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Preface

During the summer of 2017 five students participated in the Undergraduate
Research Experience program in Mathematics at Indiana University. This pro-
gram was sponsored by the National Science Foundation through the Research
Experience for Undergraduates grant #1461061 and the Department of Math-
ematics at Indiana University, Bloomington. The program ran for eight weeks,
from June 5 through July 30, 2017. Five faculty served as research advisers to
the students from Indiana University:

e Corrin Clarkson worked with Rebecca Rohrlich.

Chris Connell worked with Anabel Tassoni.

Mike Jolly worked with Anthony Isenberg.

Larry Moss worked with Charlotte Raty.

Kevin Pilgrim and Dylan Thurston worked with Jackson Morris and Matthew
Powell.

e Carmen Rovi worked with Matthew Schoenbauer.

e Amr Sabry worked with Sivva Somayyajula.

Following the introductory pizza party, students began meeting with their
faculty mentors and continued to do so throughout the next eight weeks. The
students also participated in a number of social events and educational oppor-
tunities and field trips.

Individual faculty gave talks throughout the program on their research,
about two a week. Students also received LaTeX training in a series of work-
shops. Other opportunities included the option to participate in a GRE and
subject test preparation seminar. Additional educational activities included
tours of the library, the Slocum puzzle collection at the Lilly Library and the IU
cyclotron facility, and self guided tours of the art museum. Students presented
their work to faculty mentors and their peers at various times. This culmi-
nated in their presentations both in poster form and in talks at the statewide
Indiana Summer Undergraduate Research conference which we hosted at the
Bloomington campus of IU.



On the lighter side, students were treated to a reception by the graduate
school as well as the opportunity to a fun filled trip to a local amusement park.
They were also given the opportunity to enjoy a night of “laser tag” courtesy
of the Department of Mathematics.

The summer REU program required the help and support of many different
groups and individuals to make it a success. We foremost thank the Indiana
University and the Department of Mathematics for major financial support for
this bridge year between two National Science Foundation grants. We especially
thank our staff member Mandie McCarty for coordinating the complex logisti-
cal arrangments (housing, paychecks, information packets, meal plans, frequent
shopping for snacks). Additional logistical support was provided by the Depart-
ment of Mathematics and our chair, Elizabeth Housworth. We are in particular
thankful to Jeff Taylor for the computer support he provided. Thanks to those
faculty who served as mentors and those who gave lectures. Thanks to David
Baxter of the Center for Exploration of Energy and Matter (nee IU cyclotron fa-
cility) for his personal tour of the LENS facility and lecture. Thanks to Andrew
Rhoda for his tour of the Slocum Puzzle Collection.

Chris Connell
September, 2017



Figure 1: REU Participants, from left to right: Charlotte Raty, Anabel Tassoni,
Siva Somayyajula, Anthony Isenberg, Chris Connell, Matthew Powell, Morris
Jackson and Matthew Shoenbauer. Not Shown: Rebecca Rohrlich.



Examining the Heegaard Floer Homology of Torus Bundles

Dr. Corrin Clarkson and Rebecca Rohrlich

July 28, 2017

1 Abstract

The objective of this project is to determine whether or not the Heegaard Floer homology is a
complete topological invariant of torus bundles. Although we do not answer this question defini-
tively, we do show that the Heegard Floer homology distinguishes members of certain families of
torus bundles. Our work relies heavily on results discovered by John A. Baldwin, Peter Ozvath
and Zoltan Szabo, and Louis Funar.

2 Introduction

2.1 Torus bundles

To understand torus bundles, we first must state a few definitions.

Definition 1. Let X be a topological space and let f : X — X be a homeomorphism. Then a
mapping torus is the quotient space (X x I)/((z,0) ~ (f(z),1)), where I = [0,1].

Definition 2. A torus bundle is a mapping torus created with a homeomorphism f : 72 — T2.

Hence, we have the following surjective map:
homeomorphisms of the 2-torus —— torus bundles

One example of a torus bundle is the 3-torus.

Example 1. The 3-torus is a three-manifold of the form S x S' x S! (a product of three circles).
We can construct it in our minds by imagining taking a cube and gluing each pair of its opposite
sides together. After the first gluing, we have a solid torus; after the second gluing, we have a
solid torus with a hollow tube running through it; and the last gluing merges the inside wall of this
hollow tube to the outside wall of the solid torus, a step which cannot be performed in 3-space.

From our definition of torus bundles and our bijection, it is clear that to understand tours
bundles we must understand the automorphism group, or "mapping class group,” of the torus.
Since the torus is the product of two circles, any point on the torus can be identified by an ordered
pair (0, ¢), where 6 and ¢ are each reals describing an angle on one of the circles. Since § = 6+ 27mn
and ¢ = ¢ + 27n Vn € Z, we see that the torus can be regarded as the quotient R?/Z2. Hence, any
automorphism of the torus can be regarded as a linear combination of basis vectors

el



where m and [ represent longitude (circle around the torus ”doughnut hole”), and longitude
(other circle) respectively. Since any linear map of m and [ can be represented as a 2 x 2 in-
vertible matrix, we see that the mapping class group of the torus, MCG(T?), is Aut(Z ® Z) =
GL2(Z). Restricting ourselves to orientation-preserving automorphisms on the torus, we only ex-
amine SLy(Z) C GLo(Z) — namely, the the set of 2 x 2 invertible matrices with determinant 1.

2.2 Dehn twist factorization

From a theorem of Dehn and Lickorish, we know that any automorphism of the torus can be created
by a series of twists, called Dehn twists. Although Dehn twists can be performed on any closed
curves on the torus, the two kinds of Dehn twists that are linearly independent (and thus can create
all the automorphisms of the torus) are longitudinal twists and meridional twists.

Definition 3. Let m be a meridian on the torus. Then we can split m into two curves (the upper
and lower halves of the circle), and we know that either of these curves ¢ lies in a neighborhood
homeomorphic to an annulus. We see that c¢ lies along some ray extending from the center of
the annulus and has endpoints on both of the annulus’s rings. A meridional twist on m can be
described by the continuous map f : m — T? such that for any (r,6) € m, where 7 is the radius
length from the center of the annulus, we have f(r,0) = (r,0 + 27r). A longitudinal twist on a
longitude of the torus behaves is constructed identically, but with a longitude .

The longitudinal twist and meridional twist can be represented by the monodromies x and y,

where
(10 (1 -
T=\l11)Y% o 1

Hence, any monodromy has a factorization into z’s and y’s (although this factorization may be not
be unique), and conversely, every factorization gives rise to a monodromy.

2.3 Spin® structures and d-invariants

The technical definition of Spin® structures uses advanced material from algebra and topology
that are beyond the author’s knowledge. However, the set of Spin® structures for a 3-manifold
are in bijection with the abelianization of the manifold’s fundamental group (the quotient of the
fundamental group group by the commutator subgroup), and we can think of a given Spin® structure
for the manifold as an orientation. A Spin€ it is an extra piece of information that, together with
the 3-manifold, provides the necessary input for computation of Heegaard Floer homology.

The d-invariant allows us to identify Spin® different structures in a simpler way. There is a
function d : Spin®(M?3) — Q, and, in a slight abuse of notation, we refer to the output of this
function as d as well.

2.4 Heegaard Floer Homology

The objective of this project is to determine whether or not the Heegaard Floer (HF) homology
is a complete topological invariant on torus bundles. If HF homology is indeed proven to be a
complete invariant, it would be quite useful, because the algorithm to compute HF homology for a
given monodromy (the matrix corresponding to a torus bundle) is relatively quick and efficient.
Let (M?3,5) be a closed, oriented 3-manifold together with a Spin¢ structure s. HF homology
associates to any (M?3,s) some Q-graded Z[U]-module. The abelianization in bijection with the
set of Spin® structures for the manifold is always of the form Z x H, where H = Zy,; X -+ X Ly,



is a finite polycycic group. Let ¢ X (x1,...,2,) € Z X H. From John Baldwin’s paper, we know
that Vi # 0, we have HF™ (M3, (i x (z1,... ,xn))) = 0. Therefore, since we need only worry about
non-trivial HF homologies, we only examine a finite number of Spin® structures for any given torus
bundle.

3 Methods

3.1 Algorithm to determine the x,y factorization

As we stated previously, there is not necessarily a unique factorization for a given monodromy.
However, there is an algorithm to find one such factorization. The algorithm was originally imple-
mented in C by other developers, and re-implemented by the author in Python [4]. The algorithm
proceeds as follows:

. a b . 10
leenamonodromyM—(C d>,whlleM7é<O 1).

If a < cand b <d, then set

M = a b and add an z to the factorization.
c—a d—2>

Otherwise, set

M = < “ ; ¢ b ; d ) and add a y ! to the factorization.

By the time M becomes the identity matrix, the algorithm terminates.

3.2 Black Graph and Q

We can regard any z,y factorization as a three-stranded braid, where x moves the first strand over
the second strand and y moves the third strand over the second strand. From this braid, we color
the interior regions black, place vertices on the black regions, and place edges over the folds in the
black surface. (This graph will always be connected.) Over this graph, we draw a spanning tree.
Then, we construct a square matrix @ as follows.

Each row and column of @ corresponds to an edge on the black graph which is not in the
spanning tree; call this set of edges E* = eq,...,e,. For each edge e € E*, find the cycle that
would be created by adding e to the graph and orient the cycle. Each entry with the coordinates
(e5,€;) (ak.a, the edges along the diagonal), is filled with the length of the cycle that would be
created by adding e; to the graph. For all other coordinates (e;,e;), with corredponding cycles C;
and C, the entry is filled with —1-|C; N C}]| if the cycles are orient their shared edges in the same
direction, and |C; N C;| otherwise [2]. The author wrote a Python script to create @ for any of
Baldwin’s case 1 monodromies, in his Theorem 6.4 [1].

3.3 Computation of d

The matrix @ is necessary for the computation of the d-invariant, which (as the reader may recall)
identifies the Torus bundle’s Spin€ structure.



Definition 4. Let mg, ..., m, be the entries along the diagonal of (). Let

U1 CIRS {_‘mllv_’mﬂ +27"'7_‘m1’ +2i,..., ‘m1’ — 2, ‘mll -2, |m1‘}
and let

Un, v € A=|mnl, —|mn| + 2,0 —mp| + 2, ... mp| — 20, |my| — 2, Imy|}

<L
I

Then, ¥ is a characteristic vector of Q).

Definition 5. Let ¢ be a characteristic vector of the matrix ). Then the norm of ¥ is the scalar
k=v-Q '

There is a certain equivalence relation on the characteristic vectors of ) such that we have a
function

d : {equivalence classes of characteristic vectors of Q} — Q (1)
such that
d — kmaﬂf —"_ b
4 )

where k4. is the maximum norm of all vectors in the set of characteristic vectors.

However, clearly if the maximum of the d-outputs for one monodromy is larger than the max-
imum of the d-outputs for another monodromy, then the two monodromies cannot have the same
HF homology. So far, we have found it sufficient to compare only these global maximum d’s for
different monodromies in order to tell whether or not they are distinct, and have not found it
necessary to examine the characteristic vector equivalence classes [2].

3.4 Application of Funar’s Theorem 1.3

If the HF-homology is indeed a complete invariant on Torus bundles, it would be most useful to
distinguish tori that are not distunguished by other invariants, such as TQFT invariants. Given an

Anosov matrix [3]
A Qu an2
Qg1 02

the corresponding fundamental group is the polycyclic group [3]
I'=(t,a, b\ab = ba, tat~t = a110012, tht ! = Q910092) (2)

In Funar’s Theorem 1.3, Funar provides an equation 4a® + b = u? + 4, and he states that, for a
given u, all a, b solutions to the above equation correspond to a matrix of the form

L —b-u+2) a-u
<2 a-u %(u2+b-u+2))[3}

Funar shows that matrices of this form, with a given u, satisfy two properties:

1. They all have the same first homology group, and thus the same set of Spin¢ structures.
2. Their HF homologies are isomorphic as modules (not taking into account the grading
shift).

Thus, the HF homologies of the monodromies in Funar’s u-families were already similar in almost
every aspect — they could only be different monodromies if they had different grading shift. For
this reason, we found Funar’s u-families to be prémising families of matrices in which to search for
counterexamples to HF homology being a complete invariant on torus bundles.



4 Results

Using Funar’s Theorem 1.3, we computed all monodromies for a given u for all values of v between
1 and 50. Furthermore, we computed the factorizations of all these monodromies, and computed
d-invariants for the first 34 of them. These results are summarized in the following table. The first
column of the table is the 2 x 2 monodromy, the second column is d, and the third is the list of
powers of y~! describing the z,y factorization. (For example, the list [2, 1,0, 1] would correspond
to the factorization zy 2y lzylzy—1).

ko Kok Kok Kok ko
GROUP: u = 4
ko kKoK ok Kok ok Kok Kok K
([ 1 4]
[ 4 17]] 1.0 [0,0,0,4]
[[ 5 8]
[ 8 13]1] 0.5 [1,1,1]

5k 5k >k >k 5k 3k 3k >k >k >k >k %
GROUP: u = 6
3k 3k 3k 3k 3k 3k >k >k >k >k >k >k 3k 5k 5k 5k >k >k >k
([ 1 6]
[ 6 371] 1.5 [0,0,0,0,0,6]
[[13 18]
[18 25]] 0.8648648648648649 [2,1,0,1]

3k 3k 3k >k >k >k %k k ok k k k
GROUP: u = 8
3k 3k 3k 3k 3k >k >k >k >k >k >k 3k >k >k >k >k >k >k >k
[[1 8]
[ 8 6511 2.0 [0,0,0,0,0,0,0,8]
[[25 32]
[32 41]1] 1.0 [3,1,0,0,1]

ook ok ok ok ok ok ok ok ok
GROUP: u = 9
stk ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok
([ 1 9]
[ 9 82]] 2.2222222222222223 [0,0,0,0,0,0,0,0,9]
[[10 27]
[27 73]] 1.0136986301369864 [0,1,0,2,2]9



3k 5k ok 3k >k 5k %k >k 5k %k >k k
GROUP: u = 10
3k 3k 3k 3k >k Sk 3k ok 5k 3k >k 5k sk k ok sk k ok >k
[[ 1 10]
[ 10 101]] 2.5 [0,0,0,0,0,0,0,0,0,10]
[[41 50]
(50 6111 1.3 [4,1,0,0,0,1]

3k 5k ok 3k >k 5k >k ok 5k sk k k
GROUP: u = 11
3k 3k 3k 3k >k 5k 3k ok 5k sk >k ok sk k ok sk kk >k
([ 1 11]
[ 11 122]] 2.727272727272727 [0,0,0,0,0,0,0,0,0,0,11]
[[34 55]
[55 8911 0.9090909090909092 [1,1,1,1,1]

sk sk 3k >k >k 3k >k ok 3k >k ok 5k
GROUP: u = 12
3k 3k 5k 3k >k 3k >k 5k >k 5k >k 5k 5k >k 5k >k %k K k
([ 1 12]
[ 12 145]] 3.0 [0,0,0,0,0,0,0,0,0,0,0,12]
[[61 72]
(72 8511 1.5 [5,1,0,0,0,0,1]

3k 5k >k >k 3k >k >k %k %k >k >k k
GROUP: u = 14
3k 5k 3k 3k 3k 5k >k 3k 3k 5k 5k >k 3k 5k >k %k >k >k >k
([ 1 14]
[ 14 19711 3.5 [0,0,0,0,0,0,0,0,0,0,0,0,0,14]
[[ 29 70]
[ 70 169]] 1.36 [0,2,0,2,0,2]
[[ 85 98]
[ 98 113]] 1.7857142857142858 [6,1,0,0,0,0,0,1]

>k 5k >k %k 5k >k 5k %k 5k %k %k %k

GROUP: u = 21
stk ook ook ook ook sk ok sk ok sk ok sk ok sk 10

([ 1 21]



[ 21 442]] 5.238095238095238 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21]
[[106 189]
[189 337]] 1.4202247191011237 [1,0,0,1,1,3,1]

3k 5k ok 3k >k ok 3k ok 5k k k ok
GROUP: u = 22
3k 3k 3k 3k >k 5k 3k ok ok 3k >k 5k sk k ok sk k ok k
[[ 1 22]
[ 22 485]] 5.5 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,22]
[[221 242]
[242 265]] 2.75 [10,1,0,0,0,0,0,0,0,0,0,1]

Kk ok ok kK K ok ok Kk ok
GROUP: u = 23
Kk ok ok ok K ok ok oK K Kok ok K ok ok Kk
[[ 1 23]
[ 23 530]] 5.739130434782608 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23]
[[185 253]
[2563 346]] 1.515370705244123 [2,2,1,0,1,0,1]

3k 5k >k >k 5k 5k >k %k %k >k k k
GROUP: u = 24
3k 5k 3k 3k 3k 5k 3k >k >k 5k 5k >k %k 5k >k %k %k >k >k
([ 1 24]
[ 24 57711 6.0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24]
[[ 73 192]
(192 505]] 1.5 [0,1,1,0,2,1,2]
[[ 97 216]
[216 481]] 2.0 [0,4,0,2,0,0,0,2]
[[265 288]
[288 313]] 3.0 [11,1,0,0,0,0,0,0,0,0,0,0,1]

3k 5k >k >k 3k >k >k >k %k >k k k
GROUP: u = 25
3k 5k >k 3k 3k 5k 3k 3k 3k 5k 5k >k 3k >k >k %k >k >k >k
[[ 1 25]
[ 25 62611 6.24 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25]
[[ 26 125]
[125 60111 1.9853300733496333 [0,0,0,1,bL0,0,4,4]



ok ok ok sk ok ok okok
GROUP: u = 26
ook ok ok ook ook ook sk ok sk ok sk ok sk ok ok

([ 1 26]

[ 26 677]1] 6.5 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26]
[[ 63 182]

[182 625]] 1.8823529411764706 [0,0,2,0,0,3,0,3]
[[157 286]

[286 521]] 1.7080291970802919 [1,0,0,0,1,1,4,1]
[[313 338]

[338 365]] 3.25 [12,1,0,0,0,0,0,0,0,0,0,0,0,1]

ok okok ok okokokok ok
GROUP: u = 28
ook ok ok ook ok ok ook ok sk ok ok ok sk ok ok

([ 1 28]

[ 28 785]] 7.0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28]
[[365 392]

[392 421]] 3.5 [13,1,0,0,0,0,0,0,0,0,0,0,0,0,1]

>k 5k >k 3k 3k 3k 5k %k 5k %k %k k

GROUP: u = 29

>k 5k >k 3k 3k 3k 5k >k 5k %k 3k 5k k 5k %k 5k %k %k %

([ 1 29]

[ 29 842]] 7.241379310344827 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,29]
[[146 319]

[319 697]] 2.206896551724138 [0,5,0,2,0,0,0,0,2]
[[233 377]

[377 610]] 1.310344827586207 [1,1,1,1,1,1,1]

stk sk ok ok sk ok ok ok ok ok ok
GROUP: u = 30
stk ok ok sk sk ok ok sk ok ok sk sk ok ok ok k ok

([ 1 30]

[ 30 90111 7.5 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30]
[[421 450]

[450 481]] 3.75 [14,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

12



ko ok ok ok ok ok ok ok ok ok
GROUP: u = 31
stk ok ok ok K ok ok ok ok ook ok K ok ok ok ok
[[ 1 31]
[ 31 962]]1 7.741935483870968 [(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31]
[[218 403]
[403 745]] 1.9201637666325486 [1,0,0,0,0,1,1,5,1]

3k 5k ok 3k >k 5k >k ok 5k sk k ok
GROUP: u = 32
3k 3k 3k 3k >k 5k 3k ok ok sk k ok sk koK sk k ok k
([ 1 32]
[ 32 1025]] 8.0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32]
[[481 512]
[512 545]] 4.0 [15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

sk sk 3k >k >k 3k >k ok 3k >k ok 5k
GROUP: u = 34
sk sk 3k >k sk 3k >k ok 3k >k ok 3k ok k 3k >k k >k k
([ 1 34]
[ 34 1157]1] 8.5 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34]
[[ 137 374]
[ 374 1021]] unknown [0,1,0,1,0,2,2,2]
[[205 442]
[442 953]] unknown [0,6,0,2,0,0,0,0,0,2]
[[545 578]
[578 613]] 4.25 [16,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

3k 3k >k 3k 3k >k >k >k >k >k k k
GROUP: u = 36
3k 5k 3k 3k 3k 5k 3k >k 3k 5k 5k >k 3k 5k >k >k >k >k >k

([ 1 36]

[ 36 129711 9.0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36]
[[ 37 216]

[ 216 1261]] unknown [0,0,0,0,1,0,0,0,0,5,5]
[[ 109 360]

[ 360 118911 unknown [0,0,3,0,0,3,0,0,3]

[[ 289 540]

[ 540 1009]]1 unknown [1,0,0,0,0,0,1,1,6,1]
[[433 612]

[612 865]] unknown [2,0,2,1,0,2,0,1] 13
[[613 648]



[648 685]] 4.5 [17,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

stk ok ok ok ok ook ok ok ok ok

GROUP: u = 38

stk ok ok sk K ok ok ok ok ook ok K ok ok ok ok
([ 1 38]

[ 38 1445]1 9.5 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3
[[685 722]

[r22 761]] 4.75 [18,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

skoksk ook ok sk ok ok ok ok

GROUP: u = 39

stk sk ok ok ok sk sk sk ok ok ok kok ok ok ok ok
(L 1 39]

[ 39 1522]] 9.743589743589743 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
[[ 274 585]

[ 585 1249]] unknown [0,7,0,2,0,0,0,0,0,0,2]
[[586 741]

[741 937]] unknown [3,3,1,0,0,1,0,0,1]

>k 5k >k 3k 3k 3k 5k %k 5k %k %k k

GROUP: u = 40

>k 5k >k 3k 3k 3k 5k >k 5k %k 3k 5k k 5k %k 5k %k %k %

([ 1 40]

[ 40 1601]] 10.0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
[[761 800]

[800 841]] 5.0 [19,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

stk ok ok ok sk ook ok ok ok
GROUP: u = 41
stk sk ok sk sk ok ok sk ok ook sk sk ok ok k ok

(L 1 41]

[ 41 1682]]1 10.24390243902439 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
[[ 370 697]

[ 697 1313]] unknown [1,0,0,0,0,0,0,1,1,7,1]

ok ook ook ok ok ok ok 14
GROUP: u = 42
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>k >k 3k 3k 5k >k >k k 5k 5k >k %k %k %k >k >k % >k k

([ 1
[ 42
[[ 85
[ 378
[[ 505
[ 798

42]
176511 10.5 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
378]
168111 unknown [0,0,0,2,0,0,0,4,0,4]
798]
1261]] unknown [1,2,1,1,1,0,1,1]

[[841 882]
[882 925]] 5.25 [20,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

>k >k 3k 5k 3k %k %k %k %k 5k % %

GROUP:

u = 43

>k >k 3k 5k 5k >k >k %k 5k 5k >k >k %k %k 5k %k *k >k k

(1
[ 43
[[ 130
[ 473

43]
1850]] 10.744186046511627 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
473]
172111 unknown [0,0,1,1,0,0,3,1,3]

ok sk ok sk ok kok ok

GROUP:

u = 44

sk sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok sk ok

([ 1
[ 44
[[ 221
[ 616
[[ 353
[ 748
[[ 925
[ 968

44]
1937]] 11.0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
616]
1717]1] unknown [0,1,0,0,1,0,2,3,2]
748]
1585]]1 unknown [0,8,0,2,0,0,0,0,0,0,0,2]
968]
1013]] 5.5 [21,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

>k 5k >k 3k 5k 3k 5k %k 5k %k %k %k

GROUP: u = 46
stk sk ok sk sk ok ok sk ok ook sk sk ok ok k ok

([ 1
[ 46
[[ 185
[ 598
[[ 461
[ 874
[[1013
[1058

46]
2117]1] 11.5 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
598]
1933]] unknown [0,0,4,0,0,3,0,0,0,3]
8741]
1657]] unknown [1,0,0,0,0,0,0,0,1,1,8,1]
1058]
110511 5.75 [22,1,0,0,0,0,0,0,0,09,0,0,0,0,0,0,0,0,0,0,0,0,1]
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KoK oK oK oK oK oK oK oK oK ok oK
GROUP: u = 48
sk ok ok ok ok ok oK oK oK oK oK ok ok ok ok ok o o K

([ 1 48]

[ 48 2305]] 12.0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
[[1105 1152]

[1152 1201]1] 6.0 [23,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

sk ok ok ok ok ok ok ok ok ok ok ok
GROUP: u = 49
sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok o o
([ 1 49]
[ 49 2402]] 12.244897959183673 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
[[ 50 343]
[ 343 2353]] unknown [0,0,0,0,0,1,0,0,0,0,0,6,6]
[[ 442 931]
[ 931 1961]] unknown [0,9,0,2,0,0,0,0,0,0,0,0,2]
[[ 785 1127]
[1127 1618]] unknown [2,0,0,2,1,0,3,0,1]

>k 5k >k 3k 3k 3k 5k %k 5k %k %k k

GROUP: u = 50
sk sk ok o ok ok ok ok ok K Kk o ok ok ok kK

[l 1 50]

[ 50 2501]1] 12.5 [o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
[[1201 1250]

[1250 1301]] 6.25 [24,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

Theorem 1. For any even integer u > 4, let n =5 — 1. Then 3 a monodromy M,

M = (zy™")(zy)z" " (zy)

such that both M and the monodromy A corresponding to the given u (see Funar, Thm. 1.3) have
the same abelianization, but different maximum d-invariants.

Proof. 4.1 Same Abelianization for M and A

We use the following matrices for x and y:

(1 0\16 /1 -1
Tl 1) Lo 1

12



Thus, we have

M = 2n’+2n+1 202 +4n+2 Y\ [ 3(u® —2u+2) (n+1)u
T\ 20?2 +4n+2 20?2 4+6n+5 ) (n+1u F(u® +2u+2)

Clearly, M follows the format of the matrices described in Funar’s Theorem 1.3 if we let a =n+1
and b = 2. Furthermore, we see that

4> +b0* =4(n+ 12+ 22 =4n’ +8n+8=(2n+2)* +4=u* +4

and thus Funar’s number theoretic condition is satisfied. Funar and Clarkson already showed that
the A matrices obey these constraints for any u. Therefore, for any even u, M and A have the
same abelianization.

4.2 Matrices () and Q!
The knot and black graph corresponding to M give rise to the following matrix Q:

—~(n+2) -1 —(n+1) 0 ... ... 0

-1 -3 -2 -1 ... ... -1

—(n+1) -2 —(n+3) -1 ... ... -1

0 -1 -1 -2 -1 ... -1
-1

: -1

0 -1 -1 -1 -1 -2

Thus, Q! is of the form

—(n+1) 0 n -1 ... ... =1
0 —(n+1) 1 1 1
1 (n+1) 1 1
o -1 1 1 —2n 2 2
2n+2 9
: 2
-1 1 1 2 2 —2n

4.3 Characteristic Vectors

Let v be any characteristic vector of @ and v; be the i*" coordinate of v. Clearly, v has length n +2
and each v; is defined as follows:

vy € {-(n+2),-n,...,n,n+2}
vy € { 3,—1 1,3}
v3 € {—-(n+3),—(n+1),...,n+1,n+3}
V4y...,Upyr2 € { 2,0,2}
17
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4.4 Formula for d

The d corresponding to v is

PR Q' (v) + dim(Q) _ v Q'(v)+ (n+2)
4 4
Thus, to find the maximum d, d;,q., we must find the characteristic vector vy, corresponding to
the maximum norm.

The general formula for the norm, v - Q~*(v), is

n+2 n+2 n+2 n+2 3
v- Q7 (v) = 2-(—vy1+va+u3) Z vi+2 Z U ( Z Uj) —(2+2n) Z v;2—(n+1) Z vi2+2v3(nvy +vy)
i=4 i=4

j=4 j=4 i=1

Using cancelation, we have

n+2 n+2 n+2 n+2
v-Q~ ( ) =2-(—v1+va+v3) Zvl+4z< Z vivj> QnZvj (n+1) sz +2v3(nv1 +v3)

=4 Nj=i+l i=1

4.5 Lower Bound on d,,,.

We will construct a lower bound on d,,.,. The possibilites for each v; were shown in section 1.
Since the options for v; and v3 will differ depending on whether n is odd or even, we examine each
case separately.

Suppose n is odd. Then we can have

U1 1
V2 1
V3 0
V4 = 0
Un+2 0

which gives v - Q~!(v) = —1, and thus
—14+n+2) n+l wu

d = e = —.
2 4 8
Suppose n is even. Then we can have
U1 0
V2 1
V3 1
V4 = 0
Un+-2 0
which gives v-Q~!(v) = 2;3?2 = —-7, and thus
g gt (n+2) _ n? +2n + 2 :E+i
2 4(n+1) 8  2u’
Therefore, we have 9
dmaz > § + 21 if n is even,

dmaz > 5 if n is odd.
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4.6 Upper Bound on d,,.

To find an upper bound on d,q., we will break up the summands in the formula for v-Q~!(v) into
three groups, and maximize each group.
n+2 n+2 n+2
The first group is comprised of 4 > < > vifuj> and —2n vj2. Since —2n is expected to
i=4 \ j=i+1 j=4
cause the second term grow more quickly than the first term, we want to minimize vy ... vn109.
Clearly, this means we set vy ... v,42 equal to 0.

3
The second group is comprised of the terms —(n+1) 3 v;2 and 2v3(nvy +v3), which, combined,
i=1
simplify to —n(v; — v3)? — (v2 — v3)? — nwa? — v12. Each of these terms is negative and involves a
square, so to maximize the expression we set v1, va, and v3 to values as close to 0 as possible. These
sets of values differ depending on whether n is even or odd (see end of section 1). Specifically, we

set

v, = +1 (O 0
v9 = =<1 when niseven, and vo = =1 when n is odd.
vy = 0 vy = +1

Thus, we have

3 e
—2n—-2 if dd
—(n+1) g v + 2u3(nvy 4 v2) = { " sniso

— —2n if n is even
=1
n+2
The third group is simply the term 2(—v; + vy + v3) > v;. To maximize this term, we set the
i=4
following equalities:
vy = —(n+2)
vy = 3
v3 = n+ 3
V4...Upqp2 = 2
which give
n+2
2(—v1 + vy + v3) Zvi = 8n? + 16n — 24.
i=4

Finally, now that the three groups have been individually maximized, we take their sum. Since
the maximized first group evaluated to 0, we are really just summing the second and third groups.
Once again, we have two cases. In n is even, our sum is

(8n? 4 16n — 24) + (—2n —2)  4n? +7n — 13

-1 o
v-Q@(v) = M+ 2 n+1

whereas if n is odd, our sum is

, (3)

(8n? 4+ 16n — 24) + (—2n) _ 4n? + Tn — 12

-1 .
v @ (v) = 2n + 2 a n+1

(4)

Recall that our objective is to compare dp,q,(A) for Funar’s A matrix (given an even u) to

dmaz(M) for the corresponding “n = 4§ — 1”7 matrix. We showed in another proof that for even u,

dmaz(A) = §. Using substitution, we see that

dimaz (M) < dimaz(A) if and Shly if vmee - Q" (Vmas) < 7.
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Evaluating (1) and (2), we see that, no matter whether n is even or odd, dpu:(M) < dmaz(A)
Vn > 1. We easily compute that, for n = 1, dpmez(A) = 1 and dyee (M) = 0.5. Hence, the
inequality holds for all n. O

5 Conclusion

In conclusion, we have not yet determined whether or not HF homology is a complete invariant
on torus bundles. Nevertheless, we have found a few infinite families of torus bundles for which
HF homology is an invariant, and we have computed the HF homology for a substantial number
of torus bundles. Future work would likely involve examining this data set more closely to see if
other infinite families are present, and whether the we can prove that HF homology is invariant for
them as well.

6 Code

6.1 Check for isomorphic abelianizations - GAP

ok sk ok ok sk ok ok sk ok ok sk ok sk sk ok ok sk ok sk sk ok sk sk ok sk ok ok sk ok ok sk sk ok sk ok ok sk ok ok sk ok
Author: Rebecca Rohrlich
Date created: 21 June 2017

Examines the pi-1 group presentations for two
torus bundles and finds whether these torus
bundles are isomorphic.

Parameters: The coordinates of the monodromy,
where the positions are as follows:

vil v12

v21 v22

Fokokokskokok ook skoksk sk ok sk stk sk sk ok stk sk sk ok skskskosk sk ok sksk sk sk ok

H OH H H H K H H HE HH

createFundGroup := function(vill, v12, v21, v22)
local £, g;
f := FreeGroup("x","y");
g =1/ [£.1*xf.2%(£.17-D)*(£.27-1), £.1"(v1i1-1)*£.27v12, £.17(v21)*f.2"(v22-1)];
return g;
end;

checkIfFundIso := function(vil, vi12, v21, v22, wil, wi2, w21, w22)
local group_1, group_2;
group_1 := createFundGroup(vll, vi2, v21, v22);
group_2 := createFundGroup(wll, wi2, w21, w22);
Display(group_1);
Display(Size(group_1));
Display(group_2);
Display(Size(group_2)); 90
return IsomorphismGroups(group_1, group_2);
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end;

createAbGroup := function(vil, v12, v21, v22)
local £, g;
f := FreeGroup("x","y");
g =1/ [f.1*xf.2+%(£.17-1)*(£.27-1), £.1"(v1i1-1)*£.2"v12, £.1"(v21)*f.2"(v22-1)];
return g;
end;

checkIfAbIso := function(vil, vi12, v21, v22, wil, wil2, w21, w22)
local group_1, group_2;
group_1 := createAbGroup(vil, v12, v21, v22);
group_2 := createAbGroup(wll, wil2, w21, w22);
Display(group_1);
Display(Size(group_1));
Display (group_2);
Display(Size(group_2));
return IsomorphismGroups(group_1, group_2);
end;

6.2 Build monodromy from factorization - Python

import sys
import numpy as np

)y

sk sk ok sk ok ok o ok ok s ok ok s ok ok s ok ok s ok ok s ok ok s ok ok sk ok ok sk ok ok sk ok sk sk ok ok sk ok ok ook sk ok
author: Rebecca Rohrlich

last updated: 14 June 2017
sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o s o o o o ok sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok

)y

# set verbose to True to see monodromies and shifts used
# in computations
VERBOSE = True

)y

Start the testing by looking for collisions between

cases 1 and 2.
) o)

def testCases_1_2(list_of_a_terms, m):
mono_1, shift_1 = getMonodromy_Casel(list_of_a_terms)
mono_2, shift_2 = getMonodromy_Case2 (m)
foundCollision = (shift_1 == shift_2)

if VERBOSE == True: 21
print( "\n", foundCollision, "\n\nCASE 1:" )
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print (mono_1)

print ("shift:", shift_1)

print ("\nCASE 2:")

print (mono_2)

print("shift:", shift_2, "\n")

return foundCollision

)y

Create matrix for case 1 of Baldwin’s paper, with
input specifications.

NOTE: We are assuming that d is odd, because if d is even then
there is no confusion about injectivity. (Uses figure-eight knot
rather than trefoil.)
)
def getMonodromy_Casel(list_of_a_terms):
h_d = np.array( [[-1,0], [0,-11] )
mono = h_d # "mono" for monodromy
sum_a_terms = 0
for a in list_of_a_terms:
#print ("mono case 1:\n", mono)
sum_a_terms += a
matrix = np.array( [[1,al, [1,a+1]1] )
mono = mono.dot(matrix)
n = len(list_of_a_terms)
shift = (n + 4 - sum_a_terms)/4
return mono, shift

)y

Create matrix for case 2 of Baldwin’s paper, with
input specifications.
) )
def getMonodromy_Case2(m):
mono = np.array( [[-1,m], [0,-1]] )
shift = (m + 4)/4
return mono, shift

)y

Create matrix for case 2 of Baldwin’s paper, with
input specifications.

NOTE: Assuming d is odd to avoid left-hand trefoil.

)y

def getMonodromy_Case3(m):

mono = np.array([[-1,0], [0,-1]1]).dot(np.array([[1,0], [m,1]1]1)).dot(np.array([[1,1], [0,1].
22

shift = (m + 3)/4
return mono, shift
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)y

For now, main method simply reads input from commandline
to test cases 1 and 2.

run with:
python3 surveyBaldwin.py listOfAterms m

example:

python3 ../surveyBaldwin.py ’[0, 1]’ O

PAD ]

def main(a_terms_text, m):
list_of_a_terms = eval(a_terms_text)
m = eval(m)
#print( list_of_a_terms )
testCases_1_2(list_of_a_terms, m)

main(sys.argv[1], sys.argv[2])

6.3 Decompose monodromy into factorization - Python
import sys

)
>k 5k >k 3k 5k 3k 5k >k 5k >k 3k 3k 3k 3k >k 5k >k 3k 5k >k 5k >k 3k >k %k 5k >k 5k >k %k >k %k >k %k

Author: Rebecca Rohrlich
Date created: 29 June 2017

Finds the x,y factorization for symmetric
matrices from Baldwin’s case 1.

NOTE: skips conjugation and other initial
steps from original SnapPy implementation.
sk sk sk ok sk ok ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk ko kokokokookok ok ok ok

)y

def divisionAlg(a,b,c,d):
factors = ’’ # factors is a string of x’s and Y’s (capital Y to denote y~-1)
while a !=1ord !'=1o0or b !=0 or c !'=0:
if a <= ¢ and b <= 4d:
c = c-a
d = d-b
factors += ’x’
else: # a >= c and b >=d

a = a-c
b = b-d
factors += Y’ 23

return factors
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)y

Pass the four entries of a matrix,
(a b)

d o),

on the commandline in the form
python3 factorize.py a b c d

Example:

python3 factorize.py 1 4 5 2

) ) )

def main(a, b, c, d):
a = int(a); b = int(b); c = int(c); d = int(d)
factors = divisionAlg(a,b,c,d)
print ("NOTE: Y denotes y~-1.\n\n"+factors)

6.4 Compute d-invariant - Python

import sys

import numpy as np

from itertools import product, combinations
from fractions import Fraction

)
>k 5k >k 3k 3k 3k 5k >k 5k >k 3k 3k 5k 3k >k 3k >k 3k 3k >k 5k >k 3k >k %k 5k >k 5k >k %k 5k %k 5k %k >k %k %k *k

Author: Rebecca Rohrlich
Date created: 20 June 2017

Computes the d invariants for matrices of
diverse spin”c structures for Baldwin’s
cases 1 and 2.

sk sk sk ok ok ok ok sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk ok ok ok ok sk sk sk sk ok ok ok ok ok

)y

)y

AString is a string of of space-separated numbers representing the a-exponents in
Baldwin’s case 1
)))
def compute_Q_casel(AString):
# collect A-terms
AStrList = AString.split()
allSpokesSets = [int(i) for i in AStrList]
if sum(allSpokesSets) < 1:
print("Error: all entries in a-terms list must be >= 0, and at least one term must be |
sys.exit (1)

# numPolyWalls: number of walls (edg2$) around exterior of the wheel/polygon
numPolyWalls = len(allSpokesSets)
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# sum of edges not in spanning tree; i.e., A-term spokes
sumExtraEdges = sum(allSpokesSets) + 1 - 1 # add 1 for extra edge on rim, subtract 1 for s

# create blank, square array with sumExtraEdges side lengths

Q = np.zeros(shape = (sumExtraEdges, sumExtraEdges))

if sum(allSpokesSets) == 1 and len(allSpokesSets) == 1:
Qrolfo] =1
allSpokesSets
sumExtraEdges

]
0

# lengths of each cycle formed by adding an extra edge
indexNonzero = next((i for i, x in enumerate(allSpokesSets) if x), None)
allSpokesSets[indexNonzero] = allSpokesSets[indexNonzero] - 1 # add one spoke to span tree
hasTwoCycle = False
if allSpokesSets[indexNonzero] > 1:

#print ("has two-cycle!!! indexNonzero is: "+str(indexNonzero))

hasTwoCycle = True
while allSpokesSets[0] < 1:

allSpokesSets.append(allSpokesSets.pop(0))

# lengths of each cycle formed by adding an extra edge
print("allSpokesSets are:",allSpokesSets)
allCycles = []
rimCycle = numPolyWalls
allCycles.append(rimCycle)
QL0 [0] = -1*rimCycle
count = 1
if hasTwoCycle:
numTwoCycles = allSpokesSets.pop(0)
for i in range(numTwoCycles):
allCycles.append(2)
Q[count] [count] = -2
count += 1
cyclelLength = 3 # cycle length is incremented
for spokeSet in allSpokesSets:
for i in range(spokeSet):
Q[count] [count] = -1*cyclelLength
count += 1
allCycles.append(cycleLength)
cyclelLength += 1

# calculate cycle interactions, fill matrix
combos = list(combinations(range(sumExtraEdges), 2))
for combo in combos:

index_1 = combo[0]
index_2 = combo[1] 25
cycle_1 = allCycles[index_1]
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cycle_2 = allCycles[index_2]
if index_1 ==
entry = -1%(cycle_2 - 2) # subtract the two spokes from non-poly to get overlap
elif index_2 ==
entry = -1*(cycle_1 - 2)
else:
entry = -1*(min([cycle_1, cycle_2])-1)
Q[index_1] [index_2] = entry
Q[index_2] [index_1] = entry

return Q

)y

Computes the Q matrix for Baldwin’s case 2.
n is the exponent for monodromy y.

)y

def compute_Q_case2(n):

Q = None
val = -2#+(10*%*x-6) # ought to be just -2; added tiny value to make Q non-singular...?
if n > O:

Q = np.zeros(shape = (n+5, n+5))
for i in range(n+b):
for j in range(n+5):

if i == j:
QLil [j] = val

elif (i == 2 and (j <2 o0r j==23)) or (j==2and (i <2o0r i==23)):
QLil[j] =1

elif (i == n+2 and (j > i or j == 1i-1)) or (j == n+2 and (i > j or i == j-1)
QLil[j] =1

elif (i > 2 and i < n+2 and i == j-1) or (j > 2 and j < n+2 and j == i-1):
QLil[j] =1

else:
QLil[j] =0

elif n < O:
Q = np.array([[val,0,1,0,0,0,0],
[0,val,1,0,0,0,0],
[1,1,-1,1,0,0,01,
[0,0,1,n,1,0,0],
[0,0,0,1,-1,1,1],
[0,0,0,0,1,val,0],
[0,0,0,0,1,0,valll)
else:
Q = np.array([[val,1,1,1,1],
[1,val,0,0,0],
[1,0,val,0,0],
[1,0,0,val,0],
[1,0,0,0,vall]) 20
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return Q;

)y

Compute the d-invariant for a given charecteristic vector
) ) )
def compute_d(Q, charVect):
dim = Q.shape[0]
Q_inv = np.linalg.inv(Q) # take the inverse of (Q
k = charVect
k_norm = (np.atleast_2d(k)).dot(Q_inv).dot(np.atleast_2d(k).T)
d = (k_norm + dim)/4
return d

)y

Compute the list of characteristic vectors
)
def getListsToBeMult(Q):
dim = Q.shape[0] # Q is a square matrix
listsToBeMult = [] # a list of all the lists we will take the Cart prod of
for i in range(dim):
k_i = int(Q[i] [i])
list = []
step = 2
end = k_i + 1
if k_i < 0:
step = —-lxstep
end = k_i -1
if k_i '= 0: # check if k_i is nonzero
for 1 in range(-1*k_i, end, step):
list.append (1)
else:
list.append(0)
listsToBeMult.append(list)
#print ("next list:",list)
#charVectors = [np.asarray(p) for p in product(*listsToBeMult)]
#print (listsToBeMult)
return listsToBeMult

def cartProdRecurse(Q, listsToBeMult, i, currentTuple, max_d):
if len(currentTuple) < len(listsToBeMult):
for j in range(len(listsToBeMult[i])):
newTuple = currentTuple + [listsToBeMult[i] [j]]
max_d = cartProdRecurse(Q, listsToBeMult, i+1, newTuple, max_d)
else:
#print ("current tuple:",currentTuple)
charVect = np.asarray(currentTuple)
d = compute_d(Q, charVect) 27
max_d = max([d, max_d])

23



if max_d ==
print ("max tuple:",currentTuple)
return max_d

)y

Finds the maximum d out of all characteristic vectors of Q.

)

def get_max_d(Q):
listsToBeMult = getListsToBeMult(Q)
max_d = cartProdRecurse(, listsToBeMult, O, [], O) # initialize the recursion
return max_d

)y

Main method takes two arguments.
Arg 1: the number 1 or 2 (for case 1 or 2)

Arg 2:
Baldwin Case 1) a list of a-exponents separated by spaces, all enclosed in quote marks.
Baldwin Case 2) the n exponent for monodromy y

Examples:
python3 compute_d.py 1 "1 42 5 4 90"
python3 compute_d.py 2 4
def main(argl, arg2):
Q = None
if int(argl) == 1:

Q = compute_Q_casel(arg2)
else:

Q = compute_Q_case2(int(arg2))
print("Q is:\n",Q)
print(np.linalg.det(Q))
max_d = get_max_d(Q)
print("max_d is:",max_d)

#d = compute_d(Q)
#print("d is:", d)

6.5 Solving Funar’s equation for a given u - Mathematica

(* Solves the equations for Funar’s special family of matrices *)
SolveFunar[u_] := Module[{solns},

solns =
Solve[4 a"2 + b™2 == u™2 + 4 & a > 0 & b > 0, {a, b},
Integers ];
Return([solns]];
28
FunarMatrixEntries[u_, a_, b_] := Module[{list, el, e2, e3},
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el = .5x(u"2 - bxu + 2);

e2 = ax*u;

e3 = .5%x(u"2 + bxu + 2);
list = List[el, e2, e2, e3];
Return[list]

]
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Abstract

We conjecture that of all closed curves (in three-dimensional space) of
length 1, the circle maximizes the surface area of the convex hull. Though
we do not solve the general case, we work with specific cases. We also
investigate the problem of maximizing convex hull volumes and surface
areas of polygonal curves.

1 Maximizing Convex Hull Volume of Length-1
Closed Curves

The convex hull of a set P is the smallest superset of P such that between any
p1,p2 € P, there exists a geodesic (in the 2-dimensional and 3-dimensional cases,
this amounts to a straight line) between p; and py that is completely contained
in P. In 2-dimensional space, the circle is the closed curve of maximal convex
hull area (this is known as the Isoperimetric Problem in two dimensions)—the
intuitive extension of the problem to three dimensions, then, is the conjec-
ture that the circle with doubled-disk area maximizes the convex hull surface
area of a three-space curve (the area is doubled to allow for the fact that if
any perturbation occurred, the circle would split and we would again have a
three-dimensional problem). In this section, we investigate several approaches
(some more fruitful than others) to the three-dimensional isoperimetric prob-
lem. When it is convenient, we normalize curve length to be one in order to
avoid tedium with scaling.
The planar isoperimetric inequality tells us that

L? > 47A (1)

where L and A stand for length and area, respectively. Translating this inequal-
ity into the three-dimensional case, then, we see that our conjecture becomes
the claim that for a three-dimensional curve « with length L,

L? > 41 Area(CH(a)) (2)
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(where CH(«) stands for ”convex hull of &) , and that there is equality exactly
when « is a round circle with a doubled-disk’s area. For convenience, we rewrite
this inequality conjecture as

2

Area(2CH () < g—ﬂ (3)

noting of course that twice the area of a convex hull is equivalent to the area
of two duplicate convex hulls.

1.1 Polygonal Approximation

In order to work in a more discrete context, it is useful to think first in terms of
polygonal approximation (this is because any closed curve can be approximated
more and more accurately by polygonal curves of smaller and smaller edge
length; the supremum over all such approximations yields the original curve).
Our first strategy was to think explicitly about the tetrahedra formed by the
convex hull of a closed curve in three-dimensional space. It might seem reason-
able to claim that the convex hull of a polygonal curve (piecewise linear curve)
takes the form of a simplicial complex. This would mean that the tetrahedra
formed by the convex hull do not have any three-dimensional overlap. If such
a claim were true, it would lead to a second, possibly very helpful, conjecture,
which is that the convex hull of any three-dimensional polygonal curve is exactly
the union of all tetrahedra formed by edge pairs in the curve.

This second conjecture, unfortunately, is definitely not true. One counterex-
ample is the following figure:

Figure 1: Counterexample



1.2 Working with Symmetrization

Another approach to the 3-D isoperimetric problem for polygonal curves is to
attempt to come up with an analog to Steiner Symmetrization in order to arrive
at the optimal convex hull surface area for a curve of given length. Ideally, this
procedure would begin with some curve «, keep the length of « constant, and
non-decrease the area of the boundary of the convex hull. Because the actual
fixed curve length is unimportant except for the issue of scaling, we can assume
that « is of length 1 without losing vital information; that is, we can assume
that we have

a:[0,1] - R3 (4)

Again, we begin by thinking about the polygonal case. For a piecewise linear
a, we consider local deformations that preserve total length. That is, we can
imagine taking a vertex (call it v) of a and moving it slightly. Only the edge
lengths of the two edges incident to v will be affected, but we want our procedure
to keep length constant; thus we want the sum of the lengths of these two edges
not to change. We also want to non-decrease area, so we want

>

(where each F; is a triangular boundary face formed by an edge and a vertex)
never to decrease.

We can see, though, that because we are working with optimizing the isoperi-
metric constant, we actually do not need to force the length to remain constant
and the area to non-decrease—we only need for

A
» 5)

(where A represents twice the area of the convex hull boundary and L rep-
resents the length of a)to non-decrease.
Our hypothesis is that the circle maximizes the convex hull; in the circular

case (when radius r = %), A= g—j, which means that the ratio % is equal to
1
E- . . . .
This, in turn, means that our conjecture is that

2mA < I? (6)

with equality when and only when the curve in question is a round circle
with doubled area.

Our conjecture leads us to the following question: consider a closed curve
¢ and its convex hull boundary S. Is it always possible to find some plane P
through S such that when we project S and ¢ onto P (call these projections S
and ¢),

Area(S) Area(S)

47 GE > 2 e ? (7)
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(We have the doubled scalar factor of m on the left in order to account for
the same doubled-disk issue discussed above.)

At first glance, the problem might seem trivial; perhaps, for example, we
could pick any plane as our P. But a fairly simple counterexample shows us
that we cannot simply choose a plane at random.

Counterexample: Consider a round circle of diameter 1, and let P be the
plane that cuts through the diameter.

In this case, é and— S are both simply a doubled line segment of length 1,
which has area 0 and total length 2. This gives us

Area(S) _0
L(&)?2
But, of course, the length and area of the original circle are positive, so the
inequality breaks. Thus we must be a bit more discriminating in how we choose
our plane P.

1.3 Projection with a Box

For a general curve, and even for an arbitrary polygonal curve, this problem
seems daunting. However, we can gain some interesting insight from looking at
the case of a curve ¢ that traverses the edges of a box (shown below in Figure
2).

Figure 2: Box

Note that the box along which c travels has length [, width w, and height
h, and also that the the convex hull of ¢ is the entire box.
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First we can try projecting the curve into the plane that runs through the
bottom of the box.

Given our [, w, and h, we can set to work finding known quantities: In this
case the area of S is simply the surface area of the box, which is 2hl+ 2wl 4+ 2hw.
L(c) is 2h + 4w + 2l. The computations for the projected quantities S and é are
not much more difficult: projection collapses w, and so our Area(g ) is simply
wl and our L(¢) is 2(2w+1) (the doubling happens because we must account for
the fact that the collapsed projection curve ¢ actually retraces its course exactly
once).

This gives us the following quantities:

Area(S) (wl) mwl
M ———=— — 4T =
L(e) 12w+D)? w2
(we can call the above quantity Iso(¢))
and
Area(S) 7T2hl + 2wl +2hw  w(hl + wl + hw)
L(c)2 7" (2h+4w+20)2  (h+2w+1)2

(we can call the above quantity Iso(c)).
We want to know when Iso(é) > Iso(c)-that is, we need to see when

mwl S w(hl + wl + hw)
Quw+10)2~ (h+2w+1)?

We can rearrange numerators and denominators in order to see that this
expression is equivalent to

wl (2w +1)?
wl+h(l+w) = (h+2w+1)?

With a bit more simplification, we can see that the inequality does not always
hold for all possible parameter values (for example, when h is very small). So
this plane, though it makes for simple computations, is not ideal for what we
want to solve.

Our goal is to find a plane through (it will turn out to be a skew plane) that
forces our inequality to hold in the general case of parameters w, h and [.

First, it might be useful to set the box in coordinate 3-space; we can say
that it has corners at (0,0,0) and (w, I, h)

Our goal is to find the unit vector that is normal to the plane that we want.

Ny
We can name this vector N = |n, |, where
Ny

INI| = |INI]* = nZ +nj +nZ = 1.

Now we can try using a Lagrange multiplier with the constraint that

n2 + nz +n? = 1. A bit of arithmetic is needed in order to reach a formula

for S and ¢ in the general case; we can use the formula for projection to conclude
that



7 (hwng + hin, + win,)

N (Iy/1=n2 42w, /1 —n2 + hy/1—-n2)?

If we maximize this quantity (in terms of the fixed, unknown parameters)
subject to the given constraint, we can see if the resulting unit vector forces
Iso(é) to be larger than or equal to Iso(c), which is the same as in the parallel
projection case.

A Lagrange multiplier gives us the equation

Iso(2)

Viso(¢) = AV(n} 4+ n. +n2)

Ng
=2\ |ny
Ny

This gives us a seemingly manageable system of four equations and four
variables, but solving it turns out to be extremely difficult (we did not have
much luck).

Fortunately, the programming language Mathematica can give us some good
computational insight about how these equations operate, though we still cannot
solve the problem completely for the general case.

To start, we have the following variables for the isoperimetric quantities that
we are working with:

Iso =Pi (hw+hl+wl)/(1+2w+h)"2

IsoP = Pi (h wnx + h 1 ny +
w 1 nz)/(1 Sqrt[l - nx"2] + 2 w Sqrt[l - ny~2] +
h Sqrt[1 - nz"2])"2;

(IsoP stands in for Iso(é)). Although the general-case system of equations
is difficult to solve, we can fairly easily find the maximizer for a cube of side
length one by parametrizing the unit vector with parameters s and t:

IsoP2 = FullSimplify[
IsoP /. {nx -> Cos[t] Cos[s], ny -> Cos[t] Sin[s], nz -> Sin[t]},
Assumptions -> {0 < s < Pi/2, 0 < t < Pi/2}]

NMaximize[IsoP2 /. th > 1, 1 -> 1, w -> 1}, {s, t}]

{0.785398, {s -> 1.5708, t -> 1.61807*10°-8}}



Thus in the cubic case, our optimal isoperimetric constant for the projected
curve is .785398, and it occurs when s = 1.5708 and t is zero. Now we find the
corresponding normal vector:

{Cos[t] Cos[s], Cos[t] Sin[s], Sin[t]} /. {s -> 1.5707963086718582°¢,
t —> 1.6180734060878987 ‘*x~-8}

{1.8123%x10°-8, 1., 1.61807*10"-8}

1.8123 1078
This optimizing plane, then, is not skew (because 1
1.61807 « 10~ 8
0
is simply |1| with a Mathematica rounding error). Furthermore, we can
0

see that the initial isoperimetric constant for the curve is

N[Iso /. {h > 1, 1 > 1, w -> 1}]

0.589049

Thus we can see that the plane that we found does in fact yield a higher
isoperimetric constant (.785398) than the initial isoperimetric constant for the
curve (.589049). So the problem of always being able to find a plane that
improves isoperimetric constant upon projection is solved for the cube.

The problem for a thin box with height 1, length 2, and width .01 yields a
skew plane as the optimizer. We have

opt = NMaximize[IsoP2 /. {h -> 1, 1 -> 2, w -> .01}, {s, t}]

{0.778713, {s -> 0.527022, t -> 0.00667402}}

which gives us a projected curve isoperimetric constant of .778713 occurring
when s = 0.527022 and ¢ = 0.00667402. We can also see from the following
code that this constant does in fact beat the initial isoperimetric constant of

0.699249:

Iso /. {h > 1,1 ->2, w-> .01}

0.699249

When we use these values to find the corresponding vector, we get the fol-
lowing:



{Cos[t] Cosl[s], Cos[t] Sin[s], Sin[t]l} /. opt[[2]]

{0.86429, 0.50295, 0.00667397}

.86429
This normal vector, .50295 |, shows that our optimizing plane is skew.
.00667397

Efforts to solve the case of unknown parameters were generally unsuccessful.
One tactic, for example, was to take the gradient of the parametrized isoperi-
metric function of the projected box, to normalize width (w) to 1, and to ask
Mathematica to find the maximum. As can be seen below, Mathematica was
unable to give a satisfying answer.

gIsoP2 = Simplify[D[IsoP2, {{s, t}}],
Assumptions -> {0 < s < Pi/2, 0 < t < Pi/2}]

Solve[gIsoP2 == {0, 0}, {s, t}]
$Aborted

newlsoP =
Simplify[gIsoP2 /. {Sqrt[1 - Cos[s]"2 Cos[t]"2] -> a,
Sqrt[1 - Cos[t]"2 Sin[s]"2] -> b, Cos[t] -> Sqrt[2 - (a"2 + b~2)],
Sin[t] -> Sqrt[a”2 + b"2 - 1],
Cos[s] -> Sqrt[1 - a~2]/Sqrt[2 - (a"2 + b~2)],
Sin[s] -> Sqrt[1 - b"2]/Sqrt[2 - (a"2 + b"2)1},
Assumptions -> {a > 0, b > 0}]

newlsoP =
FullSimplify[{h (Sqrt[2 - a2 - b"2] h + a 1 +
2 b w) (Sqrt[l - a2] 1 - Sqrt[1l - b~2] w) + (
2 Sqrt[1 - a~2] Sqrtl
1 -b2] (-b1+ 2aw) (Sqrt[l - 2] h 1 + Sqrt[l - a~2] h w +
Sqrt[-1 + a”2 + b"2] 1 w))/(a b),
2 Sqrt[-1 + a"2 +
b"2] (a b Sqrt[2 - a"2 - b"2] h + (-1 + a”2) b 1 +
2a (-1 +Db°2) w) (Sqrt[1 - 2] h 1 + Sqrt[l - a”2] h w +
Sqrt[-1 + a”2 + b"2] 1 w) +
ab (Sqgrt[2 - a2 - b2l h+al+
2bw (-(-2 +a"2+b°2) 1w-
Sqrt[-1 + a”2 + b~2]
h (Sqrtl[l - b°2] 1 + Sqrtl[l - a°2] w))} /. {w > 1}, {a > 0,
b > 03}]

Solve[newIsoP == {0, 0}, {a, b}]
$Aborted



Although the problem with general parameters is still a mystery, the insight
on specific instances was helpful in allowing us to better understand the box
case of projection.

1.4 Local Deformations About a Vertex

Another way to gain insight into the polygonal problem is to look at vertex
deformations in a vector sense. We first consider some polygonal curve ¢y with
vertices vy through vy, some deformation vector w, and some very small € > 0
(a picture is shown below).

Let’s say that we are going to deform v; by € in the direction of w—we can
call the new curve c.. First we note that the deformation that we are going to
make only changes the lengths of the edges that are incident to v (for ease, let’s
call them vg and vs).

Given our setup, then, we can say the following;:

k
l(co) = Y IIvi = viall
i=1

and
l(ce) = U(co) = [[vi = Vol = [[va — va[| + [|[Va + ew — Vo[ + ||v1 + ew — V3|
For convenience, we can let a = ||[vy — vo|| + ||[v1 — v2|| and let b(e) =

[|[vi + ew — vol| + ||v1 + ew — va||, which allows us to write the previous equa-
tion as

l(ce) =l(co) — a+ b(e)

Thinking now about convex hulls, we can say that

k
Area(6(CH(cp))) = Z Area(CH (edge U point))

i=1

and that

Area(6(CH (c.))) = Area(é(C’H(co)))—i—Z —Area(T; = {vi—1,v1, vi})—I—Z Area({vi—1,v;, v1+ew})
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which, again for convenience, we can rewrite as

Area(0(CH (c.))) = Area(6CH (cp)) — A+ B(e)
We can now write the isoperimetric constant for c. as follows:

2w Area(6CH (c.))
l(ce)?
_ 27m(Area(6CH(co)) — A+ B(e))
B (I(co) —a+b(e€))?
Now we can take the derivative with respect to € and evaluate that quantity

at € = 0 to see whether an arbitrarily small change is an improvement to the
isoperimetric constant:

Iso(ce) =

K (Iso(c.)) = 27 B’(0) o4 2n(Area(0CH (cp)) — A+ B(0)) = b'(0)
0€ | =g 7 (Ue) —a—0(0))? (I(co) —a+b(0))?
_ 2wB'(0)  4mArea(SCH (co)) x b'(0)
~ l(co)? l(co)?
Now, recalling that
B'(0) = % . ZArea({vi,l,vi,vl +ew})
and that
, 5
b(0) = 5 B (Ivi + ew —vol[ + [[v1 + ew — va[)

we can rewrite our previous equation as

)

=|  (Iso(c)) =2m x B'(0) *I(c) — 2 * Area(6CH(co) * b/ (0)

e=0 Z(C)?’

B'(0) B 21so(cp) * b’(()))
I(c)? I(c)

So now we can try to understand the conditions under which the isoperimet-
ric constant improves (that is, under which % o (Iso(ce)) = 0).

=27 x (

A positive derivative at zero would require that ﬁ's)? > 2180(??2)*17/(0). Oof

course, because [(c) is positive, this is the same thing as requiring that

30



B'(0) > 2 Iso(co) * I(c) x b/ (0)

(note that this follows no matter the signs of B’(0) and '(0)).

We might now conjecture that moving vy toward the line segment between
vp and vg (inward, essentially) might always work to improve the isoperimetric
constant. But not much progress was made past this point, and so this particular
angle on the problem turned out not to be particularly fruitful.

1.5 A Return to Projections

We now examine another attempt to work with the isoperimetric problem
through the lens of projection.

First we consider N, the unit normal to plane P (the plane that preserves the
greatest area upon projection). We also remember our curve ¢ and its projection
¢.

So we have that

Area(8CH(¢)) = Y |(Nr, N)| * Area(T)

(a sum over all boundary triangles T', with Nr denoting the unit normal to
boundary triangle T').

Remembering that N and Np are unit vectors and thus have length one, we
can rewrite our previous equation as

Area(6CH (&) = Z |cos(<N, N)| * Area(T)

)

where cos(<(N7, N) denotes the cosine of the smallest angle between vectors
]\Dp and N.
We can also say that

(&)= lle—{e,N)N]|

over all curve edges e.Again, because N is a unit vector, we can rewrite this

as
1é) =Y l(e)|sin(<e,N)|
edges

3

where sin(<te,N) represents the smallest angle between edge e and unit
vector N.

We claim that for all polygonal curves except for the triangle, there are at
most twice as many edges as there are boundary triangles.

10



Proof : Each edge must necessarily belong to two triangles, and each triangle
can have no more than two edges, so there must be no more than twice as many
edges as triangles.
|
Of course, the triangle has three edges and is itself only one triangle, so we
must exclude it.
So from before, we have

R 2w Area(6CH (¢
Iso(¢) = Z((6)2 (©))

which we can now translate into

Ztriangles ATea(T) * |COS(<INT5 N)|
(Zedges l(e|sin(<{e, N)D)Q

Again, maximization would be helpful but is difficult to do. One first step
might be to try to maximize the total area in the numerator by choosing a
preliminary N that the weighted average of the cosines of the angles between
the Nt vectors and N is maximized.

One potential strategy is again to use Lagrange multipliers, with which we
can set up the equations

Iso(é) =2m

Vn(Iso(¢)) = AVyg

where

gzni—!—ni—kn?—l

(with ng,n,, and n, being the components of the vector N).

Our next step might be to get rid of the inconvenient absolute values in
our Iso(é) equation in order to make differentiation easier. We can do this
by separating the boundary triangles into ”top convex hull boundary triangles”
(the unit normals of these triangles dotted with N will be positive), and "bottom
convex hull boundary triangles” (the unit normals of these triangles dotted with
N will be negative, but the actual areas are positive—we can fix this problem by
dotting these triangle unit normals with —IN instead of N). We can also take
care of the problem of absolute values in the denominator by converting e to a
unit vector & with the equation

. e
6—

l(e)

So we can now rewrite our equation as

A ZTOPT AT@G(T) * <NT’ N> + ZBottomT AT@CL(T) * <NT7 _N>
Iso(é) =2m .

D cdges 1(€)v/1 = (& N)

12



which is free of absolute values.

Now we do some derivative computations: note that in the following equa-
tions, ”Denom” refers to the denominator of the previous equation and ”Num”
refers to the numerator of the previous equation.

d d
%(Iso(é)) = % — Num x [m
and
5 dg (Num) %(Denom)
E(ISO(é)) = m — Num * W
and
5 A -4 (Num) -4 (Denom)
e (Iso(é)) = m — Num x* W

We can note here that

d

dny

(Np,N) = Nr,

We can make further simplifications by noting that

d
dn. (Num) = Z Area(T)Nrp o, — Z Area(T)Np
Top Bottom
and that
&, N)Np.,
d (Denom) = Z —l(e)MT’2
dne - (&N

(the numerator and denominator derivatives are similar with respect to n,
and n.).

With these computations done, we can rewrite our gradient equation as

Viso(¢) =

>

Z
>
3

Denom x (ZTop AT@G(T)NT’I) - (ZBottom Area’(T)NT,l‘) + Num * (ZAZZT l(e)

1
(Denom)?

oY@
Z

o
5’2,

s | Denom * (37, Area(T)Nry) — (3 pottom Area(T)Nry) + Num x (3 47 Ue)

|~ |~

Z |
=~ = ~|<
)

S Z);
W=

2

e
N

Denom x (ZTop Area(T)NTJ) - (ZBottom ATeCl(T)NTVZ) + Num * (ZAllT l(e)

= A\Vyg
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Ny
=2)\ |ny
N,

Solving this system of equations, however, proved just as difficult as solving
the system discussed earlier in this paper, and not much progress was made past
this point.

1.6 Working With Convex Hull Volumes

While we continue to investigate convex hulls of polygonal curves, we now turn
our attention to their volumes rather than their surface areas. It will be useful
for us to remember that the convex hull of a polygonal curve is a union of
tetrahedra that have vertices in the curve.

1.6.1 The Case of a Curve With Four Edges

First, we consider a polygonal curve with four edges. The convex hull of such a
curve is a single tetrahedron —four of this tetrahedron’s edges are in the curve
and two of them are not. We can call the vertices of the tetrahedron vy, vo, v3,
and vy. Figure 5 below illustrates the situation:

We will refer to d;; as the line segment connecting v; and v;.

We first examine the case in which all four edges of the curve have the same
length , which we will assume to be one (meaning that dis = doz = d14 = d3g =
1). Our goal is to find the lengths of the other two edges of the tetrahedron
that maximize its volume (so we are solving for di3 and da4); recall that this is
the same as finding the edge lengths that maximize the volume of the curve’s
convex hull.

The Mathematica formula for the volume of a tetrahedron given the edge
lengths is shown below:

TVol([d12_, d13_, d14_, d23_, d24_, d34_] :=
Sqrt[1/288 Det[{{0, d12°2, d13°2, d14"2, 1 }, { d12°2, 0, d23°2,
d24-2, 1 }, { 41372, d23°2, 0, d34"2, 1 }, { d14"~2, d24-2,
d34~2, 0, 1}, {1, 1, 1, 1, 0}}11;

We can substitute our values for the four sides of the curve to get the fol-
lowing:

13



TVol[1, d13, 1, 1, d24, 1]

Sqrt[8 d1372 d24°2 - 2 d1374 d2472 - 2 d1372 d2474]1/(12 Sqrt[2])

f \/Sdfadg4_2d4113d§4_2d§3d%4
12v/2
ate with respect to both di3 and dos and set both of those equations equal to

zero in order to get a critical point (in this case, the critical point will be the
maximizer).

Differentiating and setting our equations equal to zero gives us the following
equations:

Now that we have our volume o , we can differenti-

4dy3d3, — dizds, — 2d35d3, = 0

4d34dyy — digday — 2d35d5, = 0

Wolfram gives us the following solutions:

di3 =0

d24 = 0

d13 = -2/sqrt(3), d24 = -2/sqrt(3)
d13 = -2/sqrt(3), d24 = 2/sqrt(3)
d13 = 2/sqrt(3), d24 = -2/sqrt(3)
d13 = 2/sqrt(3), d24 = 2/sqrt(3)

Of course, in this context we cannot have zero or negative solutions, so our
solution is
2
diz =doy = —=

V3

If we substitute these values back into the original equation, we get the
following:

TVoll1l, 2/3°(1/2), 1, 1, 2/37(1/2), 1]

2/(9 Sqrt[3])

So given a polygonal curve with four edges all of length one, we have a
maximum tetrahedral volume of % that occurs when the other two edges are

2
of length 7
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In some ways, this might seem like a counterintuitive result—perhaps we
would guess that given four edges of length one, the lengths for the other two
edges that maximize tetrahedral volume might also be one rather than a radical
term.

1.6.2 The Case of a Curve With 5 Edges

We can now turn our attention to the case of a polygonal curve with five edges.
We first note that the convex hull of a five-edge curve consists of two tetrahedra
that share an edge. We can set the total length of the curve to be L. Our
goal is to find the lengths of the tetrahedral edges in the curve that maximize
total volume. We can do this by maximizing the volumes of each tetrahedron
separately.

The Mathematica code used to solve this problem is shown below:

obj = d12 d23 d34/6 + d34 d45 d15/6
cond = d12 + d23 + d34 + d45 + d15 - L

eq = Join[Grad[obj - t cond, {d12, d23, d34, d45, di5}], {cond}]
solb = Solveleq == {0, 0, 0, 0, 0, 0}]
{{d34 -> 0, d45 -> -((d12 d423)/d15),
L -> (d12 415 + d15°2 - d12 d23 + 415 d23)/d15, t -> 0}, {d12 -> 0,
di5 -> 0, d34 > 0, L -> d23 + d45, t —> 0}, {d15 -> 0, 423 -> 0,
d34 -> 0, L -> d12 + d45, t -> 0}, {d12 -> 0, di15 -> 0, d23 -> 0,
d45 -> 0, L -> d34, t -> 0}, {d12 -> d34/2, 415 -> d34/2,
d23 -> d34/2, d45 -> d34/2, L -> 3 d34, t -> d34°2/12}}
obj /. solb
{0, 0, 0, 0, d34°3/12}
sol5[[5]]

{d12 -> d34/2, 415 -> d434/2, d23 -> d34/2, d45 -> d434/2, L -> 3 d34,
t -> d3472/12}

Thus our final conclusion is that the maximum volume occurs when the
shared edge is length % and all other curve edges are %%his yields a volume of
LS
324"
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1.6.3 The Case of a Curve With 6 Edges

The six-edge case turns out to be significantly more difficult than the two cases
discussed above, and less progress was made on it than was made on the previous
two. However, it was still possible to gain some insight under the assumption
that all six edges of the curve were of length one. In this case, we found the
following figure to be the maximizer:

Figure 3: Maximizer in the case of all six edges being length one

It should be noted that this problem becomes progressively more computa-
tionally complex with each additional edge (for example, the number of critical
points starts to increase dramatically-there were already 59 critical points in
the six-edge case). For this reason, the approach used for the cases of four, five,
and six edges discussed above would not be a reasonable technique for solving
an arbitrary n-edge case.

2 Conclusion

While many aspects of the initial conjecture remain a mystery, we feel that the
work done in specific polygonal cases gives interesting insight into the prob-
lem. We hope that more work is done in the future toward solving the general
conjecture.

Many thanks to Indiana University Bloomington and to the National Science
Foundation for supporting this project, and to Purdue University for providing
us with a forum to present our results.
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VERTICALLY AVERAGED VELOCITY IN RAYLEIGH-BENARD
CONVECTION: A COMPUTATIONAL STUDY

ANTHONY ISENBERG

ABSTRACT. We present a numerical analysis of the vertically averaged veloc-
ity in 3D Rayleigh-Bénard convection, which results in a 2D Navier-Stokes
system with a body force depending on the 3D flow. Using pseudo-spectral
methods found in a Python suite, Dedalus, we compute the 3D flow, from
which we extract the vertically averaged velocity, the corresponding force, as
well as time-averaged physical quantities. We then compare them to theoreti-
cal bounds to see if the features of 2D turbulence arise.

1. INTRODUCTION

There are fundamental differences between 2D and 3D turbulence. Many simu-
lations have been run using an arbitrarily chosen body force to test characteristics
of turbulent flow. We instead use a force naturally imposed by the 3D Rayleigh-
Bénard problem on the vertical average of the velocity. In experiments concerning
the Bénard problem, one observes vertical hot and cold plumes (for instance, see
[5]) which have an important role in the Bénard convection. This suggests that the
vertical averages may be helpful in understanding the problem. Our treatment is
mathematical, but to have an eye on the physical phenomenon, we avoid nondi-
mensionalization. The question, then, is whether this averaged velocity exhibits
the characteristics of 2D turbulence.

Toward an answer to our question, we extract from a numerically computed
solution to the 3D Rayleigh-Bénard problem both the vertically averaged velocity
as well as the corresponding body force and quantities relevant to 2D turbulence.
From these simulations, we find that the averaged velocity does indeed display some
features of 2D turbulence. We concluded this by computing the energy spectrum,
transfer of enstrophy, and bounding expressions for the dissipation length scale of
this 2D velocity for a range of Rayleigh numbers. We mention here that in [11]
there is a discussion of 2D cascade in 3D atmospheric flows, mostly inverse energy
cascade. Our focus and the methods are different.

We additionally examine various theorems from [2]. We see that the bounds in
(3.28) and (5.1) hold and find the lower bounds in these inequalities to be tighter.
We also find the expected constant value of the pseudo-flux found in [8] holds.
However, energy spectra associated with 2D flow are not consistent with expected
results for large Rayleigh numbers. Figures 1 and 2 provide heuristic images of
what we expected for the spectrum.

Date: July 28, 2017.

2010 Mathematics Subject Classification. 35Q30, T6F02, 76F25.

Key words and phrases. Navier-Stokes equations, turbulence, enstrophy cascade.
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2 ANTHONY ISENBERG

We refer the reader to ([1], [8]) for background on 2D turbulence theory from
the same angle as in this work.

2. PROBLEM STATEMENT

The 3D Rayleigh-Bénard problem consists of the equations

0
(,7‘: —vAu+ (u-V)u+ Vp = —g(1 — adyh)es (2.1)
V-u=0 (2.2)
% _BAG+ (a-V) =0 (2.3)
in Q= (-L/2,L/2)? x (0,h) with the boundary conditions
u=0atz=0,h (2.4)
0(0)=1,0(h)=0 (2.5)

p,u, 0 periodic in the horizontal directions x,y.

Here, v is the viscosity, « is the volume expansion coefficient, Jy is the actual
difference in temperature between z = 0 and z = h, [ is the heat conduction
coefficient, g the acceleration due to gravity, and e3 = (0,0, 1).

We consider the vertically averaged velocity

h

ﬂ:/ u(z,y, z)dz (2.6)
0
h

17:/ v(x,y, z)dz. (2.7)
0

Note that we have 2D incompressibility from (2.2) and u = 0 at the boundary in
the z-direction

h
/ Uy + Uy + w,dz = Uy + Ty + [w(h) — w(0)] = Uy + 7, = 0. (2.8)
0

We denote u = (u,v). We can then write the vertical average of the horizontal
components of the 3D momentum equation, (2.1), as the 2D Navier-Stokes equation
(NSE)

i, + (- V)i — vAa + Vj = Fo(u) + F¥(u) (2.9)
V-a=0 (2.10)

in Q = (—L/2,L/2)?, where F? is a boundary shear force and F? is a Reynolds
stress force.

2.1. Towards a Final Expression for F? and F¥. We begin with the boundary
shear. This can simply be written as

8 (2., ) — 2(z,,0)
R e P el B 2.11
(az(xayah)_?)z(w7yao) ( )
We then define the Reynolds force as
Ffl=(@ -vV)u- (u-V)u (2.12)

49



VERTICALLY AVERAGED VELOCITY IN RAYLEIGH-BENARD CONVECTION 3

To derive a simpler expression for the Reynolds force, we first note that integration
by parts and 3D incompressibility yields

Wu, = —uw, = u(uy + vy). (2.13)

We can insert this expression into the first component of the Reynolds stress, noting
Uy = —Ty

FE = aa, + v, — uug T vu, + wu, (2.14)
= Uly + VUy — 2UlU,; — DUy — UTy,
= 2Uly + Viy + UDy — 2Ully — VlUy — UDy,.

Using the identities

[(w—u)?]y = 2(u— @) (uy — Uy) (2.15)
= 2(Wly — Uy, — Ully + Uly)

= 22Uy, — 2UlUy,

[((u—a)(v—0)]y = (uy — 8y)(v — V) = (u—1u)(vy — Vy) (2.16)
= DU, — iy + U, — Uy,
we find that
Fft = ~[(u— )]s — [(u— @) (v~ 0)],. (2.17)
A symmetric derivation yields the second component
Fyt=—[(v =102y — [(u—a) (v~ 0)l- (2.18)

Note that F has zero two-dimensional spatial mean, but FZ might not. Analysis
for the NSE with periodic boundary conditions is enabled by subtracting the mean
flow, so we take u = 0y + uy, where

iy = //ﬁﬁ dx. (2.19)

We can then use (2.1) to write

ou _
% + (g - V)l_lg —vAu, +Vp=F (2.20)
with
F:F3+FR—// F? dx — (b, - V). (2.21)
Q

3. IMPORTANT FEATURES OF TURBULENCE

Since 15 is periodic, it is natural to write it as a Fourier series
_ o irok 2
Uy = E eetrokx Ko = =

kez2/{0}

More generally, we define a wavenumber as k = ko|k|ga for d = 2,3.
In 2D, Parseval’s identity reads as

— 112 ~ 12
[ A A N | M (3.1)
kez2 /{0}
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4 ANTHONY ISENBERG

which we will utilize throughout our computations.
We denote the time average by

T
@) = Jim £ [ o) @ (3.2)

where ¢ is an appropriately chosen function, such as the norm from a function
space, e.g. the L? norm. Strictly speaking, this limit should be a Hahn-Banach
extension of the classical limit (see [8]). Naturally, in our numerical study we take
T finite, but sufficiently large. The effect of this approximation is analyzed in [7],
We now consider the functional form of the 2D NSE,

da _

7; + VAﬁg + B(ﬁg,ﬁg) = f, (33)
where A = —A is the Stokes operator, B(u,v) is the bilinear operator P(u - V)v,
P is the Helmholtz-Leray projection onto divergence-free functions and f = PF.
Physical quantities in turbulent flow are most relevant when taken as averages per
unit mass. Accordingly, in 3D, we define the energy as

1 9 1 9
gl = g ([ i ax) (3.4

and in 2D the energy, enstrophy and palinstrophy are given as

1,9 1 2|2 1 5
) (a7 L, ) A, 69)

respectively. Here, powers of A are defined through its eigenvalues.
We can define the discrete time averaged energy per unit mass (over a range of

length scales) as
€r1,m0 = < Z |ﬁk|(?;d > (3.6)

r1< [k[pa <rz

We define the mean enstrophy dissipation rate (per unit mass) in 2D as

v 2
n= ﬁ< ||AuHL2(ﬁ)> (3.7)
and the mean energy dissipation rate in 3D as
e=—( HA1/2u’2 ) (3.8)
L2h L2 /- '
The energy spectrum is a function £(s) defined for all real numbers s > kg. It is
connected to the discrete time averaged energy, e, o2, as a Riemann sum (as kg — 0)

2Kk
€20 ™ E(s) ds. (3.9)
K
Kraichnan’s heuristic derivation of €(s) ~ 1?/3x~3 for 2D turbulence is then con-
sistent with e, o, ~ 7?3k 72
We first consider the case where the force is limited to a range of wavenumbers

F= )  feerokx (3.10)

k <kok|< R
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VERTICALLY AVERAGED VELOCITY IN RAYLEIGH-BENARD CONVECTION

The two major differences between three-dimensional and two-dimensional turbu-
lence are the expected energy spectrum and cascade. In three dimensions, the cas-
cade refers to the transfer of energy towards the smaller scales, or larger wavenum-
bers, being roughly constant over the inertial range, where the Kolmogorov spec-
trum E(k) = k~5/3 is expected to hold. In two dimensions, we instead expect the
transfer of enstrophy to be roughly constant and (k) ~ x~2 in the inertial range.
There is also an inverse cascade of energy toward small wavenumbers in 2D. These
features are depicted in Figures 1 and 2. A cartoon sketch of the spectra are shown

in a log-log scale.

gSD(H) ~ H75/3

energy

large £ _ small £

i e

small © L iesi
force inertial dissipation

FIGURE 1. 3D Turbulence
ko3

T &p~rTE

energy enstrophy
large ¢ _ . small

/ | -\arge K

£

small K / large K

force inertial dissipation

FIGURE 2. 2D Turbulence

The left end corresponds to small wavenumbers or equivalently large scales,

whereas the right end is the opposite.
Heuristic arguments suggest that the dissipation range starts around x,, = (/%)

1/6

in 2D and k. = (e/v*)"/* in 3D. At these scales, viscous effects dominate, and

enstrophy and energy are dissipated as heat.
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6 ANTHONY ISENBERG

3.1. Enstrophy Transfer Function. Let p,. and q,, represent the low and high
modes, respectively, i.e.,

qx = Z ﬁkeik.x7 Px = Z ﬁkeik.x (3]‘1)
K< |k|]Rd ‘k‘]Kd <k

Taking the L? inner product of the 2D NSE with Aq,, gives the enstrophy balance

Ld /2 2
5%”"4 q, Lz(ﬁ) + V”Aqrc”LQ(ﬁ) = Ko QEH + (f7 Aq/—c)a (312)
where the enstrophy transfer function is
E, =€ — ¢ (3.13)

for
€. (u) = —k3(B(p,. P,), Ad,)
st?(u) = _K‘(z)(B(qm qn)v Ap,‘-i)'
Note that if f = f. , then (f, Aq,,) = 0 for k > K. So, by the fundamental theorem

of calculus and the fact that ‘Al/ 2uHL2(§) is bounded for all time,

0< (€, fork >R (3.14)

which implies the mean flux is towards the higher wavenumbers.
A rigorous sufficient condition for an enstropy cascade is found in [8]:

Theorem 3.1. ) ¢
1—(£) §<K>§1f07’E§I€§HU,
Ko n
where )
2 ( lATfl72q )
o = ) (3.15)
(A2, )
From this theorem, we see
E<Kk <K Ky = (€)= (3.16)

meaning the mean enstrophy transfer rate across wavenumber x is nearly constant
for sufficiently large . A similar result holds for the transfer of energy in terms of

(vl )
2 = .

Kk: =

L2(Q)
D)

< ||u||L2(§) >

The fact that x, < Kk, is consistent with the expectation that in 2D a (direct)

cascade of enstrophy towards larger wavenumbers is more prominent than a direct

cascade of energy. An unresolved question is what, if any, kind of finite mode force

results in ® < k. This is mainly why we consider the 2D force naturally imposed
in the vertically averaged velocity of the Rayleigh-Bénard flow.

(3.17)

]



VERTICALLY AVERAGED VELOCITY IN RAYLEIGH-BENARD CONVECTION 7

3.2. Pseudo-Flux. If the force f defined in (3.12) has arbitrarily many modes, as
is expected in the case of the vertically averaged velocity, we consider a pseudo-
transfer function,
Ko “Br = € — € +(f, Aq,.). (3.18)
The difference between (3.18) and (3.13) is the (f, Aq,) term. For the pseudo-
transfer function, this need not be zero. This causes the sign of (€,) to be uncertain.
All we can say is
0 < (Fx(u)) for k> Ko (3.19)
We know the viscous term has the same sign for all , but the force f may have a
mixing effect similar to the nonlinear term.
We can state a theorem analogous to Theorem 3.1 for the pseudo-transfer function:

Theorem 3.2. !
)

2
()
Ko 7
From this, we can get another similar sufficient condition for a direct enstrophy
”cascade,” namely that if ko < ke, (Fx) &1 for ko < k K Ko

A

3.3. The Grashof Number. We define the Grashof number for a time indepen-
dent force f as

G- (3.20)

v2K2
This dimensionless number controls the dissipation scale. The following estimate
is valid for a force with an arbitrary number of modes.

Theorem 3.3. [10]
GUe < Bn < gu/s (3.21)
Ko

In the finite mode case, the gap in (3.21) closes if x, is large enough (see [6])

Ko ~ iy = 1~ G4, (3.22)

Ro
The relation (3.22) is up to a logarithmic constant.
The Grashof number also controls the Reynolds number.
Theorem 3.4. [3]

G1/2
ogayi SHe=C

where Re is the Reynolds number, defined in 2D as
_ 2
(Il
> .

The Reynolds number for the vertically averaged velocity of the Rayleigh-Bénard
force satisfies the following bound:

Theorem 3.5.
h R 2 Nu-1 2
a u
< mind = -
Re S mln{ PrRa, ( r) ( . > } (3.24)

LAll otherwise uncited theorems are from [Qé 4

Re = (3.23)
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where Nu is the Nusselt number defined as

A R 1)
Nu=-— —t dzxd 2
=z |5 oty (3.25)
Pr is the Prandtl number defined as
v
Pr=—, 3.26
5 (3.26)
and Ra is the Rayleigh number
dpagL?
Ra = "O‘hg Bu. (3.27)

3.3.1. Additional Grashof Relations. A bound for &, /k¢ is given in terms of a mod-
ified Grashof number:

Theorem 3.6.

G < :—Z <G8 (3.28)
where - 2
e CEIDM
G = v2Kg Gr = vk

The constant ¢ is O(1) for Re <1 and can be taken O((Pr/Ra)l/S) otherwise.

There is an alternative formulation for this inequality utilizing the Reynolds
number instead of the Rayleigh number

G° Kn 1/3
* < M < G*l/3, 2
(Re + 1)1/3 ~ kg — ¢ (3.29)

Numerically verifying these inequalities is one of our primary goals.

4. COMPUTATIONAL METHODS

To compute all of the following quantities, we used pseudo-spectral methods
found in the Python suite, Dedalus (see [4] for more details). All simulations were
run on a 512 x 512 x 16 grid with a de-alias factor of 3/2, using Q as in (2.1) with
L =27 and h =1 (so kg = 1). The horizontal directions were expanded with a
Fourier basis. The vertical was expanded with a Chebyshev basis. All time averages
were computed using an Euler step at every iteration of the Dedalus solver. For
example, to compute (¢ ), where

b0 = 3 i’ (4.1)
k|=k
we advanced at the j** time step with
Sh=0l "+ ALY, (4.2)
k|=k
to approximate the solution to
do
D

[k|=r

ﬁk(s)‘2 ds. (4.3)
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At the end of the run, we then divide by the total simulation time T to obtain the

approximation to
1 T

k|=k

tue(s)|” ds. (4.4)

4.1. A Change of Variables. When computing the solution, we used a different
formulation from (2.1) - (2.3). The following change of variables was used.

We first note dg = 6y — 01, where 6(0) = 1 and 0(1) = 0. We then set p = p + gz,
and are then left with

%—ltl —vAu+ (u-V)u+ Vp = gadgbes. (4.5)
We then let
i 9 ifO=1
0 =900+ 0, = 4.6
o {01 if0=0 (46)
(4.5) then becomes
0 -
a—ltl —vAu+ (u-V)u+ Vp = ga(f — 01)es (4.7)

with the new boundary conditions 0(0) = 6y and 6(1) = 6,. We finally set the
buoyancy, b, to be ga(d — 01) and are left with our final expression

g—ltl —vAu+ (u-V)u+ Vp = bes (4.8)
V-u=0 (4.9)

ob
5~ BAb+ (- V)b =0. (4.10)

4.2. Pseudo-Spectral Method. We begin by discussing the Fast-Fourier Trans-
form, and then display its use in showing how one can numerically compute the
solution of Burgers equation.

4.2.1. Fast-Fourier Transform. The framework for a pseudo-spectral method is the
Fast-Fourier Transform. We will discuss the one-dimensional case for simplicity.
Let our space domain be [0,2L] (for convenience, we will take L = 7). We then
discretize our domain into 2M + 1 grid points, with zg = 0 and zap;4+1 = 27. More

generally,
2mm

T 2M +1
We then note the following three facts:

(1) & = e are the (2M + 1)*™ roots of unity.
@ &=¢
(3) & =861 =¢.

Then, for a function

Tm

M
’U(l‘)z Z cme™,
m=—M
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10 ANTHONY ISENBERG

we seek to find the Fourier coefficients, ¢,,. Using the above facts, we can instead
say

M M
(@) = Y eme™ = Y emg =vlz;) = v
m=—M m=—M
If we then define the matrix [T1];» = " and the vectors
c_m v(0)
c= : v = : )
e v(x2nr)

finding our coeflicients becomes a matrix multiplication problem. Additionally, T
is easy to invert: [T71];,, = Wlﬂg;g . This allows us to go back and forth between
the physical space and the coefficient space by matrix multiplication.

This general approach is the Discrete Fourier Transform, which runs in O(M?). A
divide and conquer approach, which is the Fast-Fourier Transform, was developed
that runs in O(M log M).

4.2.2. Burger’s Equation Using the Fast-Fourier Transform. Consider Burger’s equa-
tion,

Ut — VUgq + utty = 0.
Using separation of variables, we can write our solution in terms of its Fourier
series. Taking the complex version, we define

M
Sy = g cme™” Cemp = Cm
m=—M

We can approximate u, and uu, by differentiating term by term for both terms and
then multiplying the two partial sums for the latter. Using a discrete convolution,
we arrive at

2M M
wy ~ Sy Sy = Z ( Z ikcm,kck)elm“’.
m=—2M k=—M
We can then write an ODE approximation of Burgers as

dc M
= ymPe,, + Z tkey—rer = 0.

dt
k=—M
The Fast-Fourier Transform allows us to find the coefficients of v = Sy,5, and
therefore approximate the solution. We first take the coefficients of u and wu, and
apply the inverse transform to get our grid values, u(z,,). We can then multiply
at each ,, to get u(zy,)us(zm), and then perform a forward transform to get our
coefficients for the non-linear term.
The extension to two or three-dimensions is natural. For the Rayleigh-Bénard
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VERTICALLY AVERAGED VELOCITY IN RAYLEIGH-BENARD CONVECTION 11

problem, we can split u = (u, v, w) into its three components

%—VAu—l—(u-V)u—i—Vp:O
%—uAv—l—(u-V)v—i—Vp:O
aa—qf—qu—l—(u-V)w—i—Vp:b.
b
— — BAb -V)b=0
5~ PAb+ (u-V)

where (u- V)u is shorthand for wu, + vu, + wu,, and construct a separate matrix
for each dimension as above to perform Fast-Fourier Transforms as necessary for
each component. The overall time complexity for higher dimensions is then given
by O(M"(log M)™). In our case, n = 3.

4.3. Basis Choices. For the horizontal directions, we used a Fourier basis because
of the periodic boundary conditions. For the vertical, a Chebyshev basis allows for
more of the grid points to be concentrated towards the end points, which is where we
are expecting most of our activity in that direction. By using the trigonometric form
for a Chebyshev polynomial in |z] < 1, which is given by T, (z) = cos(n arccos z),
we see that it is possible to use an FFT in this direction as well.

5. SIMULATION RESULTS

Our approach for examining the results will be the same for each Rayleigh num-
ber. We begin by looking at the computed values for all named constants, as well
as examine the effect of the Rayleigh number on the inequality found in Theorem
3.6. We then look at the velocity fields of both @ and u, as well as the 2D vorticity.
In these images, "midplane” refers to u(z,y,1/2). It is analogous for v and w.
We then look at the energy spectra for the energy, the Reynolds force (see (2.17)
and (2.18)) and the shear force (see (2.11)) of the 2D system. In the case of the
total energy, we then look at an interpolated line to see if dissipation occurs at
the expected rate found in Figures 1 and 2. We next look at the total energy for
the Reynolds and shear forces, as well as the total energy of the entire 3D system.
We finally compare the computed results for the various special wavenumbers and
constants found in Sec. 3 to the bounds also found in that section.

Our simulations were run with differing Rayleigh numbers for each. We take
v=1= 0, as well as Pr = 1 for all. We again note L = 27 so that kg = 1.

5.1. Composite Results.

5.1.1. Values.
Ra| 5 x 10° 106 2.5 x 10°
Ky | 8.1974 12.837 14.143
ko | 10.832 16.298 18.509
Kor 4.252 5.261 6.294
n | 3.03 x 105 | 4.48 x 10° | 8.00 x 10°
G, | 1.77 x10* | 3.76 x 10* | 9.52 x 10*
G* [ 1.30 x 10° | 5.12 x 108 | 3.64 x 107
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5.1.2. Theorem 3.6 Bounds vs. Rayleigh Number. For additional Rayleigh numbers,
each run was performed for .1 simulated seconds. We additionally look at another
bound, also given in [2]

Theorem 5.1. Assuming G, < c(k,ky/K%), where ¢ > 1 is some constant, we

have 16
Mz (Fe) el (5.1)
Ko Ko

In the following plot, we use the form of the inequality found in (3.29) as opposed
to (3.28), as it is easy to see from the above table that the latter will hold. We
do, however, look at the change in the lower bound constant from (3.28) in later
sections. Looking at the plot which shows (3.29), (5.1), and G*/3 compared to
Ky, we can see the constant on the lower bounds become smaller, and therefore the
bound tighter, as the Rayleigh number increases.

-®- Ky et
3 Pt
10 -%- GY3Re+1)17 e -
e Y18 *_.-"’
-
== (keko) YEGLE T g
"
"-
102 -1-"—4
L _ __.)(._::____;_*____W""M‘
10 ewmmIIIIIITETTT .-
=TT -
= T
—"
P
T T
10° 106

Rayleigh Number
FiGURE 3. Bounds v. Rayleigh Number

5.2. Ra = 5 x 10°. This simulation was run for a total of .15 simulated seconds.
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800 1600

FIGURE 4. Velocity Fields for Ra = 5 x 10°

5.2.1. Field Comparisons. Comparing the horizontal midplanes to the vertically av-
eraged velocities, we see the flows differ primarily towards the inside of our domain.
However, the flow in the vertically averaged case is weaker than in the midplane.
We also see some vortices forming in the vertically averaged velocity.

5.2.2. Spectra. We now look at an interpolated line beginning at approximately .
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2 ]

10 —— Time Averages
—— Flat part

1071 A -—- 3

107* 1

10-7 4

10-10

10-13 4

10-16 4

10° 10! 10?

FIGURE 5. Energy Spectrum (Ra = 5 x 10°)

Looking at our interpolated line, we see our enstrophy dissipation rate is approx-
imately k73, as derived by Kraichnan. However, we believe the simulation did not
converge quickly enough to draw definitive conclusions from the energy spectrum.
Figure 6 shows the averages of the Fourier coefficients for the force terms F? and
Fo. They indicate that indeed, all modes are active, though F? dominates F?.

Reynolds Spectrum Shear Spectrum

10°

101 4

10-14

10 4

r T T T T T
10° 10! 10? 10° 10 10?

FIGURE 6. Shear and Reynolds Spectra (Ra = 5 x 10)

5.2.3. Total Energies. The instantaneous energies (without the time average) were
computed, after an initial transient period, using the L? norm of Q (in the case of
the shear and Reynolds energy) or the L? norm of Q (for the Total 3D energy).
From the total energy plot, we see a large amount of the energy for the system
comes from the vertical direction.
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Total Energy

200000 4
175000 -
150000 -
125000 -
100000

75000 -

50000 - \/

25000

0.00 0.01 0.02 0.03 0.04 0.05

FIGURE 7. Total Energy of 3D System (Ra = 5 x 10°)

Looking at the shear and Reynolds energy, they are as expected based on the
spectra in Figure 6.
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1e9 Total Shear Energy 1e12 Total Reynolds Energy

0.8

0.6

0.4

FIGURE 8. Shear and Reynolds Total Energy (Ra = 5 x 10°)

5.2.4. Computed v. FEzpected Values. From the outset, we see that k, and the
beginning of the enstrophy dissipation in Figure 5 approximately line up. We can
then look at results related to Theorem 3.2. From Figure 9, we see the pseudo-flux
is constant up to k., as well as nearly equal to 7.

Pseudo-Flux
lDD 4

10—2 4
1074 A
lD—E -
1073 -
10710 4

—— Pseudo-Flux
107124 k=1

— 1-K%K2

10? 10! 10?

FIGURE 9. Theorem 3.2 Bounds (Ra = 5 x 10°)

The curve corresponding to 1 — (k/k,)? is plotted only for the positive values.
We in fact see the pseudo-flux remains closer to its upper bound until &, .
We now come to Theorem 3.6. From thggtable in Sec. 5.1.1, we already see G, <
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Ra < G*, which bodes well for our inequality. Our values for the inequality are
Gi?

Ra1/3
Here, we can take our constant for our lower bound to be about 30.

= .33851 < K, = 10.507 < G* = 585.629

5.3. Ra = 106. This simulation was run for a total of .1 simulated seconds.

FIGURE 10. Velocity fields for Ra = 10°

5.3.1. Field Comparisons. For this higher Rayleigh number, we see more apparent
differences between u and u. We see larger pieces of positive velocities and nega-
tive velocities concentrated together in u, whereas our 3D field has a much more
fractured texture. This is prominent in the v fields in [—1,1] X [—7,1]. The weaker
flow in the averaged case is also demonstrated at this higher Rayleigh number. We
also see the vorticies are about twice as strong as in the run at Ra =5 x 10°.

5.3.2. Spectra. At Ra = 10° the energy spectrum exhibits a flat section which
fits better with an inverse energy cascade (n_5/ 3) rather than a direct enstrophy
cascade. As in Sec. 5.2.2, we do not believe convergence was quick enough.

64



18 ANTHONY ISENBERG

~—— —— Time Averages
107 TTeeall —— Flat part

- el k5B
102 -

10° 4
1072 4
1074 q
107%
107% 1

lo—]ﬂ 4

10° 10! 10?

FIGURE 11. Energy Spectrum (Ra = 10°)

Again, the shear and Reynolds spectra maintain the same shape and the Reynolds
force still dominates the shear force.

Shear Spectrum Reynolds Spectrum

107

105 4

103 4

10% 4 104

102 4

FIGURE 12. Shear and Reynolds Spectra (Ra = 109)

5.3.3. Total Energies. From the total 3D energy of the system, we in fact see it
increasing as time elapses. The initial peak is surpassed towards the end of our
simulation and we see that the system has not yet settled. We again see that the
vertical direction does contribute significantly to the total energy.
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Total Energy

250000 4

200000 +

150000 4

100000

50000 A

FIGURE 13. Total Energy of 3D System (Ra = 10°)

The Reynolds and shear energies further show the contribution of the vertical
direction to the total energy since these two forces only have horizontal components.
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1e10 Total Shear Energy 1e12 Total Reynolds Energy

25

2.0

15

1.0

0.5 0.5

0.0 0.0

FIGURE 14. Shear and Reynolds Total Energy (Ra = 10°)

5.3.4. Computed v. FEzpected Values. We see all constants increased from Ra =
5 x 10°, as expected.

From Figure 11, it is harder to see if the dissipation begins with ,. What we believe
to be the inverse cascade does terminate prior to it, however. The pseudo-flux is
more revealing. We still see the same nearly constant rate up to k,. Additionally,
the bounds found in Theorem 3.2 still hold.

Pseudo-Flux

107 5

101 4

1072 4

1073 4

1074 4

1075 4

1076 4

1077 4 .

1078 4

10° 10! 10?

FIGURE 15. Theorem 3.2 Bounds (Ra = 10°)
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Looking now at Theorem 3.6, we again still see the inequality holds:

G1/3
ﬁ = 335 < K, = 12.837 < G*1/% = 799.749.
aQ

Here, we can take our constant for our lower bound to be approximately 40.

5.4. Ra = 2.5 x 108. This simulation ran for a total of .05s of simulated seconds.

FIGURE 16. Velocity Fields for Ra = 2.5 x 10°

5.4.1. Field Comparisons. For this Rayleigh number, we see more similarity be-
tween @ and u. Like 5 x 10° and 10%, we see the areas where the velocity is positive
are in around the same area for both the averaged and the normal. Again, we see
more pockets of difference in u, as well as more extremes and fractures. We also
see stronger vorticies, but not as large of an increase as between 5 x 10° and 10°.

5.4.2. Spectra. We see the same shape as the other Rayleigh numbers again. Like
Sec. 5.3.2, we see a more apparent inverse energy cascade than enstrophy cascade.
However, we do not see the same level of accuracy as in above, which we again
believe is caused by the rate of convergence.
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107 4 -
~-— —— Time Averages

o —— Flat part
1]
10 -

1071 4
1073 A
1077 4
1077 4

1077

10° 10! 10°

FIGURE 17. Energy Spectrum (Ra = 2.5 x 10°)

The shear and Reynolds spectrum become rougher than the preceding Rayleigh
numbers, but still maintain the same contour. We also see a change in concavity
towards the higher wavenumbers, as well as much less decay. This supports our
claim that the simulation, in the case of the spectra, did not converge quickly
enough.

Shear Spectrum Reynolds Spectrum

FIGURE 18. Shear and Reynolds Spectra (Ra = 2.5 x 10°)

5.4.3. Total Energies. The results for the total energy of the 3D system are analo-
gous to the other examined wavenumbers.
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Total Energy

350000

300000

250000 A

200000 A

150000 ~

100000 ~

50000 +

FIGURE 19. Total Energy of 3D System (Ra = 2.5 x 10°)

Similarly for the shear and Reynolds forces.
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lelo Total Shear Energy 1e12 Total Reynolds Energy

2.5

2.0

054 < TS -
"’ 14

0.0 o4

FIGURE 20. Shear and Reynolds Total Energy (Ra = 2.5 x 10°)

5.4.4. Computed v. FExpected Values. All constants grew, as expected. Looking
now at the pseudo-flux, we see our same expected result, namely nearly constant
for k < k,. We also see that it is nearly equal to 7, as well.

Pseudo-Flux
lDD 4
107t 4 \

1077 4

1073 4

107 5§
1075 -
106 4 — Pseudo-Flux
k=1
10-74 — 1-K%K3
T T T
10° 10! 10°

FIGURE 21. Theorem 3.2 Bounds (Ra = 2.5 x 10°)

Additionally, Theorem 3.6 still holds:

/3
— = 336 < ky = 14.143 < G*'/? = 1537.624.
Ral/?
Here, we can take our constant for the lower bound to be about 45. Unlike the
bounds in Figure 3, we see that the effect of this constant must increase as the
Rayleigh number increases. This can be explained by Gi/ 3 / Ral/? remaining nearly
constant, regardless of Rayleigh number71
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Logic with "Most" and Cardinality Comparisons
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Abstract

This paper expands upon previous work to create a logic using statements with "most",
i.e. Most x are y as well as comparisons of the sizes of sets, i.e. There are more x than y and
There are at least as many x as y. We then state the rules of the logic and prove its soundness.
Next, we show the logic’s completeness by giving an algorithm to construct a model for any
finite set of consistent sentences in the logic. We follow this with an example, and conclude
by discussing possible future work. *

1 Introduction

This paper discusses a logic comprised of statements about set cardinality (There are more z than
y, written 3> (2,y) and There are at least as many x as y, written 3% (z,y)) as well as statements
of the form Most x are y, written M (x,y). This logic also allows negations of these statements.
Such a logic is interesting because we would like to know if any sound conclusions about the sizes
of sets or their relations to other sets can be drawn from sets of sentences in this logic. We will
provide a set of rules for sound inferences in this logic, and show that this set is complete.

A model M is a pair (U, []), where U is a finite set and [] is the interpretation function. The
set of all variables used in I" is the set of atoms P, and [] assigns to each x € P a subset [z] of U.
We interpret sentences in M as

ME M(z,y) ]

a]
ME 3 (a,y) i |[a]
ME F(a,y) i |[a]

1> 2|[al
il
ol

Where p and ¢ are natural numbers with 0 < p < ¢q. Note that rather than treating the "most"
graph as a special case of a proportionality g-digraph where p = 1 and ¢ = 2 (i.e. interpreting

Nly
|
|

| >
| >

"most" to mean "more than half"), we will discuss the general case, where p and ¢ are any natural
numbers such that 0 < p < gq.

Here, we give an algorithm for constructing a model for any consistent set of sentences I', and
prove that the resulting model satisfies I'.

This paper builds heavily off of a paper by Tri Lai, Jorg Endrullis, and Lawrence Moss that
characterizes majority digraphs as graphs with no one-way cycles and proves the completeness of
a logic using only statements of the form Most x are y by building a model from such a digraph.
Here, we tweak this model to encompass a logic with a wider range of statements. We also use
several key facts previously proved in that work.

We begin by laying out the rules of inference of this logic system and giving examples of proofs.
We also prove the system’s soundness. Then, we prove completeness by constructing a model of
any consistent set of sentences I'.

1.1 Rules

This logic uses the following set of rules:

IThis work is supported by NSF REU Grant #1461061.
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3= (z, 2) 3= (x,
37 (x, 3= (y, 32 (a, 3~ (y,
() :2) (MORE-LEFT) (z,9) :2) (MORE-RIGHT)
3> (z, 2) 3> (x, 2)
-32(x, -3”(z,
ey (NEGATE-AT LEAST) =YY (%,3) (NEGATE-MORE)
3 (y, ) 3= (y, x)
M(z,y M(
——— (MOST-LEF MOST-RIGH
M(z, ) ( * ™) M (y, ( B 7)
M(z,y) 3 (z,y) F(z,y) F(y,2)
(MOST-AT LEAST) X-MORE
My, 7) s (xevonr)
-M (z, 32 (y,
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32 (x, x) My, )
~M(z,y) My, ) M(z,y) —M(z,y)
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-M(x,x -M (z, 32 (x,
# (NEGATE-MOST-CARD) (z,2) (z.9) (NEGATE-MOST-AT LEAST)
32 (y,x) ~M(y,y)
- M (x, M(y,
(xﬂfz )(y y) (NEGATE-MOST-MORE)
Y,z
As well as the infinite scheme:
M(z1,29) —M(w2,21) M(z2,23) —M(z3,22) M(zn—1,2n) ~M(@p,xn-1) M(zy, 21)
M(x1,xy)

Many of the rules come from previous work on logic systems with 32 and 3> [LEM16] [EM15].
The infinite scheme comes from previous work on M this rule represents the fact that there can
be no one-way cycles in majority digraphs. The (MOST-AT LEAST) and (MOST-MORE) rules is the
most significant addition in this logic, as they combine the two kinds of statements ("most" and
cardinality judgments) in the system. Additionally, the rules (NEGATE-MOST-LEFT), (NEGATE-
MOST-RIGHT), (NEGATE-MOST-CARD), (NEGATE-MOST-AT LEAST), and (NEGATE-MOST-MORE)
come from a few subtle points involving sentences with "most" when negation is introduced. If
we have =M (z, x), this must mean |[z] N [z]| < £|[2]], meaning |[2]] < 2[[z]|. Because we have
0 < p < g, this can only be true when |[z]| = 0, meaning [z] = 0. Note that any time we have
M (x,y) where x # y, both [z] and [y] are nonempty as a consequence of the semantics of "most".

To return to our discussion of consistency, a consistent set of sentences I' can now be defined
as one from which no proofs using (X-MORE) or (X-MOST) can be derived. Therefore, we want to
show that every set of sentences I' about which it is not true that I' - ¢ for all sentences ¢ has a
model.
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1.2 Example Proofs

The following is an example of a proof in the system. Consider



32 (z,y),
-F(z,y) }
We’ll now show a proof of M (z,z) using proof trees, all of whose leaves must be sentences in
I
—32(z,
S RERCE)) (NEGATE-AT LEAST)
3*(1}7?;) 3>(y72)
(MORE-RIGHT)
3> (z, 2)
————~ (MORE-AT LEAST)
M(z,2) Floz (MOST-AT LEAST)
T-AT LEAST
M(z,x)

Following is a second example of a proof in this system. This example of a proof in this system
uses (X-MOST). This is an example of an inconsistent set of sentences; we’ll discuss consistent and
inconsistent sets of sentences further later on in the construction. We’ll have I' defined as follows:

r={ -M(zz),
M(z,y),
32 (2, z) }

We’ll now show a proof of 3~ (x,y)

(NEGATE-MOST-AT LEAST)
(NEGATE-MOST-LEFT)
(X-MOST)

1.3 Soundness

We’ll now prove soundness of the rules of this logical system. Proving the soundness of the system
comes down to proving the soundness of each rule. We’ll begin with the definition of soundness:

Definition 1.1. A proof system is sound if for all ¢ such that I' - ¢, we have I = ¢. That is, if
we can prove ¢ from I' using the rules of the proof system, there is no possible model such that all
sentences in I' are true and ¢ is false.

Many of the above rules have been previously proven to be sound [LEM16] [EM15]. So we
only need to prove the soundness of our new additions to the system: those rules that combine
statements involving "most" with statements about set cardinality.

Lemma 1.2. The rule (MOST-AT LEAST) is sound.

Proof. Fix a model M, and assume that M = M(x,y) and M |= 32 (z,y). We want to show that
M = M(y,z), meaning that our (MORE-AT LEAST) rule is sound. From M = 32 (x,y), we know
that [[z]| > |[y]]. Multiplying each side of this inequality by £, we get 2[[2]| > £|[y]|. Similarly,
from M = M(z,y), we know that [[z] N [y]| > E|[z]|. Therefore, because |[z] N [y]| > |[«]| and
B[]l = EI[y]l, we have [[z] N [y]| > £[[y]|, which means that M |= M (2, y). O

Lemma 1.3. The rule (MOST-MORE) is sound.

Proof. This proof will be similar to that of Lemma 1.3. Fix a model M, adn assume that T =
~M(z,y) and I' = M(y,x). This means we have E|[z]| > [[z] N [y][ and [[z] N [y]] > Z[[y].
Therefore, we have L|[z]| > 2|[y]|. When we multiply both sides of the inequality by 1, we get
[[z]] > [ly]|, meaning that M = 3~ (z,y).

O

Lemma 1.4. The rule (NEGATE-MOST-CARD) i7s5sound.

Proof. Fix amodel M, and assume we have M |= =M (, z). This means we have £|[z]| > [[z]N[=]|,
so E|[z]| = |[z]|. Asp < g, this is only possible when [[z]| = 0. For any atom y we have |[y[| > 0.
Therefore, we have |[y]| > |[z]], so M | 32 (y, z). O



Lemma 1.5. The rule (NEGATE-MOST-AT LEAST) is sound.

Proof. Fix a model M, and assume we have M |= ~M (z,x) and M |= 32 (x,y). Because we have
M |= =M (z, ), this means E|[z]| > |[z]N[z]], so £|[z]| = |[z]|. Asin Lemma 1.4, this means that
[[z]] = 0. Because we have M = 3= (z,y), we know that |[z]| > |[y]|, meaning 0 > |[y]|. Therefore,
we must have [[y]| = 0. This means that 2[[y]| = [[y]|. We also know that [y] = [y] N [y], so
using substitution we get Z|[y]| = [[y] N [y]|. This means that Z|[y]| > |[y] N [y]|, so we have
M ': ﬁ‘]\4(:% y) O

Lemma 1.6. The rule (NEGATE-MOST-MORE) is sound.

Proof. Fix a model M, and assume we have M = =M (z,x) and M = M (y,y). Because we have
M = =M (z,z), this means 2|[z]| > |[z] N [2]], so E[[2]| = [[2]|. As in Lemma 1.4, this means
that |[2]] = 0. Because we have M |= M (y,y), this means Z([y]| < |[y] N [y]], so 2[[y]| < [[y]l.
meaning that we must have |[y]| > 0. Therefore, |[y]| > |[z]|, so M | 3~ (y,x) O

Theorem 1.7. The proof system of this logic is sound.

Proof. We already know that all rules involving only "most" statements or only set cardinal-
ity statements are sound. The rules (MOST-AT LEAST), (MOST-MORE), (NEGATE-MOST-CARD),
(NEGATE-MOST-AT LEAST), and (NEGATE-MOST-MORE) are sound by Lemmas 1.2 through 1.6.
Because all of the individual rules of the system are sound, proving the system itself is sound is a
matter of induction on the height of a proof tree, which we omit here. Therefore, the proof system
is sound. O

2 Completeness

To prove that the system is complete, we’ll want to work with a consistent set of sentences. It will
be useful to have the definitions of both a consistent set of sentences and completeness.

Definition 2.1. A consistent set of sentences is a set of sentences in the logic from which no
contradictions can be proven.

As an example, the set of sentences {~M (x, ), 3> (y, z)} is consistent. The set {=3>(x, %), 732 (y, z)}
is not. The empty set {} is also consistent.

Definition 2.2. A logical system is complete if, for all ¢ such that some set of sentences I' models
¢, ¢ is provable using a proof tree whose leaves are all either axioms or sentences in I' and whose
non-leaf nodes all match some rule in the proof system.

With a logic system using negation, like this one, proving completeness is equivalent to proving
that any consistent set sentences I' has a model. Now, given such a I', we construct a model using
the rules of the system to show that the system is complete.

This construction borrows heavily from the construction used in [LEM16], and we present
many key facts from that paper without proof here. The construction in [LEM16] builds a model
from a proportionality %—digraph. Here, we will construct several graphs, one to represent the
"most" relation as well as multiple others to represent cardinality comparisons. The points of
these graphs are the set of variables used in I'" and the edges represent the relations between them
that are provable from I". We will then construct a model using these graphs, following much of
the construction from [LEMI16].

2.1 Preliminary Facts

Here we state several definitions and facts used in [LEM16] and discuss how they are used. Because
they were all previously proved, we omit the proofs.

Definition 2.3. For a set I' of sentences, the proportionality %—digmph corresponding to I' is the
digraph whose vertices are the atoms of I" such ffat u — v if and only if I' - M (u, v).

Proposition 2.4. For a consistent set of sentences I', the proportionality g—digraph corresponding
to I' has no one-way cycles.



Because we are only concerned with creating models of consistent sets, we know that the
majority digraph we use in our construction has this property. This corresponds to the infinite
scheme.

Additionally, we need the concept of a private intersection:

Definition 2.5. For a set {41, As, ..., A, } of sets, the private intersection of two sets A; and A;,
written A; M A; is the set (4; N A;) \ Ukﬂﬂk# Ay

As an example, if we have 4; = {1,4,5,6}, As = {2,3,4,5,7,8}, and A3 = {1,4,6,7,8},
A1 n A3 = {1,4,6}, but A1 M A3 = {1,6}

The construction depends upon the ability to construct sets with certain properties, as detailed
in the following lemma:

Lemma 2.6. For all n, there are sets By, Ba,..., B, such that |B;| = 2”71, and for i # ¢ we have
|Bi N Bj| = p*q"* = §|Bi| and |B; 1 Bj| = p*(¢ —p)" >

We also need to use the following property of natural numbers from [LEM16]:

ptar _pao o ps )
qgtar+s g (g —p)
Finally, we will need to use the following definition when discussing the digraphs we will use in

order to construct a model of I':

Definition 2.7. A topological sort of a digraph G is an ordering of the graph’s vertices such that
for all u,v € G, if u — v, then u comes before v in the ordering. Note that not every digraph has
a topological sort; only those with no directed cycles do.

2.2 Graphs Representing Provability from a Consistent Set of Sentences

For our construction, we need to create five digraphs based on the sentences in I". Each of these
graphs will have the set of variables in I" as points.
We begin by constructing four graphs based on provability from I'. These graphs are

—_

. G, where x — y is an edge in Gy if and only if ' = M (x,y).

2. G-, where £ — y is an edge in G- if and only if I' - =M (x, y).

3. G-, where x — y is an edge in G+ if and only if T' F 3~ (y, z).

4. G, where  — y is an edge in G> if and only if T' - 32 (y, z).

We can now prove several properties of these graphs using the rules of the proof system.
Lemma 2.8. G- has a topological sort.

Proof. To show that G~ has a topological sort, we need to show that it has no directed cycles. We’ll
do this by contradiction. Suppose that G~ has some cycle £y — 9 — ... — x, —> x1. By our
construction of these graphs, this means that I' - 3% (22, 21), T' F 37 (23, 22), ..., [ F 37 (T, Tp—1),
'+ 3> (x1,2,). Then, we can have the following proof tree:

I (xp, Tpe
M (MORE-AT LEAST) __
3—(1'71,1'",1 (xnflaxn72)

(MORE-RIGHT)

(MORE-RIGHT)

I3 (2, x2)
— . (MORE-AT LEAST)
32 (zp, 2 37 (z2, 1)
= (MORE-RIGHT)

37 (2, 1)

— . (MORE-AT LEAST)

32 (zp, 21 37 (21, 20)

77 ¢

However, this is a derivation from I' using X-MORE, which contradicts the fact that I' is a
consistent set of sentences. Therefore, G~ has no directed cycles, and thus has a topological
sort. O

(X-MORI



Lemma 2.9. The relation <— in G> is an equivalence relation, with the equivalence class of a
vertex x being [z] = {y: 2z — y and y — z}.

Proof. We do have 32 (x, z) for all x because |[z]| = |[z]], so |[=]] > |[=]|-

If we have x <— y as an edge in G'>, we trivially also have y <— = as an edge.

Finally, suppose we have z <— y and y <— z. This means we have T' - 32(z,y) and
I' - 32(y, 2), so we have the proof tree

F(z,y) F(y,2)
32 (x, 2)

(CARD-TRANS)

so T'F 32(z, 2). Similarly, we have T' - 32(z,y) and T - 32(y, ), so we have the proof tree
F(y,x) F(z2)
3= (2,y)

so I' = 32(z,2). This means we have z +— 2z as an edge in G>. Thus, +— in G» is an
equivalence relation. O

(CARD-TRANS)

Now that we know <— in G'> is an equivalence relation, we’ll look at the quotient graph of
G> by +—.

Definition 2.10. A quotient graph G of a graph Gy is a graph whose vertices are the equivalence
classes of Gy under some equivalence relation =. In order to define the edge relation on the set
of equivalence classes, we must have the following condition: if v — w and v = v’ and w = w’,
then v/ — w’. If this condition holds for all vertices of Gy, we can then construct G and define
its edges: for every edge v — w of Gy such that [v] # [w], G has an edge [v] — [w].

In order to use the quotient graph of G> under +—, we must first show that G> has a quotient
graph.

Proposition 2.11. G> has a quotient graph.

Proof. To show that G'> has a quotient graph under the equivalence relation <—, we must show
that it has the property mentioned in the definition of a quotient graph: that for all edges v — w
of G>, and for all v' and w’ where v = v/ and w = w’, there is an edge v — w’ of G>. Let
v,w,v’, and w’ be vertices of G, and let v — w, v = v', and w = w'. Since we are interested in
the equivalence relation «—, this means we have v «— v’ and w +— w’ in G>. This means we
have I' F 32 (v,w), T F 32(v,v'), T F 32(v',v), T - 32 (w,w’), and T F 32 (w’,w). This gives us
the proof tree

32 (v,w) I (w,w
FZ (v, v) 32 (v,w’)

32 (v, w')

(CARD-TRANS)

(CARD-TRANS)

Therefore, we have I' F 32 (v/, w’), meaning there is an edge v" — w’ of G>. Therefore, G>
has a quotient graph. O

We'll refer to the quotient graph of G» as G.
Lemma 2.12. There is a topological sort of G.

Proof. We’ll show that there is a topological sort of G by showing that G is acyclic. We’ll prove
this by contradiction, starting by assuming that G has a cycle (other than a self-loop, which would
be a trivial cycle). Consider a nontrivial cycle [z1] — [z2] — ... — [z,] — [z1], where
[1], ..., [xn] are all different equivalence classes. We know that G has the property of transitivity
by (CARD-TRANS). Thus, there must also be edges [z1] — [z3], [z1] — [24], -, [21] — [24]
However, we then have [z1] — [z,] and [z,] — [z1], meaning that [z1] and [z,,] are actually the
same equivalence class. This creates a contrad%éion. Therefore, G has no cycles and thus has a
topological sort. O



The next two theorems are the most important results of this section. With them, we are
able to find an ordering of the atoms of I' such that the necessary conditions for the construction
in [LEM16], as well as other useful conditions, hold. When discussing "expanding" equivalence
classes, we mean replacing the equivalence class [x] with an enumeration of all elements in [z], in
any order.

Theorem 2.13. A topological sort of G, with the equivalence classes expanded, is also a topological
sort of G.

Proof. We know that G~ and G both have topological sorts by Lemmas 2.7 and 2.11, respectively.
Now, consider a topological sort [z1], [x2], ..., [xn] of G. To show that it is a topological sort of G,
let z — y be an edge of G5, meaning I' - 3% (y,2). We will show that & comes before y in this
ordering.

We cannot have T' - 32(,y); if we did, we would be able to have a derivation from T using
(X-MORE), which contradicts the consistency of I'. Thus, we cannot have x «— y as an edge
in G>, meaning z and y cannot be in the same equivalence class. Now, by the rule (MORE-AT
LEAST) we know that because we have T' = 3> (y, x), we must have T' = 32(y, x). Therefore, in
the topological sort of G, we know x must come before y. Therefore, this is a topological sort of
G-. O

Theorem 2.14. A topological sort of GG, with the equivalence classes expanded, has the property
that if + — y is an edge of G and y — x is an edge of G-, © comes before y.

Proof. First, by the infinite scheme involving "most", we know that we can have such an ordering
of vertices because G); contains no one-way cycles. Now, suppose we have such an x and y,
where © — y is an edge of G and y — x is an edge of G_ps. This means I' = M (z,y) and
' =M (y,z). Now, we know that # and y cannot be in the same equivalence class of G. We’ll
show this by contradiction; suppose they are. Then, we have I' - 32 (z,y) and T' - 32 (y, z). This
gives us the proof tree

M(z,y) 3=(z,y)
M(y,z)

(MOST-AT LEAST)

¢

This contradicts the consistency of I'. Therefore, x and y cannot be in the same equivalence
class of G.

We'll now show that the equivalence class of  must come before that of y, meaning x comes
before y in the ordering. We have the following proof tree:

_'M(y7 x)

(X-MOST)

M(z,y) —~M(y, )
F(y,x)
Therefore, x comes before y in any topological sort of G~. Because we know that a topological
sort of G is a topological sort of G~ from Theorem 2.12, this completes the proof.

(MOST-MORE)

O
We also want one more fact about a topological sort of G for our construction.

Proposition 2.15. Let there be at least one atom x in a consistent set of sentences I' such
that I' = = M(z,z). Let [zo],[z1],..., [xx] be a topological sort of the equivalence classes of G
corresponding to this I'. Then, we have I' F =M (y, y) if and only if y € [xo].

Proof. We'll start in the forward direction by assuming I' F =M (y, y) and showing that y € [zo].
It will be useful to first show that all atoms y such that I' - =M (y, y) are in the same equivalence
class, and then to show that y € [z].

First, we want to show that two arbitrary atoms y; and y, such that ' = =M (y;,y1) and
'+ = M(y2,y2) are in the same equivalence class. By applying the rule (NEGATE-MOST-CARD)
to =M (y1,91), we get 32 (y2,v1). Similarly, by applying the same rule to =M (y2,y2), we get
32 (y1,y2). We then have T' F 3Z(yi,y2) and I + 32 (y2,41), 50 y1 and y, are in the same
equivalence class.

Now we can show that y € [r]. By the rule (NEGATE-MOST-CARD), we have I' - 32(z,y) for
all atoms z. However, now consider a z such that I' - M(z, ). By the rule (NEGATE-MOST-MORE),



this gives us 3”(z,y). Because this is a consistent set, this means we cannot have 3% (y, z) (as
such a sentence would allow us to use (X-MORE)), so z will be in a different equivalence class
from y. This equivalence class will come after that of y, as we will have 3% (z, y) but not 32 (y, 2).
Additionally, we showed above that all y such that I' H =M (y,y) are in the same equivalence
class, so that means that this equivalence class must come before any other equivalence classes,
meaning that this equivalence class is [zg]. Therefore, if I' - =M (y,y), then y € [xo], completing
this direction of the proof.

We’ll now prove the other direction. Suppose we have an atom y € [xg]. We want to show that
' -M(y,y). We already know we must have at least one atom z such that I' - =M (x, ), and we
know that this atom must be in [zo] by the first part of this proof. Because  and y are in the same
equivalence class, we know that T' - 32(z,y) and T' - 32 (z,y). Then, applying the rule (NEGATE-
MOST-AT LEAST) to M (z, ) and 32 (z,y), we get =M (y,y). Therefore, T' - M (y,y). O

2.3 Construction

Theorem 2.16. The above set of rules for a logic system with M, 3>, and 32 with negation is
complete.

Proof. Our construction closely follows that of [LEM16]. We also use the equivalence classes of G
to construct our model. We begin our construction with a topological sort of G with the equivalence
classes expanded. The first thing we must do is handle any sentences of the form —M (x, x) provable
from I' (or, referring to our graphs, any vertices with edges to themselves G_p;). We have two
cases: G-y either has no vertex with an edge to itself, or it has at least one such vertex. In the
case that G-y has no such vertices, we will continue with the construction using the original the
topological sort of G with the equivalence classes expanded.

In the case that G-y has b such vertices, with b > 0, we will use the result from Proposition 2.15.
From this result, we know that all atoms x such that I' = =M (z, z) are in the first equivalence class
of G, which we will call [z,,]. We also know that these are the only such atoms in that equivalence
class. Therefore, for every x € [z4,], we set [z] = 0 in our model. Now, we have constructed the
part of the model concerning all such x, and we will continue the rest of the construction using
the topological sort of the equivalence classes of G with [z,,] removed as our topological sort.

For convenience, we will let n denote the number of distinct atoms in the ordering and relabel
the atoms in this ordering =1, zs,...,z,. We also need to choose natural numbers a and m large
enough such that (¢ — p)a > ¢ and mp?(q — p)"~2 > apn.

We first construct these sets By, ..., B, as described in Lemma 2.5, then take m copies of all
points in all sets to get sets [z1], [x2], ..., [*n]. Now we have |[z;]| = mpg"~!. For i # j, we
also have |[z;] N [x;]| = mp?q"~2 and |[z;] 1 [x,]]| > apn. Next, we simultaneously add the same
apn points to all [z;]. Note that this does not change the private intersections of any sets, but
it increases the size of each set and increases the size of the intersection of all sets. We now have
[z N [2;]] = mp?q" 2 + apn for i # j and |[2;]] = mpg"~" + apn.

2.3.1 Modeling Cardinality Relationships

Now, let [z, ], ..., [Za,] be the equivalence classes of G, listed as in the ordering we are using for
this construction. Let S; for 1 < ¢ < k be the set of all [z;]s where z; € [z,,]. We now add gi
fresh points to every set in S;, for 1 <4 < k. This does not change the size of any intersections of
sets, but it increases the size of a set in the ith equivalence class to mpg”~! + apn + ¢i. This also
means that two sets in the same equivalence class have the same number of points.

At this point, we are done adding new points to any of the sets. All of the sets’ sizes are fixed,
and now all statements of the form 3% (z,y), =3%(z,y), 37 (z,y), and —=3>(z,y) that are in I’
are modeled by our construction. By the rule (NEGATE-MORE), a sentence of the form =32 (z,v)
can be expressed as 3~ (y,x), and by (NEGATE-AT LEAST) a sentence of the form -3~ (z,y) can
be expressed as 32 (y,z). Therefore, it is sufficient for us to show that this model now satisfies
sentences of the form 3% (x, %) or 3> (z,y).

We'll first look at sentences of the form 3~ (z,y). Suppose 3~ (z,y) € T'. Here, we know that =
and y are in different equivalence classes, and t§gt © comes after y in the ordering we are using.
Therefore, [y] is in S; and [z] is in Sy, where 1 < j < h < k. This means that the size of the set
representing ¥ is mpq™~! 4+ apn + ¢j and the size of the set representing ¥ is mpg™~! + apn + gh.
Because j < h, the set representing z is larger than the set representing j, so we have I' = 37 (z, y).



We'll now look at sentences of the form 32 (z, ). If we do not also have T' - 32 (y, x), then z
and y are not in the same equivalence class, and we have a case similar to the one above: [y] is in
S; and [z] is in Sy, where j < h, so I' = 37 (z,y). If we do have I' - 32 (y, z), [2] = [y] and both
are in S;; therefore, they both have size mpg"~' + apn + qj, so I' | 32 (z,y) and T = 32 (y, z).
Therefore, we have constructed a model where all statements about set cardinality provable from
I hold.

2.4 Modeling "Most" Relationships

Next, we need to adjust the private intersections of the sets so that all sentences of the form
M (z,y) and =M (z,y) that are in I are modeled. Note that, as our construction currently stands,
for any two sets [z;] and [z;], where i < j, we model M (z;, ;) and M (x;,z;). Therefore, we only
need to adjust the sets when this is not the case. Note that, by Theorem 2.13, we will never have
- M(z;,z;) € I'and M(x;,z;) € T when ¢ < j. At this point we are only concerned with modeling
sentences in I'; because our system is sound, a model of these sentences will also be a model of all
sentences provable from I'.

There are 3 possible cases: the case in which we have M (z;,z;) € T', that in which we have
M (z;,xz;) € I and ~M(z;,x;) € T, and that in which we have ~M (z;,2;) € ' and =M (z;,z;) € T

We start with the case where M(z;,z;) € I'. As previously mentioned, we already model this
case because our model currently has M(z;,z;) and M(z;,z;). Additionally, we know that we
cannot have =M (z;,z;) when we have M (x;,x;). Therefore, we have no further changes to make
to the private intersection of [z;] and [x;] in this case. We prove that this indeed models M (z;, x;)
and M (z;,z;) using equation (1), and substituting pn for r and gn for s:

i N []l _ _mp*q"™2 fapn _  mp?q" 2 tapn _ p @)
[zl mpgn=t +apn+qi T mpgn~t +apn+qn " g

This shows that more than half of the elements of [z;] are in the intersection [z;] N [z;]. A
similar equation shows the same for [z;]. Thus, we model M (z;,z;) and M (x;, ;).

We'll next make changes to the model in the case where =M (z;, ;) and ~M (x;, ;). In this
case, the private intersection of [z;] and [z;] has size mp?(q — p)"~2, which we will call z. We
remove all z points from the private intersection and return them as separate copies to [x;] and
[x;], decreasing the size of [z;] N [z;] by z. We know that apn — z < 0, so we have

[Ta:] O[]  mp?q" 2 + apn — 2 - mp*q"~? _p

[z mpg"~ +apn+qi T mpg"t ¢ ®)

We have a similar equation to show that not more than % of the elements of [z;] are in the
intersection [z;] N [z;] now as well. Therefore, we now model =M (z;,z;) and =M (z;,z;). Not
also that these changes do not affect intersections involving any of the other sets, so it does not
change any "most" relationships between sets other than the two involved.

In the third and final case, we have M(z;,z;) and =M (z;,z;). Note that z; and z; must
be in different equivalence classes in this case; by the rule (MOST-MORE), we can prove that
3> (xj,7;). This means we cannot have 3= (z;, ;) (as we could then form a derivation using X-
MORE). Therefore, we cannot have x; <— x; as an edge in G>, meaning z; and z; are not in
the same equivalence class. This means that |[z;]| > |[z;]|. We need to remove enough points
from the private intersection of these two sets such that the remaining number of points in the
intersection of the two sets is less than or equal to half of the size of [z;], but still more than half
the size of [x;]. We can do this by choosing the natural number ¢ such that

qg—-p

apn] —ph —1 (4)

where [z;] is in the hth equivalence class. This means we have

c=T

gapn+ph<apnfc§§apn+ph+l (5)

and ¢ < apn. By removing c points from the private intersection of [z;] and [z;] and return
them separately to the two sets. This means [[l‘%]}ﬂ [z;] has size mp?q" 2 4 apn — ¢, and we end
up with 2{[z;]| < |[[z:] N [z;]| < Z|[z;]|, meaning our we have modeled M (z;, ;) and =M (z;, z;).
This means we have modeled all sentences involving "most", in addition to sentences about set
cardinality. Therefore, our construction is complete. O



3 Example

To better illustrate the implementation of this algorithm for constructing a model for any consistent
set of sentences T, it helps to have an example. We will take

_\M(I, iL‘)
M(y, x)
3 (y, w)
-3~ (w7 y)
-M(z,y)
M(z,w)

as our example I'. Note also that we will take p = 1 and ¢ = 2 in this example construction.
We'll first construct the relevant graphs showing provability from I:

x Yy Cr——> YT

Crze——s>w D Cre—w D

G]\/[ GZ
G-m G- G

From these graphs we can obtain the topological sort of G with the equivalence classes expanded
x,y,w, z. We first handle the construction of sets corresponding to atoms with edges to themselves
in G-p. Here, that is only z, so we set [x] = ). We now continue with the construction using
Yy, w, z as our topological sort.

We take a = 3 and m = 10. First, we begin with sets By, Bo, and Bs in Figure 1, then take
m = 10 copies of each point to get [y], [w], and [z], as seen in Figure 2. We then add apn = 9
points simultaneously to all of the sets, shown in Figure 3.

Now, we are ready to adjust the nonempty sets to account for all statements about cardinality
provable from I'. The equivalence classes of G in order (excluding the class of empty sets) are
[%a,] = {[y], [w]}, and then [z,,] = {[2]}. Therefore, for 1 <i < 2, we add ¢i = 2i points to each
element of the set the set [x,,]. This means we add 2 points to [y] and [w], and 4 points to [#].
This step is shown in Figure 4.

Finally, we adjust according to "most" statements. Note that our construction has already
accounted for pairs of atoms x1, o where I' - M (21, 22) and I' - M (a2, 2z1). First, we adjust for
pairs of atoms z; and x2 where I' - =M (21, 22) and I' F =M (22, 21). However, here, there are no
such pairs among the nonempty sets. So next we adjust for pairs of atoms where I' b M (z1, z2)
and I' v =M (zq,x1). Here, the only such pair of atoms is z and y. To calculate how many
points we must remove from their private intersection and return to each as separate copies, we
use ¢ = [?apn] — ph — 1, where y is in the hth equivalence class of G. We get c=5—-1—1=3.
Therefore, we remove 3 points from the private intersection and return them as separate copies
to the [z] and [y]. This is shown in Figure 5. Now, we have completed our construction. Figure
5 shows the semantics of each of the atoms and it can be verified that this model satisfies each
sentence in I'. 82
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4 Conclusion

This paper builds off of previous work and focuses on proving the completeness of a logic system
that expresses "most" as well as comparisons of set cardinality. Because this logic has negation,
we prove its completeness by showing that any consistent set I' of sentences in the logic has a
model. To construct this model, we first prove that a topological sort of a one-way graph of the
> relationships specified by I' orders the varialbilés in T by cardinality of their corresponding sets
and also gives a useful ordering with respect to "most". We then show that this ordering, along
with some changes to the set construction algorithm provided in the previous paper on this topic
by Tri Lai, Jorg Endrullis, and Lawrence Moss, [LEM16], allows us to construct a model of T

11
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Abstract

The study of fractals oftentimes involves a study of their dimen-
sion, and two such interesting dimensions are the Hausdorff dimension
and the Ahlfors Regular Conformal Dimension. These two quantities
are very important to the study of fractals but the Ahlfors Regu-
lar Conformal Dimension is difficult to calculate for most non-trivial
fractals. In particular, there is no concrete value for the standard Sier-
pinski Carpet. Since finding actual values is so difficult, we studied
these dimensions by looking at bounds on them. The Box-counting di-
mension presents an easily calculable upper bound, but better bounds
are needed. By using a special type of energy, and by looking at
maps between specific marked graphs, we determined upper bounds
on the Ahlfors Regular Conformal Dimension that are better than the
Box-counting dimension.

1 Introduction

The main object of study in this paper is the geometric idea of a fractal.
Fractals appear in many different fields of study, from economics to physics,
and they have many interesting properties, but in this paper we are inter-
ested in studying the idea of dimension. In particular, we are interested in

&



the Ahlfors-regular Conformal Dimension of certain fractal carpets. This is
a variant of the Hausdorff dimension—in fact the Hausdorff dimension pro-
vides an upper bound-and we know some basic information regarding the
Conformal Dimension for a few well-known fractals; the Julia Rabbit has a

Conformal Dimension of 1, and the Sierpinski Carpet has a Conformal Di-
9+v41

mension between 1 + {25} & 1.630929.... and % ~ 1.858183... where
the upper bound is due to [2].

We studied these fractals by considering a sequence of graphs that con-
verged to the fractals in question. The idea of using graphs to converge to
fractals is actually quite natural; many fractals are defined iteratively, so at
each iterative step we consider a graph that approximates the iteration. This
allows us to construct a sequence of graphs that will converge to the fractal
we want to study. We studied two specific examples (see Sections 4 and 5
for details) and determined new upper bounds on the dimension.

We begin with a brief discussion of Ahlfors-regular Conformal Dimension
and then discuss elastic graphs, relating them to the p-harmonic energy of
maps between elastic graphs, resulting in a definition of harmonic maps and
energy. From there we will discuss how looking at ratios of energies of certain
homotopy classes of maps between graphs provides bounds on the Ahlfors-
regular Conformal Dimension. We will then discuss a case study of two
fractals defined by elastic graphs and the methodology we used to determine
relevant upper bounds on the Conformal Dimension. We conclude with a
brief outline of the procedure and code used to arrive at our approximations.
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1.1 Ahlfors Regular Conformal Dimension

We begin our discussion with a brief overview of Hausdorff and Ahlfors-
regular Conformal Dimension.
The Hausdorff dimension of a set F* C R"™, which we define below, is tied
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very closely to the Euclidean structure of R”. That is, it is defined with the
Euclidean metric in mind. The Ahlfors-regular Conformal Dimension, on the
other hand, does not rely solely on the Euclidean metric but rather on a class
of metrics that are Ahlfors-regular. These metrics, for reasons that we will
not go into here, allow for a more subtle study of fractals and their geometric
properties.

Definition 1.1 (s-dimension Hausdorff Measure). The s-dimensional Haus-
dorff measure of a set F, denoted H?*(F'), is

lim inf {;Wnl || < 5} (1)

where {F},} is a cover of F, |F,| is the diameter of the set F,, with respect to
the Euclidean metric.

This measure generalizes the concept of length to dimensions other than
1 and so provides a useful way of studying sets. For example, H!(B) = oo
where B is the open unit disc. Alternatively, #?([0,1]) = 0. This can be
interpreted as the disc having infinite length and the unit interval have zero
area. Furthermore, H' ([0, 1]) = 1 which shows that the measure can be finite
and non-zero. These examples illustrate how we might define a dimension
based on this measure.

Definition 1.2 (Hausdorff Dimension). The Hausdorff dimension of F* C R”
1s

Hdim(F') = sup{s : H*(F) = oo}. (2)

While this is a very important aspect of fractals, and it illustrates cer-
tain geometric and analytic properties, it does not tell the whole story. A
much more subtle invariant, and the quantity of prime concern to us, is
the Ahlfors-regular Conformal Dimension (denoted confdim) of a set. For-
mally, the Ahlfors-regular Conformal Dimension of F' is the infimum, over
all Ahlfors-regular metric spaces quasisymmetric to F, of the Hausdorft di-
mension computed with respect to these metrics.

Definition 1.3 (Ahlfors-regular Metric). A metric space (X, d) is Ahlfors-
regular if for some s € (0, 00) there exists a Borel measure p and a constant
C > 0 such that

S < u(Bler) < O (3)
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for all balls B(z,r) with 2 € X and r < | X|. If (X, d) is such a space we will
say that d is an Ahlfors-regular metric.

Definition 1.4 (Quasisymmetrically Equivalent Metric Space). Suppose two
metric spaces, X, Y, are connected and Ahlfors Regular. Then a homeomor-
phism h is quasisymmetric if there exists C' > 1 such that for all balls
B(z,r),r <|X]|, there exist s > 0 with

B (h(x), %) C W(B(z,r)) € B(h(z),Cs). (4)

We say that two metric spaces are quasisymmetric if there exists a qua-
sisymmetric homeomorphism between them.

Definition 1.5 (Ahlfors-regular Conformal Dimension). Let F' be a set in
R™ (or C") and let M denote the collection of Ahlfors-regular metric spaces
quasisymmetrically equivalent to F. Let

0—0 {Fn}

A3(F) = lim inf {Z |EL|° 2 |F| < 5} (5)

=1

where {F},} is a cover of F' and the diameter is taken with respect to d € M.
Then the Ahlfors-regular Conformal Dimension of F' is

confdim(F) = dienj\f/l sgp{s : A(F) =0} (6)

As an aside, if the metric d is Ahlfors-regular then Hdim(X, d) = s where
s is independent of which Ahlfors-regular metric we use. Furthermore, the
s—dimensional Hausdorff measure of (X, d) is a constant multiple of the Borel
measure 4 from Definition 1.3.

The technical details of this definition are not utilized in this paper, this
is provided for completeness and so that the reader may understand the
problem.

The Hausdorff dimension provides an upper bound on the Conformal
Dimension, as can be seen by the definition. It is also true that many fractals
in R", when using the Hausdorff measure, are Ahlfors Regular.

In order to compute this dimension, we will use new techniques to provide
new bounds on the dimension of two fractal carpets (Figure 1).

Many fractals are defined iteratively, so at each iterative step we con-
sider a graph that approximates the iteration. This allows us to construct
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Figure 1: Julia sets of our two examples, SHEESE

a sequence of graphs that will converge to the fractal we want to study (see
Section 1.2 for an example of this process). From here, we look at a homotopy
class of maps that minimize a certain energy (Section 1.3). Finally, there is
a theorem in Section 2.2 that relates ratios of these minimized energies to
the Ahlfors-regular Conformal Dimension.

1.2 Graphs

As stated, we want to study certain homotopy classes of maps from graphs
to other graphs that approximate our chosen fractals. In order to add some
intuitive understanding to how and why we do this, we introduce some ad-
ditional structure to the graphs that we are studying, which will in turn add
some physical interpretations to the maps between the graphs. This will
provide motivation for our later definitions of tension and energy.

We begin with some initial definitions for clarity.

Definition 1.6 (Marked Graph). A graph G is marked if there is some
collection of points, ay, ..., a, € G, that we identify as marked.

For completeness, two marked graphs are the same if there is a bijection
between them that preserves incidence, extends to a homeomorphism of the
plane, and maps marked points to marked points. Marked graphs provide
the initial structure that we need, but some additional properties are needed
for our study.

Definition 1.7 (Elastic Graph). An elastic graph is a marked graph G
along with weights «(e) corresponding to each edge e in G. The edge weights
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Figure 2: An elastic graph with marked endpoints

Figure 3: A length graph with marked endpoints

represent elasticities of the edges. These graphs are denoted (G,«) but
throughout this paper we often use just G because the distinction between
elastic graphs, weighted graphs, and later length graphs will be very clear.

We think of elastic graphs as systems of interconnected rubber bands,
with each edge being represented by a rubber band and the elasticity of that
band determined by the elasticity of the corresponding edge. See Figure 2
for an example.

Definition 1.8 (Length Graph). A length graph is a marked graph G
along with weights £(e) corresponding to each edge e in G. The edge weights
represent the length of the corresponding edge in G. We can denote these
graphs as (G, ¢) but when there is no ambiguity we will use merely G.

Similar to the elastic graph, we think of these length graphs as hollow
tubes where the weight of an edge is the length of the corresponding tube.
See Figure 3 for an example.

We are specifically interested in graphs that approximate fractals. If we
consider a fractal like the Sierpinski Carpet that can be constructed itera-
tively and use a graph to approximate the set at each iteration, then the
sequence of graphs that we define end up converging to an approximation of
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Figure 4: The tripod embedded on the Riemann sphere

Figure 5: Triangle with two barycentric subdivisions

the fractal itself. Indeed, if we look at any computer image of a fractal, this is
really just composed of a finite set of dots or pixels. Our graphs approximate
the fractal in a loosely similar way that these pixels approximate the fractal.

The specific graphs that we are looking at are indexed in a sequence so
that they converge to a fractal in a suitable sense. For example, consider the
tripod of uniform length as an embedding on the upper-half of the Riemann
sphere given by the bounding triangle of the tripod. To complete the sphere,
consider another triangle-tripod adjoined to this one as in Figure 4 with
edges of like color identified with each other. Consider the graphs that occur
if we continually take barycentric subdivisions of an equilateral triangle as
in Figure 5 and then look at the duals at each step as in Figure 6. It is
these duals that we use as our sequence. If we consider these duals on the
Riemann sphere as in Figure 4 and then take a limit, these duals approach
a fractal that has a Julia set given by iterating the rational map %.
We explore this example in more detail in Section 4.

When we consider maps between marked graphs in this paper, the domain
is always an elastic graph and the codomain is always a length graph. One
can think of this as stretching a series of rubber bands through a system of
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hollow tubes. Such an approach allows for a natural definition of energy of
the map.

1.3 Harmonic Energy

As outlined in Section 1.2, we are particularly interested in studying fractals
by using a sequence of graphs that approximate the fractal. Suppose we have
such a sequence Gy, Gy, .... The underlying theory of our method (Section
2.2) requires us to consider the behavior of maps between the n'* term in the
sequence and the base graph Gy.

In particular, we are interested in studying homotopy classes of piecewise
linear maps between marked graphs G, and Gy where G,, and G, are both
marked graphs, the edge lengths of G,, are identified as elasticities and the
edge lengths of GGy are identified as lengths. The homotopy classes that we
are interested in map marked points to marked points and since edges map
linearly, the rest of the function is uniquely determined by where vertices are
mapped. See Section 1.5.

Any map f, : G,, = Gg that is piecewise linear on each edge that maps
marked points to marked points has a piecewise linear derivative given by

rEe (7)

where /(e) and «a(e) are as defined in Section 1.2.
One of the properties of these maps that we are interested in studying is
the concept of energy.



Definition 1.9. The p-harmonic energy, denoted E? (f,) for f, : G, —
Gy, is defined to be

EL = [1fall,-
This can be written more explicitly as

1/p
EL(f,) = ( / . |f,a|p)

A 1P (8)
- (eeanoz(e) (gg) ) / . 8

This definition is why we consider those maps that are piecewise linear,
because in order for the LP norm of the derivative to exist and be finite, the
derivative needs to exist and be finite a.e.

We are actually interested in homotopy classes of maps, so another useful
quantity is

PIf] — ; P

ELlf] = jnf B (@)
where [f] is the homotopy class of f. Furthermore, we do not want to study
every homotopy class but instead want to focus on those that belong to a
general class of maps that minimize energy and they are the maps that will
allow us to approximate upper bounds for the Ahlfors-regular Conformal
Dimension.

1.4 Harmonic Maps

Now that we have a working definition of the energy of our maps between
graphs, it is natural to discuss when minimal values of the energy are achieved.
Physically we know that the elastic network should achieve minimal energy
when it is at equilibrium. That is, when there is no net force on the system.
To begin this discussion, we will need to introduce what the force, or in this
case tension, is.

It is reasonable to see that the tension at a point z on G due to the map
f can be defined through our physical intuition of the map.

Definition 1.10. The tension on edge e due to a map f is
T(f.e) = f ()|’
)| (9)
ale '

N
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This definition of tension agrees with the physical definition of tension
if we allow p = 2, thus this definition is a generalization of the physical
definition for values of p other than 2.

Alternatively, we can see that this expression for tension is precisely

_ 19(EL()"

(fe) = g (10

where we use Equation (8) when formally taking the derivative.

In conjunction with Definition 1.10, we define an additional quantity,
k(v,e), where v is a vertex on an elastic graph and e is an edge on an elastic
graph. Then this is the set of edges e; on the same elastic graph incident to
e and v such that there exists a; on e; and b; on e where f(a;) = f(b;) and
furthermore, this a; and b; can be chosen to be arbitrarily close to f(v). That
is,

for all small €, da; € e;,b; € e s.t. }
flai) = f(b;) and [f(b;) — f(v)] <€)
(11)

Physically, this identifies those edges that pull the vertex v in the same
direction as f(e).

Since the forces in the elastic network are given by tensions, this means
that the system is in equilibrium when the tensions at each point balance
out. This motivates the concept of the triangle inequalities introduced in [5].
Given a map f and vertex v connected to edges ey, ..., e,, the map satisfies
the triangle inequalities if:

Z T(fv ej) < Z T(f7 em)‘ (12)

ejEr(v,e;) em&r(v,e;)

K(v,e) = {edges e; incident to e and v :

The physical interpretation of these inequalities is that the tension at
a point pulling in any one direction cannot exceed the tension pulling in
the opposite direction. By looking at the maps that satisfy the triangle
inequalities everywhere, we see physically that the rubber band network has
no net force on it, so it is in equilibrium — such maps are known as harmonic
maps.

Definition 1.11 (Harmonic Map). A harmonic map ¢ : G,, — G is a
map that satisfies the triangle inequalities on tensions everywhere.
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Alternatively, we can view the terms within the triangle inequalities as
telling us the sign of the derivative of the energy function at a point. It can
be seen that the triangle inequalities are always satisfied in the interior of
edges, so we need only consider what happens at the vertices. Recall that
every map is uniquely determined by its action on the vertices. If the triangle
inequalities are satisfied at every vertex, this tells us that the derivative of
the energy function for a particular map must be zero. Since the energy
is a convex function (it is an LP norm), this tells us that harmonic maps
achieve minimal energy, which in turn provides an alternate and more useful
definition of harmonic maps.

Alternate Definition (Harmonic Map). f: G,, — Gy is a harmonic map
if it minimizes E?_.

Thus, when the triangle inequalities are satisfied the p-harmonic energy
is minimized. By examining the minimal energy of these maps as p varies we
can begin a process to approximate the Ahlfors-regular Conformal Dimen-
sion.

Theorem 1.4.1 (Thurston, 2016, [5]). For each n and p the energy EY has
a unique minimum value.

This theorem ensures that the minimizing energy is unique in the homo-
topy class, which is important for our later applications. The proof of this
theorem is a direct consequence of the strict convexity of E% from Theorem
3.1.1.

1.5 A Brief Example

Now let us consider a simple example illustrating the above definitions. Sup-
pose we have an elastic tripod which we denote G; and a length tripod which
we denote Gy (Figure 7). Let f map the marked point on A to the marked
point on «, the one on B to the one on 8 and the one on C' to the one on
~v. Any such map f is uniquely determined by where the center vertex v is
sent, so suppose f(v) = (a,x) where x indicates which edge f(v) is on and y
indicates how far from v’ the image is. We wish to find the harmonic map for
p = 2. First, we suppose f(v) = v' and calculate the tensions. This will tell
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Source Tripod Target Tripod

Figure 7: Source and Target Tripods for our Example

us what edge the image must be on to be optimal. We compute the tensions

T(f,A) =2
T(f,B) =1 (13)
T(f,C) =4

and apply the triangle inequalities:

T(f, A) <7(f, B) +7(f,C)
7(f, B) <7(f,A) +7(f,C) (14)
m(f,C) > 7(f, A) +7(f, B).

This tells us that the network of rubber bands is being pulled onto the ~
edge, so we know that x = ~. Now we want to find y by examining the
p-harmonic energy function. In particular, we treat this as a single variable
calculus problem and locate the minimum by differentiating the energy func-
tion. Doing this tells us that the minimum value is achieved for y = % We
now verify the triangle inequalities are achieved for f(v) = (53, 1) and con-

clude that f(v) is a harmonic map with energy w/%- This last verification

is merely to ensure that we did not make any mistakes because, since the
function E? is convex, we know that there is precisely one minimum value,
and thus it must correspond to the minimum we found. This is very similar
to how we found harmonic maps for more complicated graphs.
Alternatively, for p = 2 we can solve for the harmonic map by using fact
that, f(v) is somewhere on the v leg and that the harmonic map must satisfy
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the triangle inequalities. Thus, since there are only two directions on the y
leg for the tension to pull, we know that

m(f,C) <7(f,A) +7(f, B) (15)
m(f, A) +7(f, B) <7(f,C) (16)

so we have equality. Now we can use the explicit expressions for the tension
7 to find how far on the « leg f(v) is mapped. The reason that we did not
use this method for more complicated graphs is that the tension becomes
very non-linear for p # 2. This would have added additional complexity to
the problem.

Note that if we had considered a graph with n vertices then the map f
would have been determined by n 2-tuples.

2 Relating Conformal Dimension and Har-
monic Energy

Here we will discuss the theoretical tools that we used to find our bounds.
These results will be presented without proof but the papers they appear in
are cited for the reader.

2.1 p Energy

Suppose we have a sequence of elastic graphs G,, that converges to a fractal
G. In fact, the G,, come from a particular construction in [6]. We ultimately
want to compute confdim(F). If we were to use the definition we would run
into trouble almost immediately because of how technical the definition is.
Not to mention having to take an infimum over an unmanageable uncountable
collection. Thus we need to use an alternate method. The method we used is
due to Kevin Pilgrim and Dylan Thurston in [4]. To understand these ideas,
though, we first need to introduce a useful ratio.

Definition 2.1 (p Energy). Let {G,} be a sequence of elastic graphs that
converges to a fractal G. This sequence comes with an explicit family of
maps ¢, : G, — Gy but we really only care about the homotopy classes of
these maps [¢,]. For every new metric we define on Gp—which is equivalent
to changing the edge weights of the graph—we can find a p—harmonic map
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from G,, — K where K is GGy with this new metric. Let f : G,, — K and
¢ : Gy — K be p—harmonic maps. We define the p energy to be

max Ego [fn]
All metrics on K Ego [QO]

(17)

We denote this quantity EP[G,, — G or EP[f,].

A nice property of this new energy is that it is submultiplicative in n.
That is, if g(n) = EP[G,, — Go] then g(n +m) < g(n)g(m).

This energy gives us a way to find the Ahlfors-regular Conformal Dimen-
sion. This is explained in the next subsection.

2.2 Connection between Ahlfors-regular Conformal Di-
mension and Harmonic Maps

Our final goal is to obtain bounds on the Ahlfors-regular Conformal Dimen-
sion of certain fractals that can be seen as limits of elastic graphs. Supposing
that we have such a fractal as a limit of graphs Gy, Gy, ... then the following
are theorems from [6] and [4]:

Theorem 2.2.1 (Thurston, 2016, [6]). The limit E? = lim,,_, EP[G, — G
exists and is continuous and decreasing in p.

We call this limit the asymptotic energy. Existence is a consequence
of the submultiplicativity of EF and raises the question of what the limit rep-
resents. The next theorem, due to K. Pilgrim and D. Thurston, ensures that
calculating these energies will provide bounds on the Conformal Dimension.

Theorem 2.2.2 (Pilgrim-Thurston, [4]). For p = confdim(Jg, ), we have
Ef(Ja,) = 1. Equivalently, if E¥(Jq,) > 1 then p < confdim(Jg,) and
if EP(Jg,) < 1 then p > confdim(Jg,). Here Jg, is the Julia set for the
limiting set of G,.

This gives a method for calculating the Ahlfors-regular Conformal Di-
mension of fractals that can be expressed as limits of graphs in this manner.
We will use nonlinear optimization techniques in order to arrive at good
approximations of EP.
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3 Methods

Now that we have laid the groundwork for our paper, we will discuss some
of the methods we used to arrive at our results. To begin, we will discuss
convexity and how we can use it to optimize functions. Then we introduce
an algorithm for locating minima.

3.1 Convexity

Since we are interested in optimization, it is helpful to understand the func-
tion that we are optimizing, E” . because certain properties make optimiza-
tion easier than other properties. One such property is convexity.

Definition 3.1 (Convexity). Let X, Y be metric spaces, and X a convex set.
A function f: X — Y is convex if f(Az1+(1—A)xg) < Af(x1)+(1—=X)f(x2)
for every x1,29 € X and 0 < A < 1.

An immediate consequence of this definition is that any convex function
has a minimum. Furthermore, if the inequality is strict, then we have what
is called a strictly convex function and any local minimum is also the global
minimum. We would like to say that E®_ is a convex function. By defining the
metric on a graph to be the infimum, over all paths connecting two points,
of the length of this path, we can see that elastic and length graphs are
metric spaces. Furthermore, the elastic and length graphs that we consider
are convex, so the energy function is convex. To see this, observe that the L?
norm is a convex function itself when defined on a convex domain and that
the energy function is uniquely determined by the map f which in turn is
uniquely determined by where on the length graph vertices are mapped to.
Thus our energy function is a map from a collection of points on our length
graph to R, so it is convex.

Theorem 3.1.1. If g: X — Y is a strictly convex function and f: 7 — X
is a mon-constant piecewise linear function, then h = go f : Z — Y is a
strictly convex function.

This theorem ensures that when our domain graph is convex, as in the
case of the Barycentric Subdivision where our domain is essentially [0, 1]"
(see Section 4.3), then our p-harmonic energy function is also convex, which
allows us to use specialized tools to minimize it.
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3.2 Gradient Descent

The optimization tool that we used in our study is known as gradient descent.
It is very similar to a generalization of Newton’s method to R™. We pick a
starting point, xy, and consider the gradient of the function we want to
minimize at that point, V f(z¢). Since the gradient indicates the direction of
greatest ascent, if we move in the —V f(z) direction then we will be following
the direction of greatest descent. Since we are looking for a minimum, this
is what will lead us to it, hence we pick a new point 21 = xg — V f ().

In theory, if we could look at this continuously, rather than discretely, we
would always be able to locate the minimum of a strictly convex function,
but if we look at this method discretely we would need to ’step’ along the
gradient in a non-continuous way. This introduces a problem. We might
step past the minimum and enter a periodic orbit, as would be the case if the
norm of the gradient is too large, so we need to choose a proper step-size to
stop this from happening. Thus we choose z,, = x,,_1 — kp_1V f(2,_1) with
ko = ¢ a positive constant. Such a step-size is introduced in [1] and is given
as

k, = AoTm B4n) (18)
1Ayl
where Az, =z, — x,_1 and y,, = Vf(x,) — Vf(z,_1). Using this algorithm,
we are able to find approximate minimal values for the energy function.
This method allows us to find the minimum value of EZ, for any fixed
p and fixed domain and codomain graphs. In order to approximate the
asymptotic energy, though, we need to be able to maximize EI over the
target graph K. We did this using an algorithm described by D. Thurston.
We considered the harmonic map for some starting target graph K, and
calculated the tension on each edge. We then considered the tension on the
edges a; of Ky by looking at

T(ai) = Z T(f L )
z€f~1(a;)
and then defined a new K; by setting the new edge weights to be £(a;) =
a(ai)T(ai)P%l where «(a;) is the elasticity of edge a; on Gy. This, as a limit,
gives us the maximizing target graph K. This will give us EL.
In practice, we are severely limited because this is an iterated process.
We used the computer language Sage to implement this algorithm for the
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specific examples we considered and that means that any result we arrive
at has a margin of error that is inherent in using a computer that can only
do finitely many operations. Because of this limitation, we could not take
limits and instead computed E?_[G,, — K| for small n and then observed the
trend. This provided us with an upper bound on E?_ which in turn provided
us with an upper bound on EP which resulted in an upper bound on the
Ahlfors-regular Conformal Dimension of our two fractals. The details are in
Sections 4 and 5 respectively.

4 Barycentric Subdivision

4.1 Preliminaries

The first example that we turned our full attention to was the barycentric
subdivision of the triangle. Given a triangle, one may divide it into six by
drawing lines between the vertices and the centers of the opposite edges.
From this, one may continue to subdivide the triangles generated by the first
division, then the ones by the second, and so on and so forth (see Figure
5). What we were interested in was the dual of these subdivisions, namely
the graph generated by assigning a vertex to each triangle of the subdivision
and connecting it to the vertex that represents another face when the two
triangles are adjacent (see Figure 6).

Note that there are connections between the triangles at the edge and the
edges of the original triangle. This is because we are viewing the triangle as
being on a sphere, with the triangle taking up one hemisphere. Thus, those
segments connect to the corresponding faces of the triangle on the opposite
hemisphere.

The barycentric subdivision is a good first case, largely due to its clear
level of self-symmetry. It is easy to show that the n*” level of the subdivision is
six of the (n—1)%" level linked in a hexagonal pattern, which lends itself to an
easy definition in code. Another boon of symmetry is that, given threefold
symmetry, we know first that the target tripod has to be symmetric, and
second we know that the optimal map must be symmetric as well. The
remaining twofold symmetry lets us reduce the map further, to one-sixth the
size of the original.

Before we began, we knew that 1.631 was the lower bound on the con-
formal dimension and the upper bound was 1.84 due to the Box-counting
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Figure 8: Construction of the Barycentric Subdivision Graphs

dimension (see Appendix A). The lower bound is due to the formula

1
1 —log; N

where N = Ei which is equal to the growth rate of the number of independent
non-trivial loops in the graph and d is the degree of the map (in this case 6)
[4].

4.2 Graph Generation

As alluded to earlier, the self-similarity of the barycentric subdivision was
critical to efficiently creating a general method of representing the graphs.
However, the way of looking at the self-similarity was used differed from the
obvious self-similarity. Rather than thinking of G, as being six copies of
G,_1, we instead conceptualize it as GG,,_; with each vertex expanded into a
hexagon, with all edges doubled to accommodate as in Figure 8.

The details of how the numbering worked specifically are detailed above
in Figure 8. In short, a hexagon in G,,_; is expanded into a ring of double-
connected hexagons, with 2’s and 3’s lining the interior of the ring’s connec-
tions, 1’s and 4’s on the exterior connections, and 5 and 6 serving to connect
this ring to other structures in GG,. In particular, it’s worth noting that a
hexagon’s 1 and 2 will be connected to the hexagon indexed 1 greater than
it (mod 6) while its 3 and 4 will be connected to the hexagon one less than
it.



The second image shows the details of how the 5s and 6s connect exter-
nally. Given a connection between two hexagons in GG,,_1, these are expanded
as demonstrated in that image. The important thing to note is that due to
the opposing orientations of the expanded hexagons, 5s get connected to 6s
and visa versa. It’s also important to note that the numbering of the original
hexagons is unimportant here; 3 and 4 could be replaced by any connected
pair, including 5-6s. This is very relevant for how we coded G,,.

The specific code for the graph generation are found in B.1, but for our
purposes, here’s pseudocode (similar to Python). In this, we treat numbers
as points in G,, by their base-6 representation.

gn:
if n=1
return gl
for i in range (0,6°n)
x = i[0] (base 6)
y = i[0]+1 (mod 6)
y=1i-4i[0] +y
z = i[0]-1 (mod 6)
z=1-i[0] + z
if (x = 1)
d=i[1] + 1 (mod 6)
d=1-i[1] - i[0] + dx6 + 4
if (x = 2)
d=i[1] + 1 (mod 6)
d=1-i[1] - i[0] + dx6 + 3
if (x = 3)
d=i[1] - 1 (mod 6)
d=1i-i[1] - i[0] + d*6 + 2
if (x = 4)
d=i[1] - 1 (mod 6)
d=1-3i[1] - i[0] + dx6 + 1
if (x = 5 or 6)
while (i[j] is 5 or 6)
i[j1 =5 - i[j]
if j=n
d=A, B, or C
else
d=1i
add [x,y,d] to graph at relevant index

Let’s walk through exactly what this is doing. First, the recursion does
not work for n = 1, so it simply returns a predefined g1 if it’s asked to run 1.
The next thing of note is setting up the overall loop. For this, it’s important
to know that we're treating numbers as points in G, by looking at their
base six representation. In the loop, i is the number of our current point
and z is the last coordinate of the point, that is, where it is in the smallest
hexagon that contains it. Thus, y and z are the points in that hexagon
that ¢ is connected to. The remainder of the function determines what the
final connection of the point is, and this is where the earlier discussion really
comes into play. If z is 1 or 2, it connects the point to the 4 or 3 of the
one-higher indexed hexagon. If it is 3 or 4 is connects the point to the 2 or 1
of the one-lower indexed hexagon. The most complicated case is if x is 5 or 6.
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For this, the function goes up through the point’s coordinates until it finds a
non-5 or 6 coordinate. If it does not find these before the last coordinate, it
attaches the point to one of the endpoints depending on the last coordinate.
If it does find a 5 or 6, it takes 5-the value of each coordinate up to the one
it found, and attaches to the resulting point. One can see why this is done
by considering the second of the demonstrative images above; 5 is connected
to 6, 6 to 5, and any 1’s, 2’s, 3’s, or 4’s below the first layer are connected
predictably to corresponding 4’s, 3’s, 2’s, and 1’s.

4.3 Optimization

In terms of the actual gradient descent, this was far more straightforward. In
particular, since the symmetry informs us which leg of the tripod each point
ends up on, we end up optimizing over [0, 1]"-a convex domain. The energy
and gradient functions work as one would expect. The energy function goes
through point by point, calculating the energy from each connection and
summing it up with a one-half scalar. The scalar normalizes the double-
counting that would occur on connections between two points, while at the
same time providing the appropriate scaling for connections to endpoints, as
those only have length 1/2 due to the aforementioned sphere visualization.
(We're treating our as as always being 1/2) The gradient function works
similarly, calculating the tension in each connection and taking the sum to
find the overall direction. From there, we simply used the Barzilai-Borwein
step sizes and it ran smoothly.

For the energy and graph functions, the pseudocode is as follows. For
this, g is our graph, encoded as a list where the 7" coordinate contains a list
of the points the i"* point is connected to. The energy function calculates
the p—harmonic energy of a map while the gradient function calculates the
overall gradient at each point. The actual code can be found in B.2.

Core Loop:
for i in range (0,6°n)
a = f(i)
b = f(gli][0])
c = £(glil [1])
if (f(glil[2]) is not an endpoint)
d = £ (glil[2D)
x =1

else



x =2

Energy:
energy = energy + .5(abs(a-b))"p +.5(abs(a-c))"p + .5x(abs(a-d))"p

Gradient:
gradient =(sgn(a-b)p(abs(a-b))~(p-1) + sgn(a-c)p(abs(c-a))~(p-1) + p*gn(a-d) (abs(x*(a-d)))~(p-1))

These functions, as you can see, are closely related so we will discuss them
together. The first thing both functions do after setting up the standard loop
is to define a as f of i,b and c as f of the second and third entries of the *
entry in g. For this, keep in mind that ¢ is a list of triples that contain the
points connected to the i point and f is our map. For the purposes of the
barycentric subdivision, we already know which leg of the tripod each point
ends up on, so the f—values are just numbers between 0 and 1. Therefore,
we have defined a,b, and ¢ to be the images of the i point and its two
simplest connections. Then, the function moves to the last connection. Given
that, due to construction, only this last connection could potentially be an
endpoint, it first checks if this connection is not an endpoint. If it is not,
the function sets d to be the image of this point and a scaling factor to 1.
What it does if it does get an endpoint is largely a matter of what sixth of
the triangle you’re looking at—for the purposes of our program, we looked
at the bottom-right triangle of the subdivision, so the A side gets sent to
the center, the C side gets sent to the endpoint, and going through the B
side gives an image in the same location. The d values reflect this, and the
2 scalar reflects the effect of the lesser side-length on the calculation. The
gradient and energy function differ in the final calculation. Energy takes the
sum of the distances of these images raised to the p power and scaled by a
factor of 1/2-this accounts for the double-counting from connected points
and the scaling for connections to endpoints in one fell swoop. Gradient
instead raises the distances to the (p — 1) power and has factors for the sign
of the difference, p, and the inverse of the determined scalar. Rather than
summing up, it puts each individual term in a list.

The final function of note to discuss is the optimization function:

gradient (f)
£ =

f
old g =g
for x in range (0,6°n)
if (sgn(h[x])=1)
if (£[x] = 0)
u = 100000
else
u = (f[x]/h[x])
elif (sgn(h([x])=-1)
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Figure 9: Plots of EP[G,, — Go] vs p for n = 2,3,4,5.

if (f[x] = 1)
u = 100000
else
u = ((£[x]-1)/h[x])
elif (h[x]=0)
u = 10000
if (u < k):
k=u
f[x] = flx] - kxh[x]
if (£[x]>1):
flx] =1
if (£[x1<0):
flx] =0
g = gradient
k = stepsize (f,n,m,h,g,p)
if k=0
end

As part of a trick to save on time, this function takes a starting point
from an earlier optimization, which it initializes the map to, because we
believe the harmonic maps should be close. A starting step-size of .1 is
chosen, and it calculates the current gradient. Then, it moves into storing
things in the storage lists, and adjusts the step size to prevent overstepping
boundaries. Next, it makes the actual movements, having more overshoot
insurance just in case. Finally, it recalculates gradient and step-size using
the storage vectors. The last few lines are a time-saving kill-switch; if the
step-size is zero, it terminates the program early.

4.4 Results

Figure 9 depicts the graph of the (Eg)l/ " energies as p varies. From this, the
main takeaway is noting where the energies equal 1, which given the earlier
theorems each give us an upper bound on the Ahlfors-regular Conformal
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Figure 10: Logarithmic Plots for E?[G,, — Go] for n = 2,3,4,5.

Dimension of the overall fractal. In terms of more specific things, there is
some notable pathological behavior for lesser values of p, though we have
discovered that this is due to computer error and furthermore, these values
are less than the previous lower bound on the Conformal Dimension so they
are of little interest to us. For n > 6, the runtime was too great to get solid
results by the time of this paper. Acquired cross points were G, : 1.83, G5 :
1.82,G4 : 1.77,G5 : 1.76. Thus we have an upper bound of approximately
1.76 on the Conformal Dimension.

Another thing we can look at to find an approximation to the Ahlfors-
regular Conformal Dimension of the fractal is the relative logarithms of these
E? graphs. The reason for this is a weak intuitive argument.

Recall that EP is submultiplicative, and so log(EI’j) is subadditive. Sup-
pose that p < confdim(G). Then we know that EP > 1 for every n, so
log(EP) > 0 for every n. Furthermore, subadditivity and our data tells us
that log(EP) is almost monotonically increasing. That means that for
p < confdim(G), we have an almost increasing sequence. Thus if our loga-
rithmic plot stops being decreasing in n then we should have an upper bound
for the Conformal Dimension. For the Barycentric case we can see that our
sequence stops being decreasing at about p = 1.7 so that is a potential upper
bound on the Conformal Dimension.



5 Blown Up Lattes

5.1 Introduction

The Blown Up Lattes is another fractal limit of graphs. Like our first exam-
ple, we start with a triangle, and similarly, we’re considering it on a sphere.
Additionally, the construction largely functions by taking the dual of subdi-
visions, however, the subdivisions in the Blown Up Lattes are more complex
than that of the Barycentric Subdivision (See Figure 11).

Figure 11: Second Subdivision of the Example 2 Graph

As mentioned, this is more intricate than the Barycentric Subdivision. To
understand what is going on, one must first accept that all faces displayed in
Figure 11 are triangles. Now, to continue subdividing we need to state two
things. Firstly, that the next set of bisecting lines will come from the point
labled D in Figure 12, and that this pattern will continue in each subdivision.
The second is that the face labeled “1” in the image has inverted orientation-
in the map to the sphere, it is being mapped to the opposite face. This
means that the direction the curved triangle is drawn is reversed in further
iterations.

This is a solid second example due to several reasons. First of all is the
simplicity. The graph only grows at a rate of 3" rather than the Barycen-
tric’s 6™ which allows our optimization to be run much more quickly than
the previous example. Secondly, it is useful for its lack of symmetry. This
forces us to use more general methods and more complex approaches to the
optimization that can be generally applied, as opposed to the approach to
the Barycentric Subdivision, which relied heavily on the degree of symmetry.
All in all, it was an excellent second example, and the work done can serve
as a basis for further work in general graphs of this variety.
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Figure 12: A more detailed look at the first level of the Blown Up Lattes

Before we began we knew that 1.461 was an established lower bound and
1.9 was the upper bound due to the Box-counting dimension (see Appendix
A for upper bound discussion) and the lower bound is established using the
same formula from [4] as was used previously with d = 3.

5.2 Graph Generation

Much like the Barycentric Subdivision, the process for generating the Blown
Up Lattes graphs comes about by thinking of F),,; being F,, with each point
replaced by something. In this case, it is by replacing each point with an F}
graph. In that image, the various directions from the points are labeled, and
from there we can work out how this finite state automaton works. Moving in
the « direction from 0 or 1 takes you to the other. Moving in the 3 direction
from 1 or 2 takes you to the other. Moving in another direction takes one
out of this tripod, with a direction depending on which side of the triangle
it exits, « for the right edge, 8 for the left edge, and « for the bottom edge.
The code can be found in B.3.

5.3 Reused functions and changes

The first thing to generally handle are the energy, gradient, and base optimize
functions. These work largely the same as in the Barycentric case with some
concessions due to the lack of symmetry, so we cover them collectively. As
before, the actual code can be found in B.4. In terms of notation,
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tar

refers to the the target tripod and is used for lengths. Also recall from earlier
that positions are pairs; both distance along an edge and which edge the point
is on.

Core loop:
u = (i)
v = side(a)
for j in range (0,3)
if (glil[j] not endpoint)
d = £(gli1 [3])
m = side(d)
if (d, u same side)
x[j] = tar([sidelabs(u[0]-d[0])
else
x[j] = tar[sidea]ul[0] + tar(sided)d[0]
(sidetotal = sidetotal + sgn(x[j1)p(abs(x[j1)))
if (gl[il[j] is an endpoint)
if (u same side)
x[j] = tar(side) (2-u[0])
else
x[j] = 2tar(side)+2u[0]tar(otherside)
(sidetotal = sidetotal + sgn(x[jl)p(abs(x[j1))

Energy:
energy = energy + (1/2) (x[01)"p + (1/2) (x[11)"p + (1/2) (x[21)"p
Gradient:
(a,b, and c being sidetotals)
if (a-b-c > 0):
k= A
elif (b-a-c > 0):
k = B’
elif (c-a-b > 0):
k = C
else:
k= 'A°
return [(sgn(x[0])p(abs(x[0]))~(p-1)+sgn(x[11)p(abs(x[1]1)) " (p-1)+psgn(x[2]) (abs(x[2]1)) " (p-1),k]
Optimize change:
if ((s[i][0] == 0)):
if (s[il[1] '= glil[1]):
s[i][1] = glil[11[:]

All changes from the previous incarnations of these functions are simply
concessions due to the lack of symmetry and will be highlighted here. Both
energy and gradient begin by recording which side the indexed point is on,
and then run through a loop to account for any position being potentially
connected to an endpoint. It sets a placeholder to the image of the indexed
point, calculates the distance between that and the image of each connection,
accounting for side lengths, and then takes the appropriate sum at the end.
The only other thing of note is how the gradient handles which direction it
marks the result as. This is from simply totaling up the amount it is being
pulled in each direction and if one of these totals is larger than the sum
of the other two, it marks it as that, otherwise it simply defaults to A. As
for the basic optimizer, essentially the only change is how it handles pulling
through the center. Before updating positions, it simply checks whether or
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Figure 13: Standard graphs for EP[F,, — Fy] for n = 2,3,4,5.

not a point is at the center, and if it is, places it on the side that it is being
pulled in and recalculates gradient.

5.4 Tripod Optimization

The final piece of discussion is an algorithm of Dr. Thurston’s to find the ideal
target tripod. In this specific incarnation, the algorithm works by calculating
the sum of the tensions on each edge of the base tripod and then normalizing
them to use as the tripod lengths for the next step.

Lengths:
u = points[il
v = side(u[1])
for i in range (0,3)
x = graph[i] [j]
if (sameside)
p = tar[sidel*(u[0]-x[0])
else
p = tar[side]*x[0]+tar [otherside]*u[0]
append p
TensionF:
image/original” (p-1)

TensionK:
if attached to endpoint
sum(endpoint) = sum(endpoint) + tension

newlengths:
.5xx” (p-1)

The actual code can be found in B.5.

5.5 Results

Much like with the Barycentric Subdivision, Figure 13 depicts the plots of the
Egl/ " energies as p varies from 1 to 2. Once again, we can note where these
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plots intersect 1 and thus obtain upper bounds on the Ahlfors-regular Con-
formal Dimension from this. Also present in this graph is the poor behavior
at low values of p, but this does not influence the behavior for the values that
we are interested in. For n > 5, unfortunately, we ran into runtime issues
while running the optimization and as such those are not included here. The
Fy and F; graphs do not cross 1, but the Fj crosses at 1.93 and the F) at
1.9. This gives us an overall bound of 1.9.

The logarithm graphs here depict the same thing that we discussed earlier
for the Barycentric Subdivision example, so we have a potential upper bound
on the dimension of 1.75.

L4

Figure 14: Logarithmic graphs for EP[F, — Fy| for n =1,2,3,4.

6 Conclusion

We have been able to give upper bounds on two specific fractal carpets.
The Barycentric Subdivison fractal has a Conformal Dimension bounded
above by 1.76 and the second cubic map has an upper bound of 1.9. For
the second map, this is no worse than the bound from the crossing 1. In
the future, it would be interesting to generalize our code and approach to
find upper bounds on any fractal carpet that can be defined as a limit of
graphs. Furthermore, we began this project with the intention of studying
the Sierpinski Carpet, but did not have the time to do a proper study of it,
so it would be interesting to know what bound this method gives us.
Finally, this method provides a means of studying fractals generated by
graphs, but would it be possible to modify it so that it could apply to a



Figure 15: Julia sets of our two examples, % and —22°£92=6

structed as described in Section A

, con-

larger class of fractals? If so, it would give us a useful tool for studying the
Ahlfors-regular Conformal Dimension.

A Initial Bounds

As we discussed at the start of our paper, the Hausdorff dimension provides
a natural upper bound on the Conformal Dimension. Similarly, the Box-
counting dimension provides a natural upper bound on the Hausdorff dimen-
sion and it is easy to calculate rough approximations of the Box-counting
dimension.

Definition A.1. Box-Counting Dimension The Box-counting Dimension of
a set F' C R" is given by

I _ log(Ns(F))

50 log(9)

where Ng(F) is the infimum of the number of 6 mesh boxes that intersect F’
for 6 < 1.

What follows is our use of this dimension to provide more trivial bounds
on the Conformal Dimension. This will illustrate how the bounds we ob-
tained through our energy method are an improvement on the trivial bounds
obtained through the Box-counting dimension.

The Box-counting dimension is easily estimated given an image of a Julia
set. We generated Julia sets of the two fractals we were interested in and
colored a pixel white if it escaped to oo under iterations of the function and
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colored the pixel black if it did not escape to oo as in 15. This process means
that the black portion of our image is an approximation of the Julia set.
From here, we decreased the mesh, J, of our pixels and counted the number
of black pixels present, denoted bs. By considering

_log(b(;)
log(6) (19)

we were able to take a linear regression to find approximate values for the
box-counting dimension. The barycentric subdivision example had a bound
of 1.84 for the dimension and the Blown Up Lattes had a bound of 1.9. We
got a bound on the Barycentric example of 1.76, and on the cubic example
of 1.9 as well. The 1.9 is not an improvement, but our soft estimate indicates
our bound should be much lower, and the F,, ran into runtime issues earlier
in the process.

B Code

B.1 Barycentric Graph

def gn(n):
if (n==1):
return gi
graph = []
for i in range(0,(6°n)):
done = False
x=1Y% (6)
(x-1)%6
(x+1)%6
y+i-x
z+i-x
0
if (x == 1):
d = (i - (i%36)) + 6x(((((i%36)-(i%6))/6)+1)%6) + 4
graph.append([(y), (2),(d])
if (x == 2):
d = (i - (i%36)) + 6x(((((i%36)-(i%6))/6)+1)%6) + 3
graph.append([(y), (2),(d])
if (x == 3):
d = (1 - (1%36)) + 6x(((((i%36)-(i%6))/6)-1)%6) + 2
graph.append([(y), (2),(d)])
if (x == 4):
d = (i - (i%36)) + 6x(((((i%36)-(i%6))/6)-1)%6) + 1
graph.append([(y), (2),(d])
if (x==5 or x==0):
f.append (x)
for j in range (1, n-1):
f.append (((i-(i%(673)))/(67j))%6)
if (£[jl==1 or £[jl==2 or £[jl==3 or f[jl==4):
d =i - (i%6"(G+2)))
for k in range (0, j+1):
m=5 - £[k]
d =d+ (67k)*m
x = ((1-(i%6"(j+1))) /(67 (j+1))%6)
if (£[j1==1 or £[jl==2):
x = (x+1)%6
if (£[j1==3 or f[jl==4):
x = (x-1)%6

N < NS
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d=d+ (67(j+1))*x
done = True

if (done == True):
graph.append([(y), (2),(d)])
break

if (done == False):
m = (i-(i%(67(n-1))))/(6"(n-1))
if (m == 1 or m == 2):
graph.append([(y), (2),(°A’)]1)
elif (m == 3 or m ==
graph.append([(y), (2), (°B’)])
elif (m == 5 or m == 0):
graph.append([(y), (2),(°C*)1)
done = False
return graph

B.2 Barycentric Energy and Gradient

def energy (g,f,p,n):

Energy = 0
for i in range (0,n):
a = f[i]

b = £[glil[0]]

c = £[glil [1]]

if (glil[2]!= A’and g[il[2]!="B’ and gl[il[2]1="C"):
d = £lglil[2]]

x=1
if (glil[2]=="A"):
d=0

x =2
if (glil[2]=="B’):
d=a

x =2
if (glil[2]=="C"):
d=1
x =2
Energy = Energy + (1/2)*(abs(a-b))~p + (1/2)*(abs(a-c))"p + (1/2)*(abs(x*(a-d))) p
return (6*Energy)”(1/p)

def gradient (g,f,p,n):
Gradient = []
for i in range (0,n):
a = f[i]
b = f[glil[0]]
c = £lglil[1]]
if (glil[2]!'= *A’and g[i][2]!="B’ and gl[il[2]!="C*):
d = f[glil[2]]

x=1

if (glil[2]=="A"):
d=0
x =2

if (glil[2]=="B’):
d=a
x =2

if (glil[2]=="C"):
d=1
x =2

Gradient = Gradient + [sgn(a-b)*p*(abs(a-b))~(p-1) + sgn(a-c)*p*(abs(c-a))~(p-1) + p*sgn(a-d)*(abs(x*(a-d))) " (p-1)]
return Gradient

B.3 Barycentric Optimize

def optimizeGn(graph, p, n, number,startpt):
= startpt[:]
.1
gradient (graph, f, p, 6°n)
0
u]
i in range (0,6°n):
m.append (0)
h.append(0)
for j in range(1,number):
for x in range (0,6°n):

Hh B0 R Hh
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hix] = glx]

mlx] = £[x]

if (sgn(h[x])==1):
if (f[x] = :

else:
u = (£[x]/h[x])
elif (sgn(h[x])==-1):
if (£[x] == 1):
u = 100000
else:
u = ((£[x]-1)/n[x])
elif (h[x]==0):

u = 10000
if (u < k):
k=u

for i in range(0,6°n):
f[i] = £[i] - k*h[i]
if £[i] < 0:
£[il =0
if £[i] > 1:
fli] =1
g = gradient(graph, f, p, 6°n)
k = stepsize (f,m,n,h,g,p)
if (k == 0):
return [energy(graph,f,p,6"n),f]
return [energy(graph, f, p, 6°n),f]

B.4 Lattes Graph Generation

def connec (point, init, n):
£=10
state = init
for i in range (0,n):
f.append (((point - (point%(3°i)))/(371i))%3)
if (state == 1):
if (£[i] == 0):
flil =1
state = 0
elif (f[i] == 1):
flil =0
state = 0
elif (f[i] == 2):
f[i] = 2
state = 3
elif (state == 2):
if (£[i] == 0):
£[il=0
state = 3
elif (f[i] == 1):
f[i] = 2
state = 0
elif (£[i] ==
fli] =1
state = 0
elif (state == 3):
if (£[i] == 1):
f[i] =1
state = 1
elif (£f[i] == 2):
f[lil = 2
state = 2
if (state == 0):
d=0
for i in range (0,n):
d=d + f[i]*(3"1)
return d
elif (state == 1):
return ’A’
elif (state == 2):
return ’B’
elif (state == 3):
return ’C’

2):

def fn(n):
graph = []



for i in range (0,3"n):

a = connec (i,1,n)

b = connec (i,2,n)

¢ = connec (i,3,n)
graph.append([a,b,c])

return graph

B.5 Lattes Core Functions

def energy (g,f,p,n,tar):

Energy = 0
x = [0,0,0]
for i in range (0,n):
a = f[i][:]
if (af1] == ’"A’):
u=20
if (af1] == ’B’):
u=1
if (af1] == ’C’):
u =2

for j in range (0,3):
if (glil[j1!'= *A’and glil[j1!=’B’ and glil[j]1!="C’):
d = flglil [311[:]

if (d[1] == °A’):
m=20

if (d[1] == °B’):
m=1

if (d[1] == °C’):
m=2

if (d[1]==al1l):
x[j]1 = tar[m]*abs(a[0]-d[0])
else:
x[j] = tar[ul*a[0]+tar [m]*d[0]
if (glil[jl=="A"):
if (alt]=="A"):
x[j]1 = tar[0]*(2-2*a[0])
else:
x[j1 = 2*tar[0]+2*a[0]*tar [u]
if (glil[jl1=="B"):
if (a[1]==’B’):
x[j] = tar[1]1x(2-2%a[0])
else:
x[j] = 2xtar[1]+2*a[0]*tar [u]
if (glil[jl=="C"):
if (al1]l==’C’):
x[j]1 = tar[2]*(2-2*a[0])
else:
x[j] = 2*tar[2]+2*a[0]*tar[u]
Energy = Energy + (1/2)*(x[01)"p + (1/2)*(x[11)"p + (1/2)*(x[2])"p
return (Energy)~(1/p)

de

Fh

gradient (g,f,p,i,tar):
[0,0,0]
£[i][:]
0
0
0
if (u[1] == °A°):
v=20
if (uf1] == ’B’):
v=1
if (uf1] == ’C’):
v =2
for j in range (0,3):
if (glil[j]1!'= ’A’and gl[il[j]1!=’B’and glil[j]!="C’):
d = flglil [311[:]

X
u
a
b
c

if da[1] == ’A’:
m=0

if d[1] == ’B’:
m=1

if d[1] == °C’:
m=2

if (d[1]l==ul1l):

x[j] = tar[m]*(ul0]-d[0])
else:

x[j] = tar[vl*ul[0]+tar[m]*d[0]



de

Fh

if (d[1]=="A’):
a = a + (abs(x[j1))"~(p-1)
if (d[1]=="B’):
b =Db + (abs(x[j1))~(p-1)
if (d[1]==°C’):
c =c + (abs(x[j1))"(p-1)
if (glil[j1=="A"):
if (ul1l=="4"):
x[j] = tar[vl*(2*u[0]-2)
else:
x[j1 = tar[0]*2+tar[v]*2*u[0]
a = a + (abs(x[j1))"~(p-1)
if (glil[jl=="B*):
if (u[1]==’B’):
x[j]1 = tar[vl*(2*u[0]1-2)
else:
x[j] = tar[1]*2+tar [v]*2xu[0]
b =Db + (abs(x[j1))~(p-1)
if (glil[jl=="C"):
if (ul1]==’C’):
x[j] = tar[vl*(2*u[0]-2)
else:
x[j1 = tar[2]*2+tar[v]*2*ul0]
c =c + (abs(x[j1))"~(p-1)
if (a-b-c > 0):

k = °A°

elif (b-a-c > 0):
k = ’B’

elif (c-a-b > 0):
k = C

else:
k = A

return([(sgn(x[0])*p*(abs(x[0]1)) " (p-1)+sgn(x[1])*p* (abs (x[1])) " (p-1) +p*sgn(x[2])*(abs(x[2]1)) ~ (p-1)) ,k])

optimizan(graph, p, n, number, tar, startpt):

s = startpt[:]
g=10
u = 100000

for i in range (0,3"°n):
g.append ([0,°A°])
1

for 1 in range (0,3°n):
gll] = gradient(graph,s,p,1l,tar)[:]
[(0,0)]1*(3"n)
[(0,0)]1*(3"n)
for j in range(1,number):
for x in range (0,3"°n):
hix] = glx][:]
m[x] = s[x][:]
if (sgn(glx][0])==1):
if (s[x][0] == 0):
u = 100000
else:
u = (s[x]1[0]/g[x][0])
elif (sgn(glx][0])==-1):
if (s[x][0] == 1):

u = 100000
else:
u = ((s[x][0]-1)/glx][0])
if (u < k):
k=u

for i in range(0,3°n):
if (s[i][0] == 0):
if (s[il[1] '= glil[1]):
s[i][1] = gl[i][11[:]
gli]l = gradient(graph,s,p,i,tar)[:]
for r in range (0,3"n):
s[r][0] = s[r1[0] - kxglr][0]
if s[r][0] < O:

s[rl[0] =0
if s[r][0] > 1:
s[r][0] =1

for v in range (0,3°n):

glvl = gradient(graph,s,p,v,tar) [:]
k = stepsize(s,m,n,h,g,p)
if k == 0:

return (energy(graph,s,p,3°n,tar),s)



return (energy(graph,s,p,3°n,tar),s)

B.6 Lattes Tripod Optimization

def lengths (graph, points, n, tar):
length = []
x = [0,0,0]
for i in range (0,n):
u = graph[i][:]

if ul1] == ’A>:
v =20

if u[1] == ’B’:
v=1

if u[1] == ’C’:
v =2

for j in range (0,3):
x[jl=graph[il [j]

if (x[3] == ’a°):
if (points[i][1]=="A"):
p = [tar[v]*(1-points[i][0]),’A’]
else:

p = [tar[0l+points[i] [0]*tar[v],’A’]

length.append(p)
if (x[j] == ’B’):

if (points[i][1]=="B’):

p = [tar[v]*(1-points[i][0]),’B’]
else:

p = [tar[1]+tar[v]*points[i] [0],’B’]
length.append(p)

if (x[j] == ’C’):
if (points[i][1]=="C’):
p = [tar[v]*(1-points[i][0]),°C’]
else:

p = [tar[2]+tar[v]*points[i][0],’C’]
length.append(p)
return length

de

=Y

tensionF (length,alpha,p):
return (length/alpha)”(p-1)

def tensionsK (lengths):

a=0
b=0
c=0

for i in range (0,len(lengths)):
if (lengths[i][1]=="A’):
a = a + lengths[i] [0]
if (lengths[i][1]=="B’):
b = b + lengths[i] [0]
if (lengths[i][1]=="C’):
c = ¢ + lengths[i] [0]
return [a,b,c]

Q
®
Fh

newlengths (ten,p):
x = [0,0,0]
for i in range (0,3):
x[i] = .6*(ten[il~(1/(p-1)))
return x

de:

h

optimizeFn(graph, p, n, number, tar, startpt):
s = startpt[:]
0
100000
for i in range (0,3"°n):
g.append ([0,°A’])
1

for 1 in range (0,3"°n):
gll] = gradient(graph,s,p,1l,tar)[:]
m = [(0,0)1%(3"n)
h = [(0,0)]*(3°n)
for j in range(1,number):
for x in range (0,37n):
hix] = glx][:]
mlx] = s[x][:]
if (sgn(glx][01)==1):
if (s[x][0] == 0):



u = 100000
else:
u = (s[x][0]/g[x][0])
elif (sgn(glx]1[0])==-1):
if (s[x][0] == 1):
u = 100000
else:
u = ((s[x][01-1)/glx][0])
if (u < k):
k=u
for i in range(0,37n):
if ((s[i][0] == 0)):
if (s[il[1] != glil[1]):
s[i1[1] = glil[1][:]
gli]l = gradient(graph,s,p,i,tar)[:]
for r in range (0,3°n):
s[r1[0] = s[r]1[0] - kxglr][0]
if s[r][0] < O:

s[rl[0] =0
if s[r]l[0] > 1:
s[r][0] =1

for v in range (0,3"n):

glv] = gradient(graph,s,p,v,tar)[:]
k = stepsize(s,m,n,h,g,p)
if k == 0:

return (energy(graph,s,p,3°n,tar),s)

return (energy(graph,s,p,3°n,tar),s)
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2 MATTHEW SCHOENBAUER

ABSTRACT. In these notes we shall be concerned with a relation between
topological quantum field theories (TQFTs) and cut and paste invari-
ants. I will give a full description of cut an paste invariants, cobordisms,
and TQFTs in a categrocial context. The cut and paste invariants, or
S K invariants, were studied in detail in the early 1970s by a group of
four young authors: Karras, Kreck, Neuman, and Ossa. SK invariants
are functions on the set of smooth manifolds that are invariant under
the cutting and pasting operation, and include the signature and Euler
characteristic. The four authors described these and weaker invariants,
called SK K invariants, whose values on manifolds depend on both the
cut and paste equivalence class and the gluing diffeomorphism. I will
conclude with a presentation of my work investigating a surprisingly
natural group homomorphism between the group of invertible TQFTs
and the group of SK K invariants. This homomorphism has an easy to
describe kernel. I will describe the image in certain dimensions by giving
necessary and sufficient conditions for a diffeo-invariant to be naturally
extended to an n-TQFT.

1. ASSUMED KNOWLEDGE

These notes assume that the reader is very familiar with general and
algebraic topology. In particular, the signature and Euler characteristic are
important concepts. In addition to this, the reader needs to understand the
basic notions of a smooth manifold and its tangent space.

Throughout the notes, all manifolds are smooth unless stated otherwise.

2. NOTATION
Symbol Meaning
!, H™ The upper and lower closed half n-spaces

aiM The boundary of a manifold M
M The oriented manifold M with the opposite orientation
I The unit interval [0, 1]

X(M) The Euler characteristic of M

o(M) The signature of M

% The dual space of the vector space V'

M UM’ The manifold resulting from gluing M and M’ via a
f diffeomorphism f of boundary components

3. CutT AND PASTE

In this section we will describe cutting and pasting operations on man-
ifolds and a naturally related equivalence relation on manifolds called the
“cut and paste” relation. We will also give examples of manifolds that are
cut and paste equivalent and functions on the set of manifolds that are in-
variant under this relation, which we will call cut and paste invariants. We
will conclude by imposing further structure on these equivalence classes to
form the SK-groups. 199
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3.1. The Pasting Operation.

Here we describe the process of pasting a manifold with boundary to-
gether via a diffeomorhpsim of boundary components. We will first describe
topological pasting, which is simpler, and then we will handle the smooth
case and the oriented smooth case, which require more care.

3.1.1. Topological Pasting.

Let M be a compact topological n-manifold (not necessarily connected)
with boundary components ¥; and 5. Let f be a homeomorphism »; —
Y9, and form a quotient space with quotient map ¢ as follows: If x ¢ ¥ U,
then g(z) = {z}. If x € ¥, identify ¢(z) = {z, f(x)}.

We will now show that under the quotient topology, the resulting space is a
compact topological manifold. Compactness follows from the compactness of
M, so we need only show the each point has a neighborhood homeomorphic
to R™.

Each point not in ¢(X; UXs9) retains its original neighborhood homeomor-
phic to R™. Now suppose z € ¥, and choose and neighborhood U of ¢(z)
so that ¢~ (U) = U, U Uf(x), where U, and Uy, are neighborhoods of x
and f(x), respectively, and there exist homeomorphisms vy : U, — H? and
Y2 : Upzy — HZ. Now the function

Yoo forpTt iR x {0} — R"! x {0} (3.1)
is clearly a homeomorphism. Now define a homeomorphism
h:HY (=R" ! x[0,00)) = H? (=R" x [0,00)) (3.2)

by h(x,zn) = (Y20 fo w;l(x)ywn)-
The homeomorphisms

hotroq " :q(Us) — HY (3.3)
and

Yo0q ' i q(Upy) — H” (3.4)
agree on the intersection of their domains, and similarly for their inverses.
Thus they can be pasted together to form a homeomorphism U — R".

3.1.2. Smooth Pasting.

Now that we have figured out how to paste a manifold with boundary
together topologically, we can describe the process of gluing together smooth
structures on manifolds. We cannot repeat the above process here, because
it is not guaranteed that the function resulting from the gluing of two smooth
functions is smooth.

Of course our only real problem is finding a suitable smooth structure
on neighborhoods of the boundary points: Interior points and their neigh-
borhoods are essentially unchanged in the gluing process. In order to zoom
in on this problem, we describe a “collar neighborhood” that each smooth
manifold has near any of its boundary components. In order to do this, we
state some results from Morse theor¥23
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Theorem 3.1. Let M be a smooth manifold. There exists a smooth func-
tion f : M — I such that f~1(0I) = OM and OM has no critical points.
In addition, if M is compact, f has finitely many critical points. Such a
function is called a Morse function.

Theorem 3.2. Let M be a compact manifold, and let f be a Morse function
with no critical points. Then M is diffeomorphic to the cylinder f~(0) x I.

Corollary 3.3. Let M be a compact smooth manifold with boundary com-
ponent 3. There exists a neighborhood U of 3 such that U is diffeomorphic
to X x I.

We will refer to this neighborhood as a “collar neighborhood” of X.

Proof. This follows quickly from the preceding two theorems. Choose a
Morse function f : M — I and choose € so that f~1([0,¢]) has no crit-
icial points. The component of f~1([0,¢]) that contains X is the desired
neighborhood. (|

By the above statements, it suffices to find a way to glue the smooth
structures of two cylinders in a way that makes the resulting cylinder a
smooth manifold without interfering with the smooth structures of the orig-
inal cylinders. Once this is complete, we will have chart neighborhoods of
each point in our glued manifold that satisfy the smooth coordinate change
criterion.

Let X be a closed manifold. We wish to find a smooth structure on the
manifold obtained by gluing ¥ x [0,1] and ¥ x [1,2] via a diffeomorphism
f X x {1} - X x {1}. Such a cylinder is called the mapping cylinder
of f. But this manifold is homeomorphic to ¥ x [0, 2], which has an ob-
vious smooth structure. We can now give the pasted cylinder the smooth
structure inherited by ¥ x [0,2] via this homeomorphism. In addition to
this, the restrictions of this homeomorphism to ¥ x [0,1] and ¥ x [1, 2] are
diffeomorphisms, so the smooth structure of the interior points of 3 x [0, 1]
and ¥ x [1,2] are unchanged.

We now have a well-defined process of gluing M via f : ¥ — ¥o. We
will call the resultant manifold M.

3.2. Oriented Smooth Pasting. Now that we have given a smooth struc-
ture to a pasted manifold, we must ensure that we can give it an orientation
that is coherent with the orientations of the original manifolds. The neces-
sary definitions are given below.

Definition 3.4. Let V be a finite-dimensional vector space. Form an equiv-
alence relation on the set of all ordered bases of V, declaring [v;...v,] ~
[w1 ...wy] if the determinant of the linear map v; — w; is positive. There
are clearly two such equivalence classes. An orientation on V is a choice of
one of these classes. A representative of this class is called a positive basis
of V. 124
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Definition 3.5. Let M be a smooth manifold. Suppose we can choose
orientations of each of the tangent spaces of M so that all coordinate change
maps send positive bases to positive bases. In this case, M is said to be
orientable, and this choice of bases is said to be an orientation of M.

Before we can deal with the problem of pasting oriented smooth manifolds
via the boundary, we must uniformly describe the way in which an oriented
manifold M induces an orientation on its boundary 9 M, which is a manifold
in its own right.

Since since orientations are defined locally, and locally every manifold
with boundary is HY, it suffices to describe the induced orientation only in
the case of H", which has boundary R"~! x {0}. Give H,I an orientation,
and let e; be the vector in R,, with i*” coordinate 1 and all other coordinates
0. [e1,...e,_1] be a basis for R"~! x {0}, which is the tangent space of 0 €
R™1 x {0}. [e1,...e,_1] is declared to be a positive basis if [e1, .. .e,_1,e,]
is a positive basis in the orientation of H. It is not hard to check that this
definition is coherent with coordinate changes. In this way, the orientation
of H determines the orientation of R"~! x {0}, and vice versa.

Now we can deal with the gluing problem, which is locally the case of
gluing H;F to H™. It is natural to think that we should give OHY and OH™
the same orientation. In this case the gluing diffemorphism (the identity) is
orientation-preserving. But if this is the case, then

[e1,...e,] and [e1,...—e,] (3.5)

are both positive bases for the tangent space at 0, even though the deter-
minant of the map between these bases is —1. If we give H" and 0H" the
opposite orientation this problem is solved.

Thus when gluing two manifolds M and N via an orientation-preserving
diffeomorphism f : 9M — ON, the resulting manifold is

My N. (3.6)

We can just as well glue two oriented manifolds via an orientation-reversing
diffeomorphism of the boundaries; in this case we obtain an oriented mani-
fold by simply not flipping the orientation of either of the original manifolds.

3.3. The Cut and Paste Relation.
We are now prepared to describe an equivalence relation on compact
manifolds.

Definition 3.6. Let M be a compact oriented (not necessarily connected)
manifold with boundary ¥ [[32. Let f and g be orientation-preserving
diffeomorphisms ¥ — Ys. We say that My, My, and all manifolds diffeo-
morphic to either are cut and paste equivalent or SK equivalent, and write
My ~si M,. 125
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The motivation for the choice of the term “cut and paste” should be clear.
We can picture obtaining My from M, by cutting along a codimension-1
submanifold X1 of My and gluing it back together in another way.

Also, “SK” stands for “schneiden” and “kleben,” the German words for
“to cut” and “to paste.”

It is even more visually appealing to think of the cutting process as cutting
the manifold into two pieces. This need not be the case; for example cutting
the torus S! x S1 along S! x {0} results in a space that is diffeomorphic to
a cylinder, hence connected. However, we can allow ourselves to think of
the situation as cutting the manifold into two components, for the following
reason: My in the above scenario has a one-sided collar “neighborhood”
of ¥, i.e. a collar neighborhood in M. Considering this neighborhood as
¥1 x I, we can cut Mj along the set corresponding to ¥; x {1/2}, and
during the gluing step glue this back together via the identity. This process
summarizes the proof of the following proposition, which will be important
for our upcoming endeavors.

Proposition 3.7. Two closed, connected oriented manifolds N and N’ are
cut and paste equivalent if and only if there exists a closed, connected, ori-
ented n-manifold M with (n — 1)-submanifold ¥ and n-submanifolds M,
My of M each with boundary ¥ such that N and N’ are obtained by gluing
the boundaries of My and Ms via orientation-preserving diffeomorphisms of
their boundaries.

3.4. Examples.
We now give two examples of cut and paste equivalent manifolds.

Example 3.8. Consider the unit circle S C R? oriented counterclockwise.
Cut along the points p; = (1,0), p2 = (0,1), p3 = (—1,0), and ps = (0, —1).
We now have four line segments with the orientations indicated in Figure 1.

py D3
D2 /‘ ‘\
Py P

p3 nn —
- +
) \w J pl
y2

pi pr

FIGURE 1. Cutting a circle

If we paste the boundaries via the diffeomorphism indicated in Figure 2,
we obtain two circles S]] S 126
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Py D3
Py | | P
Py pi
Py Py
paste
3 {p3.p7} {p3.pi} 2

FI1GURE 2. Gluing a circle

Thus St ~g5 S]] S

Example 3.9. Now we extend the ideas of both previous examples to con-
struct a rather interesting cut and paste equivalence. Let ¥ be a closed
manifold, and let f : 3 — X be an orientation-preserving diffeomorphism.
Paste together the boundary components of ¥ x I via f. The resulting space
is called the mapping torus of ¥ and f, which we will denote T, . T

Now let Ty y be any mapping torus. By cutting along the pasting sub-
manifold and the submanifolds corresponding to ¥ x {1/4}, ¥ x {1/2}, and
Y x {3/4}, and pasting in the a fashion similar to Example 3.8 and indicated
in Figure 3, we see that T f ~sx Tx ¢ [ [T ¢

3.5. Cut and Paste Invariants.

We are now suitably prepared to define and give examples of cut and
paste invariants. Let M, denote the set of all closed oriented n-manifolds,
and let M, N € M,,.

Definition 3.10. Let G, be a graded abelian group with n‘* group G,. A
function © : M,, — G, for all n is said to be a cut and paste invariant or
SK invariant if the following hold. 5~
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pasted via f

55
2 RN
Iy -
1
N o) cut X
2y
0%
S Yy
E;Q Oﬁzl
i [£ £ id)
23% >
)y ED My
paste
pasted via f pasted via f
%5 (%20 {35,553 %

FiGURE 3. Cutting and pasting of mapping torus

e O(M) = 0O(N) whenever M and N are cut and paste equivalent
e OMJ[N)=06(M)+ O(N)

The second criterion suggests that invariants that are determined by ho-
mology and cohomology will be good candidates to be cut and paste invari-
ants. In fact this will be the case with all examples.

One important example of a cut and paste invariant is the Euler charac-
teristic. The Euler characteristic maps each M, to Z, so the graded group
we are concerned has Z as all its coefficient groups. To show that it is a cut
and paste invariant, recall that the Euler characteristic satisfies

X(XUY) = x(X)gx(Y) = x(X NY) (3.7)
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if X and Y are open in X UY . This shows that x meets the second criterion
above.

Also recall that since it is formulated by the homology of the space, x is
a homotopy type invariant. Now let N and N’ be cut and paste equivalent
n-manifolds, and choose M7, Ms, and ¥ as in Proposition 3.7. Since X has
a collar neighborhood in M; and Mas, we have

X(N) = x(M1) + x(Mz) = x(2) = x(N). (3.8)

Thus x meets the first criterion above. The proof is simplified if we recall
that the Euler characteristic of a closed odd-dimensional manifold is always
zero. Thus the only case we really need to consider is the even-dimensional
case. In this case, the intersection term vanishes because it has the homotopy
type of a closed odd-dimensional manifold.

Another cut and paste invariant is the signature. That it is a cut and
paste invariant follows from a similar argument as above, replacing Equation
3.7 with the Novikov additivity property (See [AS68])

o(XUY)=0(X)+0o(). (3.9)

The importance of the two preceding examples is firmly established by
the following theorem.

Theorem 3.11. [KKNO73, p. 7] Any SK invariant is a linear combination
of the signature and the Euler characteristic.

We can also define a weaker class of invariants, which will be especially
interesting for later use.

Definition 3.12. Let G, be a graded abelian group with nt* group G,. A
function £ : M,, — G,, for all n > 0 is said to be an SKK invariant if the
following hold.

o {(M)—¢(N) =&(f.9)

o {(MIIN) =¢&(M)+E(N)
In the first equation, M and N are cut and paste equivalent, and f and g are
the gluing diffeomorphisms of M and N, respectively. £(f,g) is a function
that depends only on f and g.

Here the second “K” stands for kontrollierbar, the German word for “con-
trollable.”

If M and N are diffeomorphic, then {(M) = £(N) for all SK K invariants
&. Show this, it suffices to show that &(f, f) = 0. But this follows from
E(M) — £(M) = 0.

It is clear from the definitions that every SK invariant is an SK K invari-
ant. For an SK invariant, the “error” function is always zero.

We give one example of an SKK invariant. We give another example,
along with a complete classification P%S’K K invariants in Section 5.
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Definition 3.13. Let M be an n-dimensional manifold. We define the
Kervaire semicharacteristic x1/5 by

xX(M) n even

1
xij2(M) = Z (3.10)

See [KKNOT3, p. 44] for a proof that x/; is an SK K invariant in dimen-
sions 4n+1. It is an SK K invariant in all dimensions other than dimensions
dn — 1.

Ignoring dimensions 4n — 1, the Kervaire semicharacteristic is a good
example of an SKK invariant for which the graded group G, is not just
copies of the same group.

3.6. The SK and SKK Groups.

We now describe a group structure on the set M of all diffeomorphism
classes of closed oriented n-manifolds. We then form quotient groups of this
group that will allow us to give more concise and useful definitions of SK
and SK K invariants. We first introduce an important algebraic tool.

Definition 3.14. Let M be a commutative monoid. Let G(M) be the
abelian group whose elements are all symbols m and —m, where m € M,
subject to all the relations of M in addition to (—m) 4 (—m/) = —(m+m’)
and m + (—m) = 0. G(M) is called the Grothendieck group of M.

G(M) is clearly the minimal abelian group that contains M and preserves
its relations. For convenience, define O(—M) = —O(M) for all monoid
homomorphisms © : M — G, where G is a group.

We take advantage of this construction to form an abelian group that
contains M% M,% is obviously a commutative monoid under the operation
[1 with identity element (). Thus G (M%) is an abelian group. We are now
ready to form our quotient group.

Definition 3.15. Let R5% denote the subgroup of G (M%) generated by all
elements of the form [M]]] —[M’] where [M] ~gx [M']. G(M)/RSK =
SK, is called the nt* SK group.

We will let [M]skx denote the SK equivalence class of the manifold M.
The examples of Section 3.4 show that S' and any other mapping torus
represent the identity element in the respective SK group.

This definition give us a more concise way of defining SK invariants.

Definition 3.16. Let G, be a graded abelian group with n‘* group G,,. An
SK invariant is an element of the graded group Hom (SK,, G,,),.

Obviously all SK invariants are homomorphisms G (M%) — Gy, for all n,
and by definition they are the only such homomorphisms that vanish on
RK,

130
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We can define SK, to be the graded group whose n'” coordinate group is
SK,. Hom (SK,, G,,), is then canonically isomorphic to the group Hom (SK, Gy)
of homomorphisms of graded groups.

We would like to construct a quotient group of G (M%) that serves the same
purpose for SK K invariants. How can this be done? The stated condition

§(IM]) = &(INT) = &£(f. 9) (3.11)

when [M] ~gi [N] and f and g are the gluing diffeomorphisms of [M] and
[N], respectively, is equivalent to the condition

§([M]) = &(IN]) = £([M']) = £(INT]) (3.12)

when [M'] ~gx [N'] and f and g are also the gluing diffeomorphisms of
[M'] and [N'], respectively. This leads to the following definition.

Definition 3.17. Let R5XX denote the subgroup of Q(M%) generated by
all elements of the form

M [T -INM T = (] -1v), (3.13)

where [M] ~gg [N], [M'] ~sk [N’] and the gluing diffeomorphisms are
given by the above description. G(MS,)/RSEK = SKK,, is called the n'"
SKK group.

Just as in the case of SK,,, we will let [M]sxk denote the SK K equiva-
lence class of a closed manifold M and write M ~gxx M’ when [M]skx =
[M)skr. We now get our desired definition of the SK K invariants.

Definition 3.18. Let G, be a graded abelian group with n** group G,,. An
SK invariant is an element of the graded group Hom (SK K, Gy,),.

Defining the graded group SK K, analogously to SK,, we see again that
Hom (SK Ky, Gy), is canonically isomorphic to the group Hom (SK K, G)
of homomorphisms of graded groups.

We give two examples of nontrivial SK K equivalence. Both use a con-
struction on manifolds with boundary called a “double,” which is defined
below.

Definition 3.19. Let M be a compact oriented manifold with boundary.
We define the double of M to be the closed manifold

D(M)=M][]Mm. (3.14)
Our first example matches nicely with Example 3.9.

Example 3.20. Let X be a closed (n — 1)-manifold that bounds. We show
that [E X SI]SKK =0e€ SKK,.
Recall that

(Mlsxx — [Nlskr @M 'sxr — [N'skx (3.15)
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When [M]sk = [N]sk, [M'|sk = [N']sk, and M and N are glued, respec-
tively, via the same diffeomorphisms as M’ and N’. We make use of this
relation to prove the lemma.

Cut ¥ x S! along four diffeomorphic submanifolds X1, X9, 33, ¥4 as in
Example 3.9. The resulting manifold has

ST IS T TI= T TT = = (3.16)
as its boundary. Paste via the diffeomorphism
DI Iy
Xy =X
f= 22+ 4 (3.17)
3 23
DI Iy
which is the identity on each component. The resulting manifold is clearly
Y x SHIE x St
Now paste the cut manifold via the diffeomorphism
> -7
vy =y
DIEEEES Yy
I

(3.18)

The resulting manifold is 3 x S!.

We thus have two SK equivalent manifolds ¥ x ST[[ X x S and ¥ x S1,
where the gluing diffeomorphisms are f and g, respectively. This is exactly
the process we went through in Example 3.9, where all maps are the identity.
Now we take a different turn, and cut and paste a different manifold in an
analogous way in order to make use of Equation 3.15.

Choose a manifold M with O0M = Y. Take two copies of M and two
copies of M, and cut one of each along a submanifold diffeomorphic to X,
taking advantage of the collar neighborhood of 3. The resulting manifold,
pictured in Figure 4, is diffeomorphic to

MI[ExD][M]]Ex1), (3.19)

and thus has the expression 3.16 as its boundary.
Now by pasting via the diffeomorphisms f and g, one sees that the glued
manifolds are both

D(M) [ b (3.20)
Now we apply Equation 3.15. We have
£ x S = x Ssxx — [ x S'sxx = D) [] DOM))sxx
— [D(M) [ D)) sk
= x fidsxr =0,
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%

£t Q) (D@ 5o
o7 @CO @ of

g by

FI1GURE 4. The cut manifold
as desired.
Example 3.21. Let M be a closed n-manifold. Cut M along a codimension-

1 submanifold ¥ with trivial normal bundle that divides M into two mani-
folds M’ and M"| as in Figure 5.

M/
M//

FiGURE 513gutt1ng M
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We will show that
[D(M")skk + [D(M")) sk = 2[M]skK- (3.21)

This relation is pictured in Figure 6.
I I M//

FIGURE 6. Our desired relation in SK K,

We follow the same procedure as Example 3.20. We start with two “cut”
manifolds with boundary, and glue each in two different ways. This will allow
us to apply Equation 3.15 and prove the lemma. Our starting manifolds will

be

My =M [ [ ] M7 (3.22)
and

My =M [ [ ] 1. (3.23)
Both have

S [ ]I = (3.24)

as their boundaries. The two gluing diffeomorphisms are

ISy

D (3.25)
22—>E4
OISy
L7 (3.26)
2‘133)—> 24
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Gluing M{ via f, we obtain

DM [ p@17). (3.27)

Gluing M{ via g, we obtain
MM (3.28)

Gluing M3 via f, we obtain
M D@I7). (3.29)

Gluing M3 via g, we obtain
M D@I7). (3.30)

You can visualize this process with the following sequence of figures.

M/
22 ‘ 24 .

FIGURE 7. M7

M/

D) p(T)

FIGURE 8. M7 glued via f

135
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M M
FIGURE 9. M7 glued via g

ClIR

FIGURE 10. My

@ C

FIGURE 11. M glued via f

136
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M D(M")

FIGURE 12. MJ glued via g

Now we apply Equation 3.15. We remove the gx i subscripts. We have

[D(M")] + [D(M")] = 2[M] = [M] + [D(M")] — [M] — [D(M")]
[D(M")] + [D(M")] —2[M] =0 (3.31)
[D(M')] + [D(M")] = 2[M],

as desired.

We stated earlier that all SK invariants are SK K invariants. Let us make
sense of this statement in terms of our new definition of these invariants.

In a general algebraic context, note that for any abelian groups G, H,
and K with K < H, Hom (H/K,G) can be isomorphically embedded in
Hom (H,G). The monomorphism is defined as follows: Let ¢ be a homo-
morphism H/K — G, and let 7 be the quotient map H — H/K. Then
¢ o is a homomorphism H — G. Also, if ¢ o 7w is the zero homomor-
phism, then ¢ = 0 because 7 is surjective. Thus we have a monomorphism
Hom (H/K,G) — Hom (H, G).

Now we note that SK, is a quotient group of SKK,. This follows from
the fact that RYEK < RSK. Indeed every element in RSKX of the above

form
MITT -V TT - (@ T -1v) (3.32)

can be written as

(M=) TT - (VI T T - 1vD). (3.33)

The left parenthetical term has gluing diffeomorphism f ][] f and is SK
equivalent to the right parenthetical term, which has gluing diffeomorphism
g]]g. This is clearly an element of RSK.

Now let H, = SK,, and K,, = RSX /RSKK < SK,,. Then Hom (H,,/K,,G).
can be embedded in Hom (H,,, G),, which algebraically expresses the fact
that all SK invariants are SKK invppiants.
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4. CATEGORY THEORY

We now shift our focus to category theory, which will for a while seem
unrelated to the previous section. Category theory has a level of abstrac-
tion and generality that transcends the rest of mathematics. Indeed most
mathematical constructs serve as examples of ideas in category theory.

This section will include mostly definitions, all of which will be useful for
the upcoming sections.

Definition 4.1. A category C consists of

e A class of objects Cyg

e For each pair (X,Y) with XY € Cg, a set C(X,Y) of arrows
X=Y

e An associative law of composition of arrows C(X,Y) x C(Y,Z2) —
C(X, 2)

e For each X € C an identity arrow idy € C(X, X) with aoidy = a
and idxy ob =" for all a € C(X,Y) and b € C(Y, X)

Again, this probably seems rather abstract, so we clarify with a list of
examples given in the following chart.

Category Objects Arrows Identity arrow
Set Sets Set maps Identity map
Man Smooth manifolds Smooth maps Identity map
Top Topological spaces Continuous maps Identity map
Grp Groups Group homomorphisms Identity homomorphism
Vecty k-Vector spaces Linear maps Identity map
FinOrd Finite ordered sets Order-preserving maps Identity map

As you can see, many common mathematical objects are categories. It
should be clear from this that categories are something worth studying.

Note that after reading the definition of a category it is tempting to think
of categories as just collections of sets along with maps between the sets.
The chart shows that this is not the case, as the objects in general have
more structure than just a set. All of the above categories have a notion of
isomorphism, which we define properly below.

Definition 4.2. Let C be a category and X,Y € Cqy. An arrow a €
C(X,Y) is called an isomorphism is there is an arrow a~! € C(Y, X) with
aoa"!=idyx with a= ! oa = idy.

Below chart of isomorphisms that corresponds to the above chart of ex-
amples of categories. 138
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Category Isomorphism
Set Bijections
Man Diffeomorphisms
Top Homeomorphisms
Grp Group Isomorphisms
Vecty Vector space isomorphisms

FinOrd Order-preserving bijections

It might seems strange that all the arrows in the both charts are just
certain kinds of maps. Why, then, would we give them a name other than
“maps”? Well, in general there are plenty of categories whose arrows are not
maps at all. In the next section we will see an example of such a category.

We now present an object that serves as a sort of “function” between
categories.

Definition 4.3. A functor F between two categories C and D consists of a
map Co — Dy and for each X € Cgp amap F: C(X,Y) —» D(F(X), F(Y))
satisfying

e F(a)oF(b) =F(aob) fora € C(X,Y) and b € C(Y, Z)

Here are some examples of functors.

Example 4.4. “Forgetful” functors are functors that disregard structure.
For example, the functor Man — Top that disregards smooth structure
is forgetful. Other forgetful functors are Top — Set, Vect, — Grp, and
FinOrd — Set.

Example 4.5. A less trivial example is the functor Set — Vect; that
assigns to each set the free k-vector space whose basis is that set, and to
each set map the linear map formed by the unique linear extension of the
set map.

We now plunge further into the abstraction and define another sort of
“function” on between functors themselves.

Definition 4.6. Let C and D be categories, and F and G be functors
C — D. A natural transformation u : F — G consists of an arrow u(X) €
D(F(X),G(X)) for each X € Cg such that the following diagram commutes
for each X,Y € Cg and a € C(X,Y).

F(x) X,

F(a) G(a)
F(y) 2,

Functors and their natural transformations behave similarly to categories
and functors. This similarity is clariflﬁ with the following definition.
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Definition 4.7. Let C and D be categories. The functor category of C and
D, denoted Cat(C,D) has as its objects the functors C — D, and natural
transformations of functors as its arrows. The associative composition law is
the regular composition of arrows, and the identity natural transformation
consists only of identity arrows.

We will be interested in certain types of categories called symmetric
monoidal categories. In order to properly define such categories, we must
give a number of preliminary definitions.

Definition 4.8. Let C and D be categories. The Cartesian product category
C x D is the category with objects X¢ X Xp where X¢ € Cg and Xp € Dy
and arrows ac X ap : X¢ X Xp — Yo x Yp where ac € C(X¢, Yc) and
ap € D(XD X YD).

This definition may seem unnecessary, but remember that categories are
not sets, and that the usual definition of Cartesian product does not apply
here. It is also needed for the following definition.

Definition 4.9. A monoidal category is a triple (C,®,Z), where C is a
category, ® is a functor C x C — C, and Z is an object in C satisfying the
following properties. We write ®(X,Y) as X 0 Y.

e (XOY)oZ=X0(Y062)

e XOI=7T00X=X

Note the similarity with the definition of a monoid ([Koc04, p. 140]).

Some examples we would like to give of monoidal categories are (Vecty, ®, k),
(Man, [],0), and (Top,]],?). One might believe she or he can check easily
that all of these meet the above criteria. Strictly speaking, however, this
is not possible. For example (U ® V) ® W is not equal to U @ (V @ W),
but the two are canonically isomorphic. We really should require that the
equalities of the above definition be suitably natural isomorphisms, but to
do so properly would muddy the notation quite a bit and would not bring
about any essential change in the applications. We will consider each of the
above examples as monoidal categories. The dissatisfied reader is deferred
to [Koc04, p. 154].

The following definition should not be terribly surprising.

Definition 4.10. An object X in the monoidal category (C, ®,Z) is said to
be invertible if there exists an object X ' € Cwith X o X '=X"1oX =
T

Example 4.11. The invertible elements in the above monoidal categories
are not very interesting. If X is invertible in (Man,[],?) or (Top,]],0),
then there exists Y such that X [[Y = ), so we must have X = (. For
similar reasons, the only invertible elements in (Vecty, ®,k) are the vector
spaces isomorphic to k.

With this new structure on categories, it is reasonable to define functors
that respect it. 140
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Definition 4.12. Let (C,®,Z) and (C’,®’,Z') be monoidal categories. A
monoidal functor F : C — C'is a functor satisfying the following properties.
e F(XOY)=F(X)® F(Y)
e F(I)=T
e Fla®b) = F(a) ® F(b)
Where a € C(X,Y) and b € C'(X",Y").

Example 4.13. The only monoidal functor that we have access to right now
is the forgetful functor (Man,[[,0) — (Top,[],?). Checking the axioms
is trivial. Later we will develop more interesting examples of monoidal
functors.

We can also extend the idea of natural transformation to fit this monoidal
structure.

Definition 4.14. Let (C,®,Z) and (C,®',Z’) be monoidal categories and
F and G be monoidal functors C — C’. A natural transformation u : F —
G is called a monoidal natural transformation if u(X @Y) = u(X) @ u(Y)
for all X,Y € Cg and u(Z) = idy.

Definition 4.15. Let (C,®,Z) and (C’, ®',Z) be monoidal categories. Let
MonCat(C, C’) denote the category whose objects are monoidal functors
and whose arrows are monoidal natural transformations. MonCat(C, C’)
is called a monoidal functor category and has the natural structure of a
monoidal category. The “product” functor

©® : MonCat(C, C’') x MonCat(C,C') - MonCat(C,C') (4.1)

evaluated on monoidal functors F and G is the monoidal functor that sends
an element X to F(X) ® G(X), and acts similarly on arrows. The identity
object is the functor that sends all objects the the identity object of C’ and
all arrows to the identity arrow.

We have one last structure to add to our categories, which is a notion of
symmetry with the @ functor.

Definition 4.16. A symmetric monoidal category is a quadruple (C,®,Z, 7)
where (C, ®,7) is a monoidal category and 7 is collection of arrows {7xy €
C(X,Y) | X,Y € Cy} satisfying the following properties.

e For all arrows a : X — X' and b : Y — Y/, the following diagram
commutes.

Xoy X2, voex

a@bl lb@a
' r TXIYL 3y !
X oY —/—Y oX
e For all X,Y,Z € Co the follgyjng diagrams commute.
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TX,YOZ

XoYoez YOZoX
TX%J %{,Z
YoXoZ
XoYoez TXov.z Z0X0OY
idm Afiy
X0ZoY

® Txy OTyx = idxey
Tx,y is called the twist map of X and Y.

In the analogy between monoids and monoidal categories, a symmetric
monoidal category corresponds to a commutative monoid.

To make sense of the second axiom, note its similarity to the relations in
the symmetric group.

Here are some examples of symmetric monoidal categories.

Example 4.17. (Vecty, ®,k,7), (Man,]],0,7), and (Top,][,0,7) are all
symmetric monoidal categories. 7 in these examples is the canonical map
VeV V' @Vo MM — M [][M.

Note here that M [[ M’ is not the same thing as M’ ][] M. The isomor-
phism between them is so obvious that we often forget that it is not the
identity.

The next definition follows the pattern of the previous definitions.
Definition 4.18. Let (C,®,Z,7) and (C',®',Z’, 7’) be symmetric monoidal
categories. A symmetric monoidal functor F : C — C’ is a monoidal functor
that satisfies F(7xy) = T}/_;‘(X)’F(Y).

The following definition uses nearly all the ideas presented in this section
and will be the most important for the later sections.

Definition 4.19. Let (C,®,Z, 1) and (C',®',Z’,7') be symmetric monoidal
categories. Let SymMonCat(C, C’) denote the category whose objects are
symmetric monoidal functors C — C’ and whose arrows are monoidal nat-
ural transformations. SymMonCat(C, C’) is called a symmetric monoidal
functor category and has the natural structure of a symmetric monoidal
category. Given two symmetric monoidal functors F and G, the twist map
Tr g is the natural transformation u : F © G — G © F that assigns to each
object X the arrow T]’?(X)’G(X).

5. COBORDISMS

The goal of this section is to introduce a new category, n-cobordisms,
that will begin to justify the painfu],gmount of abstraction-present in the
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previous section. For this, we will be using ideas from both the previous
sections. Once this is done, we will construct the cobordism groups and
relate them to SK K invariants.

5.1. The Cobordism Category. Before the proper definition is given, it
is important the the reader can at least have a picture of what a cobordism
is. You can think of an oriented n-cobordism between two (n — 1)-manifolds
Yo and ¥; is an oriented m-manifold whose boundary is 3 [1%21. We will
write this cobordism as M : ¥y ~ X1. This notation indicates one need for
a better definition. Although it is not a map, we want the manifold M to
be, in some sense, “going from Y to 31.” This will allow us to make M the
arrow in our category.

2

FIGURE 13. A cobordism

Another reason that we need a better definition is because there are plenty
of manifolds with boundary ¥ ]] 1, and we would like to form an equiv-
alence relation on this set so that two cobordisms that have no differing
properties that we care about are members of the same class.

Now we can state the definition of cobordism.

Definition 5.1. Let Xy and ¥; be closed oriented (n — 1)-manifolds. An
oriented n-cobordism M is a manifold along with orientation-preserving dif-
feomorphisms

¢0 : Zo — 80M and (Z)l ¥ = 81M, (51)
where

OM = oM U Oy M. (5.2)

There do exist unoriented cobordisms, which resemble our description of
cobordism at the beginning of this chapter. We have no need for this type
of cobordism.

One benefit of this somewhat convoluted definition is that we can have a
cobordism between a closed manifold and itself. This would not be possible
if we defined a cobordism between g and ¥; to simply be an n-manifold
with in-boundary ¥y and out-boundary . If we did this, the in-boundaries
and out-boundaries may be diffeomorphic, but never the same manifold.

We are obviously limited in the dimension of cobordisms that can be
drawn on paper. We will show what we can. Here are a few examples
of oriented cobordisms. In our exarppjes, OoM consists of those boundary
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components with arrows facing toward the manifold, and 9y M consists of
the components with arrows facing away from the manifold.

Example 5.2. The simplest oriented cobordism is a closed line segment
with two points on the end, as in Figure 14.

+ +

AN AN
- L4 - L4

F1GURE 14. Cobordism of two points

A zero manifold is oriented simply by assigning a plus or minus to each
of its points.

Figure 15 shows some examples of oriented 2-cobordisms. The first shows
that M, ¥g, and X1 need not be connected. The second, which is often
called a “pair of pants” (for obvious reasons), shows that the boundary
manifolds need not have the same number of components. The third, quite
importantly, is a cobordism between two empty 1-manifolds.

FiGURE 15. Examples of 2-cobordisms

Now we explain, as promised, when we can consider two cobordisms to
be equivalent.

Definition 5.3. Two corbordisms M : ¥y ~ X1 and M’ : 3¢ ~ ¥ are said
to be equivalent if there exists an orientation-preserving diffeomorphism
making Diagram 5.3 commute. 144
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Cobordism equivalence is easily seen to be an equivalence relation. Thus
we can ignore superficial differences in cobordisms and refer only to cobor-
dism classes.

Note that two n-manifolds M and M’ can be diffemorphic while the cobor-
disms M : Xg ~ X1 and M’ : ¥y ~ X1 are not equivalent. One simple
counterexample, presented below, will be necessary for our categorical de-
scription of cobordism.

Definition 5.4. Let ¥ and ¥’ be closed (n — 1)-manifolds. The cobordism

O IDARFED | RS | b (5.3)

where ¢q is the identity and ¢; is the canonical twist map of the category
Man is called the twist cobordism and is denoted 7(3,Y¥’).

Figure 16 gives a picture of 7(S*, S}).

S S}

Sl St
FIiGURE 16. Twist

We note that 7(3, ¥') is not equivalent to the cylinder cobordism

O | DARFED] | DRSS | P8 (5.4)
even though their n-manifolds are the same.

Writing a cobordism as M : ¥y ~» 3; can be somewhat cumbersome
notationally, so we often abbreviate and have M denote the whole cobordism
M : Yy ~» 31. We have just shown that this is a bad idea, since cobordisms
contain important data beyond just the n-manifold M. However, it is the
most concise notation, and we will only use it when it causes no problems.

We want to be able to describe oriented n-cobordism classes as arrows in
a category whose objects are (n — 1)ﬁ§nifolds. What we are still missing is
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some way of “composing” cobordisms and an identity cobordism. Our com-
position process will be gluing of n-manifolds, and our identity cobordism
will be the cylinder cobordism, as we now describe.

Let M : X9 ~» X1 and M’ : ¥ ~» X5 be cobordisms. Let MM’ be the
manifold constructed as follows: Reverse the orientation of M’, so that the
diffeomorphism

Phodrt M — Do M (5.5)
is an orientation-preserving diffeomorphism of unions of boundary compo-
nents. Now we set

MM =M ) M =M ] M. (5.6)
$pody ! $pody '
Then MM’ : ¥y ~ Y5 is a cobordism, where the boundary diffeomorphisms
are those inherited by the original cobordisms.

It is easy to check that this gluing process is invariant under cobordism
equivalence. That is, if M ~ N and M’ ~ N’ (here ~ denotes cobordism
equivalence), then MM’ ~ NN’. This is done using the collar neighborhood
construction of Section 3.1.2. Also, this process is associative: (MM')M" ~
M(M'M"). Note that cobordism gluing would not be associative if we were
dealing with single cobordisms rather than cobordism classes.

Our last step before we can describe cobordisms categorically is to give
an identity element, which we have stated is the cylinder. Showing this is
easy. If M : 3y ~» X1 is a cobordism, then Y has a collar neighborhood in
M, which is diffeomorphic to the cylinder 31 x I. Of course gluing another
copy of 31 x I to the out-boundary of M gives an equivalent cobordism.

The same argument applies to the in-boundary, and we have (X x I)M ~
M ~ M3y x I).

Definition 5.5. Let nCob denote the category whose objects are closed
(n — 1)-manifolds and whose arrows are n-cobordisms.

We now give this category a symmetric monoidal structure. The monoidal
operation will be [ [, with identity element (). It is clear that (M [[ M) [ M"
MII(M'TIM") and M]J0 ~ Q][ M ~ M. We also see that the twist
cobordism satisfies the axioms of Definition 4.16. We give a pictorial repre-
sentation of the relation 7(S*, S1)7(S}, S1) in Figure 17.

We have now reached our desired categorical description of cobordisms.

Proposition 5.6. (nCob, [[,0,7) is a symmetric monoidal category.

5.2. Cobordism Groups. We can use the idea of cobordism to form yet
another equivalence relation on closed n-manifolds. We will again be able
to give these equivalence classes an abelian group structure.

Definition 5.7. Let ¥ and ¥; be closed oriented (n — 1)-manifolds. X
and Xq are called cobordant if there exists a cobordism M : Xg ~» Xq. In
this case we denote Xg ~q X1, or [Epl@ = [X1]a.
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St St St

S} St Sl
FIGURE 17. Double twist

This is clearly an equivalence relation. Two diffeomorphic manifolds are
cobordant via a cylinder cobordism, so this relation is coarser than the
diffeomorphism relation. This relation has the property

So ~a T1, Bp~a B = (S0 []20) ~a (S =), (5.7)

which allows us to define an associative law of composition on the set of
n-dimensional cobordism classes, which we denote by (2,,. But each element

[X]q in this monoid has an inverse, namely [X]q (See Figure 19). This leads
to the following definition.

Definition 5.8. {2, is an abelian group under the operation of disjoint
union, which we will call the n-cobordism group.

There is an equivalent way of formulating this group. In particular, we
can construct €2, by taking a quotient of the monoid M, of closed oriented
n-manifolds by the submonoid generated by all elements [X]g, where X
bounds.

We now relate the cobordism groups to the SK K groups.

Theorem 5.9. [KKNOT73, p. 44] The homomorphism SKK, — , that
assigns to each manifold its cobordism class is a surjective SKK invariant.

Theorem 5.10. [KKNOT73, p. 44] The following sequence is exact
0—1I,— SKK, — Q, =0, (5.8)
where
I, =7 n=0mod?2
In=<1,=79 n=1mod 4 (5.9)
I,=0 n =3 mod 4
In addition, x splits the sequence in dimensions divisible by 4, and x1 /o splits

the sequence in dimensions n = 1,2 mod 4.

This reduces the problem of completely classifying the SK K groups and
the SKK invariants to the problem of classifying the cobordism groups.
We list the most interesting descriptions of SK K invariants in each di-
mension. The only nontrivial Z—vzﬂﬁed 2n-dimensional SKK invariants
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are linear combinations of x and elements of Hom (€2,,Z). In dimensions
4n+1, the Zs-valued invariants include combinations of x; /; and elements of
Hom (4,41, Z2). It follows from this that o is a bordism invariant. Lastly,
Hom (SK K4pn+3,G) = Hom (Q4p,43, G) for all G.

This gives us plenty of information about elements of the SK K group, as
the following lemma illustrates.

Lemma 5.11. Let X be a closed n-manifold. Then [~ x S sk has finite
order in SKK,,.

Proof. By Theorem 5.10, SK K, is isomorphic to I, @ €),,. The projection
map SK K, — Iy is given by x; ; or x, and the projection map SK K, — {1,
is given by the homomorphism [X|sxx — [X]q. I, is infinite if and only
if the splitting homomorphism is given by a multiple of y. But it is clear
that x(2 x S!') = 0 by the multiplicativity of the Euler characteristic. Also,
[ x SYq = 0 because

¥ x St =09(% x D?). (5.10)
Thus [¥ x SYskxk has finite order. O

Much is known about the cobordism groups. One particular result, mak-
ing use of the theory of characteristic classes, will be especially useful to
us.

Theorem 5.12. [MS74, p. 216] Q, is finite if n Z 0 mod 4. Qu, is free
of rank p(n), the number of partitions of n. The Pontryagin numbers are a
complete invariant on Q4,.

6. TorPoLOGICAL QUANTUM FIELD THEORIES

In this section we define topological quantum field theories (TQFTs) and
give examples of computations that can be done with them. The name
might suggest that we are going to be doing some physics in this section,
but that is not the case. Although TQFTs were created by physicists and
certainly have physical relevance, they are also studied by mathematicians
for purposes independent of physical appliations. We will be taking the
route of the mathematicians.

Michael Atiyah gave an axiomatic definition of TQFTs in his 1988 paper
“Topological quantum field theories” [Ati88]. His definition is equivalent to
the following:

Definition 6.1. An n-dimensional oriented TQFT is a rule T that assigns
to each oriented (n—1)-manifold ¥ a vector space T (X) and to each oriented
cobordism M : ¥y — ¥ a linear map T (M) : T(3g) — T (X1), satisfying
the following properties.

(1) Two equivalent cobordisms have the same image.

M~ M = (M) =T(M) (6.1)
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(2) A glued cobordism goes to a composition of linear maps.

T(MM') =T (M)oT (M) (6.2)
(3) A cylinder cobordism gets sent to the identity map.
(4) Disjoint unions of (n—1)-manifolds and cobordisms get sent to tensor
products.
TE[[Z) =TE eTE) (6.4)
TM] M) =T(M)eT(M) (6.5)
(5) The empty manifold () gets sent to the ground field k.
T =k (6.6)
A TQFT is represented pictorially in Figure 18
EO E1
O O
T ] T ’T
T(M) ,
T(%) T(X)

Ficure 18. A TQFT

You might notice that this list of axioms seems to be expressing functo-
riality for 7. This leads to the following more concise definition.

Definition 6.2. An n-dimensional oriented TQFT is a symmetric monoidal
functor nCob — Vecty,.

You can easily check that these definitions are almost equivalent. The
second is a bit stronger, because the first does not require that 7 satisfy the
twist axioms of Definition 4.16. This would not cause much of a problem,
but in any case we will use the first definition.

Now we make use of some algebraic constructions that we can use to give
some surprising restrictions on TQFTs.

Definition 6.3. Let V and W be k vector spaces. A linear map v : VW —
k is called a pairing. v is called nondegenerate if there exists a linear map
B:k =W ®V, called a copairing such that the composites

Vi=Vek Y yvewev 2 ke vi=V) (6.7)

and
W=koW) ZY weovew % wek=w)  (68)
are equal to idy and idyy, respectiveildyg
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See [Koc04, p. 83-85] for proofs of the following.

Lemma 6.4. If v : V@ W — k is a nondegenerate pairing, then both V
and W are finite-dimensional.

Lemma 6.5. Given a nondegnerate pairing v : V@ W — k, there are
canonical isomorphisms X\ : V. — W* and N : W — V* defined by

Av) =w = yvew) and N(w):=v—y(v@w). (6.9)

Now we show how this relates to TQFTs. Consider the cylinder > x I.
Instead of considering ¥ x I a cobordism ¥ ~~ X, we can consider it a
cobordism X [[% ~ (). Thus cobordism is often called a “U-tube.” The
name is justified by Figure 19.

FIGURE 19. A “U-tube”

We will have (X x I)" denote the reversed cobordism @) ~ X ][ 3, pictured
in Figure 20.

FI1GURE 20. Reversed U-tube

Under a TQFT T, (X x I)' gets sent to a pairing

T(ExD):TE)RT(E) =k (6.10)
and (X x I)” gets sent to a map
T(ExD): k—=TE)T(X). (6.11)

We will show that T((X x I)”) is a copairing for T((X x I)"). This will
show that the pairing is nondegenerate, from which two interesting facts
will follow. The first is that 7 (X) is necessarily of finite dimension, and the
second is that there is a canonical isomorphism between 7 (%) and T (X)*.
Consider the composition in Figure 6.
This cobordism, sometimes called the snake decomposition, is a composi-
tion of the cobordisms ¥ x I T[(X x4kl and (X x I)' [[% x I and is clearly
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X by

F1GURE 21. Snake decomposition of the cylinder

equivalent to to identity cobordism. Thus it gets sent under 7 to idy(x).
However, it also gets sent to the map

id (s ®(SxI)" — T((=xI))®id
T(2) 0 k TN 5 0 T(E) 0 T(x) LT, 4 o 7w
(6.12)
by the axioms for TQFTs. Thus Equation 6.7 is satisfied.
Now reverse the orientation, as in Figure 22.
3 D
FIcURE 22. Reverse snake decomposition
Here we see that
_ T((ExD")®idr s _ _ id s @T ((EXT) _
k©7T () (&)t TE)RTE)TE) — (&) TE) ek
(6.13)

is equal to idr s, and Equation 6.8 is satisfied. Thus T((X x 1)") is a
copairing for 7((X x I)"). 151
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FIGURE 23. Decomposition of ¥ x S!

Now consider the cobordism ¥ x S, and decompose it as in Figure 23.

This is a cobordism between two empty manifolds; thus under any TQFT
it is sent to a linear map k — k, which is essentially a scalar. What
do we know about this scalar? Well, our decomposition above shows that
Y x Sl ~ (2 x I)"(X x I)'. We take avantage of our knowledge of these
smaller pieces to do some investigating and see which scalar is associated
with the composite T (X x I)" o T (X x I)'.

The only important fact here is that we have the composite of a copairing,
a twist, and its pairing, not that we are dealing with manifolds or TQFTs.
For this reason we use the simpler notation of maps v : V® W — k and
B:k—->VeW.

Now remember that if {v;}i1<i<y is a basis for V and {w; }1<;<y, is a basis
for W, then {v; ® w;}1<; j<n is a basis for V ® W. Now ~ is completely
determined by assigning a scalar ;; to each of these n? elements, and 3 is
completely determined by

n
BL) =D Bij-viaw; VW (6.14)
0.
Thus we can associate to v and 3 the n x n matrices {~;;} and {f;;}.
We wish to use the nondegeneracy condition to see what the relationship
between these two matrices is. Let 7 denote the obvious twist W @ V' —
V @ W. The condition requires

(idy @ (yoT))o(f®idy)=1idy. (6.15)

This holds if and only if it holds on the basis elements of V. Thus we must
have for each vy,

vi = (idy ® (yo7))(B(1) ® Vi)
= (idy ® (Yo ))(D_ Bij - vi @ W;) @ Vi)
1,7
= (idy @ (yo T))(Z Bij - Vi @ W; ® Vi)

ihj

=> vilD>_%i;Bri)-

92

(6.16)
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This means that
> %iiBri =0 fori#k (6.17)
J

and

> %iiBrj =1 fori=k. (6.18)
J

This is equivalent to the condition that

{Bi}" = {vis} " (6.19)

We have uncovered the restriction given by the nondegeneracy condition,
and we can now find our scalar associated with ¥ x S'. We keep the simpler
notation.

n

Y(BL) =1} Bij(vi @ w;))
ivj

n
= By
i’j

=N

(6.20)

The last equality comes from Equations 6.17 and 6.18. Thus the scalar
associated with ¥ x S1 is dim 7(X). That is, the image of 3 x S under any
TQFT is completely determined by the image of 3.

7. INVERTIBLE TQFTSs

Since each n-TQFT is a symmetric monoidal functor nCob — Vecty we
can consider the symmetric monoidal functor category

SymMonCat(nCob, Vecty) (7.1)

whose objects are oriented n-TQFTs and whose arrows are natural trans-
formations of n-TQFTs. We will denote this category as nTQFTy. The
product of two TQFTs 77 and 75 is the TQFT

T @7 (7.2)
that assigns to each (n — 1)-manifold ¥ the vector space
Ti(2) ® T2(X) (7.3)
and to each cobordism M : X ~ ¥/ the linear map
Ti(M) @ To(M). (7.4)

The identity is the trivial TQFT, which sends each (n — 1)-manifold to k
and each n-cobordism to the identit¥53
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The arrows are natural transformations of TQFTs. As a reminder, these
natural transformations assign to each (n — 1)-manifold ¥ and each pair
(T1,T2) of TQFTs a linear map

w(X) : Ti(E) = Ta(%) (7.5)
that satisfies
Ta(M) o u(%) = u(X') o Ti(M) (7.6)
for each cobordism M : ¥ ~ Y. The twist map in this category is the
natural transformation between TQFTs 77 and 7T that assigns to each (n —
1)-manifold ¥ the cobordism 7(71(X), T2(X)).

We wish to study the invertible objects in nTQF Ty, that is, the TQFT's
T with an inverse 7’ such that 7 ® 7" is the trivial TQFT. Since tensoring
multiplies the dimension of finite-dimensional vector spaces, each vector
space that 7 assigns to an (n — 1)-manifold must be 1-dimensional, i.e.
isomorphic to k.

We investigate what linear maps invertible TQFTs can assign to cobor-
disms. Since all linear maps k — k are simply scalar multiplication, each

map that 7 assigns to an n-manifold is a nonzero scalar. If Ay and As are
maps k — k where A; is multiplication by the scalar A;, then the map

A®RA: kek—okok (7.7)

can be canonically identified with the multiplication by A; - Ao map k —
k. Since this tensored linear map must be the identity for the product of
an invertible TQFT and its inverse, all linear maps assigned by invertible
TQFTs must be invertible, or multiplication by a nonzero scalar. A pictorial
representation of an invertible TQFT is given in figure 24.

- : -

FIGURE 24. An invertible TQFT

It is clear that the set of invertible TQFTs forms a group under the
composition operation in nTQFT;.. We will denote this group as nTQFTIL.

What we will do next combines many of the ideas that we have presented
so far. Our goal is to determine the relationship between how invertible
TQFTs act on two cut and paste equivalent closed manifolds considered as
cobordisms ) ~ (). 154
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Let 7 be an invertible TQFT and let M and N be cut and paste equivalent
closed manifolds, with gluing diffemorphisms f and g : 0 — 3, respectively,
as in figure 25.

pasted via f pasted via g
‘ ‘
FI1GURE 25. Cut and paste equivalent manifolds
Also let § be the canonical isomorphism Hom (k*,k*) — k*, where
k* =k — {0}, and the homomorphisms are of multiplicative groups. Now

using the fact that 3 has a collar neighborhood in both M and N, we can
replace M and N with the equivalent cobordisms

M'C¢M" and M'CyM”, (7.8)
as in Figure 7.

pasted via f pasted via ¢

M’ Cf I M M’ Cg M

FIGURE 26. Equivalent cobordisms

Here Cy denotes the mapping cylinder! of f. Now evaluating 7 on both

cobordisms and taking a quotient, we see an interesting relation.
O(T(MCyM"))  6(T(M))-6(T(Cy)) - 6(T(M')) _ 6(T(Cy))
S(T(MC,M')) ~ 3(T(M))-8(T(Cy))-8(T(M) ~ 3(T(Cy))

The above equation is valid because all scalars are required to be nonzero
by the invertibility of 7.

(7.9)

1 .
See Section 3.1.2 155
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8. RESULTS

We now relate the ideas of invertible TQFTs and SK K invariants. Let
kX be a graded group with n” coordinate group kX, where k,, is a field. The
relation will be expressed by means of a homomorphism of graded groups

U, : *TQFT]_ — Hom (SKK,, k). (8.1)

where *TQFTL is the graded group whose n'" coordinate group is nTQFT]EL{n.
Let 7, € nTQFTLn. We define a homomorphism

Un(Tn) : GOME,) — Ky (8.2)

as follows. If [X] € Q(M%), then W, (7,)([X]) = 0(Tn([X])). That this is a
group homomorphism follows from the TQFT axioms.

Now let M and N be cut and paste equivalent closed oriented n-manifolds,
where f and g are the gluing diffeomorphisms of M and N, respectively. We
have shown in Section 7 that

Un(Tn)(M) _ 6(Tn(M)) _ 6(Tn(Cy))
Un(T)(N)  6(Tn(N))  6(Tu(Cy))

The notation is a bit different since we are dealing with a multiplicative
group, but this is precisely the first criterion of Definition 3.12. Thus ¥,,(7y)
induces a homomorphism SK K, — k), which we will continue to denote

U, (7). Thus ¥, (7,) is an SKK invariant on n-manifolds, and ¥,, is a
homomorphism nTQFTﬂin — Hom (SK K, k7).

We define ¥, to be the homomorphism of graded groups whose nt" coor-
dinate homomorphism is W,.

W, gives a natural relationship between invertible TQFTs and SK K in-
variants. Note that this relationship only makes sense if each G, of Defini-
tion 3.12 is the multiplication group of a field. This causes a problem for
the SK K invariants we have given, since the target groups here include Z,
which is not isomorphic to the multiplication group of any field. However,
the problem is solved by the exponential map =z — e®, as we now show.

If there is a monomorphism f : G, — k), then there is a natural
monomorphism

= Un(Ta)(f, 9)- (8.3)

f:Hom (SKK,,G,),— Hom (SKK,, k). (8.4)

Thus if G, is isomorphic to a subgroup of some k,, then we can uniquely
identify each element of Hom (SK K,,, G;,) with an element of Hom (SK K,,, k.S ),
which can then be potentially identified with an invertible *-TQFT.

x — €% maps Z monomorphically to a subgroup of R*. Thus, for example,
x and o can be thought of as elements of Hom (SKK,,R*),.

We will be interested in finding the kernel and image of W,. The kernel
is easy to describe. 156
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Theorem 8.1. The kernel of U, is the graded subgroup Z. of *TQFTL,
where Ty, consists of all invertible n-TQFTs T,, such that T, (M) = id]ké for
all closed n-manifolds M.

Proof. Let T, be an oriented invertible n-TQFT, and suppose ¥,,(7,) is the
trivial SK K,-invariant, i.e. the invariant that sends all closed n-manifolds
to 1 € k). Then obviously 7, € 7,. It is also clear that 7,, € .9, = T, €
ker U,,. O

The proposition above expresses a degree of “forgetfulness” of ¥,. TQFTs
assign values to all cobordisms, with or without boundary, and SK K invari-
ants are only defined on closed manifolds. Thus by applying ¥, to 7. one
loses some information about 7, as the following theorem shows.

Theorem 8.2. 7, is trivial if and only if k) is trivial.

Proof. First suppose k is trivial. Then there is obviously only one possible
TQFT in each dimension, which is the trivial TQFT. In this case J; is
clearly trivial.

Now suppose k; is nontrivial. We must define T, € *TQFT]L* so that T,
evaluates closed manifolds trivially and manifolds with boundary nontriv-
ially. It suffices to define 7, in dimension n. We proceed as follows.

Let 7(X) = k for all (n — 1)-manifolds ¥. Then assign to each closed
connected (n — 1)-manifold ¥ a scalar Ay. We require Ay ¢ {0,1} if X # 0
whenever this is possible, and ¥j = 1. Now for any cobordism

n m

MJ]si~ 5 (8.5)

i=0 3=0

we define
700 =57 (T s TS (8.6)
i=0 §=0

Now we check the axioms of Definition 6.1 in order. The value 7, as-
signs to an n-cobordism depends only on its in-boundary and out-boundary.
Equivalent cobordisms must have the same in-boundary and out-boundary,
so (1) holds.

Now consider axiom (2), and let

m l
M TS~ T = (8.7)

J=0157 k=0
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be another cobordism. We have

5 OA& ’ﬁ)xg;)

1=

T.(M

3
3

(T T T 1)
i=0 j=0 k=0
5 1(

[T )0 (T T
= Tn(M)

j= k=0
and (2) is satisfied. A connected cylinder cobordism of ¥ is a cobordism
> ~» ¥, so we have

(8.8)

<.
I
o

=
,’:]3

Ay,

0

o o
.
I
o

Tn(M

N>

To(Sx 1) =6 As - Agh)
=6"1(1) (8.9)

so (3) is satisfied. The disconnected case follows from (4), which clearly
follows from Equation 8.6. (5) is satisfied trivially.
Thus 7, is an n-TQFT, and for all closed manifolds M,

To(M) =5 (Ao Ny )
=51(1) (8.10)
= idyx -

Since n was chosen arbitrarily, we have a *-TQFT 7, which is by the pre-
vious statement an element of .7,. We chose T, to take on nontrivial values,
so T, is not the trivial TQFT. O

We now want to try to figure out the image of W,. One problem, of
course, comes from the “forgetfullness” of ¥,. Given an SKK invariant &,
we would like to choose an invertible - TQFT 7, such that ¥,(7.) = £. But
£ gives us no explicit information as to how 7, should evaluate cobordisms
with nonempty boundary!

The SK K invariants that we’ve listed, however, do give us information
about how to evaluate such cobordisms. The following proposition gives a
necessary and sufficient condition for an invariant © on orientated diffeo-
morphism classes of n-manifolds with boundary to be “naturally identified”
with an invertible n-TQFT. By this, we mean that we can define an n-TQFT
that sends all boundary manifolds to k and evaluates cobordisms the same
way © evaluates manifolds, modulo the identity Hom (k*, k*) = k*.

Here let Mﬁ denote the set of orientated diffeomorphism classes of com-
pact n-manifolds with boundary. —-¢
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Theorem 8.3. Let © be a function ME — k*. © can be naturally identified
with an invertible n-TQFT if and only if

oM LfJ M) =0e(M)-e(M") (8.11)
for all [M],[M'] € M. Here f s any orientation-preserving diffeomorphism

O M — OgM', where O1M and OgM' are unions of boundary components of
M and M’, respectively.

Proof. First suppose that Equation 8.11 holds. We check the TQFT axioms
of Definition 6.1.

(1) is clearly satisfied, since for any equivalent n-cobordisms M and N,
there is an orientation-preserving diffeomorphism v : M — N. © must
evaluate such cobordisms equally. (2) is satisfied by Equation 8.11. To
show (3), note that

O[S x I]) = O([S x 1)) - O([ x 1)) (8.12)

for all closed (n — 1)-manifolds ¥, so we must have O([X x I]) = 1. (4) is
also satisfied by Equation 8.11, where f is an empty map. (5) is satisfied
trivially.

Now suppose © can be naturally extended to an n-TQFT 7. Then T must
evaluate n-cobordisms based only on their oriented diffeomorphism class.
Now let f : O, M — JyM’ be an orientation-preserving diffeomorphism. We
can easily form cobordisms M : 9gM ~» 1M and M’ : Oy M ~» 0, M', where
the in-boundary diffeomorphism of M’ is f. The glued cobordism then has

My M (8.13)

as its n-manifold. Thus by axiom (2) of Definition 6.1, Equation 8.11 must
hold. U

We actually just proved that under the stated conditions, axiom (2) of
Definition 6.1 is equivalent to all the axioms of Definition 6.1. However,
Equation 8.11 is more readily accessible for our examples, as the following
corollaries show.

Corollary 8.4. If an oriented n-diffeomorphism invariant © on manifolds
with boundary can be naturally identified with an invertible n-TQFT, then
it restricts to a linear combination of the Fuler characteristic and signature
on closed manifolds.

Proof. Because our choice of f was arbitrary in Theorem 8.3, © restricts
to an SK invariant on closed manifolds. The result follows from Theorem
3.11. O

Corollary 8.5. x and X1/, can be naturally identifed with n-TQFTs if
and only if n is even. A linear combination of Pontryagin numbers can be
naturally identified with a TQFT iffggi only if it equals the signature.
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Proof. Remember that we must compose each of the additive integer and
rational invariants with the map r — e* in order for them to meet the
hypotheses of Theorem 8.3. Thus what we normally think of as addition for
these invariants becomes multiplication.

For n even, x and x;/, satisfy Equation 8.11 by Equation 3.8 and the
fact that the Euler characteristic of any closed odd-dimensional manifold is
zero. The result then follows from Theorem 8.3.

Now let n be odd. The n-disk has Euler characteristic 1. We can glue two
n-disks to form an n-sphere, which has Euler characteristic 0, contradicting
Equation 8.11. Thus the Euler characteristic cannot be naturally identified
with an n-TQFT for n odd.

That x;/o cannot be naturally identified with an n-TQFT for n odd fol-
lows from Corollary 8.4.

Now o satisfies Equation 8.11 by Equation 3.9. The final statement then
follows from Corollary 8.4. O

Note that the above corollary is not a proof that W, is not surjective.
We have only given conditions for an oriented diffeomorphism invariant on
manifolds with boundary to be naturally identified with a TQFT. In general
an n-TQFT can pick up more information than just the oriented diffeomor-
phism class of the n-manifold; in particular, it notices the choice of boundary
manifolds and diffeomorphisms. These choices completely determine how
cobordisms are glued. This is why © does not notice how manifolds are
glued.

So we have not ruled out the possibility that, for example, the Pontryagin
numbers are in the image of ¥,. However, if we were to identify them with
a *-TQFT, the TQFT would have to detect more than the oriented diffeo-
morphism type of a cobordism, and therefore disagree with the Pontryagin
numbers on some cobordisms with boundary. The same holds for all torsion
bordism invariants and the Kervaire semicharacteristic. Such identifications
would be rather unnatural.

We now have a description of the image of W, in certain dimensions for
torsion-free multiplicative groups.

Theorem 8.6. Let k) be torsion-free forn =4 and alln # 0 mod 4 . Then
W, is surjective in each of these dimensions.

Proof. Since kj is torsion-free, any homomorphism ¢ : SKK,; — kj is
the composition of the homomorphism y ® ¢ : SKKy — Z & Z and a
homomorphism ¢ : Z & Z — kj . The oriented diffeomorphism invariant

go(x®o): M} -k (8.14)

obeys Equation 8.11, and thus defines a TQFT. The same argument applies
for n = 2 mod 4, replacing x @ o with x/2 and Z & Z with Z. For n =
1,3 mod 4, SK K, is finite and thus admits no nontrivial homomorphisms
SKK, — k. 160 O
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Abstract

I1is a reversible programming language by Sabry et al. inspired by type-
theoretic isomorphisms. We give a model for I1: a univalent universe of finite
types in homotopy type theory. Using properties of univalent fibrations, the
underlying concept of this model, we give formal proofs in Agda that pro-
grams in I1 are complete with respect to this model. Additionally, we discuss
this model and extensions to IT through the lens of synthetic homotopy the-
ory.

Contents

1 Introduction
1.1 Reversibility . . . . . ... ... ...
1.2 TypeTheory. .. ... .. ... . . . ... .
1.3 Martin-Lof Type Theory . . . . . ... ... ... ... .....
1.4 Homotopy Type Theory . . . . . . .. .. ... ... ... ....

2 Univalent Universe of Finite Types
2.1 Univalent Fibrations . . . . .. .. ... .. ... ........
2.2 Theis—finiteFamily . . . . . ... ... ... ... ........

3 Pi

4 Completeness of Level 0
S Future Work

6 Acknowledgements

References

162

0 W NN

12
13
13

15

16

19

19

19



1 Introduction

1.1 Reversibility

Reversibility is a paradigm in which computations and their effects may be re-
versed. This is prevalent in computing applications, giving rise to ad hoc im-
plementations in both hardware and software alike. In particular, transactional
databases operate on the basic concept that operations on data may be committed
to memory or rolled back [11], and version control systems like darcs are based
on patch theory, an algebra for file changes[1]. At the software level, this has mo-
tivated the development of general-purpose reversible programming languages.

Instead of relying on an operational model, the IT language by Sabry et al.
begins with different foundations. To elaborate, a natural type-theoretic notion of
reversibility is given by type isomorphisms i.e. lossless transformations over struc-
tured data. Thus, II is a calculus for such isomorphisms, giving rise to a feature-
complete reversible functional programming language [11]. To understand IT and
its model, we give a brief introduction to the type theories we use to formalize
them.

1.2 Type Theory

A type theory is a formal system for types, terms, and their computational inter-
actions. A helpful analogy to understand type theory at first is to conceptualize
types as sets and terms as their elements. Like set theory, type theories have rules
governing type formation as there are axioms about set construction e.g. the ax-
iom of pairing, but there are important distinctions. Whereas set theory makes set
membership a proposition provable within the system, terms do not exist without
an a priori notion of what type they belong to—one writes a : A (pronounced
“a inhabits A”) to introduce a term a of type A [5]. As a result, terms are also
called inhabitants, and we will use those terms (pun intended) interchangeably
throughout the rest of the paper.

Perhaps the distinguishing feature of type theories are their explicit treatment
of computation: computation rules dictate how terms reduce to values. To pro-
gramming language theorists, type theories formally describe programming lan-
guages and computation rules are precisely the structured operational semantics.
On the other hand, set theories have no such equivalent concept.

This emphasis on computation has several applications to computer science.
First, the type systems of such programming languages as Haskell are based on cer-
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tain type theories (specifically, System F). Aside from their utility in programming
language design, sufficiently sophisticated type theories are suitable as alternative
foundations of mathematics to set theory. In fact, Martin-Lof type theory (MLTT)
is the basis of many programs aiming to formalize constructive mathematics. To
understand how this is possible, recall that set theories consist of rules govern-
ing the behavior of sets as well as an underlying logic to express propositions and
their truth. Thus, it remains to show that type theories, under the availability of
certain type formers, are languages that can express the construction of arbitrary
mathematical objects as well as encode propositions as types and act as deductive
systems in their own right [6].

Thus, we will first give a brief introduction to MLTT in Agda, a programming
language and proof assistant based on MLTT.

1.3 Martin-Lof Type Theory

Continuing the analogy that types are sets, the following table describes the set-
theoretic analogue of each type former in MLTT. The syntax of the terms inhabit-
ing these types are in almost one-to-one correspondence with classical mathemat-
ics, with caveats explained below [12].

type set
U or Type universal set
0 %)
1 singleton
N Peano numbers
A+ B coproduct A LI B
AXB AXB
A —> B | function space B4

The function type is perhaps the most novel type to mathematicians who are
used to set theory. First, functions are no longer specialized sets amenable to im-
plicit descriptions, so we require an explicit syntax to construct them. Inspired by
Alonzo Church’s lambda calculus, functions of type A — B are written Ax — e
(called a lambda abstraction) where x is the argument of type A and e is an ex-
pression of type B that may freely use x. In Agda, one may either use lambda
abstractions or traditional mathematical notation to write functions—we will use
both throughout this paper. Then, to apply a function f to argument x, one can
write either f x or f(x)—we will use the former in writing Agda and the latter

164



elsewhere. As an example, consider the following definition of add for the natural
numbers. First, the type of the term is declared and then the definition is given.

add: —» -
add0 n=n
add (succ m) n = succ (add m n)

This definition makes use of currying—as opposed to writing this multiar-
gument function as being of type N X N — N, we have written a function that
consumes an argument of type N—the first argument—and then returns a function
of type N — N that consumes the second argument and produces the sum. While
the syntactic shortcuts of Agda abstract this distinction away; one could have writ-
ten Am — An — .... Thus, in classical mathematics, add would be applied as
add(1)(2). This technique is common in type theory and will be preferred to tra-
ditional notation in this paper. Now, to demonstrate the promises of computational
benefits by MLTT, we can request Agda to evaluate the following expression:

add 12— 3

For all types A and B, we can also write a function that swaps the components
of a tuple in A X B and run it on a pair of natural numbers.

swap : AXB—- BXA
swap (a,b)=(b.a)

swap (1,2) = (2,1)

Furthermore, we can define types of our own, like 2: the Boolean type con-
sisting of two canonical inhabitants representing truth values.

2 : Typeg
2=1T+1

pattern true =i; 0;
pattern false =i, 0;

We use the term canonical to distinguish values inhabiting types, as opposed
to the infinite possible expressions that evaluate to said values. Here, i; and i, are
the canonical injections of A and B into A+ B, respectively. Furthermore, 0, is the
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canonical inhabitant of 1. Agda’s pattern syntax allows us to associate the names
true and false with the given values.

This is also our first exposure to MLTT’s universe. To avoid Russell’s para-
dox, the universe of types does not contain itself. Instead, Agda has a hierarchy
of universes where U, is the universe of small types inhabited by 0, 1, N, etc.
Further universes are given by U; : U, and the various type formers like the
coproduct inhabit different universes based on its component types. For brevity,
we will switch between employing typical ambiguity, eliding which universe we
are working in by simply writing U, and specifying the level explicitly in code.
Now, we may write a function P : 2 — U.

P:2— Typeg
P true =1
P false =0

Note that functions like this whose codomains are universes are called type
families, as they return types instead of ordinary terms.

MLTT then introduces dependent types, which generalize the function and
Cartesian product types.

Definition 1.1 (Dependent types [6]). Let Abe atypeand P : A — U be a type
family. The dependent function type [|,. , P(a) is inhabited by functions f where
if a : A, then f(a) : P(a)i.e. functions whose codomain type varies with their
input.

Similarly, the dependent pair type ) ,. , P(a) is inhabited by (a, b) wherea : A
and b : P(a) i.e. pairs where the type of the second component varies with the
first component.

The utility of these two type formers is elucidated in the following explanation:
while we now have a calculus to express arbitrary mathematical objects, we still
lack a deductive system to perform mathematical reasoning. In order to develop
this, we must first introduce the Brouwer-Heyting-Kolmogorov (BHK) interpreta-
tion, which not only captures the intuition for proofs in informal mathematics but
also expresses them as computable objects.

Definition 1.2 (BHK interpretation [10]). We define a proof by induction on the
structure of a logical formula.

e There is no proof of L
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Now, let a be a proof of A and b be a proof of B. A proof of...

e ...AABis(a,b)i.e. aproof of A and a proof of B

e ...AV Biseither (0,a) or (1, b) i.e. a proof of A or a proof of B

e ...A = B s acomputable function that converts a proof of A to a proof

of B

e ...mAisaproofof A = L

Then, fix a domain of discourse D. A proof of...

e ...V cpP(x)isacomputable function that converts a € D to a proof of P(a)

o ...3,cpP(x)is apair (a, b) where a € D and b is a proof of P(a)

The proofs described by this interpretation are in exact one-to-one correspon-
dence with the terms inhabiting the various type formers we have just introduced,

as shown below [12].

proposition

type

1
T
AV B
AANB
A = B
—A
predicate
V,eaP(a)
d,c4P(a)

0
1
A+ B
AXB
A—> B
A—-0
type family
Ha:AP(a)
Za:AP(a)

We can make concrete the correspondence between propositions and types (and

consequently proofs and terms) below.

Definition 1.3 (Propositions-as-types). Let A be a type representing a proposition
P.Ifa : A, then ais a proof of P in the sense of the BHK interpretation.

With this principle in mind, we can prove some basic propositions in construc-
tive logic, like DeMorgan’s law: A A "B <= -(AV B).

DeMorgans;

7 AX-"B—->-(A+B)

DeMorgans; (ma, ) (iya)=-aa
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DeMorgans; (_ , =b) (i, b) =-b b

DeMorgans, : = (A+B) > "AX-B
DeMorgans, —a+b = (( a = —a+b (i, a)), ( b = —a+b (i, b)))

Computationally, DeMorgan’s law is simply the universal property of the co-
product. Given morphisms A — 0 and B — 0, one can construct a morphism
A+ B — 0 and vice versa. As a result, the propositions-as-types principle reduces
theorem proving to a purely computational endeavor. Now, we can examine the
dependent function and pair types. Let us first define the < relation on the natural
numbers—in MLTT, it is a type family indexed by two natural numbers.

<_: — —Typeg

6§n =1
(succm) < (succn)=m<n
m<n =0

This definition is quite straightforward: for any number #n, 0 < n, and S(m) <
S(n) if and only if m < n. Otherwise, the relation does not hold i.e. is defined
as absurdity. This allows us to construct computable evidence that a certain num-
ber is less than or equal to another one. We can now prove a basic result like
V,en"(S(n) < n) by writing a dependent function. Note that in Agda, the depen-
dent function type [],. , P(a) is written (a : A) - P(a).

— The codomain type varies on n
succ—n%n : (n: ) — 1 (succn < n)

— By induction on n

succ—n%n 0 =id

succ—n%n (succ n) = succ—n£n n

For the base case, the goal =(1 < 0) evaluates to 0 — 0. Thus, a term of
this type is the identity function. For the inductive step, realize that the goal
=(S(S(n)) < S(n)) evaluates to =(S(n) < n). By induction, succ—n<nn :
(S (n) < n), so the proof is complete.

As stated before, existential quantification is encoded as the dependent pair
type—in Agda, ) ., P(a) is written © A P. Now, we can prove the analogous
proposition that for any set A and predicate P on A, -3, 4 P(a) = V, 47 P(a).

=Y —is—[=:=2(XAP)—>(a:A) —>-(Pa)
=Y —is—[1- =X a Pa=-2(a, Pa)
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As aresult, we could have proven the penultimate result using existential quan-
tification.

succ—ngn’ 1 (n: ) — —(succn < n)
succ—n£n’ = 2X—is—[1- lemma where
— By induction on n
lemma : = (X ( n—succn<n))
lemma (0 , 1£0) = 1£0
lemma (succ n , succ—ngn) = lemma (n , succ—n%n)

The identification of types and propositions mean that proofs are themselves
mathematical objects that may be reasoned about—that is, we are doing proof-
relevant mathematics. Furthermore, the computational content of MLTT is di-
rectly accessible. Although these examples are quite tame, more complex proofs
are of great utility in software engineering. For example, Euclid’s proof of the
existence of a greatest common factor (GCF) formalized in a language like Agda
is an executable algorithm which computes the GCF correctly. The implications
of proof relevance, amongst other things, have motivated the development of ho-
motopy type theory, the type theory underlying the results of this paper.

1.4 Homotopy Type Theory

In the previous section, we gave an informal exposition of MLTT by appealing to
set theory—in other words, we interpreted the various type formers as set construc-
tors, terms as elements, and discussed their computational and logical interactions.
However, we are missing a type that expresses propositional equality i.e. propo-
sitions that two objects a and b are equal.

Definition 1.4 (Identity type [12]). For all types A and a, b : A, the identity type
a = b is inhabited by proofs that a and b are equal, called identifications.

By definition, the canonical method of introducing an inhabitant of this type is
by reflexivity: refl =[],.,a = a.

Structural induction upon terms of this type is not as straightforward as with
the other type formers. One would expect to be able to simply reduce every en-
counter of the identity type to reflexivity during theorem proving, but that defies
the homotopy-theoretic interpretation of type theory due to homotopy type the-
ory (HoTT). When types are interpreted as spaces and terms as points, we get the
following correspondence [12].
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type theory | homotopy theory
type space
term point

type family fibration
a=b»b path space

The last point is crucial—the identity type on points a and b is interpreted as
the space of paths from a to b. As aresult, being able to reduce any term inhabiting
the identity type to reflexivity is tantamount to contracting any path to a constant
loop, which is nonsensical in homotopy theory! In fact, only when at least one
endpoint—either a or b—is free to vary, can one contract a path to a constant loop
by moving the free point to the other. This intuition allows us to first define the
Path From type family, which maps a fixed point x to the space of paths emanating
from it i.e. an entire subspace of free points.

Definition 1.5 (PathFrom [8]).

PathFrom(x) 2 Z X=y
VA

The following principle then allows us to reduce certain paths to constant loops
under the exact conditions described.

Definition 1.6 (Paulin-Mohring’s J [8]). Given a type family P : PathFrom(x) —
U,J : P(x,refl(x)) — Hp: PathFrom(xy P(P) with the following computation
rule:

Jr(x,refl(x)) - r

Thus, it is impossible to prove that all inhabitants of the identity type are iden-
tical to reflexivity [7]. Likewise, not every path is contractible to a constant loop.
In fact, one can only prove that inhabitants of PathFrom(x) are propositionally
equal to (x, re f1(x)) since the second endpoint is left free.

PathFrom—unique : (yp : PathFrom x) — yp == (x, refl x)
PathFrom—unique = J ( yp = yp == (x, refl x)) (refl (x, refl x))

As a result, this allows us to add so-called nontrivial (non-reflexivity) inhabi-
tants to the identity type via separate inference rules without rendering the system
inconsistent. Motivated by the simplicial set model of type theory, HoI'T adds
such inhabitants expressing the extensional equality of various objects. For exam-
ple, given functions f,g : A — B, if one has evidence a : HX: A f(x) = gx),
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the axiom of function extensionality gives funext(a) : f = g. However, the crux
of HoT'T lies in Voevodsky’s univalence axiom, which is an extensionality axiom
for types. Before we introduce it, we must first define what it means for two types
to be equivalent, or extensionally equal.

Definition 1.7 (Quasi-inverse [12]). A quasi-inverse of a function f : A — B is
the following dependent triple:

e g.: B> A
o a:[[.,8(f(x)=x
« f: 1.5 (ete)=x

For the purposes of this paper, we will refer to functions that have quasi-
inverses as equivalences, although there are other equivalent notions in type the-
ory. In Agda, we must explicitly specify which type of equivalence we are provid-
ing i.e. ginv—is—equiv for quasi-inverses. We can now give our notion of exten-
sionality for types.

Definition 1.8 (Type equivalence [12]). Given types X and Y, X =~ Y if there
exists a function f : X — Y that is an equivalence.

Perhaps the most trivial equivalence is given below.

Theorem 1.1 (Identity equivalence). For any type A, A ~ A by the identity
function—the dependent pair of id and evidence that it has a quasi-inverse is called
ide A in Agda.

An immediate result is that an equality between types can be converted to an
equivalence.

Theorem 1.2 (idtoeqv). For all types A and B, A= B - A ~ B.

Proof. Using J reduces the proof goal to giving a term of type A ~ A i.e. the
identity equivalence.

idtoeqv : A==B—>A~B
idtoeqvp=J ({(B,_)—>A~B})(ideA) (B, p)

Axiom 1.1 (Univalence [12]). idtoeqv is an equivalence.

171



By declaring that idtoeqv has a quasi-inverse, this axiom gives us the following
data:

e ua : A~ B — A= B, afunction that converts equivalences to paths
o [I;.4opidtoequua(f)) = f
. Hp:A:B ua(idtoequ(p)) = p

The last two data are called propositional computation rules, as they dictate
how ua reduces propositionally, outside of the computation rules built into type
theory. However, this raises the question: how do terms evaluate to a value in the
presence of univalence? This is actually still an open question—for now, homotopy
type theory lacks canonicity, the guarantee that every term has a canonical form.

Univalence is justified when we broaden our interpretation of types to not just
spaces but to homotopy types—spaces regarded up to homotopy equivalence. In
that sense, ua is simply the trivial assertion that spaces that are homotopy equiva-
lent are equal (up to homotopy equivalence).

Before moving onto IT and its model, we must establish one last concept and
rethink our previous conception of propositions-as-types. Recall that we are doing
proof-relevant mathematics. However, classical mathematics is decidedly proof-
irrelevant since propositions are simply assigned a truth value without additional
information. In terms of type theory, this would mean the terms of every type
would be indistinguishable up to propositional equality. As a result, the only in-
formation we would have about a tautology encoded as a type is that it is inhabited
by some value, and an absurdity would simply be uninhabited. We formalize this
intuition below.

Definition 1.9 (Mere proposition [12]). A type is a mere proposition if all of its
inhabitants are propositionally equal. That is, the following type is inhabited:

isProp(A) £ H x=y
x,y: A

This allows us to formalize analogies between classical mathematics (we avoid
the phrase “classical logic,” which is related to mere propositions but not ex-
pounded here) and type theory.

Theorem 1.3 (Logical equivalence [12]). For all mere propositions A and B, if
A — Band B — A, then A ~ B. That is, to show that two mere propositions are
equivalent, it is sufficient to show that they are logically equivalent.
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Proof. Toshow f : A - Band g : B — A are inverses, we identify g(f(x)),
x, f(g(y)) and y for x : A, and y : B, respectively, by the fact that A and B are
mere propositions.

logical—equiv :

is—propA — is—propB—- (A —->B)—>(B—-A)->A~B
logical—equiv pA pB f g =

S dinv—is—equiv (g, ( x = pA (g (fx) x),( y—=pB(f(gy)y)

O
For types that are not mere propositions, we may construct an analogue that is.

Definition 1.10 (Propositional truncation [12]). For a type A, its propositional
truncation || A || is described by the following

o Ifa: A then|a|:|| Al
o identify : Il . g Xx =Y

By identi fy, the propositional truncation of any type is a proposition, hence
the name.

Structural induction upon inhabitants of a propositional truncation is subtle—
a function can only recover the original term underneath the truncation bars if
its codomain itself is a mere proposition. We will see this principle show up as
recTrunc later on.

In short, mere propositions allow us to encode proof-irrelevance into type the-
ory. This is key in defining the univalent universe of finite types, the model of II,
which we will do in the next section.

2 Univalent Universe of Finite Types

The underlying characterization of this subuniverse relies on a concept called uni-
valent fibrations.
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2.1 Univalent Fibrations

An elementary result in homotopy theory is that a path between points x and y
in the base space of a fibration induces an equivalence between the fibers over x
and y. By univalence, this equivalence is a path as well. We formalize this result
below.

Theorem 2.1 (transporteqv). For any type A and x,y : A, [[p. 4oy x =V —
P(x) ~ P(y).

Proof. By J, we may reduce the proof goal to giving a term of type P(x) ~ P(x)
1.e. the identity equivalence.

transporteqv : (P : A — Typel) > x==y—>Px~Py
transportequ Pp=J ({(y,_) - Px~Py})(ide (Px)) (v, p)

]

However, converse is not always true—type families that satisfy this property
are called univalent fibrations.

Definition 2.1 (Univalent Fibration [4]). For all types A, atype family P : A - U
is a univalent fibration if transporteqv(P) is an equivalence.

That is, univalent fibrations come with a quasi-inverse of transporteqv that
converts fiberwise equivalences to paths in the base space. Even though it is rarely
the case that any given type family is a univalent fibration, the following theorem
characterizes a class of families that are.

Theorem 2.2 (Rose, 2017). Let P : U — U be a type family. If forall X : U,
P(X) is a mere proposition, then the first projection p; : Y y., P(X) - U is a
univalent fibration.

2.2 The is—finite Family

We will now examine the is—finite type family which forms the basis of the model
for I1. First, we require a canonical notion of a finite type.

Definition 2.2 (El). The El family sends a natural number # to a finite type with n
canonical inhabitants.
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El ' — Typeg
EI0O =0
El (succn)=1+Eln

To see that this definition is sufficient, we can enumerate all » canonical in-
habitants of El n.

[S—

il(Ol)
2 | ir(i1(09))
3 | ip(i2(i1(01)))

0| 15y (i10)) )

n

Notice that we never reach i,(i5(... (i,(...)) ...)) because that would require giv-
ing an inhabitant of 0, which is impossible. Thus, we are guaranteed n canonical
inhabitants. Now, we are ready to define the is — finite family.

is—finite : Typeg — Type;
is—finteA=% (n—-||A==Eln]|)

Viewed as a predicate, this says “a type is finite if it is equivalent to a canonical
finite type.” Computationally, we require a proof-irrelevant identification of A and
El n for some n. Then, we define the univalent universe of finite types to be the
subuniverse of types satisfying this predicate.

M : Type;
M =X Typeg is—finite

Terms of this type are triples consisting of (1) a type A, (2) the “size” of A, and
(3) a path witnessing the given size is correct by identifying A with a canonical
finite type of the same size. The reason we truncate the above instance of the
identity type is to yield the following result.

Theorem 2.3 (Rose, 2017). The first projection p; of triples in M is a univalent
fibration.

Proof. For any A, isFinite(A) is a mere proposition due to the truncation of its
second component, amongst other things. Thus, from theorem 2.2, p; is a univalent
fibration. ]

This is the workhorse of our completeness result—intuitively, to induce a path
between two triples, one simply needs to give an equivalence between their first
components, which minimizes our proof obligations.
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3 Pi

Now that we are acquainted with HOT'T and finite types, we can examine the I1 pro-
gramming language by Sabry et al. IT starts with the notion that type equivalences
are a natural expression of reversibility—one can write and execute a program and
invert its effects via its quasi-inverse. I1 then restricts its type calculus to the semir-
ing ({0, 1}, 4+, X) up-to type equivalence. As a result, a complete characterization
of equivalences over these types is precisely the semiring axioms in figure 1. Note
that IT uses < for ~.

ide: T o T D ide
unite [ : O0+7 & 7 > uniti |
swap . T + Ty < T + T . swap
assocl, . 1+ (1 +13) < (11+71)+ 13 . assocr,
unite,l : IxXt & 7 > uniti [
swap,, Ty X Ty < T,XT1 D swap,
assocl, : T X(19X13) < (11 X1Ty) X713 > assocr,
absorbr Ox7z « 0 . factorzl
dist : (1)+ 1) X173 © (1yX13)+ (1 X713) : factor
FC:TI(—)TZ |_C1:T1<—>T2 |_C2:72(—)T3
Fle: o1 Feci®c 1 e 1
}_C]:Tl(—)’fz |_C2:T3(—)T4 FCI:T](—)TQ }_Cz:T3(—)T4

I_C1®02:TI+T3(—)T2+T4 |_CI®C2:71XT3(—)T2XT4

Figure 1: Level 1 Programs (equivalences) in I1 [3]

For example, recall that the Boolean data type can be encoded as 1+ 1. Nega-
tion, which sends true to false and vice versa, is an equivalence. We may define it
in many ways—we give two below.

NOT; : 2«2
NOT; = swap,
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NOT, = ide«— © (swap, © id«—)

Furthermore, one can ask whether two equivalences are extensionally equal.
IT then includes a language which encodes such proofs, called coherences, shown
in figure 2.

As aresult, we can write a proof that NOT; and NOT, are equivalent by can-
celling out the instances of id«—-.

NOT,«NOT, : NOT, « NOT,
NOT,«NOT, = 2! (idlel 20 idrol)

Now that we have a language that describes various finite types and their equiv-
alences as well as a model for them in HoI'T, we would like to determine whether
the language is complete with respect to the model—that is, for every object in the
model, there exists an equivalent one in the language and vice versa.

4 Completeness of Level 0

Now, we can discuss the completeness of level 0, or types in I1 with respect to the
given model. First, we require translations from the syntax to the model and vice
versa. Assume we have the following functions defined.

- Converts a type in the syntax
- to the exact same type in MLTT
#[_llo - S— Typeg

— Computes the number of canonical
— inhabitants of a type in the syntax
size : S —

— Converts an equivalence in the
- syntax to the same one in HoTT

In order to write the translation into the model, we need a way of relating any
type in the semiring T to El(n) where n = size(T'). Note that the image of El(n)
is a subtype of .S, allowing us to write an analogous function into .S

177



fromSize : — S
We can formalize the relationship between fromSize and El n as follows.
fromSize=El : {n : } — #[ fromSizen || ==Eln

Then, we define canonical, which converts a type in the semiring to its “‘canon-
ical” form.

canonical : S— S
canonical = fromSize o size

Here is an example of the action of canonical:

canonical (T+ )X (T +1) - 14+T1+T1+7T+0

Intuitively, a type is equivalent to its canonical form, allowing us to write a
function that constructs an equivalence in the syntax between them (due to Sabry
et al).

normalize : (T : S) —» T «— canonical T

We can finally write the translation by using the above functions. Note that we
use univalence to convert the equivalence between a type and its canonical form
to a path. Then, we use W to concatenate that with the path given by fromSize=El
where n = size(T) to generate a path of type T = El(n).

[_lo:S—>M
(TNlog=@#[T]lg.size T, | ua#[ normalize T'||; m fromSize=El |)

This definition is quite complex, so figure 3 demonstrates its action as an in-
jection into the model.

The translation of the model into the syntax is much simpler—since one cannot
perform induction on the opaque type in the first component, we must return the
next best thing: a conversion of the size in the second component to a type in the
syntax.

ﬂ_]]al M-S
(T, n,pl al = fromSize n
We can again view the action of this translation as an injection in figure 4,
taking a triple in the model to a canonical form in the syntax.

We now have the sufficient tools to discuss the completeness of level 0. Let us
formalize the statements of completeness we made two sections ago.
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cmpl(l) : H 2 T, & [[Tz]]al Cmplg : H Z I Ty = [T2]o |l

T1:ST2:M T]ZMTZ:S
T - ([T]y,lem)) T — ([[T]]al,lemz)

By sending each input to their respective translations, we have proof obliga-
tions lem; : [[;.¢T < [[TToly" and lemy : [Iy.p I T = [IT15'To |-
Intuitively, these each say that going back and forth between the syntax and model
(and vice versa) produces an equivalent object—Ilet us prove them. To prove the
first lemma, consider figure 5, which depicts the round trip of applying both trans-
lations.

It seems that we simply must construct an equivalence between a type in the
syntax and its canonical form, in the same way we did for [-].

A -1
lem; :(T:S)->T—[[Tlol,
lem; = normalize
The other direction is a bit more difficult. First, by theorem 2.3 and idtoeqv, we
can define a function that converts paths between the first components of a triple
in the model to a path between the entire triple.

induce : {XY: M} 5 p; X==p, Y>X==Y

Now, let us observe the this round trup in figure 6—it yields a similar triple but
the first component is in canonical form. Precisely by the original path, we may
induce a path across both triples by the fact that the first projection is univalent.

This allows us to prove lem, by induction on the truncated path in the third
component of a triple, which by induce, gives us the necessary result.

lemy (Xt M) = || X==[[X]5" Io |
lem, (T, n,p)=
recTrunc _ ( p’ — | induce (p’ m ! fromSize=El) |) identify p

With these lemmas, we may formally state these completeness results in Agda.

cmpl(l) (TS > XM( T, > T, «— HTz]]al)
cmpI? T, =T;g.lemy T))

cmpld : (T M) =S (T, = 1 T, == [Ty ] ID
Cmp'g T, =T, ]]81 , lemy T)
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5 Future Work

We are currently working on completeness results on levels 1 and 2: isomorphisms
and coherences. Furthermore, we would like to develop the formal theory sur-
rounding reversible programming. In particular, there is a deep interplay between
homotopy theory and reversibility. For example, we do not have a clear perception
of reversible programming with higher inductive types, HoI'T’s internalization of
homotopy types. Furthermore, we have the following conjecture which gives a
topological characterization of our model, in terms of Eilenberg-MacLane (EM)
spaces.

Conjecture 5.1 (Rose, 2017).

M =P Ks,. 1)

neN
where S, 1s a symmetric group.

An EM-space K(G, n) has its n'™ homotopy group (group of n-paths under
concatenation and inversion) isomorphic to G and every other one trivial [9]. Thus,
this conjecture captures all the necessary information about paths in the model (and
equivalences), and therefore the inherent reversibility.
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C:Ty & Ty C1,C9,Cq T S Tog ] + €] &= C (g : Cy & Cg

d:cec 7 ® (g i€ & C3

Ci Ty STy C:Toa*Tg C3.T3¢*Ty

assocgl 1 ¢ © (e @ ¢3) < (¢ ©® ¢p) ® ¢3 & assOCyr

C:TIHT2 C:TI(—P'T2
idlgl:idece ctidlgr idrgl : c@id & c:idrgr
C:TIHTQ C:TIHTQ
rinvgl : le®@ ¢ & id : rinvgr linvgl : ¢ @ le &= id : linvgr

sumid : id ® id < id : splitid

Cl]-T5*T] C:Tg Ty C3.T1L T3 Cq4:To Ty

homge : (€1 @ ¢c3) ® (2 @ ¢y) = (¢, @ ) © (e3 @ ¢y) : homge

Cl1,€3:T1 Ty C3,C4 1 Ta T3 () 1C] &= C3 Q3.0 & C4

) Dot ©@eg & 0300,

Cl,C3 :T1 Ty (9.C4:Te Ty (¥ 1€ & C3 Qg .0 & C4q

respge ] (g : C] By &= 3 B ¢y

Cl,C3 T Ty C3,Cq:Tg T3 ) :C S C3 Uy .0 =y

reSpge ] g : €] @ Co &= €3 @ ¢4

Figure 2: Level 2 Programs (coherences) in I [2]
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(Bool,2,| p1 1)

- - o=

-
~

-~

. ps:(14+1)x (1+1)
=14+1+1+14+0

pp:04+1=1+4+0

Ps:1x0=0

Figure 3: The action of [-],
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Figure 4: The action of [-]; !
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Toal;‘T
; y 711[[[[]]]]

(1+1) x (L+1)

pg,(]l-‘r]l)X(]l-F]l)
=14+1+1+1+0
(T+1)x (1+1),4,|ps )

1+1+1+4+1+0

Figure 5: The action of the translation then its “inverse”

II 1rmrts e =11

ps: (L+1) x(1+1)

1+14+1+1+0 =1+1+1+1+0

2]
(A+1+1+1+0,4,]...])

m1 1s univalent!

Figure 6: The action of the “inverse” then the usual translation

185



