with 7.3 give 4|∆K in order for any of the ramification sets above to define an algebra

with no torsion. Moreover, in the case where ζK(−1)
2 = 211

4 , 2112 , we must see that both 2 and 3
ramify in K, giving at least 36|∆K . Table 3 in the appendix provides a list of all fields from Table
2 where these further divisibility conditions on ∆K hold.

In the case where ζK(−1)
2 = 211

3 , 2116 , the ramification sets listed in Proposition 7.4 require some
p ∈ Ramf (A ) lying over 2, which necessarily wildly ramifies by Lemma 4.3. Moreover, in each case
it could hold that N(p) = 2, and since wild ramification gives only a lower bound on the power of
p dividing D, no improvement can be made on the condition that 4|∆K . As a result, in the final
section of this paper we analyze the fields in Table 3 computationally to show that the ramification
sets in the Proposition 7.4 either define algebras with torsion, or simply do not define algebras, in
each individual field.

8. Computations in Remaining Fields

To conclude, we present computations of the splitting behavior of 2 and 3 in the fields provided
in Table 3. None of the methods from the preceding two sections can circumvent the need to check
this computationally, as the possibility of wild ramification in these fields allows for no tighter

restrictions on K and specifically ∆K . We begin by analyzing the fields where ζK(−1)
2[K:Q]−1 = 211

3
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Proposition 8.1. For the fields in Table 3, where ζK(−1)
2[K:Q]−1 = 211

3 , 2 factors as follows.

∆K p(x) Factorization Norms
13396 x3 − x2 − 25x+ 29 p3 N(p) = 2

1471216 x5 − 2x4 − 7x3 + 6x2 + 8x− 4 p1p
3
2 N(p1) = 4, N(p2) = 2

1630076 x5 − 2x4 − 9x3 + 17x2 + 4x− 12 p1p
2
2 N(p1) = 8, N(p2) = 2

1723364 x5 − 2x4 − 7x3 + 13x2 + 8x− 11 p1p
3
2 N(p1) = 4, N(p2) = 2

17386832 x6 − 3x5 − 4x4 + 10x3 + 6x2 − 4x− 2 p1p
5
2 N(p1) = N(p2) = 2

22340432 x6 − x5 − 8x4 + 5x3 + 16x2 − 5x− 1 p3 N(p) = 4
23556176 x6 − x5 − 8x4 + 5x3 + 16x2 − 7x− 7 p3 N(p) = 4

From Proposition 7.4 we see that only the four fields with a prime p|2 with N(p) = 4 could
possibly give rise to a genus 212 surface. But, from Lemma 4.3, since none of these fields have a
prime p|2 with even ramification index, none of the primes over 2 split in K(i)/K giving that in
these fields, the ramification sets defined in Proposition 7.4 define algebras with 2-torsion. Therefore,
there is no construction of a genus 212 congruence surface constructed from a maximal order in a
quaternion algebra over any of the fields in Proposition 8.1.

Proposition 8.2. For the fields in Table 3, where ζK(−1)
2[K:Q]−1 = 211

6 , 2 factors as follows.

∆K p(x) Factorization Norms
1060708 x5 − 2x4 − 7x3 + 13x2 + 10x− 17 p1p

3
2 N(p1) = 4, N(p2) = 2

12694016 x6 − 8x4 − 2x3 + 16x2 + 8x− 1 p21p
2
2 N(p1) = 4, N(p2) = 2

15004240 x6 − 2x5 − 11x4 + 16x3 + 35x2 − 26x− 17 p3 N(p) = 4
15378496 x6 − 2x5 − 5x4 + 8x3 + 6x2 − 6x− 1 p2 N(p) = 8
17386832 x6 − 3x5 − 4x4 + 10x3 + 6x2 − 4x− 2 p1p

5
2 N(p1) = N(p2) = 2

154050496 x7 − x6 − 8x5 + 6x4 + 13x3 − 9x2 − x+ 1 p1p
2
2 N(p1) = 2, N(p2) = 8

And 3 factors as follows.

∆K p(x) Factorization Norms
1060708 x5 − 2x4 − 7x3 + 13x2 + 10x− 17 3 N(3) = 729
12694016 x6 − 8x4 − 2x3 + 16x2 + 8x− 1 3 N(3) = 729
15004240 x6 − 2x5 − 11x4 + 16x3 + 35x2 − 26x− 17 p1p2 N(p1) = N(p2) = 27
15378496 x6 − 2x5 − 5x4 + 8x3 + 6x2 − 6x− 1 p1p2 N(p1) = N(p2) = 27
17386832 x6 − 3x5 − 4x4 + 10x3 + 6x2 − 4x− 2 3 N(3) = 729
154050496 x7 − x6 − 8x5 + 6x4 + 13x3 − 9x2 − x+ 1 p1p2 N(p1) = N(p2) = 27

As there are no norm 3 primes in these fields, we see by Proposition 7.4, in order to have a
genus 212 congruence surface, Ramf (A ) = {p, q1, . . . , qn} where N(p) = 7, N(qi) = 2. In all but
one field, every norm 2 prime has odd ramification index and thus by Lemma 4.3, these primes do
not split in K(i)/K. Thus, in these fields, a ramification set of the aforementioned form defines
an algebra with 2-torsion. The lone field where there exists a norm 2 prime with even ramification
index is the field defined by p(x) = x6−8x4−2x3 + 16x2 + 8x−1. Hence Ramf (A ) = {p, q} where
N(p) = 7, N(q) = 2 since there is only one norm 2 prime. But since this is a field of degree six,
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|Ramf (A )| must be odd and there is no such A with this ramification set. Therefore there is no
construction of a genus g = 212 congruence surface constructed from a maximal order in quaternion
algebra over any of the fields in Proposition 8.2. To conclude we consider the field defined by the

polynomial p(x) = x4 − 20x2 + 95, which is such that ζK(−1)
2[K:Q]−1 = 211

30 .

Proposition 8.3. In K defined by p(x) = x4 − 20x+ 95, in order for a surface of genus g = 212
to be achieved, we must see one of the following.

(1) Ramf (A ) = {p, q1, . . . , qn}, where N(p) = 31, N(qi) = 2

(2) Ramf (A ) = {p1, p2, q1, . . . , qn}, where N(p1) = 16, N(p2) = 3, N(qi) = 2

(3) Ramf (A ) = {p1, p2, q1, . . . , qn}, where N(p1) = 11, N(p2) = 4, N(qi) = 2

In this field 2 = p2 where N(p) = 4. Thus in order for the first ramification set in Proposition 8.3
to be achieved, we must have Ramf (A ) = {p} where N(p) = 31. Since 31 ≡ 3 (mod 4), by Lemma
4.3, this ramification set defines an algebra with 2-torsion. For the other two ramification sets we
must have Ramf (A ) = {p, q} since there are no norm 2 primes. But, as [K : Q] = 4, we must have
|Ramf (A )| is odd and hence there is no such algebra with the second or third ramification set in
Proposition 8.3. To conclude we recap our results from the previous sections to prove Theorem
1.3.

Proof of Theorem 1.3. To begin, Equation 2 provides the equation for g − 1 in the case where
K = Q. As 211k + 1 for k|12 is not a prime power, it is not possible to achieve a genus 212
congruence surface when K = Q.

Next, Proposition 5.3 and Section 6 prove there is no congruence surface constructed from a
maximal order of genus 212 when [K : Q] = 2.

For fields of higher degree, using Equation 4 and Proposition 5.2, we obtain an upper bound,

Un for ∆K in each degree, such that when ∆K > Un, ζK(−1)
2n−1 > 211

2 . Then, using the enumerate
all totally real number fields function from Voight, we compute all number fields where ∆K < Un
in each degree, along with each field’s value of ζK(−1)

2n−1 , using Sage. Thus, Table 1 provides a list of

all number fields where ζK(−1)
2[K:Q]−1 = 211

n for some n ∈ N, or ζK(−1)
2[K:Q]−1 = 1

n where there exists some k|n
such that 211k + 1 is a prime power, as these are the only number fields where the construction of
a genus 212 surface is possible. However, Proposition 5.3 shows no such construction exists for K

such that ζK(−1)
2[K:Q]−1 = 1

n where there exists some k|n such that 211k+ 1 is a prime power. Moreover,
the results in Section 7 show no such construction exists for all fields in Table 2, except for those
which we list in Table 4. To conclude, the results in Section 8 prove no such construction exists
for all fields listed in Table 4. Thus, we have proved there is no congruence surface of genus 212,
for any of the number fields listed in Table 2, which we have shown to be the only possible number
fields where such a construction is possible. �
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9. Appendix

∆K p(x) ζK(−1)
2

[K:Q]−1

5 x2 − 5 1/60
49 x3 − x2 − 2x+ 1 1/84

7825 x3 − 25x− 45 211/6
9812 x3 − x2 − 19x+ 33 211/4
13396 x3 − x2 − 25x+ 29 211/3
725 x4 − x3 − 3x2 + x+ 1 1/60
1125 x4 − x3 − 4x2 + 4x+ 1 1/30
2225 x4 − x3 − 5x2 + 2x+ 4 1/10
38000 x4 − 20x2 + 95 211/30
148889 x4 − 2x3 − 15x2 + 16x+ 51 211/3
150057 x4 − 2x3 − 7x2 + 5x+ 7 211/3
1060708 x5 − 2x4− 7x3 + 13x2 + 10x− 17 211/6
1459417 x5 − 2x4− 7x3 + 11x2 + 9x− 2 211/3
1471216 x5 − 2x4 − 7x3 + 6x2 + 8x− 4 211/3
1630076 x5 − 2x4 − 9x3 + 17x2 + 4x− 12 211/3
1723364 x5 − 2x4 − 7x3 + 13x2 + 8x− 11 211/3
12694016 x6 − 8x4 − 2x3 + 16x2 + 8x− 1 211/6
15004240 x6 − 2x5 − 11x4 + 16x3 + 35x2 − 26x− 17 211/6
15378496 x6 − 2x5 − 5x4 + 8x3 + 6x2 − 6x− 1 211/6
15700473 x6 − 12x4 − 2x3 + 39x2 + 12x− 19 211/6
17386832 x6 − 3x5 − 4x4 + 10x3 + 6x2 − 4x− 2 211/3
17801408 x6 − 9x4 − 4x3 + 16x2 + 14x+ 3 211/4
18967381 x6 − 2x5 − 8x4 + 11x3 + 20x2 − 14x− 17 211/4
22340432 x6 − x5 − 8x4 + 5x3 + 16x2 − 5x− 1 211/3
23556176 x6 − x5 − 8x4 + 5x3 + 16x2 − 7x− 7 211/3
26768537 x6 − x5 − 11x4 + 11x2 + x− 2 211/2
154050496 x7 − x6 − 8x5 + 6x4 + 13x3 − 9x2 − x+ 1 211/6
225111553 x7 − 2x6 − 6x5 + 9x4 + 12x3 − 8x2 − 8x− 1 211/4
236583241 x7 − x6 − 9x5 + 4x4 + 16x3 − 5x2 − 5x+ 1 211/3
343318749 x7 − 2x6 − 6x5 + 12x4 + 8x3 − 17x2 + 3 211/2

Table 1. Number Fields with Relevant ζK(−1)
2

[K:Q]−1
Values
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[K : Q] ∆K ∆
1/[K:Q]
K

3 21922 27.99
4 254161 22.45
5 2946779 19.67
6 34165459 18.01
7 396120284 16.91
8 4592687600 16.13
9 53248420466 15.55
10 617371467322 15.10
11 7157912391165 14.74

Table 2. Upper Bounds for Discriminant in Fixed Degree

∆K p(x) ζK(−1)
2[K:Q]−1

13396 x3 − x2 − 25x+ 29 211/3
38000 x4 − 20x2 + 95 211/30

1060708 x5 − 2x4− 7x3 + 13x2 + 10x− 17 211/6
1471216 x5 − 2x4 − 7x3 + 6x2 + 8x− 4 211/3
1630076 x5 − 2x4 − 9x3 + 17x2 + 4x− 12 211/3
1723364 x5 − 2x4 − 7x3 + 13x2 + 8x− 11 211/3
12694016 x6 − 8x4 − 2x3 + 16x2 + 8x− 1 211/6
15004240 x6 − 2x5 − 11x4 + 16x3 + 35x2 − 26x− 17 211/6
15378496 x6 − 2x5 − 5x4 + 8x3 + 6x2 − 6x− 1 211/6
17386832 x6 − 3x5 − 4x4 + 10x3 + 6x2 − 4x− 2 211/3
22340432 x6 − x5 − 8x4 + 5x3 + 16x2 − 5x− 1 211/3
23556176 x6 − x5 − 8x4 + 5x3 + 16x2 − 7x− 7 211/3
154050496 x7 − x6 − 8x5 + 6x4 + 13x3 − 9x2 − x+ 1 211/6

Table 3. Remaining Number Fields where Splitting Behavior of 2,3 Must be
Checked Computationally
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d ζK(−1)
2

2 1/24
3 1/12
5 1/60
6 1/4
7 1/3
10 7/12
11 7/12
13 1/12
14 5/6
15 1
17 1/6
19 19/12
21 1/6
22 23/12
23 5/3
26 25/12
29 1/4
30 17/6
31 10/3
33 1/2
34 23/6
35 19/6
37 5/12
38 41/12
39 13/3
41 2/3
42 9/2
43 21/4
46 37/6
47 14/3
51 13/2
53 7/12
55 23/3
57 7/6
58 33/4
59 85/12
61 11/12
62 7
65 4/3
66 28/3
67 41/4
69 1
70 67/6
71 29/3
73 11/6
74 41/4

d ζK(−1)
2

77 1
78 23/2
79 14
82 27/2
83 43/4
85 3/2
86 155/12
87 13
89 13/6
91 103/6
93 3/2
94 53/3
95 43/3
97 17/6
101 19/12
102 103/6
103 19
105 3
106 87/4
107 197/12
109 9/4
110 103/6
111 61/3
113 3
114 22
115 139/6
118 277/12
119 62/3
122 77/4
123 45/2
127 80/3
129 25/6
130 173/6
131 93/4
133 17/6
134 301/12
137 4
138 77/3
139 127/4
141 3
142 63/2
143 73/3
145 16/3
146 83/3
149 35/12
151 37

d ζK(−1)
2

154 113/3
155 91/3
157 43/12
158 89/3
159 35
161 16/3
163 467/12
165 11/3
166 503/12
167 91/3
170 209/6
173 13/4
174 239/6
177 13/2
178 128/3
179 157/4
181 19/4
182 71/2
183 41
185 19/3
186 91/2
187 275/6
190 305/6
191 130/3
193 49/6
194 251/6
195 45
197 49/12
199 55
201 49/6
202 207/4
203 127/3
205 17/3
206 91/2
209 47/6
210 155/3
211 737/12
213 5
214 757/12
215 139/3
217 29/3
218 583/12
219 173/3
221 16/3
222 105/2
223 60

d ζK(−1)
2

226 203/3
227 575/12
229 27/4
230 311/6
231 62
233 53/6
235 141/2
237 35/6
238 67
239 178/3
241 71/6
246 421/6
247 73
249 23/2
251 67
239 178/3
241 71/6
246 421/6
247 73
249 23/2
251 251/4
253 15/2
254 66
255 200/3
257 10
258 66
259 247/3
262 913/12
263 191/3
265 40/3
266 407/6
267 145/2
269 83/12
271 86
273 37/3
274 547/6
277 103/12
278 793/12
281 25/2
282 235/3
283 1021/12
285 8
286 563/6
287 72
290 449/6
291 269/3

d ζK(−1)
2

293 85/12
295 99
298 1165/12
299 238/3
301 31/3
302 479/6
303 87
305 41/3
307 1145/12
309 59/6
310 105
311 259/3
313 50/3
314 341/4
317 101/12
318 177/2
319 343/3
321 33/2
322 107
323 87
326 379/4
327 93
329 47/3
330 103
331 487/4
334 719/6
335 277/3
337 19
339 219/2
341 59/6
345 55/3
346 501/4
347 385/4
349 151/12
353 16
354 119
355 379/3
357 11
358 1505/12
359 109
362 1159/12
365 65/6
366 253/2
367 382/3
370 791/6
371 334/3
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d ζK(−1)
2

373 161/12
374 677/6
377 53/3
379 1781/12
381 77/6
382 413/3
383 322/3
385 71/3
386 249/2
389 151/12
390 386/3
391 150
393 43/2
394 1907/12
395 346/3
397 57/4
398 665/6
399 428/3
401 43/2
402 127
403 899/6
406 162
407 371/3
409 79/3
410 130
411 287/2
413 73/6
415 491/3
417 47/2
418 152
419 1619/12
421 209/12
422 1559/12
426 455/3
427 325/2
429 16
430 1007/6
431 142
433 163/6
434 433/3
435 463/3

d ζK(−1)
2

437 77/6
438 155
439 533/3
442 517/3
443 569/4
445 55/3
446 440/3
447 147
449 51/2
451 1121/6
453 91/6
454 759/4
455 448/3
457 30
458 1675/12
461 61/4
462 481/3
463 562/3
465 28
466 608/3
467 1765/12
469 20
470 931/6
471 185
473 51/2
474 357/2
478 593/3
479 160
481 101/3
482 919/6
483 169
485 101/6
487 601/3
489 187/6
491 2119/12
493 119/6
494 353/2
497 27
498 560/3
501 20
502 795/4
503 481/3

d ζK(−1)
2

505 36
506 371/2
509 215/12
510 194
511 232
514 674/3
515 363/2
517 127/6
518 174
519 213
521 31
523 2563/12
526 1463/6
527 532/3
530 1087/6
533 37/2
534 1319/6
535 685/3
537 67/2
538 2647/12
541 301/12
542 551/3
543 641/3
545 95/3
546 223
547 2849/12
551 601/3
553 119/3
554 2525/12
555 229
557 233/12
559 775/3
561 118/3
562 758/3
563 761/4
565 151/6
566 2497/12
569 109/3
570 680/3
571 1097/4
573 22
574 270

Table 4. Quadratic Fields Q(
√
d), and ζK(−1)

2[K:Q]−1 for d < 574



18 ERIC ALBERS

References

[1] A. Borel. Commensurability classes and volumes of hyperbolic 3-manifolds. Ann. Scuola Norm. Sup. Pisa Cl.
Sci. (4), 8(1):1–33, 1981.

[2] J. W. Jones and D. P. Roberts. A database of number fields. LMS J. Comput. Math., 17(1):595–618, 2014.

[3] M. G. Katz, M. Schaps, and U. Vishne. Logarithmic growth of systole of arithmetic Riemann surfaces along
congruence subgroups. J. Differential Geom., 76(3):399–422, 2007.

[4] H. Klingen. über die Werte der Dedekindschen Zetafunktion. Math. Ann., 145:265–272, 1961/1962.

[5] C. Maclachlan and A. W. Reid. The arithmetic of hyperbolic 3-manifolds, volume 219 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2003.

[6] J. Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Funda-

mental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German
original and with a note by Norbert Schappacher, With a foreword by G. Harder.

[7] A. Odlyzko. Unconditional bounds for discriminants. 1976. (A table of numerical values for the constans in a

formula giving a lower bound of the discriminants of totally real number fields).
[8] P. Schmutz. Congruence subgroups and maximal Riemann surfaces. J. Geom. Anal., 4(2):207–218, 1994.

[9] A. Sebbar. Torsion-free genus zero congruence subgroups of PSL2(R). Duke Math. J., 110(2):377–396, 2001.

[10] C. L. Siegel. über die analytische Theorie der quadratischen Formen. III. Ann. of Math. (2), 38(1):212–291,
1937.

[11] K. Takeuchi. Arithmetic Fuchsian groups with signature (1; e). J. Math. Soc. Japan, 35(3):381–407, 1983.
[12] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.2), 2018.

http://www.sagemath.org.

[13] J. Voight. Enumeration of totally real number fields of bounded root discriminant. In Algorithmic number theory,
volume 5011 of Lecture Notes in Comput. Sci., pages 268–281. Springer, Berlin, 2008.

[14] D. Zagier. On the values at negative integers of the zeta-function of a real quadratic field. Enseignement Math.

(2), 22(1-2):55–95, 1976.

Department of Mathematics, Temple University - Philadelphia, Pennsylvania 19122
Current address: Department of Mathematics, Temple University, Philadelphia Pennsylvania, 19122

Email address: eric.albers@temple.edu



TRIVALENT PLANAR ALGEBRAS OVER FINITE FIELDS

EMI BRAWLEY

Abstract. In this paper, we study and classify trivalent planar algebras over finite
fields, i.e., planar algebras generated by the Temperley-Lieb planar algebra and a
trivalent vertex. Our results are that, where Cn is the space of diagrams with n
boundary points, the trivalent planar algebras with dim Cn bounded by 1, 0, 1,
1, 4, 10 for 0 ≤ n ≤ 5 include the golden planar algebras, quantum SO(3), and
quantum G2; this parallels the classification of trivalent planar algebras over C, but
the number of planar algebras in several of these families—in particular, the golden
planar algebras–depends on the base field chosen. We also classify some trivalent
planar algebras that arise when the nondegeneracy assumptions are weakened, and
give directions for further investigation in this area.
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1. Introduction

In this paper, we seek to generalize some past results regarding trivalent planar

algebras, by weakening several of the assumptions made about the base field of these

planar algebras and by weakening the nondegeneracy assumptions made in their

definition.

The first goal of this paper is to extend some of the results of [MPS16] and [Kup94]

to trivalent planar algebras over finite fields. We do this by following the calculations

of the relations that define these planar algebras, performed over fields of nonzero

characteristic rather than just over C. Furthermore, where [MPS16] relies heavily on

computer calculations and a strong non-degeneracy assumption regarding the inner

product, our results depend on neither; all calculations were done by hand, using the

methods described in [Kup94], and we assume very little about the inner product,

relying only on the basic nondegeneracy of the 0-box space and the bigon relation.

We find that the dimensional assumptions that give rise to the trivalent planar

algebras known as the golden planar algebras, the quantum SO(3) family, and the

quantum G2 family result in trivalent planar planar algebras of very similar construc-

tion when taken over finite fields; we conjecture that the same holds true for the ABA

class of planar algebras.

The second goal of this paper is to investigate the trivalent planar algebras that

arise when some of the key nondegeneracy assumptions are weakened; in particular,

we describe the results of weakening the nondegeneracy of the bigon relation. We find

that the dimensional assumptions which give rise to the golden planar algebras result

in a very different “faceless” trivalent planar algebra that is degenerate in this way,

and we make some conjectures about the degenerate analogs of other nondegenerate

trivalent planar algebras.

Finally, we propose some possible directions for future research to further the

extension and generalization of past results regarding trivalent planar algebras.

1.1. Acknowledgments. I would like to thank Professor Noah Snyder, who super-

vised this project, for his mentorship and support throughout the program, and Josh

Edge and Patrick Chu for their mathematical advice and patience. I would also like

to thank Professor Scott Morrison and Professor Emily Peters for for creating the

figures used throughout this paper. Finally, I would like to thank Indiana University
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Bloomington for hosting the REU program during which the work for this paper

took place, as well as Professor Chris Connell, for organizing both the REU program

and the 2018 Indiana Undergraduate Mathematics Research Conference, at which I

presented the results of this project.

2. Trivalent planar algebras

In this section, we describe the notion of a trivalent planar algebra, as a special kind

of planar algebra that is ”generated by the trivalent vertex,” along with an important

theorem regarding the uniqueness of these planar algebras. We assume the reader has

some familiarity with the notion of a planar algebra, and, in particular, is familiar

with the various operations permitted by the action of the planar operad—rotation,

capping, multiplication, and so forth. Throughout this paper, we will denote the

n-box space of a planar algebra V as Vn.

Definition 2.1. A trivalent planar algebra is a planar algebra C over some field F;

the elements of Cn are linear combinations of planar trivalent graphs with n univalent

boundary points. A trivalent planar algebra has the following properties:

• dim C0 = 1;© = d

• dim C1 = 0

• dim C2 = 1; = b (1)

• dim C3 = 1; = t (2)

A nondegenerate trivalent planar algebra is a trivalent planar algebra with d 6= 0 and

b 6= 0; in a nondegenerate trivalent planar algebra, we normalize the trivalent vertex

so that b = 1.

Where relevant, we refer to (1) as the “bigon relation” and (2) as the “triangle

relation.”

We may think of a trivalent planar algebra as being generated by those dia-

grams which can be constructed from the trivalent vertex and the diagrams in the

Temperley-Lieb planar algebra.



4 EMI BRAWLEY

It is important to note that in [MPS16], trivalent planar algebras are defined over

C; our definition is slightly different, and has no restriction on the field chosen, as

one of the primary goals of this paper is to extend the results of [MPS16] to trivalent

planar algebras over finite fields.

Throughout this paper, we denote the set of trivalent planar graphs with n bound-

ary points and at most k internal faces having four or more edges by D(n, k). Fur-

thermore, we refer to as a or the “trivalent vertex.”

We now introduce a theorem concerning the uniqueness of nondegenerate trivalent

planar algebras.

Theorem 2.2. [MPS16, Corollary 2.4] Given a collection of linear relations amongst

planar trivalent graphs, such that any closed diagram can be reduced to a multiple of

the empty diagram by those relations, there there is a unique nondegenerate trivalent

planar algebra satisfying those relations.

This theorem allows us to define nondegenerate trivalent planar algebras solely in

terms of the relations between their elements.

3. The golden planar algebras

Theorem 3.1. A trivalent planar algebra C over F with dim C4 = 2 exists if and only

if the quadratic d2 − d − 1 = 0 has at least one solution in F. If such a trivalent

planar algebra exists, it is characterized by the relation

= − 1

d
,

with d2 − d− 1 = 0; each solution to this quadratic corresponds to a unique trivalent

planar algebra.

To prove this theorem, we require the following lemma, which describes an evalu-

ation algorithm for closed diagrams in certain trivalent planar algebras.

Lemma 3.2. [cf. MPS16, Lemma 4.8] If there is a relation of the form

= α + β + γ ,

then any trivalent graph in Cn can be reduced to span D(n, 0).
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Proof. Suppose we have a diagram with some internal faces. Assuming there are no

faces with three or fewer edges, and so we cannot immediately reduce the diagram

to something with fewer faces, choose the smallest face. We can apply the relation

above to the smallest face, yielding a sum of terms with either strictly fewer faces

or a smaller smallest face. We may repeat this process until the diagram is reduced

to a sum of terms with either strictly fewer faces or a smallest face with at most

three edges; we may then, where appropriate, reduce that smallest face so that the

diagram is reduced to a sum of terms which all have strictly fewer faces than the

original diagram. By induction, therefore, we can write any diagram as a sum of

terms with no internal faces. �

Proof of Theorem 3.1. Consider C4. Suppose that and are not

linearly independent, i.e.,

(3.1) = k ·

for some nonzero k. We have that

· = 0,

and

k · · = k 6= 0;

thus, in fact, we cannot have a relation like 3.1, and so and must be

linearly independent. Since dim(C4) = 2, the set
{

,

}

must form a basis for C4. Thus we must be able to express the other elements of C4
as linear combinations of these elements; in particular, we must have a relation of

the form

= x + y .
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Rotating this relation gives

= y + x .

Capping the first relation gives that x+ dy = 0, so x = −dy; this, together with our

assumptions of nondegeneracy, implies that x and y must both be nonzero. Squaring

the first relation and simplifying by the bigon relation gives that

= x2 + (2xy + dy2) .

So we must have that x = x2, and since x 6= 0 we can multiply by x−1 to give x = 1.

Similarly, we have y = 2xy + dy2, so y = −d−1. Thus we have that

= − d−1

and

= −d−1 + .

Multiplying these two relations together gives that

t = −d−1 + d−2 ,

which in turn gives that t = −d−1. Capping off the rotated relation gives that

d = d2 − 1.

By 3.2 we know that the resulting relation,

= − d−1 ,

is sufficient to reduce any closed diagram to a multiple of the empty diagram, and so

by 2.2 we have that, where such a relation is valid, this relation determines a unique

nondegenerate trivalent planar algebra.

It may be true that if we are working over certain finite fields—for instance, the

field with only two elements—there are no solutions to d2 − d − 1 = 0, in which

case it is necessary to work instead over some extension of our original field. In

fields of characteristic other than 2, we have that d = 2−1(1 ±
√

5), yielding that

t = 2−1(1∓
√

5). Thus we have two possible values of d and t; the only exception is

in fields of characteristic 5, where we must have that d = t = 3.
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4. Quantum SO(3)

Theorem 4.1. If C is a trivalent planar algebra, and dim C4 = 3, then C is a mem-

ber of the one-parameter family of quantum SO(3) planar algebras, characterized by

relations of the form

− = (d− 1)−1

(
−

)
;

each value of d corresponds to a unique nondegenerate trivalent planar algebra.

Proof. Since dim C4 = 3, we must have some relation among the elements of D(4, 0),

and in fact this relation can be written in the form

= z1 + z2 + z3 .

Rotating and substituting this relation in for gives that 1 = z21 , z1z2 + z3 = 0,

z1z3 + z2 = 0. Thus we see that in fact we can rewrite this relation as

+ a = z

(
+ a

)
,

with a2 = 1. Capping the relation gives that a = z(1 + da), i.e., z = (a + d)−1; we

also see from this relation that z 6= 0. Multiplying the relation by a trivalent vertex

gives that z = at+1, i.e., t = a(a+d)−1−a. Now, multiplying the relation by

gives a relation for the square in terms of the basis elements of C4:

a = (at+ z) − zt + az(1− t) .

Rotating this relation gives yet another relation for the square:

a = (at+ z)(−a) + z(a+ z) + az2 .

Since {
, ,

}

is a basis for C4, we then have that (at + z)(−a) = at + z, z(a + z) = −zt, and

az2 = az(1 − t); solving this system of equations gives that a = −1. Thus we have
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that t = 1− (d− 1)−1, and we have the relation

− = (d− 1)−1

(
−

)
.

From 3.2 and 2.2, we have that each relation of this form determines a unique

nondegenerate trivalent planar algebra.

�

5. Cubic planar algebras

Definition 5.1. A cubic planar algebra is a trivalent planar algebra where dim C4 = 4.

Proposition 5.2. In any cubic planar algebra,

(a)

{
, , ,

}
form a basis of C4. [MPS16, Proposition

4.16]

(b) we have the square relation

=
−t2 + t+ 1

dt+ d+ t

(
+

)
+
dt2 + t2 − 1

dt+ d+ t

(
+

)

.

Proof. We begin by writing the square as a linear combination of the basis elements

of C4; since the square is rotationally invariant, we can write

= a

(
+

)
+ b

(
+

)
.

Multiplying by a trivalent vertex gives the equation t2 = a + b + bt; capping the

relation gives that a + da + b = 1. Assuming that dt + d + t 6= 0, this system of

equations gives exactly

a =
−t2 + t+ 1

dt+ d+ t
, b =

dt2 + t2 − 1

dt+ d+ t
.

�
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6. ABA

Over C, the ABA family of trivalent planar algebras is a family of cubic planar

algebras with dim C5 = 8 [MPS16, cf. Section 5]. The proof of the existence of the

relations among the elements of C5 which define these planar algebras relies heavily on

the assumption of nondegeneracy of the inner product; we have so far been unable to

reproduce these relations by any other method, but we conjecture that it is possible.

Conjecture 1. A nondegenerate cubic trivalent planar algebra C over F with

dim C5 = 8 exists if and only if the equation ω5 − 1 = 0 has multiple solutions; in

such a planar algebra, we have t2 − t− 1 = 0.

Furthermore, we conjecture that the description above minimizes dim C5 for a cubic

planar algebra.

Conjecture 2. No nondegenerate cubic trivalent planar algebra C exists such that

C5 < 8.

7. Quantum G2

Theorem 7.1. If C is a cubic planar algebra, and dim C5 = 10, then C is a quantum

G2 planar algebra, defined by the relations d = q10 + q8 + q2 + 1 + q−2 + q−8 + q−10;

t = −Φ12/Φ16;

=
1

Φ3Φ6Φ2
16

(
+

)
+

Φ8

Φ3Φ6Φ16

(
+

)
;

= − 1

Φ3Φ6Φ16


 + + + +




− 1

Φ2
3Φ

2
6Φ

2
16


 + + + +


 ,

where Φk is the kth cyclotomic polynomial, i.e, Φk =
∏

ζ(q
1/2 − ζq−1/2) where the

product is taken over all primitive kth roots of unity; q must satisfy

Φ3Φ6Φ7Φ14Φ16Φ24 6= 0.
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In order to prove this theorem, we require the following lemma.

Lemma 7.2. [MPS16, Lemma 5.13, Lemma 5.15] Suppose C is a planar algebra

generated by a trivalent vertex, with relations reducing n-gons for each n ≤ 4. Suppose

further there is some relation between the diagrams





, , , , , ,

, , , ,




.

Then there is a relation reducing the pentagon (as a linear combination of the acyclic

diagrams in C5), and C5 is spanned by the acyclic diagrams in C5.

Proof of Theorem 7.1. There are exactly 10 acyclic diagrams in C5, so the as-

sumption that dim C5 = 10 together with the above lemma gives that these acyclic

diagrams form a basis for C5. We can now express our assumptions as the following

set of equations:

© = a ;

= b ;

= c ;

= d1

(
+

)
+ d2

(
+

)
;
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= e1


 + + + +




+ e2


 + + + +


 .

Note that we have not yet, as in other calculations, normalized the trivalent vertex

so that b = 1.

We now proceed as in [Kup94], constructing diagrams with exactly two faces, each

of which has five or fewer edges, and simplifying these diagrams in two ways (varying

which face is simplified first). This yields the following system of equations.

b2 = bd1 + d2 + ad2

c2 = bd1 + cd1 + d2

bc = 2be1 + 2e2 + ae2 + ce1

cd1 = d1e1 + ce1 + be1 + e2

cd2 = d2e1 + be2

d1e1 + d2 = e21

d1e1 + d21 = e21 + ce1 + d1e1

d1e1 = e21 + d1e1 + e2

d1e2 + cd2 = e1e2 + be2 + 2d2e1

d1e2 = e1e2 + d2e1

d1e2 + d1d2 = e1e2 + ce2

Setting e1 = 1 and d1 = −q2 − q−2 gives a unique set of solutions a = q10 + q8 +

q2 + 1 + q−2 + q−8 + q−10, b = −q6 − q4 − q2 − q−2 − q−4 − q−6, c = q4 + 1 + q−4,

d2 = q2 + 1 + q−2, e2 = −1. This is identical to the solution obtained in [Kup94],

except for the choice of q2 instead of q; the calculations involved are the same in a

field of nonzero characteristic as they are over the complex numbers. As Kuperberg

notes, we can multiply b, c, d1, and e1 by a constant, and d2 and e2 by the square of
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that constant to obtain another solution; we let this constant be −Φ3Φ6Φ16, so that

b = 1, and thus obtain the coefficients given in the statement of Theorem 7.1. The

restrictions on q come from the nondegeneracy assumptions that a 6= 0 and b 6= 0.

8. Abandoning nondegeneracy

Recall that in the definition of a trivalent planar algebra, we assumed that b,

the coefficient in the bigon relation, was nonzero, and we normalized this to give

b = 1. It is interesting to investigate what happens if we weaken this nondegeneracy

assumption, allowing b = 0.

8.1. Degenerate “golden” planar algebras.

Theorem 8.1. Suppose C is a trivalent planar algebra with dim C0 = 1, dim C1 = 1,

dim C2 = 1 with b = 0, dim C3 = 1, and dim C4 = 2. Then the elements of Cn
are linear combinations of non-crossing pair and triple partitions of a circle with n

boundary points; in particular, this planar algebra is “faceless”, i.e., any diagram

with an interior face is equal to zero.

Proof. As in Section 3, we begin from the fact that{
,

}

forms a basis for C2, and thus

= x + y

for some x and y. Capping this relation gives that x = −dy; squaring the relation

gives that x2 = 0 and 2xy + dy2 = 0. Solving this system of equations gives that

x = y = 0, and thus we have that

= 0.

Unlike in the case of the golden planar algebras, this relation gives no restrictions on

d; thus we have a one-parameter family of these degenerate planar algebras.

Now suppose we have a diagram with an interior face. Consider this interior face.

If the face has at least three edges, the diagram contains an and is thus equal
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to zero; if the face has one or two edges, we know already that we may reduce the

diagram to zero. Thus any diagram with faces must be equal to zero.

Suppose we have a diagram in Cn with a connected component that contains more

than one trivalent vertex. Since this is a trivalent planar algebra, we must have at

least two trivalent vertices connected to each other, forming an , and thus the

diagram must be equal to zero. Thus we see that each connected component of a

nonzero element of Cn can contain at most one trivalent vertex. We can therefore

characterize the nonzero elements of Cn as linear combinations of non-crossing pair

and triple partitions of a circle with n boundary points. This also immediately gives

some bounds on the dimensions of the Cn; for instance, dim C5 ≤ 5, and dim C6 ≤
8. �

Directions for further investigation. It would be interesting to investigate the

degenerate trivalent planar algebras that arise from the dimension assumptions that

produced the other nondegenerate planar algebras described in this paper. To that

end, we make the following conjecture.

Conjecture 3. Suppose C is a trivalent planar algebra with b = 0, and dim C4 = 3.

Then C is, as described above, a “faceless” planar algebra—that is, its only nonzero

elements are linear combinations of diagrams with no internal faces.

It would also be interesting to investigate the degenerate trivalent planar algebras

that arise when dim C4 = 4, dim C4 = 5, and so on. In fact, this kind of degen-

eracy would seem to make describing these planar algebras very easily due to the

ease of computing relations, although these planar algebras might perhaps be more

difficult to classify. One could also investigate degenerate and nondegenerate braided

trivalent planar algebras and their skein theoretic invariants over fields of nonzero

characteristic.
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VOLUME ESTIMATES OF IDEAL HYPERBOLIC SIMPLICES

CORNELL HOLMES

Abstract. In the paper ”Simplices of maximal volume in hyperbolic n-space,” U.
Haagerup and H. Munkholm estimate the volume of the ideal regular hyperbolic
n-simplex by relating it to the volume of the regular euclidean n-simplex inscribed
in the unit sphere. In this paper, we use analogous techniques and the Lasserre-
Avrachenkov theorem to estimate the volumes of ideal hyperbolic n-simplices by
comparing the volumes of ideal hyperbolic n-simplices to the volumes of the eu-
clidean n-simplices with the same vertices as the hyperbolic simplices in the pro-
jective model.

1. Introduction

1.1. Preliminaries. An n-simplex is ideal if all of its vertices are on the boundary
of Hn. Throughout this paper, let τ [n] denote any ideal hyperbolic n-simplex with
vertices v0, . . . , vn in the projective model of Hn, let σ[n] be the euclidean n-simplex
with the same vertices on Sn−1, and let ϕn be the function

ϕn(α) =

∫

σ[n]

(1− r2)−αdr, α < n.

The approach to the conjecture is motivated by the following observations from
Haagerup and Munkholm in [1].

Remark 1. The volume V ol(τ [n]) of τ [n] can be expressed as an integral over σ[n]
as

(1) V ol(τ [n]) =

∫

σ[n]

(1− r2)−(n+1)/2dr.

Remark 2. ϕn is logarithmically convex as it is the integral of a logarithmically
convex function. Thus

(2)

(
ϕn(0)

ϕn(−1)

)n−1
2 ϕn(n+1

2
)

ϕn(n−1
2

)
≤
(
ϕn(n+1

2
)

ϕn(0)

)
≤
(
ϕn(n+1

2
)

ϕn(n−1
2

)

)n+1
2

holds for n ≥ 2.
1
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1.2. Conjecture. We are interested in studying the quantity V ol(τ [n]) = ϕn(n+1
2

)

by obtaining precise bounds for ϕn(n+1
2

)/ϕn(0). ϕn(0) = V ol(σ[n]) is easily com-
putable by a determinant formula given the vertices, so we need only study the ratios
ϕn(n+1

2
)/ϕ(n−1

2
) and ϕn(0)/ϕn(−1) to use (2) to estimate V ol(τ [n]). Let {τ [n]}∞n=1

be any sequence of ideal hyperbolic n-simplices in n with corresponding euclidean
n-simplices {σ[n]}∞i=1. We may assume that the corresponding euclidean simplex of
τ [n] has a center of mass at zero by isometry of Hn for each n. That is,

∑n
i=0 vi = 0.

For any such sequence we conjecture that

(3) lim
n→∞

V ol(τ [n])

V ol(σ[n])
=
√
e.

2. Proof

2.1. Lower Bound. First, we determine ϕn(0)/ϕn(−1) given any euclidean simplex
σ[n] corresponding to τ [n].

Theorem 1. Let σ[n] be any euclidean n-simplex with vertices v0, . . . , vn on Sn−1

for n ≥ 1. If c = || 1
n+1

∑n
i=0 vi||, then

(4) V ol(σ[n])−1

∫

σ[n[

(1− r2)dr = (1− c2)
n+ 1

n+ 2
.

Proof. Let ∆[n] = {(t0, . . . , tn)|ti ≥ 0,
∑n

i=0 ti = 1} be the standard n-simplex in
Rn+1 and let S be the set of permutations of 0, . . . , n. Define E to be the formation
of mean values over all permutations π ∈ S such that E(f) = 1/(n+1)!

∑
π∈S f(π) for

any function f of permutations. The inclusion function from (0,1] to Rn is continuous
and concave, so our integral becomes

V ol(σ[n])−1

∫

σ[n]

(1− r2)dr =

∫

∆[n]

(1− ||
n∑

i=0

tivi||2)dµ

= E(

∫

∆[n]

(1− ||
n∑

i=0

tπ(i)vi||2)dµ)

for µ the measure on ∆[n] such that µ(∆[n])=1 by the construction in Lemma 3 of
[1]. Note that

E(1− ||
n∑

i=0

tπ(i)vi||2) =
n+ 1

n
(1− c2)(1−

n∑

i=0

t2i ).
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It follows by linearity of the integral and the integrand that

E(

∫

∆[n]

(1− ||
n∑

i=0

tπ(i)vi||2)dµ) =

∫

∆[n]

E(1− ||
n∑

i=0

tπ(i)vi||2)dµ

= (1− c2)

[
n+ 1

n

∫

∆[n]

(1−
n∑

i=0

t2i )dµ

]
.

Lemma 5 in [1] shows

n+ 1

n

∫

∆[n]

(1−
n∑

i=0

t2i )dµ =
n+ 1

n+ 2
,

therefore we have

V ol(σ[n])−1

∫

σ[n]

(1− r2)dr = (1− c2)
n+ 1

n+ 2
.

�

2.2. Upper Bound. In our initial investigation of the ratio ϕn(n+1
2

)/ϕn(n−1
2

) we
generalized a geometric approach explored in [1].

Theorem 2. For each i = 0, . . . , n let ci be the signed euclidean distance between
the affine (n− 1)-plane Ai that contains the ith boundary face ∂iσ[n] of σ[n] and the
origin, positive if the outward normal points away from the origin and negative if
the outward normal points towards the origin. Also for each i = 0, . . . , n let τi[n] be
ideal hyperbolic n-simplex viewed in the upper half space model with n vertices on the
(n−2)-sphere Sn−2 = {x ∈ Rn|xn = 0, ||x|| = 1} corresponding to the vertices of any
euclidean (n − 1)-simplex similar to ∂iσ[n] on Sn−2 and the last vertex at the point
at ∞. Then for n ≥ 2

ϕ(n−1
2

)

ϕ(n+1
2

)
= (n− 1)

[
n∑

i=0

ci
V ol(τi[n])

V ol(τ [n])
− 1

]
.

Proof. Define the vector field

V(r) = (1− r2)−(n−1)/2r

on σ[n] and let n be the outward normal to the boundary ∂σ[n]. Along each boundary
face ∂iσ[n], the dot product r·n is equal to the length of the orthogonal vector between
Ai and the origin up to a sign that depends on the orientation of n and is therefore
constant. That is, r · n = ci.
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For each ∂iσ[n], let ρi be the radius of the (n− 2)-sphere circumscribed around
∂iσ[n] that lays in Ai, and let µi be the vector from the origin to the circumcenter.
Define the function

βi : ∂iσ[n]→ R, βi(r) = ||r− µi||.
Note that µi is orthogonal to the linear plane corresponding to Ai, so for all r ∈ ∂iσ[n]

r · r = ((r− µi) + µi) · ((r− µii) + µi)

= βi(r)
2 + µi · µi

= βi(r)
2 + (1− ρ2

i )

The last equality comes from expanding the inner product of a vertex vj of ∂iσ[n]
with itself. Thus

∫

∂σ[n]

V · ndS =
n∑

i=0

∫

∂iσ[n]

V · ndS

=
n∑

i=0

ci

∫

∂iσ[n]

(1− r2)−(n−1)/2dS

=
n∑

i=0

ci

∫

∂iσ[n]

(ρ2
i − β2

i )
−(n−1)/2dS.

Fix any i = 0, . . . , n. By an isometry in the projective model, we can assume
that Ai = {x ∈ Rn|xn = bi} for some |bi| < 1. Now define the function

fi : Ai → Rn−1 fi(x) =
1

ρi
(x1, . . . , xn−1, 0)

and let fi(∂iσ[n]) = σi[n − 1]. This transforms our integral over ∂iσ[n] into the
integral

∫

σi[n−1]

(ρ2
i − β2

i r
2)−(n−1)/2ρn−1

i dr =

∫

σi[n−1]

(1− r2)−(n−1)/2dr.

σi[n − 1] is a euclidean (n − 1)-simplex with vertices on Sn−2 similar to ∂iσ[n] so
we can take τi[n] as the hyperbolic n-simplex that projects onto the ideal hyperbolic
(n − 1)-simplex with vertices corresponding to those of σi[n − 1] on Sn−2 from the
point ∞ in the upper half plane model. It follows from (2.2) in [1] that

∫

∂σ[n]

V · ndS = (n− 1)
n∑

i=0

ciV ol(τi[n]).
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The result follows from equation (1) and the divergence theorem.

∫

σ[n]

divV(r)dr =

∫

σ[n]

(1− r2)−(n−1)/2dr + (n− 1)

∫

σ[n]

(1− r2)−(n+1)/2dr

=

∫

σ[n]

(1− r2)−(n−1)/2dr + (n− 1)V ol(τ [n])

= (n− 1)
n∑

i=0

ciV ol(τi[n]).

�

2.3. Lassere-Avrechenkov Method. Our second approach to studying the upper
bound we attempted to turn our integral over a euclidean simplex into a power series.
For any real-valued symmetric multilinear q-form H : (Rn)q → R the Lasserre-
Avrachenkov theorem shown in [2] gives

∫

σ[n]

H(x, . . . ,x)dx =
V ol(σ[n])(

n+q
q

)
∑

0≤i1≤i2,...,≤iq≤n
H(vi1 , . . . , viq).

To compare ϕn(n+1
2

) to ϕn(n−1
2

), we consider the integrand (1 − r2)−α. Expanding
this as a power series in terms of r we have

(1− r2)−α =
∞∑

k=0

(
α + k − 1

k

)
r2k, |r| < 1.

Each term r2k is a homogenous polynomial of degree 2k, so there exists a unique
multilinear symmetric 2k-form H2k for

H2k(x1, . . . ,x2k) =
1

(2k)!

∑

π∈S2k

k∏

l=1

〈xπ(2l−1),xπ(2l)〉

such that for all x ∈ σ[n]

||x||2k = H2k(x, . . . ,x).
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Therefore we can express ϕn(α) as

∫

σ[n]

(1− r2)−αdr =

∫

σ[n]

( ∞∑

k=0

(
α + k − 1

k

)
r2k

)
dr

=
∞∑

k=0

(
α + k − 1

k

)∫

σ[n]

r2kdr

= V ol(σ[n]) +
∞∑

k=1

(
α + k − 1

k

)∫

σ[n]

H2k(x, . . . ,x)dx.

Let A0 = 1 and for k ≥ 1 define the term

Ak =

(
n+ 2k

2k

)−1 ∑

0≤i1≤i2,...,≤i2k≤n
H2k(vi1 , . . . , vi2k)

Applying the Lassere-Avrechenkov theorem we transform the integral into the sum

V ol(σ[n])

(
1 +

∞∑

k=1

(
α+k−1

k

)
(
n+2k

2k

)
∑

0≤i1≤i2,...,≤i2k≤n
H2k(vi1 , . . . , vi2k)

)
= V ol(σ[n])

∞∑

k=0

(
α + k − 1

k

)
Ak.

We have reduced the comparison of the integrals ϕn(n+1
2

) and ϕn(n−1
2

) over σ[n]
to a comparison of convergent sums with similar terms.

ϕn(α + 1)

ϕn(α)
=

∑∞
k=0

(
α+k
k

)
Ak∑∞

k=0

(
α+k−1

k

)
Ak

=

∑∞
k=0

(
α+k−1

k

)
(1 + k

α
)Ak∑∞

k=0

(
α+k−1

k

)
Ak

= 1 +
1

α

∑∞
k=0 k

[(
α+k−1

k

)
Ak
]

∑∞
k=0

(
α+k−1

k

)
Ak

There are
(
n+2k

2k

)
possible monotonic increasing sequences 0 ≤ i1 ≤ . . . ≤ i2k ≤ n of

length 2k and (2k)! permutations in the group S2k, thus the term Ak can be seen

as the average of all products
∏k

l=1〈viσ [n], viσ [n]〉. As k grows, the number of inner
products multiplied in each product increases, and |〈vi, vj〉| ≤ 1, so the average of
each product summed decreases. Thus we know the quantity Ak decreases, but to
estimate this ratio we would need to study the decay rate of the term Ak. For
example, if

(
α+k−1

k

)
Ak were to decrease geometrically such that

(
α+k−1

k

)
Ak = ak for
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|a| < 1,

ϕn(n+1
2

)

ϕn(n−1
2

)
= 1 +

2

n− 1

∑∞
k=0 ka

k

∑∞
k=0 a

k
= 1 +

2

n− 1

a

(1− a)

We can write H2k(v1, . . . , v2k) in terms of H2k−2 for k ≥ 2. Partition the set

of summands of (2k)!H2k(v1, . . . , v2k) such that each class [
∏k

l=1〈vπ(2l−1), vπ(2l)〉] con-
sists of the 2kk! summands with the same factorization into inner products. Fix
any j = 1, . . . , k and any permutation π ∈ S2k. There are 2k−1(k − 1)! permuta-
tions of the elements {1, . . . , 2k}\{π(2j − 1), π(2j)} such that a summand of (2k −
2)!H2k−2(v1, . . . , v̂π(2j−1), . . . , v̂π(2j), . . . , v2k) multiplied by 〈vπ(2j−1), vπ(2j)〉 factors into

all of the same factors of
∏k

l=1〈vπ(2l−1), vπ(2l)〉. As this holds for each j = 1 . . . , k, there
are 2k−1k! summands in the sum expanded sum of (2k−2)!

∑
0≤x<y≤2kH2k−2(v1, . . . , v̂x,

. . . , v̂y, . . . , v2k)〈vx, vy〉 that correspond to
∏k

l=1〈vπ(2l−1), vπ(2l)〉. This correspondence
is unique up to equivalence class and extends to a partition on the sums between
these sets so we have

H2k(v1, . . . , v2k) =
2(2k − 2)!

(2k)!

∑

0≤x<y≤2k

H2k−2(v1, . . . , v̂x, . . . , v̂y, . . . , v2k)〈vx, vy〉

=

(
2k

2

)−1 ∑

0≤x<y≤2k

H2k−2(v1, . . . , v̂x, . . . , v̂y, . . . , v2k)〈vx, vy〉.

Extending this to Ak,

Ak =

(
n+ 2k

2k

)−1(
2k

2

)−1 ∑

0≤i1≤i2,...,≤i2k≤n

( ∑

0≤x<y≤2k

H2k−2(vi1 , . . . , v̂ix , . . . , v̂iy , . . . , vi2k)〈vix , viy〉
)

=

(
n+ 2k

2k

)−1(
2k

2

)−1 ∑

0≤i1≤i2,...,≤i2k−2≤n

∑

0≤x<y≤2k


H2k−2(vi1 , . . . , vi2k−2

)
∑

0,ix−1≤r≤ix,s
iy−2≤s≤iy−1,n

〈vr, vs〉


 .
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Abstract

In this paper, we develop the theory of (m,n)-pseudoplanes, a generalization of
projective planes. In particular, we consider the natural analogue of the question
posed by Erdős of whether every finite partial plane embeds in a finite projective plane
to see that it trivializes in the case of (m,n)-pseudoplanes with m or n ≥ 3. This fact
implies that the theory of generic (m,n)-pseudoplanes has no prime model.

1 Non-degeneracy in (m,n)-pseudoplanes

An incidence structure (P,L, I) is a set of points P, a set of lines L, and a binary relation
of incidence I between them.

We say a set of points A is incident to a set of lines B when each point in A is incident
to each line in B. Abusing notation, we say that a point p is incident to a set of lines B
when {p} is incident to B, and similarly for a line and a set of points.

Definition 1.1. A (m,n)-configuration is an incidence structure such that no set of m
points is incident with a set of n lines.

Definition 1.2. When m,n ≥ 2, a non-degenerate (m,n)-pseudoplane is an incidence
structure such that

1. Every set of m points is incident with exactly n− 1 lines.

2. Every set of n lines is incident with exactly m− 1 lines.

3. (Non-degeneracy) There exist some mn points such that no m+1 of them are incident
to a single line, and there exist some mn lines such that no n+ 1 of them are incident
to a single point.

Projective planes are (2, 2)-pseudoplanes. In particular, the existence of a quadrangle
in a projective plane implies the existence of its dual structure, a quadrilateral, in that
projective plane, and so both halves of the non-degeneracy axiom in Definition 1.2 are
satisfied.

The concept of duality in projective planes generalizes to pseudoplanes, but whereas the
dual of a projective plane is another projective plane, the dual of an (m,n)-pseudoplane
is an (n,m)-pseudoplane: if (P,L, I) is an (m,n)-pseudoplane, its dual is (L,P, I∗), where
(l, p) ∈ I∗ ⇐⇒ (p, l) ∈ I, an (n,m)-pseudoplane. Statements about (m,n)-pseudoplanes
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can be dualized by both exchanging “point” for “line”and vice versa and replacing m by
n and vice versa. Thus the statement of non-degeneracy in Definition 1.2 consists of the
statement, there exist some mn points such that no m+ 1 of them are incident to a single
line, and its pseudoplane dual.

The following two propositions are consequences of non-degeneracy; indeed, non-degeneracy
will typically be used in one of these forms. It is nevertheless helpful to define non-degeneracy
with an existential statement, as above, being both easier to check and more clearly a gen-
eralization of non-degeneracy in projective planes.

Proposition 1.3. In a non-degenerate (m,n)-pseudoplane,

(a) For each set of n− 1 lines, there exists a set of 2m− 1 points incident to it.

(b) For each set of m− 1 points, there exists a set of 2n− 1 lines incident to it.

Proof. Suppose A is a non-degenerate (m,n)-pseudoplane, fix a set S of n−1 lines in A, and
let T be the set of all points incident to S. We wish to show |T | ≥ 2m − 1. By definition,
A contains some set of mn points such that no m + 1 of them lie on a single line; denote
this set of points by Q. No more than m points of Q are incident to any line in S, and so
no more than m(n − 1) points in Q are incident with any line in S. Thus since |Q| = mn,
we may pick some m− 1 points in Q so that no point is incident to any line in S; call this
set K.

Any set K of m − 1 points in Q is incident to at least (mn −m + 1)(n − 1) lines: for
each point p ∈ Q \K, there is a set Jp of n − 1 lines incident to {p} ∪K, and the sets Jp
are mutually disjoint, since no m+ 1 points in Q are incident to any line.

Thus there is a set R of (mn−m+ 1)(n− 1) lines incident to K. Certainly R ∩ S = ∅,
since K is incident to each line in R but to no lines in S. Similarly, T ∩K = ∅, since the
points in T are incident to S but those in K are not.

We now count the number of pairs (p, l) where p ∈ T , l ∈ R, and p is incident to l.
On the one hand, for each l ∈ R, there are precisely m − 1 points incident to {l} ∪ S,
which is to say, there are m − 1 points in T incident to l. Thus there are |R|(m − 1) =
(mn −m + 1)(n − 1)(m − 1) such pairs. On the other hand, for a point p ∈ T , there are
n− 1 lines incident to {p} ∪K and so at most n− 1 lines in R incident to p. Thus we have
the inequality

|T |(n− 1) ≥ (mn−m+ 1)(n− 1)(m− 1)

|T | ≥ (mn−m+ 1)(m− 1)

Now,

(mn−m+ 1)(m− 1) = (m(n− 1) + 1)(m− 1)

= (m(n− 1)− (n− 1) + 1)m− 1

= ((m− 1)(n− 1) + 1)m− 1

≥ 2m− 1

since m ≥ 2, n ≥ 2. Thus
|T | ≥ 2m− 1

as desired. The proof of the dual statement is similar.
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Proposition 1.4. Suppose A is a non-degenerate (m,n)-pseudoplane. Then for each set S
of m points in A, there exist some n lines such that no line is incident with any point in
S. Similarly, for each set T of n lines in A, there exist some m points such that no point is
incident with any line in T .

Proof. Suppose S1 is a set of m points in A. Then there are exactly n − 1 lines which go
through each point in A; call this set T1. By Proposition 1.3, there are at least 2m − 1
points which are on each line in T1: all of the points in S1, of which there are m, and at
least m − 1 other points not in A. Let S2 be a set of m − 1 of these points which are not
in S1 but are on each line in T1. By Proposition 1.3 again, there are at least 2n − 1 lines
which go through each point in S2. T1 accounts for n− 1 of these lines, so there are at least
n others; Let T2 be a set n lines not in T1 which go through each point in S2.

We claim that no point in S1 is incident with any line in T2. Suppose there were some
point p ∈ S1 and line l ∈ T2 such that p was on l. Then {p}∪S2 is a set of m points each of
which lies on each line in {l} ∪ T1, a set of n lines. But A is an (m,n)-pseudoplane, and so
no m points can be incident with n lines. Thus no point in S1 is incident with any point in
T2, and in general for each set of m points in A, there exists some set of n lines such that
none of the m points are incident with any of the n lines. The proof of the dual statement
is similar.

The next proposition generalizes the result in projective planes that if one point has
n+ 1 lines incident to it, each point has n+ 1 lines incident to it, and likewise the dual.

Proposition 1.5. In any non-degenerate (m,n)-pseudoplane with m,n ≥ 2:

(a) The number of lines through each set of a points is the same for 1 ≤ a ≤ m.

(b) The number of points on each set of b lines is the same for 1 ≤ b ≤ n.

Proof. We prove (a) by induction. If a = m, the statement is clear, since there are precisely
n − 1 lines which go through each set of m points in any (m,n)-pseudoplane. Thus fix a
with 1 ≤ a ≤ m − 1 and suppose that for each a < c ≤ m there is some constant Lc so
that there are exactly Lc lines incident with each point in any set of c points. To show (a),
then, it suffices to show that, given this induction hypothesis, if A1 and A2 are two sets
of a points in some non-degenerate (m,n)-pseudoplane such that |A1 ∩ A2| = a − 1, then
the number of lines which go through each point in A1 is the same as the number of lines
which go through each point A2. Then for A and A′ sets of a points each (with arbitrary
intersection) we can construct a chain A,A1, . . . Ak−1, A

′ of sets of a points with k ≤ a such
that two adjacent sets in the sequence share a− 1 points. By induction and transitivity we
can then see that the number of lines which go through each point in A is the same as the
number of lines which go through each point A′.

So suppose A1 and A2 are two sets of a points in some non-degenerate (m,n)-pseudoplane
such that |A1 ∩A2| = a− 1. Then |A1 ∪A2| = a+ 1 ≤ m, so by Proposition 1.4, there exist
some n lines which don’t go through any point in A1 or A2. Let B be a set of n− 1 of these
lines not incident with any point in A1 ∪ A2. Denote the number of points on each line in
B by rB and the number of lines incident with each point in A1 by tA1

, and the number of
lines incident with each point in A2 by tA2

.
We count the number of ordered pairs (p, l) where p is a point incident to B, l is a line

incident to A1, and p is incident to l. On the one hand, we can first pick a point p incident
to B, for which there are rB choices, and then pick a line l incident to p and to A. Since
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|A1| = a, l is picked incident to a set of a + 1 points, and so by the induction hypothesis,
there are La+1 possibilities for l. Thus the number of ordered pairs (p, l) with the desired
properties is rBLa+1. On the other hand, we can first pick the line l incident to A1, for
which there are tA1

choices, and then pick a point p incident to l as well as B, for which
there are m − 1 choices, since |B ∪ {l}| = n, for a total of tA1

(m − 1) pairs (p, l) with the
desired incidences. Thus rBLa+1 = tA1(m− 1).

An identical argument counting the number of ordered pairs (p, l) where p is a point
incident to everything in B, l is a line incident to everything in A2, and p is incident to l
shows rBLa+1 = tA2

(m− 1). Thus since m ≥ 2, tA1
= tA2

, as desired.
Thus by the chaining argument and induction, we have showed the number of lines

through any set of a points is the same. The proof of (b), the dual statement, is similar.

Definition 1.6. In a non-degenerate (m,n)-pseudoplane, denote the cardinality of the set
of lines incident to each point in a set of a points La for 0 ≤ a ≤ m. Denote the cardinality
of the set of points incident to each line in a set of b lines by Pb for 0 ≤ b ≤ n.

Notice that L0 is just the number of lines and P0 is just the number of points, and so
the constants La and Pb are well-defined by Proposition 1.5. In an (m,n)-pseudoplane, it
is possible that La and Pb are infinite cardinals; the proof of Proposition 1.5 implies the
constants are well-defined even when they are infinite.

In a finite projective plane of order n, P1 = L1 = n+ 1.
There are tight relationships between the constants La and Pb which we will prove

in Proposition 1.8 using counting arguments. The following technical lemma ensures the
existence of the starting configurations used in these counting arguments.

Lemma 1.7. In any non-degenerate (m,n)-pseudoplane, if a, b, r, and s are nonnegative
integers such that a ≤ m, b ≤ n, r ≤ a, s ≤ b, if a = m then s ≤ n − 1, if b = n then
r ≤ m − 1, and r = a if and only if s = b, then there exists a configuration of a set A
of a points and a set B of b lines such that there are exactly r points in A incident with
everything in B, and exactly s lines in B incident with everything in A.

Proof. In a non-degenerate (m,n)-pseudoplane, there are at least m points, and by Propo-
sition 1.4 there are n lines with no incidences to any of the m points. Thus since a− r ≤ m
and b− s ≤ n, certainly we can find a set A1 of a− r points and and a set B1 of b− s lines
with no incidences between any of these points and lines. Now, if a − r < m, there are at
least 2n− 1 lines incident to A1, and so we can choose s of these lines to form a set B2. On
the other hand, if a − r = m, then since a ≤ m and 0 ≤ r ≤ a, we have a = m and r = 0.
Then s ≤ n− 1 is given. The number of lines through all a− r points is n− 1, and so since
s ≤ n− 1 we may pick s lines incident with everything in A1 to form a set B2.

Notice B1∩B2 = ∅ if a 6= r, since the lines in B1 are not incident to the points in A1 but
the lines in B2 are. Thus |B1 ∪B2| = (b− s) + s = b. Indeed, even if a = r, b = s is given;
then B1 = ∅, B1 ∪ B2 = B2, and |B1 ∪ B2| = s = b. So regardless, we see |B1 ∪ B2| = b.
Then if b < n, there are at least 2m − 1 ≥ m points on all lines in B2 and so certainly we
may choose a set A2 of r ≤ m points incident to everything in B2. On the other hand, if
b = n, then r ≤ m− 1 is given, and again we can choose A2 to contain r points so that each
point is incident to B2.

Now A1 ∩A2 = ∅ if b− s 6= 0, since A2 is incident to those things in B1 but A1 is not;
and even if b− s = 0, then also a− r = 0 is given, so A1 is empty anyways. Either way, we
see |A1 ∪A2| = a.
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Let A = A1 ∪A2 and B = B1 ∪B2. A is a set of a points and B is a set of b lines. The
points in A incident with everything in B are precisely the points in A2, of which there are
r. The lines in B incident with everything in A are precisely the lines in B2, of which there
are s. Thus we have shown the existence of the desired configuration.

When κ is an infinite cardinal and a is a nonnegative integer, we denote by κ − a the
cardinality of a set of κ elements from which a elements have been removed, and we denote by(
κ
a

)
the cardinality of the set of subsets of size a of a set of size κ. Note that κ−a =

(
κ
a

)
= κ

if a ≥ 1.

Proposition 1.8. In any non-degenerate (m,n)-pseudoplane, if a, b, c, d, r, and s are non-
negative integers such that a+ c ≤ m, b+ d ≤ n, r ≤ a, s ≤ b, if a = m then s ≤ n− 1, if
b = n then r ≤ m− 1, and r = a if and only if s = b, then:

(
La − s
d

)(
Pb+d − r

c

)
=

(
Pb − r
c

)(
La+c − s

d

)
(1)

Proof. By Lemma 1.7 we can find a configuration of a set A of a points and a set B of b
lines such that there are exactly r points in A incident with everything in B, and exactly s
lines in B incident with everything in A. We count the cardinality of the set S of ordered
pairs of sets (C,D) where C is a set of c points, D is a set of d lines, C ∩A = ∅, D∩B = ∅,
everything in A is incident with everything in D, everything in C is incident with everything
in B, and everything in C is incident with everything in D. If we choose the set D of d lines
first, we need D incident to everything in B and D ∩ B = ∅; there are La lines incident
to everything in A, but exactly s of those lines are in B. Thus there are

(
La−s
d

)
choices

for D, if we choose it first. Then we pick a set C of c points such that everything in C is
incident with everything in B and D (of which there are Pb+d points) and is disjoint from
A (which has r points incident to everything in B ∪D), for

(
Pb+d−r

c

)
choices of C given D.

Thus |S| =
(
La−s
d

)(
Pb+d−r

c

)
. On the other hand, we can count the choices for C first, and

multiply by the choices for D given C: in this case, there are
(
Pb−r
c

)
choices for a set C

incident with everything in B and disjoint from A and
(
La+c−s

d

)
choices for a set D incident

with everything in A ∪ C and disjoint from B. Thus also |S| =
(
Pb−r
c

)(
La+c−s

d

)
, and so (1)

holds, as desired.

The identities in Proposition 1.8 are quite constraining; indeed, as we see in the next
theorem, in finite (m,n)-pseudoplanes which are not projective planes, the identities are
inconsistent, allowing us to conclude there are no finite (m,n)-pseudoplanes with m ≥ 3 or
n ≥ 3.

Theorem 1.9. All non-degenerate (m, n)-pseudoplanes with m ≥ 3 or n ≥ 3 are infinite.

Proof. Suppose there were some finite non-degenerate (m,n)-pseudoplane A for m ≥ 3 and
n ≥ 2. We substitute a = m − 1, b = 1, c = d = 1, r = 1, s = 0 in 1 (since they clearly
satisfy the hypotheses) to see

Lm−1(P2 − 1) = (P1 − 1)Lm.

Furthermore, with a = m− 1, b = 1, c = d = 1, r = s = 0, we see from 1,

Lm−1P2 = P1Lm.
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Since A is finite, all of the constants La and Pb are constant; thus, subtracting, we see

Lm−1 = Lm = n− 1.

But by Proposition 1.3, Lm−1 ≥ 2n − 1 > n − 1, a contradiction. Thus there can be no
finite non-degenerate (m,n)−pseudoplanes for m ≥ 3 and n ≥ 2.

The proof of the case m ≥ 2, n ≥ 3 is similar, with substituting a = 1, b = n−1, c = d =
1, r = 0, s = 1 in (1) to see (L1 − 1)Pn = Pn−1(L2 − 1) and a = 1, b = n− 1, c = d = 1, r =
s = 0 in (1) to see L1Pn = Pn−1L2. Then Pn−1 = Pn, contradicting Proposition 1.3. Thus
the only finite non-degenerate (m,n)-pseudoplanes are projective planes, as desired.

The following questions about non-degeneracy in (m,n)-pseudoplanes remain open:

1. There is a well-known classification of the degenerate projective planes. Can the non-
degenerate (m,n)-pseudoplanes be similarly classified?

2. Does the condition that there are mn points, no m+1 of which are incident to a single
line imply its dual?

3. Can our non-degeneracy condition be replaced with a simpler (and self-dual) condition
which still suffices for the results in this section?

2 The existence and properties of (m,n)-pseudoplanes

While there are no finite non-degenerate (m,n)-pseudoplanes, there are plenty of infinite
ones.

Definition 2.1. Suppose A = (P0,L0, I0) is an (m,n)-configuration. Define F0(A) = A.
Then for each k ≥ 0, given an (m,n)-configuration Fk(A) = (Pk,Lk, Ik), define the (m,n)-
configuration Fk+1(A) = (Pk+1,Lk+1, Ik+1) as follows:

1. Pk+1 includes all the points in Pk. Furthermore, for each set Si of n lines in Lk, let
di be the number of points incident to Si. Then Pk+1 also contains m − 1 − di new,
distinct points incident to Si.

2. Lk+1 includes all the lines in Lk. Furthermore, for each set Tj of m points in Pk, let
ej be the number of points incident to Tj . Then Lk+1 also contains n − 1 − ej new,
distinct lines incident to Tj .

3. Ik+1 is Ik, plus the incidences involving the added points and lines described above.

Note that, by induction, each Fk(A) is in fact an (m,n)-configuration, as in Conant and
Kruckman [1, Proposition 2.3].

Let P = ∪∞k=0Pk, L = ∪∞k=0Lk, I = ∪∞k=0Ik. Then the free completion of the configura-
tion A0 = (P0,L0, I0) is F (A) = (P,L, I)

Proposition 2.2. The free completion of an (m,n)-configuration is a (possibly degenerate)
(m,n)-pseudoplane. The free completion of an (m,n)-configuration which contains some
mn points such that no m+ 1 are incident to a single line and contains some mn lines such
that no n+ 1 are incident to a single point is a non-degenerate (m,n)-pseudoplane.
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Proof. The first statement is Proposition 2.3 in [1, p. 3]. The second is by the definition of
non-degeneracy, since A embeds in F (A) and so the configurations contained in A are also
contained in F (A).

In infinite (m,n)-pseudoplanes, the constants La and Pb are well-defined as infinite
cardinals for which the combinatorial relationships found in Section 2 still stand.

Lemma 2.3. In an infinite non-degenerate (m,n)-pseudoplane, the constants La and Pb
are the same infinite cardinal, for 0 ≤ a ≤ m− 1 and 0 ≤ b ≤ n− 1

Proof. In an infinite (m,n)-pseudoplane, some Li or Pj will be infinite. Since L0 ≥ Li and
P0 ≥ Pj , either P0 or L0 will be infinite also. Then P0 = L0:

Setting a = r = 0, b = s = 0, c = m− 1, d = n in (1) yields

(
L0

n

)
=

(
P0

m− 1

)(
Lm−1

n

)
(2)

and similarly a = r = 0, b = s = 0, c = m, d = n− 1 in (1) yields

(
L0

n− 1

)(
Pn−1

m

)
=

(
P0

m

)
. (3)

Thus if L0 is infinite, equation (3) shows P0 must be infinite also, and in fact P0 ≥ L0.
Then equation (2) yields L0 ≥ P0, and so together we have P0 = L0. We get the same result
starting with P0 infinite and using equation (2) and then (3).

Now, using a = r = 0, b = s = n− 1, c = m− 1, d = 1 in (1) yields

(L0 − n+ 1)

(
m− 1

m− 1

)
=

(
Pn−1

m− 1

)
(Lm−1 − n+ 1) (4)

Thus, if L0 is an infinite cardinal, both sides of the equation will be infinite, and so at least
one of Pn−1 and Lm−1 will be infinite also.

Using r = a− 1, s = b− 1, c = m− a, d = n− b in (1) yields that for all 1 ≤ a ≤ m and
1 ≤ b ≤ n,

(
La − b+ 1

n− b

)(
m− a
m− a

)
=

(
Pb − a+ 1

m− a

)(
n− b
n− b

)

(
La − b+ 1

n− b

)
=

(
Pb − a+ 1

m− a

)
. (5)

At a = m− 1, equation (5) holds for all 1 ≤ b ≤ n as

(
Lm−1 − b+ 1

n− b

)
= (Pb −m+ 2) (6)

So if Lm−1 is infinite, for 1 ≤ b ≤ n− 1, Pb is infinite also. Likewise, at b = n− 1 equation
(5) holds for all 1 ≤ a ≤ m as

(La − n+ 2) =

(
Pn−1 − a+ 1

m− a

)
(7)

So if Pn−1 is infinite, for 1 ≤ a ≤ m− 1, La is infinite also.
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Thus, if L0 is infinite, equation (4) shows that at least one of Lm−1 and Pn−1 is also
infinite. In the former case, equation (6) yields that for 1 ≤ b ≤ n − 1, Pb is infinite also,
and in fact is equal to Lm−1. Then, in particular, Pn−1 is infinite and equal to Lm−1, so
equation (7) yields that La is infinite and equal to Lm−1 for all 1 ≤ a ≤ m−1 also. Then (4)
shows that L0 = Pn−1Lm−1 = L2

m−1 = Lm−1. Since L0 = P0, we have that the constants
La and Pb are the same infinite cardinal, for 0 ≤ a ≤ m− 1 and 0 ≤ b ≤ n− 1 .

If instead we take (4) with Pn−1 infinite, the same argument shows the same result, but
with (6) and (7) used in the opposite order.

Corollary 2.4. In an infinite (m,n)-pseudoplane, P0 and Lm−1 are infinite.

Proof. In an infinite (m,n)-pseudoplane, some constant La or Pb is infinite, with 0 ≤ a ≤
m − 1 or 0 ≤ b ≤ n − 1. Then P0 and Lm−1 are both equal to that infinite cardinal, by
Lemma 2.3.

3 Model theoretic consequences

We consider (m,n)-configurations in the language L = {P,L, I}, where P is a unary pred-
icate for points, L is a unary predicate for lines, and I is a binary relation for incidence
between points and lines.

The theory of (m,n)-pseudoplanes has a model companion, Tm,n, as in [1, p. 4]. Models
of Tm,n are the existentially closed (m,n)-pseudoplanes.

The following background is found in [1].

Definition 3.1. Let A be an (m,n)-configuration with elements labeled (possibly with
repeats) by the variables x̄. The diagram DiagA(x̄) is the set of all atomic and negated
atomic formulas true in A.

As in [1, p. 4], when A is finite, we identify DiagA(x̄) with the formula
∧
ϕ∈DiagA(x̄) ϕ.

Definition 3.2. Fix an (m,n)-pseudoplane B. We say that a subset A ⊆ B is I-closed (in
B) if, for all pairwise distinct points a1, . . . , am ∈ A, if some line b ∈ B is incident to each
of the ai, then b ∈ A, and, dually, for all pairwise distinct lines b1, . . . , bn ∈ A, if some point
a ∈ B is incident to each of the bj , then a ∈ A. The I-closure in B of a set A ⊆ B is the
smallest I-closed subset of B containing A. If the I-closure of A in B is all of B, then we
say A generates B.

Proposition 3.3 ([1, Corollary 2.15]). Two tuples a and a′ have the same type if and only
if there is an isomorphism of their closures which sends a to a′.

Definition 3.4. Given an (m,n)-configuration A, a basic existential formula is one of the
form

∃ȳ DiagA(x̄, ȳ)

where DiagA(x̄, ȳ) implies that x̄ generates xy.

While Tm,n does not have full quantifier elimination, it does have almost quantifier
elimination.

Proposition 3.5 ([1, Proposition 2.17]). Modulo Tm,n, every formula is equivalent to a
finite disjunction of basic existential formulas.
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Lemma 3.6. Suppose A is a finite partial (m,n)−pseudoplane whose free completion F (A)
is infinite and non-degenerate. Then there is an (m,n)-pseudoplane B such that A embeds
in B and generates B, but B and F (A) are not isomorphic over A.

Proof. We inductively find lines r1, . . . , rnm+2n+2 so that no n + 1 lines are incident with
a single point, and if ki is the minimal such that ri ∈ Fki(A), then k1 < · · · < knm+2n+2

(i.e., the line rj first appears in a strictly later step of the free completion than all the ri for
i < j). Let r1 be any line in F (A). Now suppose we have found ri for i ≤ l < nm+ 2n+ 2.
Let X be the set of all intersection points of some n of the lines ri for i ≤ l in F (A). The set
X is finite, since n lines intersect at exactly m−1 points in the free completion, so certainly
we can pick m−1 points d1, . . . dm−1 in F (A)\X, since F (A) is infinite and so has infinitely
many points by Corollary 2.4. There are infinitely many lines through d1, . . . dm−1, again
by Corollary 2.4, and so we can choose one which is not in Fkl(A) and not incident with
any point in X to serve as rl+1; Fkl(A) is finite, X is finite, and for each point x ∈ X, there
are only n− 1 lines through d1, . . . , dm−1, and x.

Partition the nm+2n+2 lines into four sets (of cardinalities m+1, n+1, (m+1)(n−1),
and 1, respectively) as follows:

S1 = {ri : 1 ≤ i ≤ m+ 1}
S2 = {ri : (m+ 1) + 1 ≤ i ≤ (m+ 1) + (n+ 1)}
S3 = {ri : (m+ 1) + (n+ 1) + 1 ≤ i ≤ (m+ 1) + (n+ 1) + (m+ 1)(n− 1)}
S4 = {ri : i = (m+ 1) + (n+ 1) + (m+ 1)(n− 1) + 1}.

Let k = knm+2n+2. In Fk(A), rnm+2n+2 is incident with m points, each of which lies on
at most n− 1 lines ri in S1 ∪S2 ∪S3, by construction. So since |S3| = (m+ 1)(n− 1), there
are at least n− 1 lines in S3 without any intersection points to rnm+2n+2 in Fk(A). Thus,
in Fk+1(A) there are m − 1 new points b1, . . . , bm − 1 lying on rnm+2n+2 and some n − 1
points in S3.

There is no line in Fk+1(A) through b1, . . . , bm−1 and any intersection point of any n
lines in S2, since the bi in Fk+1(A) lie only on n lines in S3 and S4. Thus in Fk+2(A) there
are distinct connecting lines through b1, . . . , bm−1 and each intersection point of n lines in
S2. There are n + 1 lines in S2, and so there are n + 1 collections of n lines in S2, each of
which has m − 1 intersection points; and each of those intersection points is being paired
with b1, . . . bm−1 to yield n− 1 lines which go through all of them; and so this construction
yields (n+ 1)(m− 1)(n− 1) new distinct lines in Fk+2(A). Call this set of lines C.

Since n(m− 1) ≥ 2, we have n(m− 1) +m− 1 ≥ m+ 1, and (n+ 1)(m− 1) ≥ (m+ 1).
Thus |C| = (n + 1)(m − 1)(n − 1) ≥ (m + 1)(n − 1). Therefore we can construct m + 1
mutually disjoint sets each containing n− 1 of the lines in C as well as one line in S1. Since
no line in S1 is incident to any bi or intersection point of n lines in S2 by construction, each
of these new sets has no intersection points. Thus in Fk+3(A) each will give rise to m − 1
intersection points, and in particular there will be some c1, . . . cm+1 not on the same line in
F (A).

However, we can extend Fk+3(A) to a larger partial (m,n)-pseudoplane B0 by adding
a line incident to each of c1, . . . cm+1. Then A embeds in F (B0) and generates F (B0), but
F (B0) and F (A) are not isomorphic over A.

We will use the following variant of Lemma 3.6 in the proof of Theorem 3.7 below:
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SupposeA is a finite (m,n)-configuration, such that any completion ofA is non-degenerate.
Then for any (m,n)-configuration B containing A and generated by A, B has multiple com-
pletions which are not isomorphic over A.

A final version of this paper will contain a proof of the above statement.
Recall that a model M of a theory T is a prime model if for all models N of T , there is

an elementary embedding of M into N . A countable complete theory with infinite models
has a prime model if and only if every formula is contained in a complete type which is
isolated by a single formula [3, p. 168].

Theorem 3.7. Tm,n does not have a prime model if m ≥ 3 or n ≥ 3.

Proof. Let A be a finite (m,n)-configuration which contains some mn points such that no
m + 1 are incident to a single line and contains some mn lines such that no n + 1 are
incident to a single point. Let x̄ enumerate A. We claim that DiagA(x̄) is not contained in
a complete, isolated type.

Suppose for contradiction p(x̄) is a complete isolated type which contains DiagA(x̄). By

almost quantifier elimination, there is some formula ϕ(x̄) =
∨k
i=1 θi(x̄) where the formulas

θi(x̄) are basic existential formulas, which isolates p(x̄) 3.5. Then there is some θi(x̄) such

that θi(x̄) ∈ p(x). Certainly θi(x̄) implies
∨k
i=1 θi(x̄), which in turn implies the type p, and

so θi(x̄) itself isolates p(x̄). Thus a basic existential formula θi(x̄) = ∃ȳ DiagB(x̄, ȳ), where
B is an (m,n)-configuration into which A embeds, isolates the complete type p.

B, since it contains A, contains some mn points such that no m + 1 are incident to a
single line and contains some mn lines such that no n + 1 are incident to a single point.
Thus the free completion of B is infinite: F (B) is an non-degenerate (m,n)-pseudoplane, by
Proposition 2.2, and all non-degenerate (m,n)-pseudoplanes are infinite, by Theorem 1.9.
But then by Lemma 3.6, there are multiple completions of B (and thus also of A) which are
not isomorphic over A. But then θi(x̄) = ∃ȳ DiagB(x̄, ȳ) cannot have isolated a complete
type, by 3.3. Thus Tm,n cannot not have a prime model, as desired.
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1 Abstract

Homotopy Type Theory is an alternative foundational system for mathematics
which provides a synthetic approach to homotopy theory. In this paper, we use
homotopy type theory to demonstrate an invariant which maps Ω3(S2) to Z.
We then show that Z ≤ π3(S2) by proving that the invariant maps the hopf
construction to 1.

2 Introduction

The framework of Homotopy Type Theory allows us to examine properties of
topological spaces from an abstracted perspective. Types correspond to spaces,
and the elements of the types correspond to the points in the spaces. Further-
more, a proof that two elements of a type are equal corresponds to a path in
the corresponding space. For example, the circle S1 corresponds to a type gen-
erated by one element base1, and one nontrivial way to prove that that element
is equal to itself, visualized with a diagram like this:

base1

The type of all loops around base1, or proofs that base1 equals itself, is
written base1 = base1. When a type only has one point (or is connected),
we often want an abbreviated notation for loops around that point. We use
the operator Ω to mean loop space, so for example Ω(S1) ≡ (base1 = base1).
Similarly, we use Ωn for the nth iterated loop space. For example if type T has
only one point t, then Ω2(T ) ≡ (reflt = reflt)

Central to calculating homotopy groups of types are computations with path
spaces of types. However, in general, computing any information about path
spaces is difficult. Even the quesiton of whether two representations of a path
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are equal is difficult. We solve this problem by mapping the path space of a
type onto part of the path space of the universe U . This allows us to take ad-
vantage of univalence, which tells us that paths are no more than equivalences.
Furthermore, 2-paths in U turn out to be no more that homotopies between
equivalences, and 3-paths and beyond correspond to homotopies between homo-
topies. This correspondence is useful because both equivalences and homotopies
are special types of functions, and one can extract information from functions
by plugging in inputs to them.

3 Equivalences

We now explicitly write down the correspondence between paths in U and equiv-
alences/homotopies. Firstly, 1-paths in U may be represented by equivalences
as univalence directly tells us

(A = B) = (A ' B)

The correspondence between higher paths and homotopies can be written
down as follows for loops

Ωn+1(U , T ) =
∏

t:T

Ωn(T, t)

We need to prove this and construct explicit equivalences between these two
types for n up to 3. It turns out that the right side of the above equality can
be written as a homotopy of two functions. To make use of this, we define for
any A : U three functions

id1 : A→ A

id1 a = a

id2 : id1 ∼ id1 ≡
∏

a:A

a = a

id2 a = refla

id3 : id2 ∼ id2 ≡
∏

a:A

refla = refla

id3 a = reflrefla

We can now rephrase the above type equality and prove it. We define a type
equivalence

eqn : Ωn+1(U , T )→ idn ∼ idn

With

eq2 ≡ apfunext ◦ idtoequiv

eq3 ≡ apapfunext
◦ apfunext ◦ idtoequiv

For n = 2, 3. We also define for n = 1
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eq1 ≡ idtoequiv

Which parallels the above definitions but does not have the same type, be-
cause there is no id0.

4 Invariant

We would like to distinguish between 3-loops in S2. To do so, we will define a
map which maps the entire path space of S2 into part of the path space of U .
Specifically, we will map to the path space around the type S1 × S2

code : S2 → U
code base2 ≡ S1 × S2

ap2
code surf = eq−1

2 (two-loop)

In the last piece, we must provide an element of Ω2(U , S1×S2). To do so, we
use the type equivalence eq2 defined earlier, and supply an element two-loop :∏
t:S1×S2 t = t The definition of two-loop requires the induction principle for

both circles and spheres. The induction principles end up requiring various n-
loops in S1 and S2. In these locations, we put loop or surf when possible, and
otherwise refl.

Using code, it is easy to define the invariant itself.

invariant : Ω3(S2)→ Ω2(S2)

invariant l = eq−1
3 (ap3

codel)(base1,base2)

The hard part will be to prove that the invariant of the hopf construction
actually gives something nontrivial.

5 Hopf Construction

In order to define the hopf construction, we will need to define horizontal com-
position. In a type A, given points and paths as in the diagram below,

· · ·α β

a

c

b

d

We define
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α ∗ β : a ◦ b = c ◦ d
By path induction on α and then β. We also define a second kind of hori-

zontal composition α ∗′ β, where now we induct first on β and second α.

Next, we define a function hopf, which takes a 2-loop and gives a 3-loop.
Given a 2-loop p around a point a, it constructs a three loop by composing five
paths through the following types

reflrefla
= p−1 · p = p ∗′ p−1 = p ∗ p−1 = p · p−1 = reflrefla

The hopf function will create these five paths with five different functions,
and compose the paths together

hopf : Ω2(A)→ Ω3(A)

hopf p = ri(p) · same’(p, p−1) · agree(p, p−1) · same(p, p−1) · li(p)

Next, we will define all five of these functions. We define both of ri and li
(right inverse law and left inverse law) on all paths p

ri(p) : reflrefla = p−1 · p
li(p) : p · p−1 = reflrefla

by path induction on p. Next, we need to define the functions same and
same’, with types

same :
∏

p:Ω2(A)

p ∗ p−1 = p · p−1

same’ :
∏

p:Ω2(A)

p−1 · p = p ∗′ p−1

It turns out that these two functions don’t even need path induction, as
horizontal and vertical composition turn out to be judgementally equal on loops.
Both same and same’ are just defined as refl.

Finally, we define agree

agree :
∏

p:Ω2(A)

p ∗′ p−1 = p ∗ p−1

By path induction on p.

4



Now, finally, we can try to compute invariant(hopf(surf)), but simply plug-
ging in the definitions of hopf and invariant yields no obvious way to proceed
with the computation. We will need to make use of the correspondence between
paths in U and equivalences/homotopies from section 3. Therefore, we define a
function

hopfh : id1 ∼ id1 → id2 ∼ id2

≡
∏

a:A

a = a→
∏

a:A

refla = refla

hopfhp = rih(p) · same’h(p, p−1) · agreeh(p, p−1) · sameh(p, p−1) · lih(p)

Which produces homotopies through the following types:

id1 ∼ p−1 · p ∼ p ∗′ p−1 ∼ p ∗ p−1 ∼ p · p−1 ∼ id1

In an analagous way to hopf. Now we must define the ”h” (stands for
homotopy) version of each of the five functions, as well as define horizontal
composition on homotopies. Given

A B Cα β

f1

f2

g1

g2

Where A, B, and C are types, the arrows are equivalences, and the squig-
gly arrows are homotopies between equivalences. We define the two kinds of
horizontal composition

α ∗ β, α ∗′ β : a ◦ b ∼ c ◦ d
α ∗ β(a) ≡ apg1α(a) · β(f2(a))

α ∗′ β(a) ≡ β(f1(a)) · apg2α(a)

Now, we can define the five functions used in hopfh. First, we define tih and
lih in terms of the corresponding operations on paths.

rih(p, a) ≡ ri(P (a))

lih(p, a) ≡ li(P (a))

Note that the above functions are defined on any homotopy. By contrast, we
define sameh and same’h only on loops. Just like the corresponding operations

5



on paths can simply be defined with refl, as horizontal and vertical composition
on loops turns out to be judgementally the same

sameh(a) ≡ refl

same’h(a) ≡ refl

Finally, we define agreeh on any two homotopies α and β which can be
horizontally composed, as in the diagram from before. It has the type

agree(α, β) : α ∗ β ∼ α ∗′ β
≡

∏

a:A

apg1α(a) · β(f2(a)) ≡ β(f1(a)) · apg2α(a)

How can we get something of such a type? No doubt we could do so with
path induction, but that would defeat the entire point of looking at paths as
homotopies. The entire advantage of doing so is that homotopies are functions.
We would like to make use of the expression

apdβα(a)

Because using this will be necessary in order for the computation to work.
However, exactly how to do this will be a subject of further research.

So we know that hopfh can create a nontrivial 3-loop in homotopy form, but
in order to conclude anything about S2, we need to prove that hopf and hopfh
in some sense agree with each other. That is, we will prove the following

hopfh = eq−1
3 ◦ hopf ◦ eq2

But remember that hopf and hopfh are both made up of five corresponding
functions. We will prove that each of the corresponding functions matches up.
That is for f = ri, same’, agree, same, or li,

f = eq3 ◦ fh ◦ eq−1
2

This proof is just an application of path induction on all paths for li, ri,
and agree. For same and same’, the two sides of the equation are judgementally
equal.

6 Conclusion

We have shown how to define the hopf construction of a 3-loop given a 2-loop,
and given a way to calculate it. When surf is plugged in, the method above

6



shows that the result is nontrivial. Because of the functorality of functions,
we know that powers of the 3-loop are also nontrivial and all different, so we
know that a copy of Z is contained in the 3-loop space of S2. In the future, we
would like to extend this to a proof that π3(S2) = Z, and also define a similar
invariant on 4-loops in S3. In general, we believe that this method will allow
one to compute the loop space of any type, given that they are able to guess in
advance what it should look like, perhaps using intuition from classical algebraic
topology.
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MIXING TIMES OF RANDOM WALKS ON VARIOUS

COMBINATORIAL OBJECTS

JAMES MARSHALL REBER

Abstract. A classic mixing time result, due to Bayer and Diaconis, is on how
many riffle shuffles are required to shuffle a deck of n cards - the required num-
ber is 3

2
log2(n). In this paper, we explore the mixing times of random walks

on various graphs using a combinatorial method called coupling. In particular,
we give upper bounds on the mixing times of certain kinds of random walks on
diagonal gluings of 2-regular graphs, repeated gluings of copies of the complete

graph of size three, certain families of 3-regular graphs, and conjecture some
possible generalizations.
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1. Introduction

When describing the mixing time of random walks, we are really discussing
what it means to be “sufficiently close to random” after a certain amount of time,
or rather how long would we need to run a Markov chain until it is within ε > 0 of
its stationary distribution. The prototypical example of this comes from shuffling
a deck. When shuffling a deck, we would like to guarantee that we have a fair deck,
or one in which all possible ordering of cards are possible. The mixing times of
various shuffles, such as the random transposition shuffle, the riffle shuffle, and top-
to-random shuffle, have all been studied and have tight bounds on their mixing times
[1]. Mixing times can, however, be studied in contexts other than card shufflings;
for example, one can ask how long it takes a random walker on a graph to be
“sufficiently random” among all possible states on the graph.

Throughout this paper, we are concerned with finding the mixing times of ran-
dom walks on some special classes of graphs. In Section 1.1 and 1.2, we outline
some of the necessary theory and notation from Markov chains and graph theory.
In Section 2, we will explore the mixing times of random walks on 2-regular graphs
glued diagonally (see Figures 3 and 4 respectively). In Section 3, we will explore
the mixing times of random walks on a graph formed by gluing copies of triangles

Date: July 2018.
The author would like to thank Graham White, Indiana University and the NSF for the

opportunity to work on this project.
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(or the complete graph on three vertices) on each vertex of degree two repeated k
times (see Figure 10), as well as discuss a result on the mixing time of a random
walk on the complete graph glued repeatedly along a single vertex (see Figures 6
and 7). Finally, in Section 4, we will explore mixing times of a random walk on the
prism graph, Möbius ladder graph, and the generalized Petersen graph GP(n, k)
(see Figures 15, 16, and 19 respectively) as well as their triangulated versions (see
Figure 14), and finish by giving some possible directions for future research.

1.1. Markov Chain Theory. We first introduce some basic concepts on Markov
chains. We will be working with a discrete probability space throughout.

Definition 1.1. We call a sequence of random variables {Xi}∞i=0 on a common
state space Ω a Markov chain if it satisfies the Markov property; that is, for a
probability measure P on Ω, we have

P{Xn = y | X0 = x0, . . . , Xn−1 = xn−1} = P{Xn = y | Xn−1 = xn−1}.
Informally, this means that the probability of a future event happening depends
only on the information of the current event. Put into the context of a random
walker, if the {Xi}∞i=0 are random variables denoting the location of the random
walker, then the Markov property states that the probability of where the walker
will go in the next step depends only on where the walker is now, and not how the
walker got there.

Remark 1.2. Sometimes the indices will be dropped when referring to Markov
chains, e.g. we will write {Xi} instead of {Xi}∞i=0.

Definition 1.3. We define a transition matrix to be a matrix P such that

P (x, y) = P{Xn = y | Xn−1 = xn−1},
where Xi ∈ {Xi}∞i=0.

Proposition 1.4. We have that P t(x, y), t > 0, is the probability of going from
state x to state y in t steps.

Proof. We give a sketch of the proof here, proceeding by induction. Notice that it
holds for t = 1 by definition. We will show the case t = 2 for clarity. In this case,
we have the probability of going from a state x to a state y in two steps is the same
as going from a state x to any intermediate state z ∈ Ω in one step, and then from
state z to state y. Since it could be any intermediate state, we take a union over
these probabilities; that is,

{X2 = y | X0 = x} =
⋃

z∈Ω

{X1 = z | X0 = x} ∩ {X2 = y | X1 = z}.

Notice that {X1 = z | X0 = x} is independent of {X2 = y | X1 = z} under our
probability measure. We apply our probability measure to both sides to get

P{X2 = y | X0 = x} =
∑

z∈Ω

P{X1 = z | X0 = x}P{X2 = y | X1 = z}.

However, we can use our transition matrix notation; rewriting the right hand side,
we have

P{X2 = y | X0 = x} =
∑

z∈Ω

P (x, z)P (z, y) = P 2(x, y)

by matrix multiplication, as desired. Now, assume the statement holds for d > 0.
That is,

P{Xd = y | X0 = x} = P d(x, y).
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We want to then show the statement holds for d+ 1. However, this is analogous to
the arugment for t = 2, and so we end up with

P{Xd+1 = y | X0 = x} =
∑

z∈Ω

P{Xd+1 = y,Xd = z | X0 = x}

=
∑

z∈Ω

P d(x, z)P (z, y) = P d+1(x, y).

�
Remark 1.5. Since we have that P t(x, y) is the probability of going from x to y
in t steps, this shows that the transition matrix encodes all of the information of
the Markov chain.

Remark 1.6. Throughout, we take Ω to be the state space for our Markov chain
and P to be its transition matrix unless stated otherwise.

Definition 1.7. We say that a Markov chain is irreducible if for all x, y ∈ Ω we
have some 0 ≤ r <∞ such that P r(x, y) <∞.

In other words, it is irreducible if it is possible for the Markov chain to reach every
state from every state in a finite number of steps.

Definition 1.8. We define the period of a state x ∈ Ω to be

T (x) := gcd{t ≥ 1 | P t(x, x) > 0}.
In other words, the period is the greatest common divisor of the set of times where
x has a non-trivial probability of returning to x.

Definition 1.9. We say that a chain is aperiodic if T (x) = 1 for all x ∈ Ω, and
we say the chain is periodic otherwise.

Definition 1.10. We say that a distribution, which will be a row vector, π on Ω
is a stationary distribution if it satisfies

πP = π.

Definition 1.11. We say π̂ is a limiting distribution if it is a distribution on Ω
and

lim
t→∞

P t(x, y) = π̂(y).

The reason we care about periodicity and irreducibility is due to the following
theorem.

Theorem 1.12. If a Markov chain is irreducible and aperiodic, then it has a unique
stationary distribution which is also its limiting distribution.

Proof. This follows from Corollary 1.17 and Theorem 4.9 in [3]. �
While the proof of the above theorem is involved, we give some intuition as to

why you need these conditions. If your Markov chain was not irreducible, then that
means there are two separate components. As a result, if there even is a stationary
distribution, it will not be unique in any sense as there will be a stationary dis-
tribution for each irreducible component. Aperiodicity is important as it ensures
that our stationary distribution is the limiting distribution. Imagine the Markov
chain on the cycle Z/4Z which moves left with probability 1/2 and right with prob-
ability 1/2. We see that there is no limiting distribution, as its distribution relies
on whether or not its on an even or odd number. Thus, we really do need both
conditions for this to hold.

Throughout, we will assume all of our Markov chains will be aperiodic and
irreducible so that they will have unique stationary distributions that also are their
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limiting distributions. The stationary distribution will really be how we measure
“sufficiently random.” Taking our Markov chain to be aperiodic and irreducible, we
have that in the long run it will be close to this stationary distribution. Referring
back to the shuffling example, our stationary distribution is the uniform distribution
on all possible configurations of the deck, and so being close to the stationary
distribution means being close to having a fair deck.

We now need to formalize the notion of distance between two distributions. We
define the total variation distance between probability distributions µ and ν on
Ω to be

||µ− ν||TV = max
A⊆Ω
|µ(A)− ν(A)|.

Remark 1.13. We can equivalently define total variation distance to be

||µ− ν||TV =
1

2

∑

x∈Ω

∣∣µ(x)− ν(x)
∣∣ =

∑

x∈Ω
µ(x)≥ν(x)

(
µ(x)− ν(x)

)
.

The proof of the equivalence follows from Proposition 4.2 in [3]. A good visualiza-
tion of total variation distance can be seen in Figure 4.1 in [3].

Remark 1.14. It can be shown that total variation distance is a metric, and so
really does satisfy the intuition of distance. With the above equivalence, we also
see that it is closely related to the L1 norm.

In particular, we would like to study the position of a random walker in com-
parison to its stationary distribution. As a result, we define

d(t) := max
x∈Ω
||P t(x, ·)− π||TV

to be the distance between P t(x, ·), the random walker which is starting at x whose
position is · at time t, and π. Referring back to the example of shuffling decks,
this tells us how close our deck, starting at configuration x, is to stationarity after
t shuffles. We would like to know roughly when P t is close to π; that is, when
their total variation distance is within ε > 0. This notion makes sense as d(t) is
decreasing as t increases.

Definition 1.15. We define the mixing time to be

tmix(ε) := min{t | d(t) ≤ ε}.
Understanding the mixing time of random walks is central to our project, and

as a result we would like to be able to get bounds on the mixing time. One method
for bounding the mixing time is coupling, which we use throughout.

Definition 1.16. We define a coupling of two probability distributions µ and ν
to be a pair of random variables (X,Y ) defined on a single probability space Ω such
that ∑

y∈Ω

P{X = x, Y = y} = P{X = x} = µ(x)

and ∑

x∈Ω

P{X = x, Y = y} = P{Y = y} = ν(y).

That is, a coupling of probability distributions instills a set of rules which determine
how the two probability distributions behave relative to one another. However, if
we viewed just one probability distribution without the other, we would see that it
still satisfies being a probability distribution.
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Definition 1.17. We define a coupling of Markov chains with transition matrix
P to be a process (Xt, Yt)

∞
t=0 with the property that both {Xt}∞t=0 and {Yt}∞t=0 are

Markov chains with transition matrix P .

For example, think of the random walker starting at location x, and the same
random walker except starting at location y. Then they share a transition matrix,
P , are both Markov chains, and we can define a set of rules that each walker must
adhere to relative to the other.

Definition 1.18. Given a Markov chain on Ω with transition matrix P , we define a
Markovian coupling of two P -chains to be a Markov chain {(Xt, Yt)}∞t=0 with
state sapce Ω× Ω which satisfies, for all x, y, x′, y′

P{Xt+1 = x′ | Xt = x, Yt, y} = P (x, x′)

P{Yt+1 = y′ | Xt = x, Yt = y} = P (y, y′).

In general, we also require that if Xt = Yt for some t ≥ 0, then we have Xs = Ys
for all s ≥ t. That is, once they have coalesced, they stay coalesced.

Markovian couplings are nice in the sense that they are easy to describe. However,
Markovian couplings will not always give you the best upper bound. All couplings
in this paper will be Markovian.

We now need to connect having information on two random walkers, P t(x, ·)
and P t(y, ·), to information on the random walker compared to the stationary
distribution.

Proposition 1.19. If we define

d̄(t) := max
x,y∈Ω

||P t(x, ·)− P t(y, ·)||TV ,

then we have

d(t) ≤ d̄(t).

Proof. A proof is given in [3]. We will give a sketch here. Since π is a stationary
distribution, we have

πP = π

gives us ∑

x∈Ω

P (x, y)π(x) = π(y)

by matrix multiplication. Furthermore, we have
∑

x∈Ω

P (x,A)π(x) = π(A)

for any subset A ⊆ Ω. Now, notice that

|P t(x,A)− π(A)| =

∣∣∣∣∣∣
P t(x,A)−

∑

y∈Ω

P t(y,A)π(y)

∣∣∣∣∣∣
.

Since π is a probability distribution, we have
∑

y∈Ω

π(y) = 1,

and so we get
∣∣∣∣∣∣
P t(x,A)−

∑

y∈Ω

P t(y,A)π(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈Ω

π(y)
(
P t(x,A)− P t(y,A)

)
∣∣∣∣∣∣
.
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By the triangle inequality, this is less than or equal to
∑

y∈Ω

π(y)
∣∣P t(x,A)− P t(y,A)

∣∣.

This is a weighted average, and so in particular we have
∑

y∈Ω

π(y)
∣∣P t(x,A)− P t(y,A)

∣∣ ≤ max
y∈Ω

∣∣P t(x,A)− P t(y,A)
∣∣.

This gives us
d(t) ≤ d̄(t).

�
We see that studying d̄(t) gives us information on d(t), which we can then use to

derive the mixing time. We can then use the following theorem to get information
on bounding d̄(t), and thus on bounding d(t).

Theorem 1.20. For any two Markov chains {Xi} and {Yi} over a common state
space Ω with X0 = x, Y0 = y, let τcouple be the time of the chains coalesce. That
is,

τcouple := min{t | Xs = Ys for all s ≥ t}.
Then

d(t) ≤ d̄(t) ≤ max
x,y∈Ω

P{τcouple > t | X0 = x, Y0 = y} ≤ max
x,y∈Ω

E(τ | X0 = x, Y0 = y)

t
.

Proof. This a consequence of Corollary 5.5 in [3] and Proposition 1.19, with the
last inequality coming from Markov’s inequality. �

We will often want to transform our complicated Markov chain to a much simpler
one. We formalize this in the definition below.

Definition 1.21. Let {Xt} be a Markov chain. Then the quotient Markov
chain {X ′t} is the corresponding Markov chain quotiented out by some equivalence
relation between states. That is, there’s a bijective function between {Xt} and
{X ′t} which preserves transition probabilities.

An example of this can be seen in the proof of Proposition 3.6. More examples
of Markov chains and couplings can be found in the Appendix (Section 5).

1.2. Graph Theory. We now introduce some concepts from graph theory.

Definition 1.22. We define a graph G = (V,E) to consist of a set of vertices V
and a set of edges E ⊆ V × V .

In other words, the vertices represent some collection of objects and the edges
represent some relation between those objects. We can visually represent graphs
by having the vertices be dots and the edges be lines between the dots.

Remark 1.23. We will be working with undirected graphs, or graphs where if
(x, y) ∈ E then (y, x) ∈ E as well. A directed graph is a graph such that (x, y) ∈
E does not imply (y, x) ∈ E. We will also, for the most part, be working with
simple graphs, or graphs that do not have any kind of self-loops. Notationally,
we have (x, x) /∈ E for all x ∈ V .

In general, undirected graphs are drawn with just lines as edges (see Figure 1), and
directed graphs are drawn with arrows for edges (see Figure 2).

Remark 1.24. Notice that a Markov chain is a weighted digraph, or a directed
graph whose edges have some sort of value, and so we graphically represent Markov
chains using directed graphs.



MIXING TIMES OF RANDOM WALKS ON VARIOUS COMBINATORIAL OBJECTS 7

0

1

2

Figure 1. The undirected graph with V = {0, 1, 2}, E =
{(0, 1), (1, 0), (1, 2), (2, 1), (0, 2), (2, 0)}.

0

1

2

Figure 2. The directed graph with V = {0, 1, 2}, E = {(0, 1), (1, 0), (0, 2)}.

Definition 1.25. If (x, y) ∈ E, we say that x and y are neighbors.

Definition 1.26. Let

N(x) := {y ∈ Ω : (x, y) ∈ E}
be the set of neighbors for some vertex x. Then we say that the degree of x is

deg(x) := |N(x)|,
or the number of neighbors it has.

Definition 1.27. Say we have a graph G. We define a simple random walk on
G to be the Markov chain with state space Ω = V and transition matrix

P (x, y) =

{
1

deg(x) if (x, y) ∈ E
0 otherwise.

In other words, a random walker will uniformly select a neighbor of the vertex
it is at and move accordingly. We note that the simple random walk on G is not
always irreducible or aperiodic. If our graph is connected, that is, there exists
some path of edges such that x can get to y for all x, y ∈ V , then the simple
random walk will be irreducible. To solve the issue of periodicity, we will make our
simple random walk lazy. To do so, we simply add a 1/2 chance to stay in place.

Definition 1.28. We have a lazy random walk if our transition matrix is then

P (x, y) =





1
2 if x = y

1
2deg(x) if (x, y) ∈ E
0 otherwise.

Definition 1.29. We say that a graph is s-regular if deg(x) = s for all x ∈ V .

Definition 1.30. We define the complete graph on n-vertices to be the graph
where every vertex is connected to every other vertex, and denote it by Kn.

Definition 1.31. If we have graphs G1 = (V1, E1) and G2 = (V2, E2), then gluing
G1 to G2 along vertices x ∈ V1 and x′ ∈ V2 involves identifying x and x′ together,
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0 1

2 3 4

5 6 7

8 9

Figure 3. Diagonal gluing with n = 4, k = 3.

and then attaching all of the edges which are connected to x and x′ to this new
vertex.

Definition 1.32. We define triangulating a graph to be replacing each vertex
with a copy of C(3) and appropriately attaching edges to corresponding vertices.
More can be seen in Section 4, as well as in Figure 14.

Definition 1.33. We define the graph metric ρ to be the function which takes
two vertices v1, v2 ∈ V and measures the distance between them; in other words,
the minimum number of edges one must take to get from one vertex to another.

2. Diagonal Gluings of 2-Regular Graphs

We first define a gluing process on 2-regular graphs. Start with a 2-regular graph
of size n, and identify two vertices v1, v2 such that ρ(v1, v2) = 2 to be the corners.
At step k = 2, glue a copy of the 2-regular graph along one of the corners, and
then identify a vertex v3 to be the vertex on the new graph such that ρ(v2, v3) = 2.
Iterate this process for each remaining k; that is, identify a vertex to be the corner
and glue along that. An example is given in Figure 3. We will use the standard
lazy random walk on this graph. In other words, we define the Markov chain on
this graph as follows:

P (x, y) =





1
4 if y ∈ N(x) and deg(x) = 2,
1
8 if y ∈ N(x) and deg(x) = 4,
1
2 if y = x,

0 otherwise.

Considering even n leads us to the following proposition.

Proposition 2.1. Fix n even and any k for the proposed structure. Let {Xi} and
{Yi} be two Markov chains with transition matrix P such that they are both lazy
random walks on the graph. We have a coupling such that if τ is the time until
they coalesce, then

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ (kn)2

2
.

In particular, we see

tmix(ε) ≤ (kn)2

2ε
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Proof. We do a sort of depth-first search approach to our coupling. Let 0 be the top
left most node (i.e. the vertex on the original graph which as at maximal distance
from the glued vertex) and define h : Ω→ {0, . . . , (kn)/2} to be the function

h(v) = ρ(v, 0).

In other words, h measures the relative ’height’ of a random walker. Let Xi and
Yi be our random walkers on this graph. We see that the maximum distance will
be (kn)/2, since the maximal distance on the 2-regular graph of size n is n/2 and
we are simply increasing this distance k times. We can divide up our vertices into
classes based on their height, and since the vertices in these corresponding height
classes will have the same transition probabilities between other height classes, we
can push this to a quotient Markov chain. Thus, we can now think of this as a
random walk on the chain {0, . . . , (kn)/2} with the transition probabilities

P (x, y) =





1
4 if y ∈ N(x) and x 6= 0 nor kn

2 ,
1
2 if y ∈ N(x) and x = 0 or kn

2 ,
1
2 if x = y,

0 otherwise.

Our coupling is now the following: since we can just use the Markov chain given
above to model where our walkers are, we couple so that they both move the same
direction. If they were to try to move in a direction that doesn’t exist at the end
points, we just have the walker wait in place. This will preserves the property that
h(Xs) ≤ h(Ys), assuming without loss of generality that Xs is closer to 0. To see
how long it takes for the walkers to coalesce, we just need to measure the maximum
expected amount of time it takes for a walker to reach 0. This follows since this is
the same as measuring how long it takes Ys to reach 0, and since h(Xs) ≤ h(Ys)
we get h(Xs) = h(Ys) = 0. Let τ ′ be the amount of time it takes a walker {Xt} to
reach 0. We set up a series of functions fj = E(τ ′ | X0 = j) such that f0 = 0,

fj =
1

4
(1 + fj−1) +

1

2
(1 + fj) +

1

4
(1 + fj+1)

for 0 < j < (kn)/2, and

f(kn)/2 =
1

2
(1 + f(kn)/2) +

1

2
(1 + f(kn)/2−1).

Claim 2.2. For 0 < j < (kn)/2,

fj = 2j +
j

j + 1
fj+1.

Proof. We proceed by induction. By substitution, we have

f1 = 2 +
1

2
f2,

and so the base case holds. Now assume Claim 2.2 holds for some 1 < k < n/2− 2.
We want to then show the induction hypothesis holds for k + 1. By the above
relations, we get

fk+1 =
1

4
(1 + fk) +

1

2
(1 + fk+1) +

1

4
(1 + fk+2).

Rearranging this, we have

fk+1 =
(3 k + 2) fk+1 + 2 (k + 1) (k + (1/2) fk+2 + 2)

4 k + 4
.

Solving this for fk+1 gives

fk+1 = 2(k + 1) +
k + 1

k + 2
fk+2



10 JAMES MARSHALL REBER

0

12

3 4

56

7 8

910

11 12

Figure 4. Diagonal gluing with n = 5, k = 3.

as desired. �

Claim 2.3. With this construction, we have fi < fi+1 for all 0 ≤ i ≤ (kn)/2, and
so f(kn)/2 is the maximum over the set of fi.

Proof. It is a result of Claim 2.2 and the construction. �

With these claims, we get

f(kn)/2−1 = kn− 2 +
kn− 2

kn
f(kn)/2.

Substituting this into

f(kn)/2 =
1

2

(
1 + f(kn)/2

)
+

1

2
(1 + f(kn)/2−1

and solving gives

f(kn)/2 =
(kn)2

2
,

which gives us that

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ (kn)2

2
.

�

For odd n, the process is not as easy. The even case really allowed us to exploit
the fact that both paths leading out of the glued or corner vertex to the next glued
or corner vertex were equidistant. With odd n, we have that one of the paths
is longer than the other one. In order to remediate this, we take a much more
constructed approach. We will focus on the case of n = 5, although this procedure
can be modified for all odd n. For a visual example of the gluing procedure, see
Figure 4.

Instead of using the same transition probabilities as before, we use a modified
lazy random walk on the Markov chain.

Definition 2.4. The modified lazy random walk is the lazy random walk with
transition probabilities modified so that the stationary distribution is uniform.
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For the diagonally glued graph, the modified lazy random walk will have transi-
tion probabilities

P (x, y) =





1
8 if y ∈ N(x),
1
8

(
4− |N(x)|

)
+ 1

2 if y = x,

0 otherwise.

Proposition 2.5. We now consider n = 5. We have a coupling so that if τ is the
amount of time it takes two walkers to coalesce, then

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 24k2 − 528

25
k +

25

4
.

Furthermore,

tmix(ε) ≤ 24k2

ε
− 528

25ε
k +

25

4ε
.

Proof. We first define the coupling procedure. Take two random walkers, denoted
by {Xt} and {Yt}, and let them move randomly until they are coupled at the same
relative position on the pentagon. To be precise on same relative position, we
will need to outline a labeling procedure. For k ≥ 2, label each corner vertex by
multiples of 4 increasing. Arbitrarily choose some vertex distance 2 away from the
first corner vertex (the corner vertex we labeled as 4) to be 0. Label the vertex
adjacent to both 0 and 4 as 1. Along the other path to 4, label the vertex closest
to 0 as 1 and the vertex closest to 4 which has not been labeled as 3. Follow the
same procedure for the remaining pentagons; that is, for vertices between 4t and
4(t + 1), label the vertex distance one from both 4t and 4(t + 1) as 4t + 1, label
the vertex closest to 4t thats not labeled as 4t+ 2, and the remaining vertex on the
pentagon as 4t+ 3. Then two random walkers are on the same relative position if
the labels of the vertices they are on are in the same class modulo 4.

We will define h as in Proposition 2.1. That is,

h(v) = ρ(v, 0).

We assume again that h(Xt) ≤ h(Yt) without loss of generality. Notice, however,
we cannot do the same quotient Markov chain argument as before. This is because
vertices which are within the same height class will not necessarily have the same
transition probabilities to other vertices in other height classes. As a result, we have
to preform a different sort of procedure. Instead, we will have that the walkers will
then move in the same directions until we have h(Xt) = 0 or until h(Yt) = 4k.

From there, we shift our coupling to a different kind of coupling. This coupling
will have a few different cases: if the walkers are in the same position, they coalesce
and from then on they move the same direction; if the walkers are in the same
position relative to the pentagon (i.e., they are in the same class determined by
their distances away from both glued points), then they move together relative to
their respective pentagons; if they are in different classes, we have that they move
according to the table in Figure 5 (for simplicity, if there are not enough rows
for the corresponding paths then this means just repeat staying at the respective
vertex). For vertices beyond 7, using the labeling procedure outlined in the first
paragraph, take your vertices labels modulo 4 and proceed according to the table
(if your vertex is congruent to 0 modulo 4 and is a glued vertex, then treat it like
4).

The reason for defining the coupling procedure this way is to preserve the prop-
erty that h(Xs) ≤ h(Ys). This allows us to focus on one walker, which is simpler
than trying to focus on both. This leads us to the following proposition.
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(0,1) (0,2) (0,3) (0,4) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

(1,1) (0,0) (1,4) (0,1) (0,0) (0,2) (0,1) (3,3) (0,1) (2,1)
(0,0) (2,2) (2,2) (0,3) (4,3) (1,3) (4,4) (2,2) (3,3) (4,4)
(2,4) (1,3) (0,3) (0,4) (1,2) (4,4) (1,3) (0,4) (2,4) (3,3)
(0,1) (0,2) - (1,5) - - (1,5) (2,3) (2,5) (3,5)

- - - (2,6) - - (1,6) - (2,6) (3,6)

(4,5) (4,6) (4,7)

(1,4) (5,7) (5,8)
(6,8) (6,6) (6,6)
(5,5) (1,6) (3,7)
(4,5) (3,4) (1,7)

- - (4,7)

Figure 5. Locations and destinations of (Xt, Yt) on the pentagon.

Claim 2.6. For the coupling described above, once Xs = 0 and Yt = 4j for
0 < j < k − 1, we get h(Xs) ≤ h(Ys) for all s ≥ t. In particular, we get Xs = Ys
once h(Ys) = 0.

Proof. We show a similar statement; that is, if h(Xk) ≤ h(Yk) for all k ≤ t, then
h(Xt+1) ≤ h(Yt+1) for all possible choices of Xt+1, Yt+1. We proceed by induction.
The base case of Xt = 0 and Yt = 4j for 0 < j < K is true. Assume that s is the
first instance where this does not hold; that is, h(Xt) ≤ h(Yt) for all t ≤ s, but
h(Xs+1) may be larger than h(Ys+1). While one would normally need to consider
many different cases, using Figure 5 and the coupling procedure outline above, we
see that the only position where h(Xt) ≤ h(Yt) but h(Xs+1) may be larger on the
first pentagon is at (4, 3) (read Xs = 4, Ys = 3). The strategy will be to work
backwards and show that it is actually impossible to reach this position from the
starting configuration.

Working backwards, we see that Xs−1 = 1 or 3 and Ys−1 = 2 or 4. If Xs−1 = 1,
then we have (1, 2) or (1, 4) as options. If the walkers are at (1, 2), we see that
they either coalesce or they go to (4, 3), and so this is a possibility. We see that
at (1, 4) they cannot reach (4, 3), and so this is fine. We see that (3, 2) results in a
contradiction, and so we ignore this case. This leaves (3, 4) as an option, but as we
can see from the table this does not result in (4, 3) and so we exclude it.

In order for Xs−1 = 1, we need Xs−2 = 0 or Xs−2 = 4, and likewise for Ys−1 =
2 we need Ys−2 = 0 or Ys−2 = 3. At (0, 0), the walkers are coalesced and so
it’s impossible to reach (1, 3). At (0, 3), we see that according to the table it is
impossible for us to move to (1, 2), and so we omit it. The case (4, 2) again results
in a contradiction. (4, 3) also results in a contradiction, since this implies that they
were at this place before s. Thus, we see that at the start pentagon it is impossible
to reach the case (4, 3).

We now consider a pentagon between two glued points. We see that we run into
the same issue. Using Figure 4, we have that Xs−1 = 8 and Ys−1 = 7 leads to a
possibility of h(Xs) > h(Ys). However, for this to happen, we would need Xs−2 = 7
or Xs−2 = 5. If Xs−2 = 7, this means that Ys−2 = 6 or Ys−2 = 8 in order to have
it at 7 at time s − 1. The case of Ys−2 = 6 immediately gives us a contradiction,
since this implies h(Ys−2) < h(Xs−2). If Ys−2 = 8 and Xs−2 = 7, then we see that
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the walkers are at (7, 8), which we treat as (3, 4). In such a case, it is impossible to
get (8, 7) on the next step.

In the other direction, if Xs−2 = 5, then we have either Ys−2 = 6 or Ys−2 = 8.
Thus, we are at either (5, 6) or (5, 8). If we’re at (5, 6), we treat it as (1, 2), and so
we see that it is possible to reach (8, 7) according to the table. If the walkers are at
(5, 8), we see that it is impossible; treating this as (1, 4), we have that they must
coalesce or we’re at (5, 7) at s− 1, which prevents this case.

We then see that in order to get Xs−2 = 5 and Ys−2 = 6, we must have either
Xs−3 = 4 or Xs−3 = 8 and Ys−3 = 7 or Ys−3 = 4. We notice that by the table, it is
impossible to reach (5, 6) from (4, 7), and so we are fine. If Xs−3 = Ys−3 = 4, then
it is also impossible, and so we’re fine in such a case. If Xs−3 = 8 and Ys−3 = 4, we
run into a contradiction and so we stop. Thus, we have to consider the case (8, 7).
But this is itself a contradiction, since we assume that it was impossible to have
reached this state prior.

Since we have that it holds for the first pentagon, and for all the glued pentagons,
the only other case to consider is at the opposite end. However, for the opposite
end, we notice that by flipping the coupling we get that Ys will always be closer to
the opposite end, giving us the same result. Thus, it holds for both end pentagons
and all other glued pentagons, and so we see that we get h(Xs) ≤ h(Ys) for all
t ≥ s. As a result, once we get h(Ys) = 0 = h(Xs), we get that they have coalesced.

�

With τ being the amount of time it takes until they coalesce, we set τ = τ1 + τ2,
where τ1 is the amount of time it takes for them to couple in their respective
pentagons and τ2 is the amount of time it takes for h(Ys) = 0. Using Gambler’s ruin
(Proposition 5.1) to bound τ1 above, we have that this is bounded by a constant,

max
x,y∈Ω

E(τ1 | X0 = x, Y0 = y) ≤ 25

4
.

The bound for τ2 is a little more difficult. Using the same labeling strategy as
outlined in Figure 4 and the prior proof, we find equations for E(τ2 | Y0 = j) where
j ≡ 1 (mod 4) and j ≡ 3 (mod 4). Let fi = E(τ2 | Y0 = i}.

Claim 2.7. Let gi for 0 < i < k + 1 be the equations for E(τ2 | Y0 = j}, j ≡ 1
(mod 4), where i here represents which pentagon we’re looking at, with the origin
corresponding to i = 1 and the final corresponding to i = k. Then we have

gi =
68 + 48(i− 2)

5
+

2i− 1

2i
f4i

for 1 < i < k and

g1 = 4 +
1

2
f4.

Likewise, let hi for 0 < i < k + 1 be the formula for E(τ2 | Y0 = j}, j ≡ 3
(mod 4), where i here represents which pentagon we’re looking at, with the origin
corresponding to i = 1 and the final corresponding to i = k. Then we have

hi =
72 + (32)(i− 2)

5
+

3i− 1

3i
f4i

for 1 < i < k and

h1 = 8 +
2

3
f4.

Proof. We see that this holds for i = 1, 2 respectively by just plugging these equa-
tions in. We preform again an inductive argument. Assuming Claim 2.7 holds for



14 JAMES MARSHALL REBER

Figure 6. Gluing of two complete graphs along a single vertex,
with n = 4.

i again, we show that the inductive hypothesis holds for i+ 1. Notice that by the
recursive assignment we get

f4i =
1

8
(1 + gi) +

1

8
(1 + hi) +

1

8
(1 + f4i+2) +

1

8
(1 + gi+1) +

1

2
(1 + f4i),

gi+1 =
1

8
(1 + f4i) +

1

8
(1 + f4(i+1)) +

3

4
(1 + gi+1),

f4i+2 =
1

8
(1 + f4i) +

1

8
(1 + hi+1) +

3

4
(1 + f4i+2),

hi+1 =
1

8
(1 + f4i+2) +

1

8
(1 + f4(i+1)) +

3

4
(1 + hi+1).

Solving these equations then gives us the desired result, showing that Claim 2.7
indeed holds. �

Using this, we can solve for when our walker is in the opposite corner, which will
give us the maximum expected value. Doing so gives us

max
x,y∈Ω

E(τ2 | X0 = x, Y0 = y) ≤ 24k2 − 528

25
k.

Summing results together gives us

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) = max
x,y∈Ω

E(τ1+τ2 | X0 = x, Y0 = y) ≤ 24k2− 528

25
k+

25

4
.

�

Remark 2.8. The method we used to find the mixing time of the diagonally glued
pentagons is not necessarily unique to the pentagon. However, it is not clear how
to sufficiently generalize these results so we can find a mixing time for all n > 5
without manually going through and preforming the calculation. Further work
could explore this, as well as just exploring the case where we use the standard lazy
random walk. One might also want to see if there is a completely general coupling
on both n even and n odd, giving us a good way to asymptotically measure the
mixing time.

3. Gluings of Complete Graphs

Suppose we took two complete graphs of size n and glued them along a single
vertex. An example of this can be seen in Figure 6. The mixing time of this graph
is explored using strong stationary times in [3] in Example 6.5.1. We do a similar
analysis here using coupling.

Proposition 3.1. The mixing time of the lazy random walk on the graph obtained
from gluing two complete graphs along a single vertex is bounded above by

tmix(ε) ≤ 4n

ε
.

Furthermore, we see that this is actually the same if we glue k ≥ 2 complete graphs
along the same vertex.
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Figure 7. Gluing complete graphs along a single vertex, with
n = 4, k = 3.

Proof. First, couple our walkers in their respective complete graphs as we did with
the pentagon example. That is, we want them to be in the same position on their
respective graphs. Flip a fair coin and move the walkers {Xn} and {Yn} according
to the coin flip. Then the probability distribution of the walkers being on the same
spot is geometric, with probability 1/(2n) of success. Let τ1 be the amount of time
it takes for the walkers to coalesce in this setting. Then since it’s geometric, we
have

max
x,y∈Ω

E(τ1 | X0 = x, Y0 = y) ≤ 2n.

Now, we shift our coupling so that the walkers always move to the same location
on their respective graphs. We have that they coalesce when they both hit the
center node; that is, the node which all the complete graphs are glued along. The
distribution is again geometric, and again we have probability 1/(2n) of success.
Let τ2 be the amount of time it takes for the walkers to coalesce here. We get now

max
x,y∈Ω

E(τ2 | X0 = x, Y0 = y) ≤ 2n.

Now, let τ = τ1 + τ2 be the amount of time it takes for the walkers to coalesce
entirely. Using the above results, we get

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) = max
x,y∈Ω

E(τ1 + τ2 | X0 = x, Y0 = y) ≤ 4n,

giving us

tmix(ε) ≤ 4n

ε
.

Notice that this same argument works for when we have k ≥ 2 complete graphs
glued along the same vertex (see Figure 7). We have then that the total mixing
time is

tmix(ε) ≤ 4n

ε
.

�

We diverge slightly to discuss a coupling on a specific version of a tree. Consider
the tree with depth k and three possible paths leading out of its root node v∗, and
each of the non-vertex non-boundary vertices have degree 2. An example of this
can be seen in Figure 8. We would like to understand the mixing time on this.

Proposition 3.2. For the above scenario, we have

tmix ≤
3k(k + 1)

ε
.
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Figure 8. Tree with three paths of length k = 2.

Proof. First, we couple based on height. Here, height will be defined in the standard
way; that is, h(v) = ρ(v, v∗). We’ll set our transition probabilities to be

P (x, y) =





1
2 if x = y = v∗,
2
3 if x = y 6= v∗ and h(x) 6= k,
5
6 if x = y, h(x) = k,
1
6 if y ∈ N(x),

0 otherwise.

We’ll then only focus on the heights of our walkers. Again, we can push to a
quotient Markov chain, using the fact that representatives in each height class have
the same probability of moving to a representative in a different heigh class. We
can then focus on the chain {0, 1, . . . , k} with transition probabilities nearly the
same as above, except the probability of moving down from 0 is 1/2. We set the
coupling so that the walkers will move in the same direction with respect to height,
that is they either move up, down, or stay together, with the caveat that at the
root node the walker may sometimes move down while the other walker stays in
place. We notice that once the walkers coalesce, they stay coalesced.

Claim 3.3. If h(X0) ≤ h(Y0), then we have h(Xt) ≤ h(Yt) for all t ≥ 0.

Proof. Notice that based on the coupling, if h(Yt) = h(Yt−1)±1 or h(Yt) = h(Yt−1),
then h(Xt) = h(Xt−1) = ±1 or h(Xt) = h(Xt−1) as well, with the exception at
h(Xt−1) = 0. Here, we sometimes get h(Xt) = h(Xt−1)+1 while h(Yt) = h(Yt−1)±1
or h(Yt) = h(Yt−1). We will couple so that if h(Yt) increases by 1 then h(Xt) will
stay at 0, if h(Yt) stays the same then h(Xt) will decrease by 1, and otherwise
h(Xt) will stay at 0. In such a case, we have coupled the walkers so that they
either coalesce or h(Yt) > h(Xt). Therefore, we get Claim 3.3 holds, since once they
coalesce they stay coalesced and otherwise we follow the same procedure again. �

As a result of the prior claim, it’s sufficient to find out when h(Ys) = 0 to
determine when they coalesce. We then repeat the recursive argument. Let fi =
E(τ | X0 = i}. Then f0 = 0,

fj =
1

6
(1 + fj−1) +

1

6
(1 + fj+1) +

2

3
(1 + fj)

for 0 < j < k, and

fk =
1

6
(1 + fk−1) +

5

6
(1 + fk).

Claim 3.4. We have

fj = 3j +
j

j + 1
fj+1.
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Figure 9. Binary tree of depth k = 2.

Proof. Again, we see that the base case holds. Assume it holds for 0 < j < k − 1.
Then we have

fj+1 =
1

6
(1 + fj) +

1

6
(1 + fj+2) +

2

3
(1 + fj+1).

Substituting in appropriate values and solving this gives us

fj+1 = 2(j + 1) +
j + 1

j + 2
fj+2

as desired. �
Claim 3.5. We have fi < fi+1 for all 0 ≤ i < k.

Proof. It is a result of Claim 3.4 and the construction. �
We see that after substituting in the appropriate values from the above claim,

we have fk = 3k(k + 1). Combining our claims grants us

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 3k(k + 1),

resulting in

tmix(ε) ≤ 3k(k + 1)

ε
.

�
We now explore the binary tree with depth k. The binary tree is generated by

attaching two vertices to every vertex of degree one; an example can be seen in
Figure 9. We then explore the mixing time of this.

Proposition 3.6. For the lazy random walk on the binary tree of depth n, we
have

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 6 · 2n.

Proof. The result can be found in Example 5.3.4 in [3]. We give the outline of
the proof here. Let h again be the distance of a node from the root node; that
is, h(v) = ρ(v, v∗). Again, we can push to the quotient Markov chain using the
height equivalence class, since transition probabilities between representatives are
coherent. Thus, we can instead just consider the Markov chain on this sequence of
numbers instead of the actual chain, with transition probabilities derived from the
lazy random walk. Then we couple based on the distance from the root; that is, if
one walker goes down, then the other walker goes down, and likewise for moving
up. Doing so gives us the upper bound of

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 6 · 2n.

This matches our intuition, since this should be much larger than the result we
found in Proposition 3.2. �



18 JAMES MARSHALL REBER

0 1
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5

6

3

4

7 8

Figure 10. Expansion gluing n = 3, k = 2.

However, the coupling and argument didn’t actually use the fact that there were
only two paths leading out of the root node. Suppose we glued another copy of the
binary tree of length k − 1 to the root node of the binary tree of length k. Then
similar to Proposition 3.1, we see that the mixing time is still the same.

We now introduce an iterated process for gluing copies of K3 for Proposition 3.7.
Throughout, we define an open vertex to be vertices whose degree is 2. At k = 1,
we simply have the complete graph itself. At k = 2, we glue a copy of the graph on
each vertex. At k = 3, we glue more copies along each open vertex. One can also
think of gluing these copies along the boundary of our new graph. An example of
this gluing procedure can be found in Figure 10.

One can then ask how we should expect the bound of the mixing time of the
modified lazy random walk to behave as we increase k. We use the transition matrix
introduced in Section 2; that is, we have

P (x, y) =





1
8 if y ∈ N(x),
1
8

(
4− |N(x)|

)
+ 1

2 if y = x,

0 otherwise.

Recall again that we do this so that the stationary distribution is uniform.

Proposition 3.7. For the above scenario, we have that for k > 1

tmix(ε) ≤ 104

3ε
2k − 16

ε
k − 100

3ε

Proof. Let our random walkers start anywhere on the graph. We couple first based
on the distance away from the first triangle. We change our height function to be

h(v) = min
x∈{0,1,2}

{ρ(x, v)}

where 0, 1, 2 will be the vertices on the origin, or center, triangle, as seen in Figure
10. We have then transformed our random walk on the large graph to a random
walk on {0, 1, . . . , k} such that when h(Xt) = h(Yt), we have h(Xs) = h(Ys) for all
s ≥ t. Imagine this set up on a line, with the leftmost position being the origin
triangle and the rightmost triangle being the boundary. Then the probability of
going left, or going towards the origin triangle, is 1/8, the probability of going right,
or away from the origin triangle, is 1/4, and the probability of staying in place is
5/8. We also have that trying to move left or right at the endpoints results in
staying in place respectively. We will also couple our walks so that whenever Xt

goes left, right, or stays in place, then Yt also goes left, right, or stays in place
respectively. It is sufficient then to find the expected amount of time it takes the
walker with the highest height to hit 0. Without loss of generality, take this walker
to be {Yt}.
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(0,1)

(0,0)
(1,1)
(2,2)
(3,5)
(4,6)

Figure 11. Locations and destinations of (Xt = 0, Yt = 1), with
top row being the initial states and remaining being the coupled
moves.

Let τ be the amount of time it takes for a walker to hit 0. We set fj = E(τ |X0 =
j). We have f0 = 0,

fk =
7

8
(1 + fk) +

1

8
(1 + fk−1),

and

fj =
5

8
(1 + fj) +

1

4
(1 + fj+1) +

1

8
(1 + fj−1)

for 0 < j < k.

Claim 3.8. We have

fj =
8(2j+1 − j − 2)

2j+1 − 1
+

2j+1 − 2

2j+1 − 1
fj+1.

Proof. Solving for f1 grants us

f1 =
8

3
+

2

3
f2,

as desired. Assume Claim 3.8 holds for j, 0 < j < k − 1. Then we must show the
inductive hypothesis holds for j + 1. We have

fj =
8(2j+1 − j − 2)

2j+1 − 1
+

2j+1 − 2

2j+1 − 1
fj+1

and

fj+1 =
5

8
(1 + fj1) +

1

4
(1 + fj+2) +

1

8
(1 + fj).

Substituting in appropriate values gives

fj+1 =
8(2j+2 − (j + 1)− 2)

2j+2 − 1
+

2j+2 − 2

2j+2 − 1
fj+2.

�
Claim 3.9. We have fi < fi+1 for all 0 ≤ i < k.

Proof. This is a result of Claim 3.8 and the construction itself. �
The prior claims give us

fk = 2k+4 − 16− 8k.

So the expected amount of time for the walkers to coalesce is bounded above by fk.
Now, we create another coupling. The walkers move the same direction on their

respective triangles until they reach the origin triangle; that is, once ρ(Xt, Yt) ≤ 1.
We then have that if they try to move to one of the other two vertices on the origin
triangle or stay in place, then they coalesce. If they otherwise move backwards,
then they move backwards identically. An example of this can be found in Figure
11, with reference to Figure 10. This then gives us a random walk on the graph of
their distance ρ(Xt, Yt) = {0, 1, 3, 5, . . . , 2k+1}, with absorption at 0, a 3/4 chance
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of going to 0 from 1, a 1/4 chance of going from 1 to 3, and the rest of the chain
remains identical to the quotient chain mentioned prior. To make things easier,
we’ll rewrite this instead as {0, 1, 2, 3, . . . , k, k+ 1} (the k here is important, and as
a result we cannot use a different variable here in its stead). We then want to find
the expected amount of time until they coalesce at 0. Again, we set up a series of
equations with fj = E(τ | X0 = j), and we see f0 = 0,

f1 =
3

4
+

1

4
(1 + f2),

fk+1 =
7

8
(1 + fk+1) +

1

8
(1 + fk),

and

fj =
5

8
(1 + fj) +

1

4
(1 + fj+1) +

1

8
(1 + fj−1),

for 1 < j < m+ 1.

Claim 3.10. We have

fj =
56 · 2j−1 − 24j − 28

7 · 2j−1 − 3
+

(
7(2j−1)− 6

7(2j−1)− 3

)
fj+1

for 0 < j < k.

Proof. We proceed by induction again. We see that substituting in j = 1 gives us

f1 = 1 +
1

4
f2,

as required. We now assume Claim 3.10 holds for j, and show it holds for j + 1.
We have

fj =
56 · 2j−1 − 24j − 28

7 · 2j−1 − 3
+

(
7(2j−1)− 6

7(2j−1)− 3

)
fj+1

and

fj+1 =
5

8
(1 + fj+1) +

1

4
(1 + fj+2) +

1

8
(1 + fj).

Substituting in the appropriate values and solving for fj+1, we have

fj+1 =
56 · 2j − 24(j + 1)− 28

7 · 2j − 3
+

(
7(2j)− 6

7(2j)− 3

)
fj+2

as desired. �

Claim 3.11. We again get fj < fj+1 for 0 ≤ j < k + 1.

Proof. Again, a result from the prior claim and the construction. �

We find that

fk+1 =
112

3
2k−1 − 8k − 52

3
.

So the expected time for the two random walkers to coalesce once they’ve coupled
using the prior couple is bounded by fk+1. Hence, if τ is the amount of time for
them to couple, we’ve found that

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 104

3
2k − 16k − 100

3
,

where k is the number of times we’ve iterated the gluing procedure. We get then

tmix(ε) ≤ 104

3ε
2k − 16

ε
k − 100

3ε

as desired. �
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(1,0,0)

(1,1,0)(0,1,0)

(0,0,0)

(0,0,1) (1,0,1)

(0,1,1) (1,1,1)

Figure 12. 3-dimensional hypercube.

Figure 13. 3-dimensional triangulated hypercube.

4. Mixing Times on Nice Classes of 3-Regular Graphs

Consider the space of binary strings of length n; that is, let

Ω = {0, 1}n = {v = (v1, . . . , vn) : vi ∈ {0, 1}} .
Definition 4.1. We define the Hamming weight on this space to be a function
H : Ω→ {0, . . . , n} such that

H(v) =

n∑

i=1

vi.

In other words, we sum the components of this vector.

Definition 4.2. We form the n-dimensional Hypercube by taking the space Ω
to be the set of vertices for our graph, and we connect an edge between v, w ∈ Ω if

|H(v)−H(w)| = 1.

We have that the 3-dimensional Hypercube forms a very nice 3-regular graph,
in that it is vertex transitive.

Definition 4.3. A graph G is vertex transitive if, for any two vertices v1, v2,
there is some map f : G→ G preserving edge-vertex connectivity (also referred to
as a graph automorphism) with

f(v1) = v2.

Remark 4.4. All of the graphs mentioned in this section will be vertex transitive.
This may be important (see the Question 4.23), however we do not really use this
property in finding any of the mixing times themselves. When referring to “nice
class of graphs,” we mean a family of vertex transitive 3-regular graphs which are
easily describable.
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→

Figure 14. Triangulating a vertex on a 3-regular graph

An example of this graph can be seen in Figure 12. The mixing time of the lazy
random walk on this graph is well understood to be

tmix ≤ n log(n)− n log(ε)

as seen in Example 5.3.1 in [3]. We would like to understand the behavior of
the modified lazy random walk on the triangulated 3-dimensional hypercube.
By triangulated, we mean replacing each vertex with a copy of K3 and attaching
corresponding edges. An example can be seen of the process can be seen in Figures
14 and the triangulated version of the 3-dimensional hypercube can be seen in 13.

Proposition 4.5. For the lazy random walk on the triangulated 3-dimensional
hypercube, we have

tmix(ε) ≤ 42

ε
.

Proof. Recall that the lazy random walk on this graph will be

P (x, y) =





1
2 if x = y,
1
6 if y ∈ N(x),

0 otherwise.

Notice that the vertices on our triangle correspond to dimensions, as can be seen
in Figure 13. That is, we have that the blue vertices correspond to moving in and
out, the red vertices correspond to moving up and down, and the green vertices
correspond to moving left and right in Figure 13. Assume that our walkers do not
match in any dimensions at their start. Then the expected amount of time until
they match in some dimension is a geometric random variable with a probability
of success being 1/6. The expected time for this is then 6. Now, our walkers
will move together in the dimension that they have matched up in, and will move
independently on either two dimensions. We now want to measure the expected
amount of time until our walkers match in another dimension. We now have three
states to consider; if our walkers are on the vertex color they have matched in, if
they are on a new color they have not yet matched in, and if they have coalesced in a
new color or dimension. We denote these by 2, 1, and 0 respectively. Doing so now
transforms our Markov chain to a walk on {0, 1, 2}. Let τ ′ be the amount of time it
takes until our walker on this new chain reaches 0. Then we set fi = E(τ ′ | X0 = i),
giving us f0 = 0,

f1 =
1

6
+

2

3
(1 + f1) +

1

6
(1 + f2),

and

f2 =
2

3
(1 + f2) +

1

3
(1 + f1).

Solving this sequence of equations gives f2 = 12 as our upper bound for this portion.
Now with our walkers matching in 2 dimensions, we want to see how long it takes
until they match in the third, and therefore coalesce. We again have the three
options we had before; our walkers are on a vertex in which they already match
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Figure 15. Prism graph of size 10

in dimension, they are on a vertex which they do not match in dimension, or they
have coalesced in this final dimension. Again, we represent these states as 2, 1, and
0. We have that our Markov chain is a walk on {0, 1, 2}, with 0 as the absorbing
state. Using the same notation as before, we have f0 = 0,

f1 =
1

6
+

1

3
(1 + f2) +

1

2
(1 + f1),

and

f2 =
5

6
(1 + f2) +

1

6
(1 + f1).

Solving this series of equations gives us f2 = 24, and so we have an upper bound of
24. If τ is the amount of time until the walkers coalesce, then we have a bound of

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 6 + 12 + 24 = 42

as desired. �

This then begs the question of whether or not there is some relation between
the mixing time of the modified random walk on the triangulated graph and the
mixing time of the modified walk on the 3-regular graphs. To explore this, we first
study the prism graph.

Definition 4.6. The prism graph on 2n vertices is constructed by taking two
cycles of length n and attaching edges between corresponding vertices. Notationally,
we have G = (V,E) is the prism graph if

V = {(a, b) | a ∈ {0, 1}, b ∈ {0, . . . , n− 1}},

E = {((a, b), (c, d)) | a = c, b = d± 1(mod n)} .
An example of a prism graph can be seen in Figures 12 and 15.

Proposition 4.7. For the lazy random walk on the prism graph of size n, we have

tmix ≤
3n2

16ε
+

6

ε

Proof. We first couple based on whether our walkers are both on the inner or
outer cycles. Flipping a coin to decide which walker moves and letting them move
wherever possible, we see that this it is a geometric random variable until our
walkers match in cycle. Since there is a probability of 1/6 of the walker moving
into the same cycle at each step, we have that the expected amount of time is 6. It
is now simply a random walk on the cycle with a higher chance of staying in place
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Figure 16. Möbius ladder graph of size 10

(2/3 chance of staying in place, and 1/6 chance of going left or right). Running
through the process, we have

fk = 3k +
k

k + 1
fk+1

leading us to have

fk = 3k
(n

2
− k
)
.

Maximizing this gives

max
x,y∈Ω

E(τ | X0 = y, Y0 = y) ≤ 3

16
n2 + 6

as desired. �
This argument lets us also find the mixing time of the Möbius ladder graph.

Definition 4.8. The Möbius ladder graph is formed by doing the same con-
struction as the prism graph, except there’s a twist at the bottom. Notationally,
we have G = (V,E) is the Möbius ladder graph of size 2n if

V = {(a, b) | a ∈ {0, 1}, b ∈ {0, . . . , n− 1}},
E = {((a, b), (c, d)) | a = b and b = d± 1(mod n), b ∈ {1, . . . , n− 2}

or a = 1− b and b = d+ 1(mod n) if d = n− 1, b = d− 1(mod n) if d = 0}.
An example can be seen in Figure 16. Since the Möbius ladder graph can be
unwound, as seen in Figure 17, we could alternatively identify this as

V = {0, . . . , 2n− 1}
E = {(a, b) | a = b± 1(mod 2n) or a = b± n(mod 2n)} .

Corollary 4.9. For the modified lazy random walk on the Möbius ladder graph,
we have that the mixing time is

tmix ≤
3n2

16ε
+

6

ε
.

Proof. Notice that the Möbius ladder graph can be unwound to get the circulant
graph, as seen in Figure 17. We identify two vertices across from one another to
be in the same class, that is, vertices v1, v2 ∈ V are in the same class if v1 =
v2 + n/2(mod n). This pushes our Markov chain to its quotient Markov chain.
We see we have a cycle on n/2, with modified probability of staying in place as in
Proposition 4.7. Moreover, once coupled in class, we just need to couple in position
itself. Flip a coin and move the walker; if it jumps across, we have the walkers
coalesce and we win. Otherwise, move the other walkers so that they are still in the
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Figure 17. Unwound Möbius ladder graph of size 10.

Figure 18. Triangulated cycle distance. Notice that we went from
3 vertices to 3(3) + 1 = 10 vertices.

same class. Then the probability of the walkers coalescing is a geometric random
variable with probability 1/6, and so we get the same constant factor of 6 as an
upper bound for this latter bound. Summing our two results together gives the
result. �

Proposition 4.10. For the lazy random walk on the triangulated prism graph of
size n, we have

tmix(ε) ≤ 15n2

16ε
+

87

5ε
.

Proof. We again want to start by coupling based on which cycle (either inner or
outer) we are in. Letting the walkers move independently of one another, we wait
until they occupy the same location relative to their triangles. This will take 6
steps, since this is just a geometric random variable. Couple the walkers so that
they now move the same direction on their relative triangles. We now wait until
they reach the vertex corresponding to moving either inwards or outwards, and then
couple it so that there’s a 1/3 chance they move to the same level, 1/3 chance they
stay in place, and 1/3 chance they move backwards together. On the remaining
two nodes, there is a 1/6 chance they move to the top node and a 5/6 chance they
stay on the base of the triangle. Solving the equations gives us that this will take
15 steps.

Now that we have they are in the same cycle, we have that they will stay in the
same cycle. We now focus on the lazy random walk on the triangulated cycle, with
the addendum that on the vertices of degree 2 (the top vertices of the triangles) we
have a 2/3 chance of staying in place. We’ll couple so that they move to the top
vertex together, move independent of one another on the bottom vertices (flip a
coin and move either left or right), and otherwise move to opposite locations on the
base from the top vertex. Using the same philosophy as with the normal cycle, we
instead look at the Markov chain constructed by the clockwise distances between
the vertices, with absorption at 0 and 3n+ 1 (here, 3n+ 1 since there are now 3n
vertices and we add an extra vertex to denote coalescing). An example of this can
be seen in Figure 18.

Claim 4.11. Let gi be the expected value of being absorbed starting at the right
most vertex in the ith triangle, hi the left most vertex on the ith triangle, and fi
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on the top most vertex on the i+ 1th triangle. Then we have

gi =
18 + 45(i− 1)

5
+

5i− 3

5i
hi+1.

Proof. This can be shown using the usual inductive argument. In the case of i = 1,
we get

g1 =
18

5
+

2

5
h2

by simply substituting in the appropriate values. Assuming it holds for i, we simply
need to substitute in appropriate values on this chain and we should get the result.
So we have

gi =
18 + 45(i− 1)

5
+

5i− 3

5i
hi,

hi =
1

6
(1 + gi) +

1

6
(1 + fi) +

1

6
(1 + gi+1) +

1

2
(1 + hi),

and

fi =
1

6
(1 + hi) +

1

6
(1 + gi+1) +

2

3
(1 + fi).

Solving all of these variables and then solving for

gi+1 =
1

6
(1 + hi) +

1

6
(1 + fi) +

1

6
(1 + gi+2) +

1

2
(1 + gi+1)

gives us

gi+1 =
18 + 45i

5
+

5i+ 2

5i+ 5
hi+1.

as desired. �

Claim 4.12. Letting k = n/2, we have

gl =
3

5
(5k − 5l + 3)(5l − 3).

Proof. This holds for the base case l = k. Assume it holds for i. We must show it
holds for i− 1. Going through the motions, we have

fi =
1

6
(1 + gi) +

1

6
(1 + hi) +

2

3
(1 + fi)

which solving gives us

fi =
3

10
+

15

2
ki− 9

2
k − 15

2
i2 + 9i+

1

2
hi.

Solving

hi =
1

6
(1 + gi−1) +

1

6
(1 + fi) +

1

6
(1 + gi) +

1

2
hi

gives us

hi =
9

25
+ 9ki− 27

5
k − 9i2 +

54

5
i+

2

5
gi−1.

Finally, using the prior claim, we have

gi−1 =
18 + 45 ((i− 1)− 1)

5
+

5(i− 1)− 3

5(i− 1)
hi.

Substituting in the hi we just found, we get

gi−1 = −3

5
(5i− 5k − 8)(5i− 8),

which satisfies the induction hypothesis. �
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Figure 19. The generalized Petersen graph GP(6, 2).

This then also gives us

hl = 15(l − 1)(k − l + 1)

and

fl = −36

5
+ 15 kl − 12 k − 15 l2 + 24l

for free by substitution. The top most node will be furthest away, so maximizing
fl with respect to l gives

15

16
n2 +

12

5
.

Adding in the constant of 21 we found earlier gives us

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 15

16
n2 +

87

5
.

�

Corollary 4.13. For the modified lazy random walk on the triangulated Möbius
ladder graph, we have that the mixing time is

tmix(ε) ≤ 15n2

16ε
+ 875ε.

Proof. The argument is analogous to the argument found in Corollary 4.9. �

We then can also explore another nice class of 3-regular graphs called general-
ized Petersen graphs, denoted by GP(n, k).

Definition 4.14. The generalized Petersen graph is constructed by having a cycle
graph of size n on the outside connected to the star polygon of size n with k
vertices between a vertex and its neighbor. Notice that we require n ≥ 3 and
1 ≤ k ≤ b(n − 1)/2c. Notationally, we have again that a graph G = (V,E) is the
generalized Petersen graph G(n, k) if

V = {(a, b) | a ∈ {0, 1}, b ∈ {0, . . . , n− 1}},

E = {((a, b), (c, d)) | a 6= c, b = d or

a = c = 1, b = d ± 1(mod n) or a = c = 0, b = d ± k(mod n)}.
Prism graphs are an example of GP (n, 1) for example. Another example can be

seen in Figure 19. We can use a similar sort of coupling procedure as we used with
the prism and Möbius graphs to find a bound for GP(n, k).
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Figure 20. The cycle with extra nodes.

Proposition 4.15. For the lazy random walk on GP(n, k), we have that the mixing
time is

tmix ≤
3d2

2ε
+

3

2ε

(
n

d

)2

+
18

ε
,

where d = n/ gcd(n, k).

Proof. We first couple our walkers so that they have the same height; i.e., they
are either on the inner cycles or on the outer cycle. Letting the walkers move
independently of one another, we find that the probability of them coalescing with
regards to inner or outer cycle, or height, is a geometric random variable with
probability 1/6. The expected value is then 6. Once the walkers share the same
height, they will always share the same height. The number of different cycles on
the inner part is d = n/ gcd(n, k), since we’re looking at the order of k in Z/nZ.
We’ll have our walkers move together on the inner part (so they move left, right,
or outward together), and on the outer part they’ll move independently of one
another. Then we see that this gives us the quotient Markov chain on the cycle n/d
with extra nodes coming outward. An example of this can be seen in Figure 20.
We can use the same philosophy as on the normal cycle; shifting this to a Markov
chain on {0, . . . , n/d} with absorbing 0 and n/d being absorbing states. Focusing
only on the nodes on the ‘inside’ portion, we set up a series of equations again.

Claim 4.16. If τ is the amount of time it takes to be absorbed, letting fj =
E(τ | X0 = j), we have

fj = 6j +
j

j + 1
fj+1,

1 < j < n/d− 1.

Proof. Notice that we have

f1 =
1

6
(1 + 0) +

1

6
(1 + f2) +

1

6
(1 + g1) +

1

2
(1 + f1),

where gi here denotes the outer nodes. For gi, we have

gi =
5

6
(1 + gi) +

1

6
(1 + fi),

and solving this gives

gi = 6 + fi.

Substituting in all the values gives

f1 = 6 +
1

2
f2,

so we have Claim 4.16 holds for the base case. Now, assume the inductive hypothesis
holds for j. We show it holds for j + 1. We set up

fj+1 =
1

6
(1 + fj) +

1

6
(1 + gj) +

1

6
(1 + fj+2) +

1

2
(1 + fj).
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0 1

2

3

4 5

Figure 21. Triangles in the Cycle

Substituting in values and solving gives

fj+1 = 6(j + 1) +
j + 1

j + 2
fj+2

as desired. �

Claim 4.17. We have

fj = 6j

(
n

d
− j
)
.

Proof. From the prior claim, we have

fn/d−1 = 6
(n
d
− 1
)
.

Assume Claim 4.17 holds by induction for i, and we want to show it holds for i−1.
Then we have

fi = 6i
(n
d
− i
)

and

fi−1 = 6(i− 1) +
i− 1

i
fi.

Substituting in the values gives us

fi−1 = 6(i− 1)
(n
d
− i+ 1

)

as desired. �

Maximizing this, and using the fact that gi > fi for all i, we have an upper
bound of (3/2)(n/d)2 + 6. Now that the walkers are in the same inner cycle (since
there are d inner cycles that we could possibly be in), we can couple with respect
to the inner cycle, measuring how long it takes for the walkers to coalesce on their
respective inner cycle. However, this is just the same process as in Claims 4.16 and
4.17, replacing n/d with d. Once we have this, we sum everything together to see
that

d(t) ≤ 3

2t

(
n

d

)2

+
3d2

2t
+

18

t
.

as desired. �

Proposition 4.18. For the lazy random walk on the triangulated GP(n, k), we
have that the mixing time is

tmix ≤
15d2

2ε
+

15

2ε

(
n

d

)2

+
9n

dε
+

9d

ε
+

96

ε
.
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Proof. We will walk through roughly the same steps as before. We first couple
our walkers so they are in the same position in their relative triangle. Moving
our walkers independently, this is a geometric random variable and so it takes on
average 6 steps. We then want to couple our walkers so that they are in the same
‘height’ on their respective triangle duo. See Figure 21 for an example. We couple
so that if our walkers move to the top of their respective triangles (2 or 3 in Figure
21), then they move together. Once they are at the top of their triangles, then
they coalesce with probability 1/3 (one hops and the other stays in place), stay
with probability 1/3, and move downward with probability 1/3. and once they are
coupled in height then they stay coupled in height. Setting up a series of recursive
functions, we find that this is bounded by 15. Once coupled with regards to height,
we then want to couple based on which inner cycle we are in, as in the proof of
Proposition 12.

This gives us a cycle of length n/d of triangles with triangles above it as well.
An example of what each state looks like can be seen in Figure 21 again. We then
would like to find the maximum expected amount of time it takes to coalesce on
the cycle. Let the walkers move together everywhere except for the base of the
triangle and left and right independently on the base of the triangle (that is, one
stays in place while the other moves left or right). When moving downward from
the top vertex of the base triangle, the walkers move to opposing spaces. We can
then preform a similar procedure as in the proof of Proposition 11, with now the
maximum expected time being at either of the top two vertices.

Claim 4.19. Take fi to be the far right vertex on the base of the ith triangle (for
example, 1 in Figure 21) and hi the left vertex on the base of the ith triangle. Then
we have

fi = 18i+
8 + 5(i− 1)− 3

8 + 5(i− 1)
hi+1.

Proof. We proceed by induction. For the base case, we just plug in values to get

f1 = 18 +
5

8
h2.

Let ki be the vertex above hi and fi (for example, 2 in Figure 21), ai be the vertex
above that (for example, see 3 in Figure 21), di and gi the vertices on the top left
and right respectively (for example, see 4 and 5 respectively in Figure 21). Now,
we assume Claim 4.19 holds for i and show it holds for i + 1. Using our series of
equation, we have

fi = 18i+
8 + 5(i− 1)− 3

8 + 5(i− 1)
hi+1,

hi+1 =
1

6
(1 + fi+1) +

1

6
(1 + fi) +

1

6
(1 + ki+1) +

1

2
(1 + hi+1),

ki+1 =
1

6
(1 + hi+1) +

1

6
(1 + fi+1) +

1

6
(1 + ai+1) +

1

2
(1 + ki+1),

ai+1 =
1

6
(1 + ki+1) +

1

6
(1 + di+1) +

1

6
(1 + gi+1) +

1

2
(1 + ai+1),

di+1 =
1

6
(1 + ai+1) +

1

3
(1 + gi+1) +

1

2
(1 + di+1),

gi+1 =
1

6
(1 + ai+1) +

1

3
(1 + di+1) +

1

2
(1 + gi+1),

fi+1 =
1

6
(1 + hi+1) +

1

6
(1 + ki+1) +

1

6
(1 + hi+2) +

1

2
(1 + fi+1).

Solving and substituting in values gives us

fi+1 = 18(i+ 1) +
5 + 5i

8 + 5i
hi+2
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as desired. �

Claim 4.20. Without loss of generality, take gi be the top right vertex of the ith

triangle (for example, 5 in Figure 21), and take fi to be the far right vertex on the
base (for example, 1 in Figure 21). Then we have

gi =
198 + 30(i− 1)

5
+

5i− 1

5i
fi.

Proof. Manually going through, we see we have

g1 =
198

5
+

4

5
f1.

Using the proof from the prior claim, we see that

gi+1 =
198 + 30(i)

5
+

5(i+ 1)− 1

5(i+ 1)
fi+1

as desired. �

Claim 4.21. We have

fi = 6i

(
5

(
n

d

)
− 5i+ 3

)
.

Proof. Let α = n/d = gcd(n, d) for notational simplicity. We have hα+1 = 0, and
so it follows that fα = 18α, as desired from Claim 4.19. Now we check it holds for
induction. Assume it holds for i + 1, then we want to show it holds for i. Then
using the values we found from the proof of Claim 4.19, we substitute in

fi+1 = 6(i+ 1) (5α− 5(i+ 1) + 3)

and we see that

fi = 6i(5α− 5i+ 3)

as desired. �

Claim 4.22. We have

gi = −30i2 + (30α+ 30) i− 6α+ 30

Proof. A consequence of Claims 4.20 and 4.21. �

Maximizing gi with respect to this gives us

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 15

2

(
n

d

)2

+ 9
n

d
+

75

2
.

As in Proposition 12, we repeat this process for the inner triangles, with coalesc-
ing here now meaning our walkers coalesce in the larger triangle. Repeating this
procedure now gives

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ 15

2
d2 + 9d2 +

75

2
.

We then sum these together along with our constant value to get our result. �

In the prism graph, Möbius ladder graph, and generalized Petersen graph, we
see that (fixing k) the triangulated version is asymptotically 5 times larger than
the non-triangulated version of the graph. This then leads us to a few questions.

Question 4.23. For vertex transitive 3-regular graphs, is the mixing time of the
triangulated 3-regular graph at most asymptotically 5 times larger than the upper
bound of the mixing time of the non-triangulated version?
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Question 4.24. For all 3-regular graphs, is the mixing time of the triangulated
3-regular graph always asymptotically 5 times larger than the upper bound of the
mixing time of the non-triangulated version?

Question 4.25. Can we find similar results for the lower bounds on these mixing
times?

Question 4.26. Are these bounds tight?

Further research on this could explore these questions. Propositions 4.7, 4.10,
4.15, and 4.18 all give some evidence towards Question 4.1. Being able to classify
graphs like the Heawood and Franklin graph may provide further evidence or coun-
terexamples for Question 4.1. For Questions 4.2 and 4.3, one may want to explore
3-regular graphs with large bottlenecks. It seems like vertex transitivity is a re-
quired property for this to work based on how the couplings in the prior examples
worked, so explicitly finding a family of 3-regular graphs which are not vertex tran-
sitive and determining the asymptotics of the mixing time for the non-triangulated
and triangulated version may provide counter examples for Question 4.2. Finally,
methods other than coupling may shed some light on Question 4.4.

5. Appendix

Throughout, we mention things like Gambler’s ruin and the mixing time on the
cycle of length n. While these facts can be found in most textbooks on Markov
chains and mixing times (see [2], [3], [4]), we place them here for convenience.

Proposition 5.1 (Fair Gambler’s Ruin). If a Gambler is betting 1 dollar on flips
of a fair coin, and must leave the game if they run out of money or reach n dollars,
then we have

E(τ | X0 = k) = k(n− k),

where τ is the amount of time it takes to reach 0 or n.

Proof. Let fi = E(τ | X0 = i). Then we have f0 = 0 = fn, and

fi =
1

2
(1 + fi−1) +

1

2
(1 + fi+1).

This leads us to the following claim.

Claim 5.2. We have

fi = i+
i

i+ 1
fi+1

for 0 < i < n.

Proof. We proceed by induction. For the base case, we have

f1 =
1

2
(1 + 0) +

1

2
(1 + f2)

and so simplifying gives us

f1 = 1 +
1

2
f2.

Assume it holds for i. Then we have

fi+1 =
1

2
(1 + fi) +

1

2
(1 + fi+2).

Substituting in fi and solving for fi+1 gives

fi+1 = i+ 1 +
i+ 1

i+ 2
fi+2

as desired. �
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We now need to establish the claim by induction. For the base case, we have

fn−1 = n− 1 +
n− 1

n
(0) = n− 1 = (n− 1)

(
n− (n− 1)

)
.

Assume it holds for k; that is,

fk = k(n− k).

Then we have

fk−1 = k − 1 +
k − 1

k
fk.

By the prior claim, we get

fk−1 = k − 1 +
k − 1

k

(
k(n− k)

)
= k − 1 + (n− k)(k − 1)

=
(
1 + (n− k)

)
(k − 1) = (k − 1)

(
n− (k − 1)

)

as desired. So the inductive hypothesis holds, and we get

fk = k(n− k)

for all 0 < k < n as desired. In particular, maximizing this gives

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ n2

4
.

�
Proposition 5.3 (Mixing Time of the Cycle). We have that the mixing time on
the cycle Z/nZ is bounded above by

tmix(ε) ≤ n2

4ε
.

Proof. Our coupling procedure is as follows: flip a fair coin to determine which
walker we move. Then, flip another fair coin to determine whether the walker
moves left or right. We measure the clockwise distance between the two walkers
after each step. The coupling procedure then shifts us to a walk on the chain
{0 . . . , n}, with 0 and n being absorbing states and transition probabilities being
1/2. We can then use Proposition 5.1 to determine that

max
x,y∈Ω

E(τ | X0 = x, Y0 = y) ≤ n2

4
,

and so using Theorem 1.20 we get

tmix ≤
n2

4ε
.

�
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ABSTRACT. This paper expands on previous results of equivariant and non-equi-
variant SK. We present oriented analogs of some equivariant results presented
by Komiya, Hara, and Waner & Wu. In addition to building on these results,
we introduce a new exact sequence that connects non-equivariant SKK and SK
in both the oriented and non-oriented cases. We then extend this result to an
equivariant setting to produce an equivariant version of the exact sequence. We
also incorporate the notion of SKV as introduced by Prevot, to manage torsion
induced by the Korvaire Semicharacteristic.

1. INTRODUCTION

The purpose of this project is to generalize and expand upon previous results
about the relations between equivariant SK operations and bordism relations for
both oriented and non-oriented cases. In Section 2, the classical non-equivariant
results of [KKNO73] are presented, along with the nonequivariant version of main
result in Theorem 2.3. In Section 3, requisite knowledge of equivariance and
representation theory is introduced, while in Section 4 equivariant nonoriented
analogs of the classical results are presented. Section 5 presents equivariant ori-
ented analogs of the classical results, in addition to our main results. Our main
result produces a new exact sequence connecting SKK and SK previously unseen
in the literature. Theorem 2.3 and Theorem 2.4 introduce this sequence in the
non-equivariant setting, while Theorem 5.2 and Theorem 5.3 generalize the non-
equivariant theorems to an equivariant setting.

2. NON-EQUIVARIANT SK OPERATIONS AND BORDISM

In this section, we will be presenting classical results classifying manifolds non-
equivariantly. LetMn be the collection of n-dimensional closed (oriented) man-
ifolds classified up to (orientation preserving) diffeomorphism. Let MO

n denote
the non-oriented analog. By giving this collection an addition operation defined
by disjoint union and additive identity , the empty manifold, we see that it clearly
becomes a commutative monoid. Now, we would like to introduce the notion of
cut-paste or SK (Schneiden-Kleben) relations.

Definition 2.1. Let N, N′ be (oriented) n-manifolds with (oriented) boundaries ∂N and
∂N′ respectively and let ϕ, ψ : ∂N → ∂N′ be (orientation preserving) diffeomorphisms.
Now let M be an (oriented) n-manifold such that M = N ∪ϕ −N′, (where −N′ is N′
with reversed orientation). A cut-paste (SK) operation on M produces a new (oriented)
manifold M′ by the following procedure: Cut M along ∂N to produce N + (−N)′ and
then paste by ψ : ∂N → ∂N′ to produce the new manifold M′ = N ∪ψ −N′.
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FIGURE 1. SK Operation

These operations define a relation that allows us to factorMn into equivalence
classes as follows:

Definition 2.2. M, M′ are SK-equivalent if there exist some n-manifold W such that
M′ + W can be obtained from M + W by SK operations.

Definition 2.3. We now produce the group of n-dimensional oriented SK-equivalent
manifolds by takingMn and quotienting by SK-equivalence. We then take the Grothendieck
completion to produce the group SKn. An analogous factoring in the non-oriented case
can be done to produce SKO

n

The constructed inverses of SK elements are mentioned later in subsection4.1,
and their full description is given in [KKNO73, Pg. 57]. SK groups are of primary
interest due to the study of SK invariants. Examples of SK invariants include
Euler characteristic χ and signature τ. In general, they are defined as follows:

Definition 2.4. Let G be a group and ρ : Mn → G (alternatively ρ : MO
n → G)

be a monoid homomorphism. ρ is an SK-invariant if ρ(M) = ρ(M′) for M, M′ SK-
equivalent manifolds.

Showing that Euler characteristic χ and signature τ are SK invariants follows
from the additive properties of these functions. For χ, When we let X = A ∪ B,
we have the following additive property.

χ(X) = χ(A) + χ(B)− χ(A ∩ B).

So by taking collared neighborhoods around N and N′ which intersect at the glu-
ing at ∂N, we see that

χ(M) = χ(N) + χ(N′)− χ(∂N) = χ(M′).

The signature being SK-invariant follows from the property of Novikov additivity
which states that

τ(M) = τ(N)− τ(N′) = τ(M′).
In fact, [KKNO73, Corollary 1.4] states that all SK invariants are linear combina-
tions of Euler characteristic and signature.
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Now, an equivalent formulation of an SK-invariant ρ is that, when M and M′ are
SK equivalent, ρ(M)− ρ(M′) = 0. We may now consider another class of homo-
morphisms that generalize SK-invariants, where instead of the difference being
zero, it is some error term dependent only on the gluing maps. This introduces a
new class of invariant defined as follows.

Definition 2.5. An SKK-Invariant is a monoid homomorphism λ : Mn → G (alter-
natively λ :MO

n → G) where for M = N ∪ϕ −N′ and M′ = N ∪ψ −N′ then

λ(M)− λ(M′) = λ(ϕ, ψ).

Such an invariant is called SK-controllable, (SK-Kontrollierbar) as it is control-
lable solely through the choice of boundary diffeomorphism, and not the mani-
folds with boundary N and N′. Notice that all SK-invariants are SKK-invariants
with error term 0. We now present an example of an SKK-invariant which is not
an SK-invariant. Recall the Euler Characteristic of n-dimensional manifold:

χ(M) =
n

∑
i=0

(−1)irank(Hi(X; Z)).

Definition 2.6. The Kervaire Semicharacteristic is defined to be:

k(M) =
bn/2c
∑
i=0

(−1)irank(Hi(X; Z)) (mod 2).

This function only takes non-trivial value on manifolds of dimension n ≡ 1 (mod 4)

We would now like to use this type of invariant to generalize the notion of SK
equivalence to an equivalence that respects SKK invariants. Now for, N1, N′1, N2, N′2,
with ∂N1 = ∂N2 and ∂N′1 = ∂N′2, an equivalence relation can be imposed onMn
(orMO

n )

Definition 2.7. SKK-Equivalence can be defined by imposing all relations of the form
(N1 ∪ψ −N′1) + (N2 ∪ϕ −N′2) = (N1 ∪ϕ −N′1) + (N2 ∪ψ −N′2) onMn.

Definition 2.8. When we quotientMn by the SKK equivalence given above, and take
its Grothendieck completion, we obtain the group SKKn. When working with nonoriented
manifolds, we obtain SKKO

n .

These SKK groups and, to a somewhat lesser extent, the SK groups are closely
connected to another more prominent equivalence relation. The notion of (co)bordism
is prevalent in algebraic topology and is defined as follows:

Definition 2.9. Two (oriented) n-manifolds, M, M′ are cobordant if there exists an
(oriented) (n+1)-dimensional manifold Y such that M + M′ = ∂Y.
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M M′Y

FIGURE 2. Cobordism Y of manifolds M and M′

Definition 2.10. Let Ωn denote the quotient group after Grothendeick completion of
cobordant oriented n-manifolds. Such a group is called the bordism group. In the non-
oriented case, we denote the group Nn.

Now, that our relations have been defined, we would like to begin building and
combining these notions. Primarily, we can ask what happens when both SK and
bordism relations are imposed at the same time.

Definition 2.11. Take SKn and quotient by bordism relations to generate SKn. This
group can be formed equivalently by taking Ωn and imposing the SK relations. SKO

n can
be formed analogously using non-oriented relations.

These relations clearly commute, and so we have the following diagram.

Mn SKn

Ωn SKn

This construction allows us to study the differences between SK and bordism re-
lations. By studying the kernels of these quotients, we can see how these relations
differ. This gives rise to the following theorems.

Theorem 2.1. [KKNO73, Theorems 1.1, 1.2, 4.2] Let In ⊂ SKn be the subgroup gen-
erated by the equivalence class [Sn]SK. Let I′n ⊂ SKK be the subgroup generated by the
equivalence class [Sn]SKK and Fn ⊂ Ωn be the subgroup generated by all [M]Ωn where a
representative M fibers over the circle. Equivalently this is the subgroup generated by the
classes of mapping tori. Now the following three sequences are exact.

(2.1) 0 In SKn SKn 0

(2.2) 0 Fn Ωn SKn 0
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(2.3) 0 I′n SKKn Ωn 0

Additionally, these sequences are exact when each group is replaced with its non-oriented
analog. In and I′n have been computed as follows:

(2.4) In =

{
Z n even
0 n odd

for both oriented and non-oriented cases, and

(2.5) I′n =





Z n even
Z2 n ≡ 1 (mod 4)
0 n ≡ 3 (mod 4)

(2.6) I′On =

{
Z n even
0 n odd

Additionally, 2.1 and 2.3 split in the oriented case.

We will only present the proofs of the exactness of the sequences, due to their
geometrically enlightening nature. However, before presenting these proofs, I
would like to make a note on the calculations of these sequences. These groups
are computed by examining the values the invariants mentioned above take on
specific manifolds. In is computed by studying Euler characteristic and signa-
ture, with I′n proved similarly except for the 1 (mod 4) which uses the Kervaire
Semicharacteristic. More in depth proofs are presented in [KKNO73]. To prove
the exactness of these lemmas, we present the following lemmas from [KKNO73]:

Lemma 2.1. [KKNO73, Lemma 1.5 (i)] [S1]SK = [0]SK

Proof. We will show that S1 is SK-equivalent to S1 + S1. Let Ii denote an ith copy of
unit interval. In the context of the definition of SK-equivalence, we can consider
S1 = (I1 + I3) ∪ϕ (I2 + I4), where ϕ identifies endpoints by {1}i ∼ {0}i+1. Now
consider the identification

ψ :





{1}1 7→ {0}4

{0}1 7→ {1}4

{1}2 7→ {0}3

{0}2 7→ {2}3
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I1I2

I3 I4

I1I2

I3 I4

FIGURE 3. Demonstrating SK Equivalence of S1 and S1 + S1

We see this funtion pairs the intervals off to form two circles. S1 + S1 = (I1 +
I3) ∪ψ (I2 + I4) This is illustrated in Figure 3. Thus [S1]SK = 2[S1]SK and so
[S1]SK = [0]SK. �

Lemma 2.2. [KKNO73, Lemma 1.5 ii)] If M fibers of Sn with fiber F, then [M]SK =
[Sn]SK[F]SK.

Proof. Consider M which fibers over Sn with fiber F. Then recall Sn = Dn ∪id Dn

Then M = (F×Dn)∪ϕ (F×Dn), for some ϕ. However, this is then SK-equivalent
to (F × Dn) ∪id (F × Dn) = F × Sn, so the M is SK-equivalent to Sn × F and so
[M]SK = [Sn]SK[F]SK �

Additionally, here we would like to introduce a special class of manifold called
mapping tori. For a closed manifold F, consider the manifold F× [0, 1]. Note this
manifold has boundary F + F. Now, in the same way S1 can be viewed as the unit
interval with endpoints identified, we can similarly identify the two boundary
copies of F together using the identity to form F × S1. However, if we chose to
use a different smooth diffeomorphism ϕ : F → F to glue along, the resulting
manifold is called a mapping torus and is denoted Tϕ. Specifically, we make the
identification

Tϕ = F× [0, 1]/((x, 0) ∼ (ϕ(x), 1)).
For a simple example, consider the mobius band and the unit cylinder both

having fiber F = [0, 1]. The unit cylinder is the identity mapping torus, while
the mobius band is the mapping torus with attaching map ϕ(t) = (1 − t). As
described here, mapping tori clearly fiber over S1, and thus by combining the
above lemmas, we see that the mapping tori denote the zero class in SK.

Another construction which will be relevant is the twisted double. For two
diffeomorphic manifolds N, N′, with diffeomorphisms f , g : N → N′, the twisted
double TD f ,g, is defined as (N × [0, 1] + N′ × [0, 1]/((x, 0) ∼ ( f (x), 0), (x, 1) ∼
(g(x), 1)). A picture is shown in Figure 5. It is a known result that any twisted
double is cobordant to the mapping torus T(g f−1).
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F× [0, 1]
xy f

FIGURE 4. Construction of Mapping Torus

N × [0, 1]

N × [0, 1]

xyϕ

xyψ

FIGURE 5. Twisted Double

Another notion that we will need is that of a geometric surgery. Surgery on a
manifold M is a method of producing a new manifold M′ in the following way:

Definition 2.12. Let M be a manifold with an embedding of Sk × Dn−k. Now take
cl.(M \ (Sk×Dn−k)) and paste in Dk+1× Sn−k−1, via gluing along the boundary. Then
the manifold M′ = cl.(M \ (Sk × Dn−k)) ∪ (Dk+1 × Sn−k−1) is produced from M by
surgery of type (k + 1, n− k).

Note that Sn = (Sk × Dn−k) ∪ (Dk+1 × Sn−k−1), and thus both have the same
boundary, and so this identification is consistent.
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FIGURE 6. Surgery of Type (1, 2) on S2

Example 2.2. We present an example of surgery on S2 of type (0 + 1, 2− 0). We take
S2 and look for an imbedding of S0 × D2. This is two disjoint disks on S2 with boundary
S1 + S1. We now would like to glue the handle S1 × D1, with is a hollow cylinder with
boundary S1 + S1. By removing the two disks, and gluing in the handle, we produce a
torus. A visualization of this example can be seen in Figure 2.2.

Lemma 2.3. [KKNO73, Lemma 1.6] If M′ is a manifold obtained from surgery of type
(k + 1, n− k) on a manifold M, then [M]SK + [Sn]SK = [M′]SK + [Sk × Sn−k]SK

Proof. First recognize the following identities:

M + Sn = M \ (Sk × Dn−k) ∪ (Sk × Dn−k) + (Sk × Dn−k) ∪ (Dk+1 × Sn−k−1)

M′+Sk×Sn−k = M \ (Sk×Dn−k)∪ (Dk+1×Sn−k−1)+ (Sk×Dn−k)∪ (Sk×Dn−k)

Then, we view manifolds N as the disjoint union of the first components and
N′ as the disjoint union of the second:

N = M \ (Sk × Dn−k) + (Sk × Dn−k)

N′ = (Sk × Dn−k) + (Dk+1 × Sn−k−1)

Then M + Sn = N ∪id N′ and M′ + Sk × Sn−k = N ∪t N′, where t swaps the
components being glued, and so we now see these are SK-equivalent. �
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Now, by setting M = Sn. We see 2[Sn]SK = [Sk+1 × Sn−k−1]SK + [Sk × Sn−k]SK
and now set k = 0 and by induction, we see the following

Corollary 2.1. [KKNO73, Cor. 1.7]

[Sk × Sn−k]SK =

{
2[Sn]SK = k even
0 = k odd

Corollary 2.2. [KKNO73, Cor. 1.8] When M and M′ are related by surgery,

[M]SK = [M′]SK + (−1)k+1[Sn]SK

We now have the sufficient tools to prove the exactness of sequences 2.1, 2.2,
and 2.3 from Theorem 2.1.

Proof of (2.1). First, note that the our two maps of interest are clearly injective (by
inclusion) and surjective (by quotient) respectively. Thus it suffices to show that
In = Ker(SKn → SKn). The first inclusion, In ⊂ Ker(SKn → SKn), is easy to
see as all Sn are cobordant to the empty set as ∂Dn+1 = Sn +∅. Then it suffices
to show In ⊃ Ker(SKn → SKn). To show this, we take two manifolds related
via bordism, and compare their difference in SKn. It is a fact that bordisms can
be decomposed into a series of surgeries. That is to say, for cobordant M, M′,
there is a finite sequence of surgery operations and manifolds Mi such that M′
can be can be obtained from M by interated surgeries on Mi. Then when looking
at [M]SK − [M′]SK, the difference at each stage of surgery is ±[Sn] by Cor. 2.2,
so therefore [M]SK − [M′]SK = n[Sn]SK for some constant n, determined by the
sequence of surgeries. So the difference of any two cobordant manifolds in SKn is
some sum of spheres, Ker(SKn → SKn) ⊂ In. �
Proof of (2.2). First note that an equivalent formulation of Fn is as the collection
of mapping tori cobordism classes, as fibering over S1 is equivalent to being a
mapping torus as described above for some ϕ. Now by construction Fn includes
into Ωn. Additionally, by construction, Ωn surjects onto SK. Additionally, Fn ⊂
Ker(Ωn → SK), as the SK class of all mapping tori is 0.

Now we must show the reverse inclusion. This can be accomplished by show-
ing the difference as cobordism classes of two SK-equivalent manifolds is a map-
ping tori. Let M = N ∪ϕ N′ and M′ = N ∪ψ N′ be two SK-equivalent manifolds.
Now let us construct a bordism by taking N × [0, 1] and N′ × [0, 1] and gluing by
ϕ on the first third, ψ on the last third, and leaving the middle unglued.

The boundary of this manifold will be M + M′ + (∂N× [1/3, 2/3])∪ϕ,ψ (∂N′ ×
[1/3, 2/3]). This last manifold is equivalent to a twisted double as ∂N′ is diffeo-
morphic to ∂N, so as mentioned before this will be cobordant to T(ψϕ−1). with
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N × [0, 1]

N′ × [0, 1]

ϕy
ψ
y

∂N

∂N′
N ∪ϕ N′ N ∪ψ N′

FIGURE 7. [M]Ω − [M′]Ω = [T(ϕψ−1)]Ω

fiber ∂N. Therefore if M, M′ are SK-equivalent manifolds, then [M]Ω − [M′]Ω =
[T(ψϕ−1)]Ω. �
Proof of (2.3). First, we must show there is a well-defined surjection from SKKn
to the respective bordism group. To do this, we will note that bordism is an
SKK-invariant. Note that as a consequence of the last proof, [M]Ω − [M′]Ω =
[T(ϕψ−1)]Ω. The class of the mapping torus is entirely dependent on the bound-
ary maps, and thus bordism defines an SKK-invariant. Therefore, assigning bor-
dism class is a well-defined mapping. Further, I′n includes into Ωn, and I′n ⊂
Ker(SKKn → Ωn), for similar reasons as in (2.1). Therefore, it suffices to show
that the rest of the proof of Lemma 2.3 requires only SKK-equivalence, and then
all following corollaries will hold, and this proof will proceed as in the proof of
(2.1). This is easy to see by introducing an additional term. Notice that as defined
in the proof of Lemma 2.3 ∂N = ∂N′ = 2∂(Sk × Dn−k). Now let Q = Sk × Dn−k.
Notice that 2Q has the same boundary as N and N′. Now notice that 2Q∪id 2Q =
2Q ∪t 2Q, as each is just the disjoint union of 2 copies of DQ, the double of Q.
Then via the relation

[N ∪t N′]SKK + [Q ∪id 2Q]SKK = [2Q ∪t 2Q]SKK + [N ∪id N′]SKK

and that 2Q∪id 2Q = 2Q∪t 2Q, we get [N ∪t N′]SKK = [N ∪id N′]SKK, and thus all
other results shall follow. �

The calculations of the various kernels is given in [KKNO73] and will not be
replicated here.

An important note for the above proofs is that at no step was the argument itself
dependent on the orientablity or non-orientability of each manifold. Therefore, so
long as the mappings and gluings at each step are formulated in such a way that
they respect these conditions, the results will hold for both cases.
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2.1. SKV and Vector Field Cobordism. In this section, we discuss some notions
related to SKK-groups. The first provides an alternative interpretation of SKK
in terms of bordism. SKK can also be interpreted as Vector Field Cobordism,
where the bordism relation is modified to require the the bordism admit a non-
zero vector field inward normal on M and outward normal on M′. In this context,
we can give an alternate view of Sequence 2.3 and the splitting induced by the
Kervaire semicharacteristic.

0 I′n SKKn Ωn 0

As presented above, the Kervaire semicharacteristic can be interpreted as the sole
factor differentiating classical bordism from vectorfield bordism. As such, Prevot
in [Pre80] introduces a modification of SKK to remove the 2-torsion induce by the
Kervaire Semicharacteristic. He defines the below relation of an SKV (or SK-Vier)
operation.

Definition 2.13. An SKV-operation on an n-manifold M1 produces a new n-manifold
M2 if the following hold:
• There exists an n-manifold P and four disjoint imbeddings ιi of a closed (n-1)-

manifold T, such that ∂P = q4
i=0ιi(T).

• There are diffeomorphisms Φ, Ψ such that

Φ : M→ P/∼1

Ψ : N → P/∼2

where ∼1 makes identifications ι1(t) ∼ ι2(t) and ι3(t) ∼ ι4(t) and ∼2 makes
identifications ι1(t) ∼ ι4(t) and ι2(t) ∼ ι3(t).

Definition 2.14. Two manifolds are SKV-equivalent if there are a finite number of SKV
steps which produce one from the other.

Definition 2.15. SKVn is the group obtained by quotienting Mn by the SKV equiva-
lence and taking the Grothendieck completion. Similarly, we may obtain SKVO

n .

We now present results without proof from [Pre80] which will be relevant to
modify Theorem 2.9

Proposition 2.1 ([Pre80]). There is an isomorphism

(2.7) SKKn →
{

SKVn n 6≡ 1 (mod 4)
SKVn ⊕Z2 n ≡ 1 (mod 4)

Note that in the non-oriented case, the Kervaire semicharacteristic is just the
trivial map, and so induces no torsion, and we have SKVO

n
∼= SKKO

n .
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2.2. Results. We would now like to present some non-equivariant results. We
would like to study the map SKK → SK, to understand the relation between these
two groups. However, as we see above this will be heavily case dependent, as
the kernel of the two sequences 2.1 and 2.3 change depending on the congruence
class of n (mod 4). We now present results that hold specifically for all but n ≡ 1
(mod 4).

Theorem 2.3. We present the new sequences:

(2.8) 0 Fn SKKn SKn 0

This sequence is exact for n 6≡ 1 (mod 4) in the oriented case, and all n in the non-
oriented case. This is a consequence of the below braid commuting, when n 6≡ 1 (mod 4).

(2.9)

In ∼= I′n SKn 0

0 SKKn SKn 0

Fn Ωn 0

Proof. To check commutativity of the diagram, we must confirm the squares around
SKKn commute, as the other squares trivially commute. Additionally, the first
square commutes also trivially. Now, let us check the top and bottom triangles.
Notice that [Sn]SKK = [Sn]SK, so by including [Sn]SKK into SKKn and then identify-
ing by SKn relations, this is equivalent to just sending [Sn]SKK to [Sn]SK in SKn. A
similar argument holds for the lower triangle, where we see that the collection of
mapping tori Fn can be regarded as either their SKKn class or as their cobordism
class. For the middle diamond, notice that this is a sequence of quotients, which
hold regardless of order. That is taking an SKK class and sending it to its SK class
and then its bordism class is equivalent to sending an SKK class to its bordism
class and then its SK class. Thus the above diagram commutes. To apply the braid
lemma to the diagram above, we must now show that 2.3 is a chain complex. By
noting that Fn was all manifolds which fiber of S1 and take the zero class in SK,
we see Fn ⊂ Ker(SKKn → SKn), which shows 2.3 is a chain complex and we may
now apply the braid lemma, which completes the proof. �
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We see that the sole obstrution to the above braid commuting for all n is the Z2
torsion caused by the Kervaire semicharacteristic. As we saw above, the notion of
SKV allows us to discard the torsion, which leads to the following theorem:

Theorem 2.4. By using the notion of SKV in place of SKK, we have the sequence for all
n, in both the oriented an non-oriented cases:

(2.10) 0 Fn SKVn SKn 0

This is a consequence of the braid below commuting for all n. This follows from
the proof of Theorem 2.3.

(2.11)

In SKn 0

0 SKVn SKn 0

Fn Ωn 0

3. G-SPACES AND EQUIVARIANT MAPPINGS

Later in this paper, we would like to examine equivariant SK, SKK, and bordism
relations. To do this, we must introduce the need background to discuss equiv-
ariance and its effects on the relations. We will be looking at a special class of
manifolds, which will be called G-manifolds, which come equipped with a group
action. This action permutes points within the space in some continuous way.
Using this construction, we have a more dynamic and interesting object of study.
The maps that respect such an action are said to be equivariant. Precise definitions
are given below.

Definition 3.1. A G-action given by a group G acting on a topological space X is a map
Θ : G× X → X satisfies the following conditions:

• Θ(h, Θ(g, x)) = Θ(hg, x)
• Θ(e, x) = x

A space equipped with a G-action is called a G-space.
Equivalently, an action can be formulated as a map θ : G → Homeo(X), where θ(g) =

Θ(g,−). We will denote Θ(g, x) = gx. If θ is injective, we say that it is an effective
action.



CUT-PASTE OPERATIONS AND BORDISM OF MANIFOLDS IN AN EQUIVARIANT SETTING 15

Definition 3.2. A a G-map is a map ϕ between two spaces, X and Y, each with a G-
action. Such a map is equivariant if the following diagram commutes:

G× X G×Y

X Y

id×ϕ

ΘX ΘY

ϕ

Now, we would like to define some of the specific constructions and objects
used in the study of equivariant manifolds and equivariant study in general.

Definition 3.3. Let x ∈ X. The collection of points x is sent to under the action of G is
called the orbit of x (denoted G(x) ). That is G(x) = {gx | g ∈ G}
Definition 3.4. A set S ⊂ X is H-invariant for a subgroup H ⊂ G if H(S) = S, where
H(S) = {hs|h ∈ H, s ∈ S}. This is equivalent to being the union of the orbits of all
elements in S.

Definition 3.5. The X/G is the quotient space of X created by identifying x ∼ gx for
all g in G. Elements x ∈ X/G represent G(x), hence the terminology. The quotient map
π : X → X/G is natural.

Definition 3.6. The isotropy subgroup (denoted Gx ) of G for a point x is the collection
of elements in G which fix a given x. That is Gx = {g ∈ G | gx = x}
Definition 3.7. A fixed point of X under a G-action is a point x such that gx=x for all
g ∈ G. The collection of all fixed points is denoted XG

The previous notion specifically is very important. Fixed points carry a large
amount of information relating to the G-action and its connection to the underly-
ing manifold. Additionally, fixed points sets are important in extending topologi-
cal invariants such as Euler characteristic, signature, and Kervaire semicharacter-
istic.

The above definitions allow us to study the group action in a somewhat global
sense, that is how it acts on the entire manifold. We would like to introduce tools
that allow us to study the local action of the group. The first of these is the twisted
product, defined below:

Definition 3.8. We will now define the twisted product, G×H A. Let H be a compact
subgroup of G and let A be some space which has an H-action. H acts on G × A by
(h, (g, a)) 7→ (gh−1, ha). We will denote the orbit space as G ×H A. For a point (g, a)
the orbit is [g, a] = {(gh−1, ha)|h ∈ H}. As classes [g, a] = [g′, a′] if ∃ h ∈ H, such
that g′ = gh−1 and a′ = ha. The map a 7→ [e, a] defines an embedding A ↪→ G×H A.
Additionally, G×H A inherits a left G-action, by (g, [g′, a]) 7→ [gg′, a]
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This definition above helps us give the definition of a slice type. The slice type
at a point describes the local action of G, and how it interacts with the local Eu-
clidean structure. The slice type conveys the information that will be important in
defining equivariant SK-relations.

The definition below is provided by Soren Illman:

Definition 3.9. Let H be a subgroup of G and H-invariant S ⊂ X, a smooth submanifold,
with X being a smooth G-manifold. S is a smooth H-slice if G(S) is open in X, and

µ : G×H S→ G(S), [g, s] 7→ gs

is a smooth diffeomorphism.

Lemma 3.1. Let S be a smooth submanifold of X. Then the following are equivalent:
(1) S is a smooth H-slice in X.
(2) G(S) is open in X and there exists a G-equivariant smooth map

r : G(S)→ G/H such that r−1(eH) = S.

Theorem 3.1 (The Slice Theorem). Suppose a compact Lie group G acts smoothly on a
manifold X. Let x ∈ X. Then there is vector space Vx on which the isotropy group Gx acts
linearly and a G-embedding G×Gx Vx → X onto an open set which sends [g, 0] to gx.

There are several things to note in this theorem:
• We have already noted in Lemma 2 that the map G/Gx → X; g 7→ gx is a

smooth embedding.
• Recall that G×Gx pt ' G/Gx. So the map G/Gx → X extends to an invari-

ant neighbourhood of G/Gx in G×Gx Vx viewed as a zero section.
• The slice theorem implies that there is an equivariant diffeomorphism from

G×Gx Vx to its image in X.
• Note that this image in X contains the orbit of the point x, G(x).
• One way to describe what a “slice at x” is, is as the image of {e} × Vx in

X. Exercise: Why does this description match the definition of slice given
above?

Now, where does this vector space Vx come from? To understand this, we must
first understand the idea of a representation. A G-action on a vectorspace V can
be ”represented” by a group homomorphism σ : G → GL(V), where an element g
determines a matrix transformation on V. Such an action is called a representation
of V. A subrepresentation of V is a subvectorspace which is also closed under the
G-action. All representations can be decomposed into a direct sum of irreducible
subrepresentations (unique up to isomorphism). In this way, any representation
can be broken up into two parts: the subrepresentations with trivial action and
the subrepresentations with non-trivial action. [Smi]
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Now by [Bre72], we have another phrasing of the slice theorem, which states
each point in X has a Gx-neighborhood Ux, which is topologically homeomorphic
to Rn. This then gives a Gx representation on Ux, which as we discussed above,
can be decomposed into Rp⊕Vx, where {0} is the only fixed point of Vx. The sub-
representation Vx carries with it all of the information about the Gx action. Then
the twisted product G ×Gx Vx then gives all information relating to the G-action
locally. This notion intuitively defines the slice type at a point x. The slice type is
the conjugacy class of Gx and its representation σ : Gx → Vx. The slice types en-
tirely determine the local structure of a G-manifold, as by the slice theorem above,
each point has some neighborhood described in this way.

We now have sufficient material to begin discussing equivariant analogs of the
topics discussed in Section 2.

4. EQUIVARIANT SK

The idea of SK-equivalence and bordism can be extended to the equivariant
case. The notions generalize as expected, with a few modifications. To start with,
we will disregard orientation and focus on the non-oriented case. The notion of
an oriented G-manifold complicates matters significantly, as the orientation is (lo-
cally) determined by a small neighborhood around a given point. The G-action
must then respect the orientation locally, and this would be reflected in the twisted
product and the slice type. Oriented results will be presented in Section 5.

First consider the collection of n-dimensional G-ManifoldsMO
n [G]. To produce

equivariant SK groups, denoted SKO
n [G], factor all G-manifolds the cut-paste re-

lations described above, with the added condition that the diffeomorphisms are
now G-equivariant. The SKKO

n [G] groups are defined with the same added con-
dition. To generate equivariant bordism groups, which we will now denote by
Nn[G], factorMO

n [G] by the G-cobordism relation, which says that two manifolds
are G-cobordant if they are the boundary of an (n + 1)-dimensional compact G-
manifold. We additionally ask that the manifolds and bordisms have no isolated
fixed points, which we will call a nice bordism after [WW88], and will be denoted
with Ω•n or N•n. One can then ask if all of the above exact sequences carry through
to the equivariant case, and if they do, can a splitting be constructed to deter-
mine all such equivariant SK and SKK invariants, as was the case for the non-
equivariant sequences. We then have the following theorem.

Theorem 4.1. For G of odd finite order, the below sequences are exact, with surjections
defined by factoring with equivariant SK and nonoriented nice cobordism relations:

(4.1) 0 IO
n [G] SKO

n [G] SKO
n [G] 0
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(4.2) 0 FO
n [G] N•n[G] SKO

n [G] 0

(4.3) 0 I′On [G] SKKO
n [G] N•n[G] 0

where, IO
n [G], FO

n [G], and I′On [G] are equivariant analogs of IO
n , FO

n , and I′On and are
defined later.

4.1 and 4.2 are (implicitly) proved in [Har04], and 4.3 is proved in [WW88].
These will be proven by adapting the non-equivariant proofs to the equivariant
case. To successfully generalize the non-equivariant case to prove 4.1 and 4.3, we
need to develop the idea of G-surgery.

The notion of surgery in the classical sense involves removing part of the man-
ifold diffeomorphic to Sk × Dn−k and gluing along boundary the complimentary
Dk+1 × Sn−k−1. We must now take this idea and convert it to an equivariant set-
ting, such that the surgery operation respects the G-action on the manifold. To do
this we must define suitable notions of the disk and the sphere for G-manifold.
Let V be a vector space, and let G → GL(V) be a representation of V.

Definition 4.1. The unit disk in the representation D(V) is a G-invariant unit disk
in V, D(V) = {v ∈ V : ||v||) ≤ 1}. The unit sphere in the representation S(V) is
a G-invariant unit sphere in V, S(V) = {v ∈ V : ||v||) = 1}. Note that the dimension
of S(V) will be dim(V)-1.

In this way, a G-surgery can be defined. Given an n-dimensional G-manifold,
let ϕ : G ×H (D(V ⊕Rp) × S(Rq)) → M, be a smooth G-embedding onto a G-
invariant regular submanifold of M, with p + q = n− dim(V) + 1 Then the man-
ifold M′ obtained from G-surgery on M is defined in the following way:

M′ = M \ ϕ(G×H (D(V ⊕Rp)× S(Rq))) ∪ G×H (S(V ⊕Rp)× D(Rq))

Now that G-surgery has been defined, we may now sketch the proofs of 4.1 and
4.3.

Proof of (4.1) and (4.3). A nice G-bordism L is obtained from G-surgery by taking
M× [0, 1] and performing the surgery on M× {1}. For finite G, G-bordisms are
all given by a sequence of G-surgeries, which is analogous to the non-equivariant
case. Then Lemma 2.3 still holds equivariantly, and we see that the difference of
any two SKn[G] (or SKKn[G]) equivalent manifolds is ∑(−1)i[G×H S(Vi⊕Rp+q)],
where each summand comes from a single surgery step. Then the kernel IO

n [G] is
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the collection in SKO
n [G] of all [G×H S(Vi⊕Rp+q)]SK[G] and I′On [G] is the collection

in SKKO
n [G] of [G×H S(Vi ⊕Rp+q)]SKK[G].

In this context, we can say that IO
n and I′On can be defined:

In[G] = {[G×H S(Vi ⊕Rp+q)]SK[G]|All Representations Vi}

I′n[G] = {[G×H S(Vi ⊕Rp+q)]SKK[G]|All Representations Vi}
where p + q + dim(V) = n + 1 �

This proof is only explictly given in [Kom87]. In [Har04], the kernel of the
surjection is computed, and no exact sequence is given. Here, Ker(SKO

n [G] →
SKO

n [G]) = IO
n [G] = 2SKn[G] for even dimensions and 0 for odd. It is to be noted

that this alternative formulation of the kernel only holds when the non-oriented
cobordism relation is imposed, as here, each class is its own inverse via the trivial
bordism, and so this suffices as the only relation.

For 4.2, [Har04] once again does not explicitly give the exact sequence. How-
ever, he does compute and characterize Ker(Nn[G] → SKO

n [G]) as a subgroup of
Nn[G]. Once again, we may examine the nonequivariant proof to find an illumi-
nating route for the equivariant case.

Proof of (4.2). Using the construction in the non-equivariant proof, we see that
there is an analog to a mapping tori in the equivariant setting, that is G-manifolds
which fiber over S1 whose action permutes within fibers. We can see this as under
the bordism construction, the G-action acted trivially on the interval, and so for
the [1/3, 2/3] subinterval, the G-action on T(ϕψ−1) will act only on the fibers
∂N. Thus the difference of any two SKn[G] classes of manifolds up to cobor-
dism will be these equivariant mapping tori. That is to say, [M]N[G] − [N]N[G] =

[T(ϕψ−1)G]N[G]. This gives Ker(Nn[G] → SKn[G])⊂ Fn[G]. Additionally, all such
fiberings over S1 take the zero class in SKn[G] under equivariant cut paste rela-
tions by the same argument in as in Lemma 2.1. Then we see all such fiberings
entirely describe the kernel of the surjection. �

We can also define an equivariant notion of Euler characteristic and Kervaire
semicharacteristic. Let M be an n-dimensional G-manifold, and let L be some
subgroup of G with representation σ. Then we define the equivariant Euler char-
acteristic of M, χL

σ(M), to be the classical Euler characteristic on the fixed point
set of M under the action L with representation σ. That is to say χL

σ(M) = χ(ML
σ).

The same holds for Kervaire semicharacteristic kL
σ. Additionally, as this is defined
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in relation to the classical construction, the classical properties hold, such as the
additive structure, and that χG

σ (M) = 0 for closed odd dimensional M.

4.1. Notes on the Non-Oriented Case. The non-oriented case introduces several
interesting results. First, we have a result from [Kom05], that if [M]SK = [2x]SK,
then M is cobordant to some G-equivariant fibering over S1. We can see this quite
easily now that the proper kernels have been identified. Clearly [2x]SK[G] 7→
[0]SK[G], as under the non-oriented cobordism relation each element is its own
inverse. As the map is well defined [M]SK[G] 7→ [0]SK[G]. However, as the square

MO
n [G] SKO

n [G]

Nn[G] SKO
n [G]

commutes, [M]N[G] 7→ [0]SK[G], and thus M ∈ Ker(N[G] → SKn[G])= Fn[G], and
thus is cobordant to a G-fibering over S1. This proves the result in [Kom05].

We would also like to perform a sanity check as we saw that [M]SK[G] 7→ [0]SKn[G],
but [M]SK[G] was not explicitly a sum of spheres of representations . Thus we
would like to confirm [M]SK[G] = ∑[G ×H S(V)]SK[G] as [M]SK ∈ In[G]. This can
also be easily seen by examining the result in [KKNO73, pg. 57] which gives the
explicit inverse of an (oriented) SK-class [N]SK.

[N]−1
SK = [−N]SK + χ(M)[Sn]SK

This result also carries over under equivariance. Here [x]−1
SK[G]

= [−x]SK[G] +

∑ [G×H S(V)]SK[G]. Then (in SK[G])

0 = [x] + [x]−1 = [x] + [−x] + ∑ [G×H S(V)]

However, when forget orientation(as recall this is the non-oriented case), [x] =
[−x], and thus

0 = [2x] + ∑ [G×H S(V)]

[2x] = −∑ [G×H S(V)]

and we see that [M]SK[G] was some sum of unit spheres of some set of representa-
tions.
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4.2. Equivariant SKV. Such a generalization is defined in [Pre80] in the obvi-
ous way. The SKV relation above is now defined using G-manifolds and G-
equivariant gluing maps. Additionally, we also define an F-free G-manifold. Let
F be a family of subgroups of G such that if K ⊂ H and H ∈ F, then K ∈ F. A G-
manifold is F-free if all Gx are conjugate to some member of F. The SKV groups
are be denoted by SKVn[G, F], and similarly for bordism. We also ask that we
have the notion of a nice cobordism defined above. The results in [Pre80] present
an analog to Equation 2.7 for the equivariant case, namely:

(4.4) SKKn[G, F] =

{
SKVn[G, F] n even
SKVn[G, F]⊕ En[G, F] n odd

where En[G, F] generalizes the Z2 torsion term in equation 2.7. To define En[G, F],
we must first study why exactly the Z2 term appears in the first place. To study
this, we must examine the Kervaire semicharacteristic amd other invariants. As
described above, non-equivariant SK class is entirely determined by Euler char-
acteristic and signature invariant. SKK class is determined entirely by bordism
and Euler characteristic in all cases except n ≡ 1 (mod 4). In this case, the Ker-
vaire semicharacteristic determines another invariant that induces a splitting on
SKK. If En[G, F] is meant to generalize this torsion, then it must in some way
relate to the equivariant notions of Euler characteristic and Kervaire semicharac-
teristic. To do this, we define an equivalence relation onMn[G], which states that
M ∼ M′ if χG

σ (M) = χG
σ (M′)and kG

σ (M) = kG
σ (M′). The group obtained after the

Grothendieck construction is then En[G].

5. RESULTS

First, we present exact sequences for the oriented, equivariant case. This can
be done by asking that our G-actions are globally orientation preserving, and that
our gluing maps are orientation preserving, equivariant diffeomorphisms.

Theorem 5.1. For G of odd finite order, the below sequences are exact, with surjections
defined by factoring with equivariant SK and oriented nice cobordism relations:

(5.1) 0 In[G] SKn[G] SKn[G] 0

(5.2) 0 Fn[G] Ω•n[G] SKn[G] 0

(5.3) 0 I′n[G] SKKn[G] Ω•n[G] 0
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where, In[G], Fn[G], and I′n[G] are equivariant analogs of In, Fn, and I′n.

Proof. The proofs of these follow using the same arguments for the non-oriented
cases, with the added condition that the G-action and gluing diffeormorphisms
both preserve orientation. We note that the proving the exactness of each sequence
above does not depend on either the orientatedness or non-orientedness of the
manifolds we are working with. �

Now, we have also constructed an equivariant analog of the sequence from The-
orem 2.3, for both the oriented and non-oriented case. But first we must present
several lemmas.

Lemma 5.1. If M and M′ are SK[G]-equivalent 2k-dimensional G-manifolds, then χG
σ (M) =

χG
σ (M′) = χG

σ (Y), where Y is the bordism constructed in the proof of 4.2.

Proof. The first equality holds immediately, as χG
σ is an SK[G] invariant. Then let

us consider the bordism Y as pictured in Figure 5. We partition this space into
two spaces A and B, where A is the portion of the bordism along [0, 1/2 + ε]. B
is the complimentary portion of the bordism along [1/2− ε, 1]. Using the addi-
tivity of χG

σ , we see χG
σ (Y) = χG

σ (A) + χG
σ (B)− χG

σ (A ∩ B). We see that χG
σ (A) =

χG
σ (M) via retraction along the interval and compatibility with the equivariant

gluing, and likewise for χG
σ (B) = χG

σ (M′). We can see that A ∩ B = N + N′,
so χG

σ (A ∩ B) = χG
σ (N) + χG

σ (N′). Then by replacement we see that χG
σ (Y) =

χG
σ (M) + χG

σ (M′)− (χG
σ (N) + χG

σ (N′)). Now, let us examine χG
σ (M). Partition M

into NU and N′U, where these are N and N′ each with an added collared neigh-
borhood around the gluing at ∂N. Then we see that these allow us to simplify
as follows: χG

σ (M) = χG
σ (N) + χG

σ (N′)− χG
σ (∂N). Then by substitution and can-

cellation again we find that χG
σ (Y) = χG

σ (M′) + χG
σ (∂N). Now ∂N is a closed,

odd-dimensional, G-manifold, and thus χG
σ (∂N) = 0, so we have that χG

σ (Y) =
χG

σ (M′) and so we are done. �
A second proof is also presented:

Proof. For this proof, once again let Y be the bordism as described in Figure 9. We
construct the double 2Y by gluing via identity along boundary of two copies of
Y. This is a closed n + 1-dimensional manifold. Then, by using collared neighbor-
hoods around each copy of Y, we get χG

σ (2Y) = 2χG
σ (Y)− χG

σ (∂Y). As ∂Y = M +
M′+T(ϕψ−1)G, we get χG

σ (2Y) = 2χG
σ (Y)− (χG

σ (M)+χG
σ (M′)+χG

σ (T(ϕψ−1)G))).
As [T(ϕψ−1)G))]SK[G] = [0]SK[G], χG

σ (T(ϕψ−1)G)) = 0. Additionally, we also have
χG

σ (M) = χG
σ (M′) so the above simplifies to χG

σ (2Y) = 2χG
σ (Y) − 2χG

σ (M′). As
noted above 2Y is a closed n + 1-dimensional manifold, and so χG

σ (2Y) = 0. This
gives 0 = 2χG

σ (Y)− 2χG
σ (M′)⇒ χG

σ (Y) = χG
σ (M′) �
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B −→

←− A

∼ N

∼ N′

N ∪ϕ N′ N ∪ψ N′

FIGURE 8. Partitioning the bordism of SK Equivalent Manifolds

Y

Y

M TG M′

FIGURE 9. The Double of a Cobordism of SK-equivalent Manifolds

Lemma 5.2. In[G] = I′n[G], where

In[G] = {[G×H S(Vi)]SK[G]| All Representation Vi}

I′n[G] = {[G×H S(Vi)]SKK[G]| All Representations Vi}
Proof. First note that this map is a surjection, as assigning SK[G] class is a quotient,
and both groups are generated by the same representatives inMn[G]. Now, we
must show the map is injective. Take two classes of I′n[G], [S1]SKK[G] and [S2]SKK[G],
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such that [S1]SK[G] = [S2]SK[G]. Now, if we look at the equivariant Euler character-
istic of both manifolds, by the prior lemma χG

σ (S1) = χG
σ (S2) = χG

σ (Y). Secondly,
as [S1]SKK and [S2]SKK are both in I′n[G], and so by the exact sequence 4.3, they both
take the zero class in Ωn[G] . Then we may use [WW88, Lemma 4.2 and Theorem
1], which states that if [M]Ωn[G] = [M]ΩNn[G] and χG

σ (M) = χG
σ (M′) = χG

σ (Y),
where Y is the bordism between M and M′ then [M]SKK[G] = [M′]SKK[G]. So now
we see that if [S1]SK[G] = [S2]SK[G] and S1, S2 ∈ I′n[G], then [S1]SKK[G] = [S2]SKK[G],
which proves injectivity, and so we have an isomorphism. �

Using the above proofs and mimicking the proof of 2.9, we arrive at the follow-
ing theorem.

Theorem 5.2. The following sequence is for n even in the oriented case and for all n in
the non-oriented case.

(5.4) 0 Fn[G] SKKn[G] SKn[G] 0

As in the non-equivariant case, this is a consequence of the below braid com-
muting for n even in the oriented case and all n in the non-oriented case.

(5.5)

In[G] SKn[G] 0

0 SKKn[G] SKn[G] 0

Fn[G] Ω•n[G] 0

Note that once again, we encounter issues of torsion for n ≡ 1 (mod 4). Addi-
tionally, the n ≡ 3 (mod 4) case has become more interesting, by the introduction
of torsion in this dimension. In the context of SKV[G], we can now present an
analogous result in all dimensions.

Theorem 5.3. The below sequence is exact for both oriented and non-oriented manifolds
and all n.

(5.6) 0 Fn[G] SKVn[G] SKn[G] 0
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We see this is exact once again by noticing that the below braid commutes.

(5.7)

In[G] SKn[G] 0

0 SKVn[G] SKn[G] 0

Fn[G] Ω•n[G] 0

It is also worthy of note that the notions of nice equivariant bordism and equivari-
ant bordism (without the fixed point condition) agree for even dimension, but do
not agree for odd dimension, which suggests future work to study.
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Abstract. This report concerns the volume of spherical and hyperbolic simplices. We will
first give some brief introduction to the general background for this report. We then present
two simple findings, one on a restatement of an iterated integral formula for n-simplices
by Aomoto and another on an alternate proof of a determinant formula for 2-simplices by
Tuynman. Then we will present some developments on volume power series. Lastly we will
discuss some work on the volume of ideal hyperbolic simplices and future direction.
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1. Introduction

We study the volumes of n-simplices in the spherical and hyperbolic spaces Sn and Hn,
which are of constant curvature κ = ±1.

The Space: As sets, we have

Sn := {x ∈ Rn+1 : x2
1 + · · ·+ x2

n + x2
n+1 = 1}

and
Hn := {x ∈ Rn,1 : x2

1 + · · ·+ x2
n − x2

n+1 = −1, xn+1 > 0},
so that Sn is the surface of a sphere in (n + 1)-space and Hn is the upper-half sheet of a
hyperboloid in (n + 1)-space1. Geometrically, these two sets will inherit a metric structure
from the ambient space; for example, the volume form on Sn is the volume form on Rn+1

restricted to the surface of the sphere. We equip Sn ⊂ Rn+1 with

〈x; y〉 := x1y1 + · · ·+ xnyn + xn+1yn+1 = x†




1
. . .

1
1


 y

(which we may sometimes refer to as 〈·; ·〉+) and Hn ⊂ Rn+1 with

〈x; y〉− := x1y1 + · · ·+ xnyn − xn+1yn+1 = x†




1
. . .

1
−1


 y.

We will denote this bilinear form matrix by

Q =




1
. . .

1
κ


 .

Recalling that ωM =
∑

i ui ∗ dxi, where u is the vector (plus-or-minus-)unit and normal to
M with respect to the appropriate bilinear form, note that

ωvol :=
1

‖x‖n+1

n+1∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧���dxi ∧ · · · ∧ dxn+1

is the scale-invariant volume form on both Sn and Hn.
It is a fact that geodesics on these two spaces are traced out by their intersections with hy-

perplanes passing through the origin (i.e. hyperplanes defined by linear forms). In particular,
the distance between two points on these two spaces is given by

cos d(p, q) = 〈p; q〉 on Sn,
− cosh d(p, q) = 〈p; q〉− on Hn.

1There are many other models for hyperbolic space, but this one will be most extensively used. The Klein
projective model will be very briefly touched upon later.
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The Simplex: An n-simplex is defined to be the convex hull of n + 1 points. To avoid
degenerate cases, we require that not all of these n + 1 points lie on a totally geodesic
submanifold (i.e. a copy of Sn−1 or Hn−1, up to scaling in the latter case). The n-simplex
can alternatively be formulated as the intersection of a “cone” with the space (either Sn, Hn,
or the Euclidean n-space

En := {x ∈ Rn+1 : xn+1 = 1}

sitting inside Rn+1) as follows: Let F1, · · · , Fn+1 be linear forms (such that the hyperplanes
they define are distinct) which define the spaces Hi = {x : Fi(x) ≥ 0}. The intersection
of these spaces ∩n+1

i=1 Hi forms a cone C. The intersection C ∩ Sn or Hn or En will give,
respectively, a spherical or hyperbolic or Euclidean simplex.

We now give some examples of spherical and hyperbolic 2-simplices. Note that the
geodesics are, in fact, intersections with hyperplanes.

A spherical 2-simplex.

A hyperbolic 2-simplex in many different models, most notably the hyperboloid model in the
top left, which we focus on.
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Note the intersection of the cone with the hyperboloid in the bottom right.

Constructions: Let ∆ be an n-simplex determined by the vertices p1, · · · , pn+1. We
construct the (inward) normal unit vectors {ui}i as follows: for each i, consider all the
vertices except pi. These n points determine a hyperplane passing through the origin, and
this hyperplane has a unique unit normal (with respect to the appropriate bilinear form)
vector pointing into the simplex. Let this vector be ui. Note that this construction is dual
in the sense that given {ui}i, we can also reconstruct {pi}i.

We can then define

P :=



" · · · "
p1 · · · pn+1

# · · · #


 , U :=



" · · · "
u1 · · · un+1

# · · · #


 ,

which we use to define
G := U †QU, L := P †QP,

the Gram matrix and the length matrix respectively. Note that both G and L are symmetric.
The entries of G are 〈ui;uj〉Q while the entries of L are 〈pi; pj〉Q.

We then define the dihedral angle between two faces Fi and Fj to be θij = θji := π −
ang(ui, uj), so that G is of form

G =




1 − cos θij
. . .

− cos θji 1


 .

Note that the choice θii := π is consistent with the unit length of the normal vectors2.

2It should perhaps be noted here that in the hyperbolic case, although 〈pi; pi〉− = −1, the ui’s actually
lie on the de Sitter sphere, which gives 〈ui;ui〉− = 1. So there is more going on beneath the surface here
than it would appear, and for a more careful treatment we refer the reader to Peiro’s treatment. Perhaps it
is better that we speak less of that here.
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Due to the distance formulas stated earlier, we have that L is of form

L =




1 cos lij
. . .

cos lji 1


 in Sn,

L =




−1 − cosh lij
. . .

− cosh lji −1


 in Hn,

where lij = lji is the edge length between the vertices labeled by i and j. In particular note

κL =




1 cos(
√
κ lij)

. . .

cos(
√
κ lji) 1


 .

Before giving further properties of these constructs, let us quickly define some matrix

notation. Let M ∈ Matn×n. For I, J
Set

⊆ [n] define M I
J to be the matrix given by taking the

rows indexed by I and the columns indexed by J , and similarly let M
\I
\J be the matrix given

by taking the rows indexed by [n]\ I and the columns indexed by [n]\J . We will abbreviate

singleton notation, so that M
\i
\j refers to M

\{i}
\{j}. We abbreviate M

I∪{a}
J∪{b} to M I,a

J,b .

One can imagine that not all symmetric unidiagonal3 matrices correspond to simplices (c.f.
triangle inequality). However, Luo and Milnor found necessary and sufficient conditions for
Gram matrices to correspond to simplices.



Theorem (Luo).
In Sn, given a set of angles {θii = π, θij ∈ (0, π)}n+1

i,j=1, there is a spherical simplex ∆ with

those dihedral angles if and only if G = {− cos θij}n+1
i,j=1 is: (i) positive definite.

In Hn, given a set of angles {θii = π, θij ∈ (0, π)}n+1
i,j=1, there is a hyperbolic simplex ∆ with

those dihedral angles if and only if G = {− cos θij}n+1
i,j=1 has: (i) determinant detG < 0, (ii)

all principal submatrices positive definite, and (iii) all i, j-th cofactors (−1)i+j detG
\i
\j > 0.

In En, given a set of angles {θii = π, θij ∈ (0, π)}n+1
i,j=1, there is a Euclidean simplex ∆ with

those dihedral angles if and only if G = {− cos θij}n+1
i,j=1 has: (i) determinant detG = 0, (ii)

all principal submatrices positive definite, and (iii) all i, j-th cofactors (−1)i+j detG
\i
\j > 0.

The last result is perhaps less relevant than the first two, but we include it for completeness.
Note that we then have sgn detG = detQ = κ.

Define

T := {〈pi;uj〉Q}n+1
i,j=1;

we then have the following two facts, which are well-known in the field and for example
noted in a paper by Murakami and Ushijima.

3Meaning having all diagonal entries of 1.
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[
Theorem. In Sn and Hn,

G = TL−1T, L = TG−1T.

Proof. Recall i 6= j =⇒ 〈ui; pj〉 = 0 by construction, so T is diagonal. Then

U †QP =



 u1 !
...

...
...

 un+1 !







1
. . .

κ






" · · · "
p1 · · · pn+1

# · · · #


 =



〈u1; p1〉Q

. . .

〈un+1; pn+1〉Q


 = T

=⇒ U †QP = T

=⇒ QP = (U †)−1T, P †Q = T †U−1 = TU−1

=⇒ QP = (U †)−1T, P † = TU−1Q

=⇒ P †QP = TU−1Q(U †)−1T = T (U †QU)−1T

=⇒ L = TG−1T,

which proves the claim, as L = TG−1T ⇐⇒ T−1L = G−1T ⇐⇒ L−1T = T−1G ⇐⇒
TL−1T = G. �

Note that the above theorem implies sgn detG = sgn detL = κ, provided detT 6= 0. The
matrix T is characterized as follows:



Theorem. In fact,

〈pi;ui〉Q = κ ·
√
κ detG

detG
\i
\i

=

√
detL

detL
\i
\i
,

so moreover

T = κ




√
κdetG

detG
\1
\1

. . . √
κdetG

detG
\n+1
\n+1




=




√
detL

detL
\1
\1

. . . √
detL

detL
\n+1
\n+1



.

We also have

Lij = κ cos
(√

κ lij
)

= κ
(−1)i+j detG

\i
\j√

detG
\i
\i detG

\j
\j

, Gi
j = − cos θij = κ

(−1)i+j detL
\i
\j√

detL
\i
\i detL

\j
\j

.

Proof. 4Before starting, we state two matrix identities which will be helpful (and which will
be stated again later for completion):

δij detM =
n∑

µ=1

(−1)i+µM j
µ detM

\i
\µ =

n∑

µ=1

(−1)i+µMµ
j detM

\µ
\i ,

4Before starting the “before starting”, perhaps it should be noted that I was unable to find a proof (or
an entirely precise statement) of the above fact and had to craft an argument myself. Clearly this is a fact
well-known in the field (and in fact stated in different forms in several different papers), but in my opinion
the proof is perhaps not entirely obvious and lacking from the literature.
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det(M−1)IJ = (−1)|I|1+|J |1
detM

\J
\I

detM
,

where |I|1 :=
∑

i∈I i (as opposed to |I|0 := |I| = ∑i∈I 1).
There are four equalities to prove. Recall the duality of p and u.
Given {ui}, consider

vi :=

∑n+1
j=1 (−1)i+j detG

\i
\juj√

|detG| · detG
\i
\i

.

Observe that by Luo the denominator is real. This {vi} has two properties: that

〈vi; vi〉Q =
1

detG
\i
\i |detG|

∑∑

j,k∈[n+1]

(−1)j+k detG
\i
\j detG

\i
\k〈uj;uk〉Q

=
1

detG
\i
\i |detG|

n+1∑

j=1

(−1)j+i detG
\i
\j

n+1∑

k=1

(−1)i+kGj
k detG

\i
\k

=
1

detG
\i
\i |detG|

n+1∑

j=1

(−1)j+i detG
\i
\jδij detG

=
1

detG
\i
\i |detG|

detG
\i
\i detG

= sgn detG

= κ,

so it is of (plus-or-minus-)unit length, and that i 6= j =⇒

〈ui; vj〉Q =
n+1∑

k=1

(−1)j+k detG
\j
\k√

detG
\j
\j |detG|

〈ui;uk〉Q

=
1√

detG
\j
\j |detG|

n+1∑

k=1

(−1)j+kGi
k detG

\j
\k

=
1√

detG
\j
\j |detG|

δij detG

= 0.

These two properties imply that {vi} = {pi}, and the last calculation above incidentally
gives

〈ui; pi〉Q = κ ·
√
κ detG

detG
\i
\i
,
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which proves one equality. In addition, note that since L = TG−1T , we have

Lij =
∑∑

µ,ν

T iµ(G−1)µνT
ν
j

=
∑∑

µ,ν

δiµ〈pi;uµ〉Q
(−1)µ+ν detG

\µ
\ν

detG
δνj〈pν ;uj〉Q

= 〈pi;ui〉Q
(−1)i+j detG

\i
\j

detG
〈pj;uj〉Q

= κ ·
√
κ detG

detG
\i
\i

(−1)i+j detG
\i
\j

detG
κ ·
√
κ detG

detG
\j
\j

= κ
(−1)i+j detG

\i
\j√

detG
\i
\i detG

\j
\j

,

which proves another equality. It remains to prove two more.
This time, given {pi}, consider

vi :=

∑n+1
j=1 (−1)i+j detL

\i
\jpj√

detL · detL
\i
\i

.

First we must justify the denominator being real. NoteG = TL−1T =⇒ Gi
i =

∑
µ

∑
ν T

i
µ(L−1)µνT

ν
i =

T ii (L
−1)iiT

i
i = (T ii )

2(L−1)ii; but Gi
i = 1 > 0, which implies (L−1)ii > 0 =⇒ detL · detL

\i
\i =

detL · (−1)2|\i|1 det(L−1)ii
detL−1 = (detL)2(L−1)ii > 0 =⇒ detL ·detL

\i
\i > 0. So the denominator is

in fact the square root of a positive number, which is real. This {vi} has again two properties:
that

〈vi; vi〉Q =
1

detL
\i
\i · detL

∑∑

j,k∈[n+1]

(−1)j+k detL
\i
\j detL

\i
\k〈pj; pk〉Q

=
1

detL
\i
\i · detL

n+1∑

j=1

(−1)j+i detL
\i
\j

n+1∑

k=1

(−1)i+kLjk detL
\i
\k

=
1

detL
\i
\i · detL

n+1∑

j=1

(−1)j+i detL
\i
\jδij detL

=
1

detL
\i
\i · detL

detL
\i
\i detL

= 1,
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so it is of unit length5, and that i 6= j =⇒

〈pi; vj〉Q =
n+1∑

k=1

(−1)j+k detL
\j
\k√

detL
\j
\j · detL

〈pi; pk〉Q

=
1√

detL
\j
\j · detL

n+1∑

k=1

(−1)j+kLik detL
\j
\k

=
1√

detL
\j
\j · detL

δij detL

= 0.

These two properties imply that {vi} = {ui}, and the last calculation above incidentally
gives

〈pi;ui〉Q =

√
detL

detL
\i
\i
,

which proves another equality. In addition, note that since G = TL−1T , we have

Gi
j =

∑∑

µ,ν

T iµ(L−1)µνT
ν
j

=
∑∑

µ,ν

δiµ〈pi;uµ〉Q
(−1)µ+ν detL

\µ
\ν

detL
δνj〈pν ;uj〉Q

= 〈pi;ui〉Q
(−1)i+j detL

\i
\j

detL
〈pj;uj〉Q

=

√
detL

detL
\i
\i

(−1)i+j detL
\i
\j

detL

√
detL

detL
\j
\j

= κ
(−1)i+j detL

\i
\j√

detL
\i
\i detL

\j
\j

,

which shows the last equality. This finishes the proof. �

5This is strictly positive one and never negative, which again reflects the fact that in the hyperbolic case
the unit normal vectors lie on the de Sitter sphere. Of course in the spherical case it is of positive length.
But enough of that.
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2. On an Iterated Integral Formula

We investigate an iterated integral formula for the volume of a simplex given by Aomoto
and modified by Kohno. For a more thorough exposition we refer the reader to Kohno’s
(perhaps dense) survey.

Previous Work: First we give some notation. For a simplex ∆, let its faces be labeled as
F1, · · · , Fn+1. Let I1 ⊂ · · · ⊂ Ibn/2c be a sequence of index sets of size |Ik| = 2k. For I1, we
define θI1 to be the angle between the two faces labeled by I1, and for each Ik+1 = Ik ∪{a, b}
we define θIk!Ik+1

to be the dihedral angle between Fa ∩
⋂
i∈Ik Fi and Fb ∩

⋂
i∈Ik Fi:

θIk!Ik+1
:= ang

(
Fa ∩

⋂

i∈Ik
Fi, Fb ∩

⋂

i∈Ik
Fi

)
.

When the context is clear we may suppress θIk!Ik+1
to θIk+1

; that is, we let Ik+1 contain all
the information about its predecessors. We’ll also denote ∆Ik :=

⋂
i∈Ik Fi.

We can then think of θIk as a function on the space of Gram matrices, or the space of
“configurations”, so to speak. We recall a result from Aomoto (and rewritten by Kohno)
which expresses the differential of this function:



Theorem (Aomoto).

dθI!I∪{a,b}(G) = d tan−1


−

√
detGI

I detGI,a,b
I,a,b

detGI,a
I,b


.

Recall the Schlafli differential equality:


Theorem (Schlafli).

κ dvoln(∆) =
1

n− 1

∑

I1

voln−2 ∆I1 dθI1 .

Kohno then uses the above to give the following theorem, which was first stated for odd n
by Aomoto. Before stating it, recall that the iterated integral

∫
Id!M

ωk · · ·ω1 for 1-forms ωi
on the space Γ of matrix variables γ is defined as follows: First we integrate

∫
Id!M

ωk(γ)
to get a function fk(M) on Γ of the endpoint M , and then we integrate

∫
Id!M

fk(γ)ωk−1(γ)
to get another function fk−1(M) of the endpoint, and so forth and so on, until we reach a
function f1(M), which is then defined to be the value of the iterated integral. Note that the

iterated integral is a function of its endpoint. Recall voln(Sn) = 2π
n+1
2

Γ(n+1
2 )

and (−1)!! = 1.
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Theorem (Aomoto, Kohno).

κ
n
2 voln(∆(G)) = cn,0 +

n/2∑

k=1

cn,k
∑

Ik⊃···⊃I1

∫

Id!G

dθIk · · · dθI1 ,

where

cn,k =
(n− 1− 2k)!!

(n− 1)!!

voln−2k(Sn−2k)

2n+1−2k
.

If n
2
6∈ Z, the last term is not immediately well-defined, so we clarify as thus: the sum is

defined to have
⌊
n
2

⌋
= m many components, i.e. for k = 1, 2, · · · ,m − 1,m + 0.5. For

k = m+ 0.5 the summand is defined to have integrand

vol1(∆Im) dθIm · · · dθI1 ,

and the chain of index sets summed over is Im ⊃ · · · ⊃ I1.

Proof. To give a full proof here seems too ambitious, and in any case we refer the reader to
Kohno’s paper for the full (perhaps flawed?) proof. Kohno states the above formula in a
slightly different form, which I am fairly certain is not entirely correct. The rough idea is to
iterate using Schlafli’s formula in the spherical case and then extend to the hyperbolic case
by using the analyticity of the volume-corrected curvature, κ(voln ∆)

2
n . To give an example

of the first steps of the proof in the spherical case,

dvoln ∆(G) =
1

n− 1

∑

I1

voln−2 ∆I1 dθI1

∫

Id!G

dvoln ∆(γ) =

∫

Id!G

1

n− 1

∑

I1

voln−2 ∆I1 dθI1

voln ∆(G)− voln ∆(Id) =
1

n− 1

∑

I1

∫

Id!G

voln−2 ∆I1 dθI1

voln ∆(G) =
voln Sn

2n+1
+

1

n− 1

∑

I1

∫

Id!G

voln−2 ∆I1(γ) dθI1(γ);

however, we can also use the Schlafli equality on voln−2 to obtain

voln−2 ∆I1(G) =
voln−2 Sn−2

2n−1
+

1

n− 3

∑

I2:I2⊃I1

∫

Id!G

voln−4 ∆I2(γ) dθI2(γ),

and so on for each voln−2k. After substituting all these we obtain the desired result. It is
important to observe that, for odd n, this sequence of steps of expressing smaller voln−2k

terminates with a vol1 term, which cannot be broken down further by Schlafli; hence the
sum defined up to n/2 for odd n in the statement above.

Aomoto and Kohno then each use an analytic continuation argument to extend this to
work in the hyperbolic case. For this step the reader may peruse their papers. �

Matrix Identities: Next we recall some facts from linear algebra.
11





Theorem (Jacobi).

detM detM
\ij
\ij = detM

\i
\i detM

\j
\j − detM

\i
\j detM

\j
\i .

Note that in the case of symmetric M the above becomes detM detM
\ij
\ij = detM

\i
\i detM

\j
\j−(

detM
\i
\j
)2

.




Theorem (Laplace).

δij detM =
n∑

µ=1

(−1)i+µM j
µ detM

\i
\µ =

n∑

µ=1

(−1)i+µMµ
j detM

\µ
\i .



Theorem (Generalized Laplace). Fix I ⊆ [n]. Then

detM =
∑

J :|J |=|I|
(−1)

∑
i∈I i+

∑
j∈J j detM I

J detM
\I
\J .



Theorem (inverse).

det(M−1)IJ = (−1)
∑
i∈I i+

∑
j∈J j

detM
\J
\I

detM
.

Now let A,B ∈ Matn×n.



Theorem (product). Fix I, J ⊆ [n] with |I| = |J |. Then

det(AB)IJ =
∑

K:|K|=|I|=|J |
detAIK detBK

J .

Result: We present our first simple finding.



Theorem. In terms of the length matrix L we have

dθI!I∪{a,b}(L) = d tan−1


(−1)a+b+1

√
detL

\I
\I detL

\I,a,b
\I,a,b

detL
\I,a
\I,b


.

Proof. We compute. For ease of access recall

dθI!I∪{a,b}(G) = d tan−1


−

√
detGI

I detGI,a,b
I,a,b

detGI,a
I,b


.

12



We want to substitute G with L. Compute:

detGI
I = det(TL−1T )II =

∑

J :|J |=|I|
det(TL−1)IJ detT JI ;

but since T is diagonal, we have that unless I = J as sets identically, some row/column of
zeros will appear in T JI =⇒ detT JI = 0, so we force J = I as all other terms vanish;

= det(TL−1)II detT II

=


 ∑

J :|J |=|I|
detT IJ det(L−1)JI


 detT II

= detT II det(L−1)II detT II ;

at this point note detT II =
∏

i∈I

√
detL

detL
\i
\i

from our form for T above and recall det(L−1)II =

(−1)2
∑
i∈I i

detL
\I
\I

detL
=

detL
\I
\I

detL
; recall also that detL and detL

\i
\i are of the same sign;

=
(detL)|I|
∏

i∈I detL
\i
\i

detL
\I
\I

detL

=
(detL)|I|−1

∏
i∈I detL

\i
\i

detL
\I
\I .

So

detGI
I =

(detL)|I|−1

∏
i∈I detL

\i
\i

detL
\I
\I , (∗)

which automatically gives

detGI,a,b
I,a,b =

(detL)|I|+1

detL
\a
\b · detL

\b
\b ·
∏

i∈I detL
\i
\i

detL
\I,a,b
\I,a,b. (∗∗)

Next we compute

degGI,a
I,b = det(TL−1T )I,aI,b =

∑

J :|J |=|I|+1

det(TL−1)I,aJ detT JI,b

= det(TL−1)I,aI,b detT I,bI,b

=


 ∑

J :|J |=|I|+1

detT I,aJ det(L−1)JI,b


 detT I,bI,b

= detT I,aI,a det(L−1)I,aI,b detT I,bI,b

=
1√

detL
\a
\a detL

\b
\b

(detL)|I|+1

∏
i∈I detL

\i
\i
· (−1)a+b+2

∑
i∈I i

detL
\I,a
\I,b

detL

13



= (−1)a+b 1√
detL

\a
\a detL

\b
\b

(detL)|I|
∏

i∈I detL
\i
\i

detL
\I,a
\I,b ,

so

detGI,a
I,b = (−1)a+b 1√

detL
\a
\a detL

\b
\b

(detL)|I|
∏

i∈I detL
\i
\i

detL
\I,a
\I,b . (∗∗∗)

We can now combine our three starred results together to find

−

√
detGI

I degGI,a,b
I,a,b

detGI,a
I,b

= −

√
(detL)|I|−1

∏
i∈I detL

\i
\i

detL
\I
\I ·

(detL)|I|+1

detL
\a
\b ·detL

\b
\b·
∏
i∈I detL

\i
\i

detL
\I,a,b
\I,a,b

(−1)a+b 1√
detL

\a
\a detL

\b
\b

(detL)|I|
∏
i∈I detL

\i
\i

detL
\I,a
\I,b

= −

√
(detL)2|I|

detL
\a
\b ·detL

\b
\b·
(∏

i∈I detL
\i
\i

)2 · detL
\I
\I · detL

\I,a,b
\I,a,b

(−1)a+b 1√
detL

\a
\a detL

\b
\b

(detL)|I|
∏
i∈I detL

\i
\i

detL
\I,a
\I,b

= (−1)a+b+1

1√
detL

\a
\a detL

\b
\b

(detL)|I|
∏
i∈I detL

\i
\i

√
detL

\I
\I · detL

\I,a,b
\I,a,b

1√
detL

\a
\a detL

\b
\b

(detL)|I|
∏
i∈I detL

\i
\i
· detL

\I,a
\I,b

= (−1)a+b+1

√
detL

\I
\I · detL

\I,a,b
\I,a,b

detL
\I,a
\I,b

,

as desired. �

Since this translation of data does not change the nature of the form dθ, and since the
iterated integral in question is homotopy invariant (for example c.f. Kohno), we have that
the same formula holds:
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Theorem.

κ
n
2 voln(∆(L)) = cn,0 +

n/2∑

k=1

cn,k
∑

Ik⊃···⊃I1

∫

Id!L

dθIk · · · dθI1 ,

where

cn,k =
(n− 1− 2k)!!

(n− 1)!!

voln−2k(Sn−2k)

2n+1−2k

and

dθIk(L) = d tan−1


(−1)a+b+1

√
detL

\Ik−1

\Ik−1
detL

\Ik−1,a,b

\Ik−1,a,b

detL
\Ik−1,a

\Ik−1,b




for Ik = Ik−1 ∪ {a, b}. If n
2
6∈ Z, the last term is not immediately well-defined, so we clarify

as thus: the sum is defined to have
⌊
n
2

⌋
= m many components, i.e. for k = 1, 2, · · · ,m −

1,m+ 0.5. For k = m+ 0.5 the summand is defined to have integrand

vol1(∆Im) dθIm · · · dθI1 ,

and the chain of index sets summed over is Im ⊃ · · · ⊃ I1.

Some remarks on this formula: note that, in terms of the data of L, for odd n the last
integrand featuring vol1 ∆Ibn/2c is easier to express. Note also that whereas for large I the

computation of dθI(G) involved large determinants, in terms of the length matrix L this
trope is flipped; in terms of L, larger I gives smaller determinant computations.
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3. Another Proof of Tuynman’s Formula

We briefly outline the usage of the relation G = TL−1T to derive Tuynman’s formula,
which states



Theorem (Tuynman). For triangles ∆ ∈ Sn or Hn, the area is given by

sin2

(
vol2 ∆

2

)
=

|detL|
2(1 + κλ1,2)(1 + κλ2,3)(1 + κλ3,1)

,

where λij are the entries of L.

Alternative Proof. Recall the classical formula

vol2 ∆ = κ(α + β + γ − π),

which incidentally can be trivially recovered from the iterated integral formula given by

Aomoto and Kohno. Recall from the introduction that − cos θij = κ
(−1)i+j detL

\i
\j√

detL
\i
\i detL

\j
\j

, so that

θij = cos−1

(
κ

(−1)i+j+1 detL
\i
\j√

detL
\i
\i detL

\j
\j

)
. We can then take the cosine of both sides of the classical

formula:

cos vol2 ∆ = cos(κ(θ1,2 + θ2,3 + θ3,1 − π))

= − cos(θ1,2 + θ2,3 + θ3,1)

= − cos(θ1,2) cos(θ2,3) cos(θ3,1) +
∑

cyc

cos(θ1,2) sin(θ2,3) sin(θ3,1)

1− cos vol2 ∆ = 1 + cos(θ1,2) cos(θ2,3) cos(θ3,1)−
∑

cyc

cos(θ1,2) sin(θ2,3) sin(θ3,1).

For what follows, let d := detL, and dij := detL
\i
\j. So

cos θij = κ
(−1)i+j+1dij√

diidjj
.

Given cos θij, we can calculate sin θij =

√
diidjj−d2ij√
diidjj

. Note that this is positive, as we require

0 < θij < π. Recall Jacobi’s identity, which gives diidjj − d2
ij = d detL

\ij
\ij = κd, where we

observe that the diagonal entries of L are κ. This gives

sin θij =

√
κd√
diidjj

.
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We can then compute

1− cos vol2 ∆ = 1 + cos(θ1,2) cos(θ2,3) cos(θ3,1)−
∑

cyc

cos(θ1,2) sin(θ2,3) sin(θ3,1)

= 1 + κ3 (−1)1+2+1+2+3+1+3+1+1d12d23d31√
d11d22

√
d22d33

√
d33d11

− κ (−1)1+2+1d12√
d11d22

√
κd√

d22d33

√
κd√

d33d11

− κ (−1)2+3+1d23√
d22d33

√
κd√

d33d11

√
κd√

d11d22

− κ (−1)3+1+1d31√
d33d11

√
κd√

d11d22

√
κd√

d22d33

;

note
√
κd

2
= κd and

√
d11d22

√
d22d33

√
d33d11 = κd11d22d33;

= 1− d12d23d31

d11d22d33

− κd(d12 + d23 − d31)

d11d22d33

=
d11d22d33 − d12d23d31 − κd(d12 + d23 − d31)

d11d22d33

.

At this point we draw L for reference:

L =




κ λ1,2 λ3,1

λ1,2 κ λ2,3

λ3,1 λ2,3 κ


 :=



κ λ3 λ2

λ3 κ λ1

λ2 λ1 κ


 .

Observe for example that dii = 1 − λ2
i , d12 = κλ3 − λ1λ2, d23 = κλ1 − λ2λ3, and d31 =

λ3λ1 − κλ2.
Given a1, a2, a3, define the symmetric polynomials σ1(a) = a1 + a2 + a3, σ2(a) = a1a2 +

a2a3+a3a1, σ3(a) = a1a2a3, and S2(a) = a2
1+a2

2+a2
3. We suppress σi(λ) = σi and S2(λ) = S2.

As an example, we write σ2(λ2) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1.

Now observe the following facts (recall σ(a2) = σ2(a)2 − 2σ1(a)σ3(a)):

κd = |detL|
= 1 + 2κσ3 − S2,

d11d22d33 = (1− λ2
1)(1− λ2

2)(1− λ2
3)

= 1− S2 + σ2(λ2)− σ2
3

= 1− σ2
1 + 2σ2 + σ2

2 − 2σ1σ3 − σ2
3

= (1 + σ2)2 − (σ1 + σ3)2,

−d12d23d31 = −(κλ3 − λ1λ2)(κλ1 − λ2λ3)(λ3λ1 − κλ2)

= (κλ3 − λ1λ2)(κλ1 − λ2λ3)(κλ2 − λ3λ1)

= κσ3 − σ2(λ2) + κσ3S2 − σ2
3,

−κd(d12 + d23 − d31) = −(1 + 2κσ3 − S2)(κσ1 − σ2),
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so that

1− cos vol2 ∆ =
d11d22d33 − d12d23d31 − κd(d12 + d23 − d31)

d11d22d33

=
1− S2 + σ2(λ2)− σ2

3 + κσ3 − σ2(λ2) + κσ3S2 − σ2
3 − (1 + 2κσ3 − S2)(κσ1 − σ2)

(1 + σ2)2 − (σ1 + σ3)2

=
1− S − 2σ2

3 + κσ3 + κσ3S2 − (1 + 2κσ3 − S2)(κσ1 − σ2)

(1 + σ2)2 − (σ1 + σ3)2

=
(1 + 2κσ3 − S2)(1− κσ3)− (1 + 2κσ3 − S2)(κσ1 − σ2)

(1 + σ2)2 − (σ1 + σ3)2

=
(1 + 2κσ3 − S2)((1 + σ2)− κ(σ1 + σ3))

(1 + σ2)2 − κ2(σ1 + σ3)2

=
1 + 2κσ3 − S2

(1 + σ2) + κ(σ1 + σ3)

=⇒ sin2

(
vol2 ∆

2

)
=

1− cos vol2 ∆

2

=
1 + 2κσ3 − S2

2(1 + κσ1 + σ2 + κσ3)

=
|detL|

2(1 + κλ1,2)(1 + κλ2,3)(1 + κλ3,1)
,

as desired. �
Although tedious, the above calculations offer a straightforward proof for Tuynman’s for-

mula.
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4. Developments on Volume Power Series

We give a power series in terms of the length matrix for the volume of an n-simplex
convergent in some of both the spherical and the hyperbolic case. First we explain some
background; then we review some previous work, which we prove in an alternate fashion and
briefly expand upon; then we present our new power series.

The following is well-known in the field.

Cone Integrals in the Spherical Case: Let

ωvol :=
1

‖x‖n+1

n+1∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧���dxi ∧ · · · ∧ dxn+1

be the volume form on a sphere (and also a (half-sheet of a) hyperboloid). Note that this is
scale invariant. Kohno and Peiro remark that we have

rn dr ∧ ωvol = dx1 ∧ · · · ∧ dxn+1,

where r is defined as r :=
√
〈x;x〉. This can be checked easily by computation. Then we

have, for a function f such that
∫∞

0
rnf(r2) dr converges, the following relation:

vol+n (∆+)

∫ ∞

0

rnf(r2) dr =

∫

C

f(〈x;x〉) dx =
√

detL

∫

Rn+1
+

f(x†Lx) dx, (∗)

where C refers to the cone formed by the half-spaces intersecting on the surface of our sphere
to form ∆. To see the former equality, note

∫

C

f(〈x;x〉) dx1 ∧ · · · ∧ dxn+1 =

∫

C

rnf(〈x;x〉) dr ∧ ωvol

=

∫ ∞

r=0

rnf(r2) dr

∫

r∆

ωvol

=

∫ ∞

r=0

rnf(r2) dr

∫

∆

ωvol

= vol+n (∆+)

∫ ∞

0

rnf(r2) dr.

The latter equality is a change of coordinates x 7−! P−1x:

∫

C

f(〈x;x〉)
|detP−1| |detP−1| dx =

∫

P−1(C)

f
(
〈Px;Px〉

)

|detP−1| dx

=

∫

Rn+1
+

|detP |f(x†P †Px) dx

=
√

detL

∫

Rn+1
+

f(x†Lx) dx,

where we recall P †P = L and detL > 0 for spherical simplices. It is clear that the image of
C under x 7−! P−1x is Rn+1

+ .
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In particular, we can choose f(x) = e−x. Recall that

∫ ∞

0

rne−r
2

dr =
Γ
(
n+1

2

)

2
,

which gives

vol+n (∆+) =
2
√

detL

Γ
(
n+1

2

)
∫

Rn+1
+

e−x
†Lx dx. (∗+)

Note that the finiteness of the left-hand side guarantees that the right-hand side converges
for all admissible L. (In any case recall that G is positive definite for spherical simplices and
therefore so is L, so the exponent is strictly negative.) Recall that in the spherical case L
looks like

L =




1 cos lij
. . .

cos lji 1


 .

Cone Integrals in the Hyperbolic Case: A similar formula holds in the hyperbolic
case. The general relation in the hyperbolic case is (again for f such that the left-hand side
makes sense):

vol−n (∆−)

∫ ∞

0

rnf(r2) dr =

∫

C

f(−〈x;x〉−) dx =
√
|detL|

∫

Rn+1
+

f(−x†Lx) dx, (∗)

where 〈·; ·〉− refers to the Minkowski inner product 〈x; y〉− := x1y1 + · · ·+xnyn−xn+1yn+1 =

x†Qy, with

Q =




1
. . .

1
−1


 .

r then refers to r :=
√
|〈x;x〉−|. Note that on C, which is contained in the upper light cone,

we have 〈·; ·〉− < 0, so really r =
√
−〈x;x〉− as far as we’re concerned. To see the former

equality, note
∫

C

f(−〈x;x〉−) dx1 ∧ · · · ∧ dxn+1 =

∫

C

rnf(−〈x;x〉) dr ∧ ωvol

=

∫ ∞

r=0

rnf(r2) dr

∫

r∆

ωvol

=

∫ ∞

r=0

rnf(r2) dr

∫

∆

ωvol

= vol−n (∆−)

∫ ∞

0

rnf(r2) dr.
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The latter equality also is a change of coordinates x 7−! P−1x:

∫

C

f(−〈x;x〉−)

|detP−1| |detP−1| dx =

∫

P−1(C)

f
(
− 〈Px;Px〉−

)

|detP−1| dx

=

∫

Rn+1
+

|detP |f(−x†P †QPx) dx

=
√
|detL|

∫

Rn+1
+

f(−x†Lx) dx,

where we recall P †QP = L and detL < 0 for hyperbolic simplices. It is clear that the image
of C under x 7−! P−1x is Rn+1

+ .
In particular, we can again choose f(x) = e−x, which gives

vol−n (∆−) =
2
√
|detL|

Γ
(
n+1

2

)
∫

Rn+1
+

e−x
†(−L)x dx. (∗−)

Note the double minus sign. Recall that in the hyperbolic case L looks like

−L =




1 cosh lij
. . .

cosh lji 1


 .

Since cosh ≥ 1, the exponent in the integrand is strictly negative.

Power Series: To summarize, we have


Lemma.

voln(∆) =
2
√
κ detL

Γ
(
n+1

2

)
∫

Rn+1
+

e−x
†(κL)x dx.

Hence to get a power series for voln it suffices to find a power series for the expression
∫

Rn+1
+

e−x
†Tx dx

in terms of the variables tij, 1 ≤ i < j ≤ n+ 1, where

T =




1 tij
. . .

tji 1


 .

Note tij = cos
(
ei

1−κ
4
πlij

)
, where κ is the constant curvature of the space. Perhaps this is

better written as tij = cos(
√
κ lij). First we will find such a power series in a manner which

gives an alternate proof for a theorem by Aomoto. In what follows, it should be emphasized
that nij is a sum index, while n is the dimension of the simplex. We will later also use ~n to
denote the nij’s; we stress that ~n and nij are not the same thing as n.
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Theorem (Aomoto). For ∆+ ∈ Sn ⊂ Rn+1, the following power series holds around the
origin:

vol+n (∆+) =

√
detL

2nΓ
(
n+1

2

)
∞∑
· · ·
∑

nij=0

1≤i<j≤n+1

n+1∏

i=1

Γ

(
1 +

∑
j 6=i nij

2

) ∏∏

1≤i<j≤n+1

(−2λij)
nij

nij!

=

√
detL

2nΓ
(
n+1

2

)
∞∑
· · ·
∑

nij=0

1≤i<j≤n+1

n+1∏

i=1

Γ

(
1 +

∑
j 6=i nij

2

) ∏∏

1≤i<j≤n+1

(−2 cos lij)
nij

nij!
.

Alternative Proof. This alternate proof will also provide a sufficient condition for conver-
gence. The idea is to write

T =




1 tij
. . .

tji 1


 = Id +




0 tij
. . .

tji 0


 = Id +H,

so that ∫

Rn+1
+

e−x
†Tx dx =

∫

Rn+1
+

e−x
†xe−x

†Hx dx,

write the second factor in the integrand as a power series, then use Fubini’s to exchange the
order of integration and summation.

Observe that

e−x
†Hx = e

−

( ∑∑

1≤i<j≤n+1

(2tijxixj)

)

=
∞∑

m=0

1

m!

(∑∑

i<j

(−2tijxixj)

)m

=
∞∑

m=0

1

m!

∑

|~n|1=m

(
m

~n

) ∏∏

1≤i<j≤n+1

(−2tijxixj)
nij

=
∑
· · ·
∑

nij≥0

1≤i<j≤n+1

(∏∏
i<j(−2tij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

)

=
∑

~n

(∏∏
i<j(−2tij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

)

(|~n|1 denotes
∑∑
i<j

nij), which gives

∫

Rn+1
+

e−x
†Tx dx =

∫

Rn+1
+

(∑

~n

e−x
†x

(∏∏
i<j(−2tij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

))
dx.

22



We now apply Fubini’s theorem. Clearly each e−x
†x
(∏∏

i<j(−2tij)
nij

∏∏
i<j nij !

∏
i x
∑
j 6=i nij

i

)
is continu-

ous in ~x. Furthermore we have its absolute value is
∣∣∣∣∣e
−x†x

(∏∏
i<j(−2tij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

)∣∣∣∣∣ = e−x
†x

(∏∏
i<j(2|tij|)nij∏∏

i<j nij!

∏

i

x
∑
j 6=i nij

i

)

since xi ≥ 0 on Rn+1
+ , which gives

∫

Rn+1
+

(∑

~n

∣∣∣∣∣e
−x†x

(∏∏
i<j(−2tij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

)∣∣∣∣∣

)
dx

=

∫

Rn+1
+

e−x
†x exp


−x†




0 −|tij|
. . .

−|tji| 0


x


 dx

=

∫

Rn+1
+

exp


−x†




1 −|tij|
. . .

−|tji| 1


x


 dx.

Fubini’s condition is that this integral is finite, in which case the order of integration and sum-
mation may be switched. It is emphasized here that Fubini’s condition essentially replaces a
convergence radius calculation: as long as Fubini’s condition holds, we are guaranteed that∫
e−x

†Tx =
∫ ∑

f =
∑∫

f (since the exponential power series
∑
f converges uniformly on

compact sets), and we know a priori that the former must converge, which implies the latter
must also converge. Hence the following Fubini condition is sufficient for the power series to
converge: ∫

Rn+1
+

exp


−x†




1 −|tij|
. . .

−|tji| 1


x


 dx <∞. (∗)

Note that this for example happens when |tij| < 1
n
∀ i, j, as

x†




1 − 1
n

. . .

− 1
n

1


x =

1

n

∑

i

nx2
i −

1

n

∑∑

i<j

2xixj

=
1

n

∑∑

i<j

(xi − xj)2

≥ 0.

It should be noted that tij = κλij, and that 1
n
< 1 = minx∈R coshx, so it would appear this

series might fail to converge in the hyperbolic case. We will speak more of this when we are
done computing the power series.
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We may then switch the order of integration and summation to obtain

∫

Rn+1
+

e−x
†Tx dx =

∫

Rn+1
+

(∑

~n

e−x
†x

(∏∏
i<j(−2tij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

))
dx

=
∑

~n

∏∏
i<j(−2tij)

nij

∏∏
i<j nij!

(∫

Rn+1
+

e−x
†x
∏

i

x
∑
j 6=i nij

i dx

)

=
∑

~n

1

2n+1

∏

i

Γ

(
1 +

∑
j 6=i nij

2

)∏∏
i<j(−2tij)

nij

∏∏
i<j nij!

,

where the integral for the coefficient

∫

Rn+1
+

e−x
†x
∏

i

x
∑
j 6=i nij

i dx =
1

2n+1

∏

i

Γ

(
1 +

∑
j 6=i nij

2

)

is a straightforward computation6. For κ = 1 this returns (recall vol+n ∆+ = 2
√

detL

Γ(n+1
2 )

∫
Rn+1
+

e−x
†Lx dx)

vol+n ∆+ =

√
detL

2nΓ
(
n+1

2

)
∑

~n

∏

i

Γ

(
1 +

∑
j 6=i nij

2

)∏∏
i<j(−2λij)

nij

∏∏
i<j nij!

,

as Aomoto claimed7. In the hyperbolic case, we have |tij| ≥ 1; however, even for the boundary
case tij = κλij = cosh lij = 1 ∀ i, j, the terms of this series fail to go to zero as |~n|1 ! ∞
(straightforward Stirling calculation), implying divergence. Hence this series only holds in a
subset of the spherical case. �

Result: It is a simple modification of the above idea to write

T =




1 1
. . .

1 1


+




0 tij − 1
. . .

tji − 1 0


 = T0 +H.

Let the entries of H be denoted ηij = tij − 1 for sake of brevity8.

6I should mention the existence of a method of brackets, a “generalization” of Ramanujan’s Master The-
orem which is not yet entirely on rigorous footing. While not used in this report, this methodology is very
interesting.

7There were two minor typos in Aomoto’s paper: that the Gamma function was missing a +1 from the
numerator of its argument, and that the detL was missing a square root. These are corrected here.

8η stands for error
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Observe that

e−x
†Hx = e

−

( ∑∑

1≤i<j≤n+1

(2ηijxixj)

)

=
∞∑

m=0

1

m!

(∑∑

i<j

(−2ηijxixj)

)m

=
∞∑

m=0

1

m!

∑

|~n|1=m

(
m

~n

) ∏∏

1≤i<j≤n+1

(−2ηijxixj)
nij

=
∑
· · ·
∑

nij≥0

1≤i<j≤n+1

(∏∏
i<j(−2ηij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

)

=
∑

~n

(∏∏
i<j(−2ηij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

)
,

which gives

∫

Rn+1
+

e−x
†Tx dx =

∫

Rn+1
+

(∑

~n

e−x
†T0x

(∏∏
i<j(−2ηij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

))
dx.

We now apply Fubini’s theorem. Clearly each e−x
†T0x
(∏∏

i<j(−2ηij)
nij

∏∏
i<j nij !

∏
i x
∑
j 6=i nij

i

)
is contin-

uous in ~x. Furthermore we have its absolute value is∣∣∣∣∣e
−x†T0x

(∏∏
i<j(−2ηij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

)∣∣∣∣∣ = e−x
†T0x

(∏∏
i<j(2|ηij|)nij∏∏

i<j nij!

∏

i

x
∑
j 6=i nij

i

)

since xi ≥ 0 on Rn+1
+ , which gives

∫

Rn+1
+

(∑

~n

∣∣∣∣∣e
−x†T0x

(∏∏
i<j(−2ηij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

)∣∣∣∣∣

)
dx

=

∫

Rn+1
+

e−x
†T0x exp


x†




0 |ηij|
. . .

|ηji| 0


x


 dx

=

∫

Rn+1
+

exp


−x†




1 1− |tij − 1|
. . .

1− |tji − 1| 1


x


 dx,

so that this time Fubini’s condition is∫

Rn+1
+

exp


−x†




1 1− |tij − 1|
. . .

1− |tji − 1| 1


x


 dx <∞. (∗)
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Note again that if 1 − |tij − 1| > − 1
n
⇐⇒ |tij − 1| < 1 + 1

n
⇐⇒ − 1

n
< tij < 2 + 1

n
, then

the integral above converges. Hence if |tij − 1| < 1 + 1
n

then Fubini’s theorem applies and
we can switch the order of the sum and the integral to obtain

∫

Rn+1
+

e−x
†Tx dx =

∑

~n

(∫

Rn+1
+

e−x
†T0x

(∏∏
i<j(−2ηij)

nij

∏∏
i<j nij!

∏

i

x
∑
j 6=i nij

i

)
dx

)

=
∑

~n

(∏∏
i<j(−2ηij)

nij

∏∏
i<j nij!

∫

Rn+1
+

e−x
†T0x

∏

i

x
∑
j 6=i nij

i dx

)
.

It is again emphasized that as long as Fubini’s criterion holds (i.e.
∫ ∑ |f | < ∞), which is

the case when for example |tij − 1| < 1 + 1
n
, it must be the case that the power series on

the right hand side converges. This side-steps the need for a computation for the radius of

convergence later. It remains to compute the coefficients
∫
Rn+1
+

e−x
†T0x

∏
i x
∑
j 6=i nij

i dx.

Denote ci :=
∑

j 6=i nij and observe that x†T0x =
∑
i

x2
i +

∑∑
i<j

2xixj = (x1 + · · · + xn+1)2.

Let us change variables x1 + · · ·+ xn+1 = σ, which gives
∫

Rn+1
+

e−x
†T0x

∏

i

x
∑
j 6=i nij

i dx

=

∫ ∞

0

· · ·
∫ ∞

0

xc11 · · ·xcn+1

n+1 e
−(x1+···+xn+1)2 dx1 · · · dxn+1

=

∫ ∞

0

∫ σ

0

∫ σ−xn

0

· · ·
∫ σ−xn−···−x2

0

xc11 · · ·xcnn (σ − xn − · · · − x2 − x1)cn+1e−σ
2

dx1 · · · dxn−1 dxn dσ.

This computation reduces to calculating∫ s

0

xa(s− x)b dx =
a!b!

(a+ b+ 1)!
sa+b+1,

which can be verified via WolframAlpha, and iterating integrals of this form. Doing so affords
the following:

=

∫ ∞

0

c1! · · · cn+1!

(c1 + · · ·+ cn+1 + n)!
σc1+···+cn+1+ne−σ

2

dσ

=
1

2

c1! · · · cn+1!

(c1 + · · ·+ cn+1 + n)!
Γ

(
n+ 1 + c1 + · · ·+ cn+1

2

)

=
1

2

∏
i Γ
(

1 +
∑

j 6=i nij
)

Γ(n+ 1 + 2|~n|1)
Γ

(
n+ 1

2
+ |~n|1

)
.

With these coefficients we have

∫

Rn+1
+

e−x
†Tx dx =

∑

~n



∏∏

i<j(−2ηij)
nij

∏∏
i<j nij!

· 1

2

∏
i Γ
(

1 +
∑

j 6=i nij
)

Γ(n+ 1 + 2|~n|1)
Γ

(
n+ 1

2
+ |~n|1

)


=
∑

~n

(
1

2
(−2)|~n|1

Γ
(
n+1

2
+ |~n|1

)

Γ(n+ 1 + 2|~n|1)

∏

i

Γ

(
1 +

∑

j 6=i
nij

))
~η ~n

~n!
. (∗)
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Plugging this into our formula for voln from earlier, we get



Theorem.

voln(∆) =

√
κ detL

Γ
(
n+1

2

)
∑

~n

(
(−2)|~n|1Γ

(
n+1

2
+ |~n|1

)

Γ(n+ 1 + 2|~n|1)

n+1∏

i=1

Γ

(
1 +

∑

j 6=i
nij

))
(κ~λ−~1)~n

~n!
,

where κ is the constant curvature of the space, λij = κ cos(
√
κ lij) is the ij-th entry of the

length matrix L, and ~1 is the vector of all ones. This power series converges if∫

Rn+1
+

exp


−x†




1 1− |κλij − 1|
. . .

1− |κλji − 1| 1


x


 dx <∞,

which happens for example if every

|κλij − 1| < 1 +
1

n
⇐⇒ − 1

n
< κλij = cos

(√
κ lij

)
< 2 +

1

n
∀ i, j.

This above derivation hinged upon the very special fact about the base matrix T0, which
is that x†T0x = σ2

1. This yields a very simple integrand (which can be dealt with by, as we
saw, a linear change of variables) for computing the power series coefficients. For a different
base point, say

T0 =




1 2
. . .

2 1


 ,

this nice reduction does not apply, and calculating
∫
Rn+1
+

e−x
†T0x

∏
i x
∑
j 6=i nij

i dx is not nearly
as easy.

27



5. Ideal Hyperbolic Simplices

We present some work on volumes of ideal hyperbolic simplices and discuss future direc-
tion. The work in this section will be in many ways reminiscent of that of the last section.

Previous Work: Given a cone C in Rn+1, we can consider its intersection with both
Hn and En (the plane xn+1 = 1). The former is a hyperbolic simplex while the latter is a
Euclidean simplex. Recall our construction of C given the {pi}.

If the simplex ∆− is moreover ideal, that is if all its vertices lie on ∂∞Hn the boundary
at infinity of Hn, then the vectors determining C lie on the light cone, which is the set of
points in Rn,1 such that 〈x;x〉− = 0. In the ideal case we denote C∞ to be the cone of an
ideal simplex ∆−∞.

A simplex is regular if, for any permutation of its vertices, there exists an isometry of the
space bringing the simplex to that permutation of its vertices. It is a fact that ideal regular
simplices are unique up to isometry; hence it makes sense to speak of the ∆−∞,reg and C∞,reg.
Haagerup and Munkholm showed that, in the regular case,



Theorem (Haagerup and Munkholm). Let C∞,reg denote the cone whose intersection with
Hn gives the ideal regular hyperbolic simplex (unique up to isometry). Then

(
n+ 2

n+ 1

)n−1
2

≤ n− 1

n

vol−n (C∞,reg ∩Hn)

vol0n(C∞,reg ∩ En)
≤
(

n

n− 1

)n−1
2

,

which implies

lim
n!∞

vol−n (C∞,reg ∩Hn)

vol0n(C∞,reg ∩ En)
=
√
e.

We investigate what happens when this regularity condition is loosened.

Cone Integrals: An ideal cone C∞ can be characterized by n + 1 vectors lying on the
light cone, v1, · · · , vn+1, so 〈vi; vi〉− = 0. Without loss of generality, let each such vector be
of form

vi =




vi,1
...
vi,n
1


 ,

where v2
i,1 + · · ·+ v2

i,n = 1. Let

V :=



" · · · "
v1 · · · vn+1

# · · · #


 .

Recall

vol−n (∆−∞)

∫ ∞

0

rnf(r2) dr =

∫

C∞

f(−〈x;x〉−) dx = |detV |
∫

Rn+1
+

f(−x†V †QV x) dx
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from last section (all the proofs work verbatim when we replace P with V ). Picking f(x) =
e−x and noting that, for cosφij := vi,1vj,1 + · · ·+ vi,nvj,n,

−Φ := V †QV =




0 cosφij − 1
. . .

cosφij − 1 0


 ,

we get

vol−n (∆−∞) =
2|detV |
Γ
(
n+1

2

)

∫

Rn+1
+

exp


−x†




0 1− cosφij
. . .

1− cosφij 0


x


 dx

=
2|detV |
Γ
(
n+1

2

)
∫

Rn+1
+

e−x
†Φx dx.

Observe that the entries of Φ are nonnegative.

Volume Ratios: Denote ∆0
∞ = C∞ ∩ En the Klein Euclidean projection of ∆−∞. Observe

the vertices of ∆0
∞ are precisely given by {vi}, and there is already a row of ones in V . Recall

then that the Euclidean volume of a Euclidean simplex is given by

vol0n(∆0) =
|detV |
n!

,

so that
vol−n (∆−∞)

vol0n(∆0
∞)

=
2 · n!

Γ
(
n+1

2

)
∫

Rn+1
+

e−x
†Φx dx. (∗)

Let ∆std be the Euclidean n-simplex in Rn+1 formed by vertices e1, · · · , en+1 and ω∆std
be

the scale-invariant volume form restricted to ∆std. Then vol0n(∆std) =
√
n+1
n!

and the volume

form is explicitly given by ω∆std
= ∗dx1+···+∗dxn+1

σn1
√
n+1

, where as usual σ1 = x1 + · · · + xn+1. We

found that



Lemma. The ratio

vol−n (∆−∞)

vol0n(∆0
∞)

=
1

vol0n(∆std)

∫

∆std

(x†Φx)−
n+1
2 ω∆std

is the average of (x†Φx)−
n+1
2 over ∆std, the standard Euclidean n-simplex in Rn+1.

Proof. That

ω∆std
=
∗dx1 + · · ·+ ∗dxn+1

σn1
√
n+ 1

and

vol0n(∆std) =

√
n+ 1

n!
are simple checks. Note that

σn1√
n+ 1

dσ1 ∧ ω∆std
= dx1 ∧ · · · ∧ dxn+1 = dx.
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Then ∫

Rn+1
+

e−x
†Φx dx =

∫

x∈∆std

∫ ∞

σ1=0

σn1√
n+ 1

e−σ
2
1x
†Φx dσ1 ∧ ω∆std

=
1√
n+ 1

∫

x∈∆std

(∫ ∞

σ1=0

σn1 e
−(x†Φx)σ2

1 dσ1

)
ω∆std

=
Γ
(
n+1

2

)

2
√
n+ 1

∫

x∈∆std

(x†Φx)−
n+1
2 ω∆std

,

so that

vol−n (∆−∞)

vol0n(∆0
∞)

=
2 · n!

Γ
(
n+1

2

) Γ
(
n+1

2

)

2
√
n+ 1

∫

x∈∆std

(x†Φx)−
n+1
2 ω∆std

=
1

vol0n(∆std)

∫

∆std

(x†Φx)−
n+1
2 ω∆std

,

as claimed. �
It should be noted that, in the general hyperbolic simplex case (not necessarily ideal or

regular), the same procedure as above gives



Lemma. The ratio

vol−n (∆−)

vol0n(∆0)
=

1

vol0n(∆std)

∫

∆std

(−x†Lx)−
n+1
2 ω∆std

is the average of (−x†Lx)−
n+1
2 over ∆std, the standard Euclidean n-simplex in Rn+1.

Recall −L has strictly positive entries in the hyperbolic case. Incidentally the above gives yet
another alternative proof for our result in the last section by taking −x†Lx = x†T0x+x†Hx =
σ2

1 + x†Hx = 1 + x†Hx and using Newton’s binomial expansion.

Future Direction: The hope now is to do something similar to the alternative proof
outlined above in the ideal case. We can write

x†Φx = x†




1 1
. . .

1 1


x− x†




1 cosφij
. . .

cosφji 1


x = σ2

1 − x†Gφx = 1− x†Gφx,

so that ∫

∆std

(x†Φx)−
n+1
2 ω∆std

=

∫

∆std

(1− x†Gφx)−
n+1
2 ω∆std

;

then one can conceivably use Newton’s binomial theorem and expand this as a power series in
cosφij (centered either around 0 or around 1

n
, which is the regular case). Hopefully bounding

this power series will yield results on bounds for the ratio vol−n (∆−∞)

vol0n(∆0∞)
.
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