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Preface

During the summer of 2016 five students participated in the Undergraduate Re-
search Experience program in Mathematics at Indiana University. This program
was sponsored by Indiana University and the Department of Mathematics. The
program ran for eight weeks, from June 6 through July 31, 2016. Five faculty
served as research advisers to the students from Indiana University:

• Chris Connell worked with Emma Brissett.

• Elizabeth Housworth worked with Kees McGahan.

• Chris Judge worked with Yvonne Chazal.

• Jeffrey Meier worked with James Dix.

• Dylan Thurston worked with Baptiste Dejean, Christian Gorski and Emily
Tumber.

• Matthias Weber worked with Daniel Freese.

Following the introductory pizza party, students began meeting with their
faculty mentors and continued to do so throughout the next eight weeks. The
students also participated in a number of social events and educational oppor-
tunities and field trips.

Individual faculty gave talks throughout the program on their research,
about two a week. Students also received LaTeX training in a series of work-
shops. Other opportunities included the option to participate in a GRE and
subject test preparation seminar. Additional educational activities included
tours of the library, the Slocum puzzle collection at the Lilly Library and the IU
cyclotron facility, and self guided tours of the art museum. Students presented
their work to faculty mentors and their peers at various times. This culmi-
nated in their presentations both in poster form and in talks at the statewide
Indiana Summer Undergraduate Research conference which we hosted at the
Bloomington campus of IU.

On the lighter side, students were treated to a reception by the graduate
school as well as the opportunity to a fun filled trip to a local amusement park.
They were also given the opportunity to enjoy a night of “laser tag” courtesy
of the Department of Mathematics.
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The summer REU program required the help and support of many different
groups and individuals to make it a success. We foremost thank the Indiana
University and the Department of Mathematics for major financial support for
this bridge year between two National Science Foundation grants. We especially
thank our staff member Mandie McCarty for coordinating the complex logisti-
cal arrangments (housing, paychecks, information packets, meal plans, frequent
shopping for snacks). Additional logistical support was provided by the Depart-
ment of Mathematics and our chair, Elizabeth Housworth. We are in particular
thankful to Jeff Taylor for the computer support he provided. Thanks to those
faculty who served as mentors and those who gave lectures. Thanks to David
Baxter of the Center for Exploration of Energy and Matter (nee IU cyclotron fa-
cility) for his personal tour of the LENS facility and lecture. Thanks to Andrew
Rhoda for his tour of the Slocum Puzzle Collection.

Chris Connell
September, 2016
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Figure 1: REU Participants, from left to right: Kees McGahan, Emma Brissett,
Daniel Freese, Yvonne Chazal, Bat DeJean, James Dix, Christian Gorski.
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Geometry of Hyperbolic Percolation Clusters

Emma Brissett
Advisor: Chris Connell

September 14, 2016

Abstract

Given an infinite connected graph G, we can perform a Bernoulli bond
percolation on G in the following way: for each edge in G, with probability
p, the edge remains, and with probability 1 − p, the edge is removed. We
are left with a random subgraph of G containing a combination of finite
and infinite components called clusters. Every infinite connected graph
has constants pc and pu in [0, 1] which are threshold probability values
with respect to the number of infinite clusters in the percolation subgraph.
Of special interest are percolations on hyperbolic graphs. There are many
results concerning the number of infinite clusters in percolation subgraphs
of planar hyperbolic graphs, as well as pc and pu values for such graphs,
and we extend these to include nonplanar hyperbolic graphs. From there,
we study the asymptotic behavior of infinite clusters in percolations on
Gromov hyperbolic graphs. Finally, we calculate pc bounds for radially
homogeneous graphs.

1 Introduction

An invariant percolation on a graph G is a probability measure on the space of
subgraphs of G, which is invariant under the automorphisms of G. The con-
nected components of an invariant percolation are called clusters. This report
will focus on Bernoulli(p) bond percolation, which is the random subgraph of G
where all vertices V (G) are included and each edge is in the subgraph with prob-
ability p, independently. Let pc = pc(G) be the infimum of the set of p ∈ [0, 1]
such that the Bernoulli(p) percolation on G has an infinite cluster a.s. We call
pc the critical parameter. Likewise, let pu = pu(G) be the infimum of the set
of p ∈ [0, 1] such that the Bernoulli(p) percolation on G has a unique infinite
cluster a.s.

Let Aut(G) be the group of automorphisms of G. G is transitive if Aut(G) acts
transitively on the vertices V (G). G is quasi-transitive if the action of Aut(G)
on V (G) has finitely many orbits. G is unimodular if Aut(G) is unimodular,
meaning the left-invariant Haar measure is also right-invariant. G has one end if
for every finite set of vertices V0 ∈ V (G), there is exactly one infinite connected
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component of G/V0. G is discrete if Aut(G) is discrete. Note that discrete
graphs are unimodular. G is amenable if there exists a sequence of sets Fn ⊂ G
such that

lim
n→∞

|∂Fn|
|Fn|

= 0.

G is a nonelementary hyperbolic graph if there is an infinite number of points in
the ideal boundary ∂∞G. Note that transitive, nonelementary, discrete, hyper-
bolic graphs are nonamenable. Without transitivity, a nonelementary, discrete,
hyperbolic graph could be made amenable by attaching an amenable graph to
a vertex. Of particular interest are nonelementary, discrete, Gromov hyperbolic
graphs. G is Gromov hyperbolic if all triangles in G are δ-thin. We call a triangle
δ-thin if there exists a δ > 0 such that each side lies in the δ-thickening of the
other two sides. For a Gromov hyperbolic graph containing points x, y and z,
we define the Gromov product of y and z as follows:

(y, z)x =
1

2
(d(x, y) + d(x, z)− d(y, z)).

As an introduction to our project, we will examine Bernoulli percolation in the
tree case and demonstrate our methods for finding pc and pu for T4.

2 Percolation on T4

T4 is the 4-regular tree and the Cayley graph of the free group on two genera-
tors. Like the graphs we will study, T4 is transitive, unimodular, nonamenable,
and Gromov-hyperbolic. One key difference is T4 has infinite ends, while the
graphs we will study have one end.

Let ω be the Bernoulli bond percolation on T4 and let S(x, n) be the sphere with
center x and radius n. We know the probability of not reaching S(x, 1) is the
probability that all four edges are removed: (1− p)4. Therefore, the probability
of reaching S(x, 1) is 1 − (1 − p)4. The expected number of vertices reached
in S(x, 1) is 4p. For example, if p = 2

3 , we expect that 4
(

2
3

)
= 8

3 vertices are
reached.

Given that we reached 4p vertices in S(x, 1), the probability of reaching S(x, 2)
is 4p(1− (1− p)3), since each vertex in S(x, 1) has three outward edges. Then,
the expected number of vertices reached in S(x, 2) is 4p(3p). Continuing on,
each vertex will always have three outward edges, so, given that we reached
S(x, n − 1), the expected number of vertices reached in S(x, n) is 4p(3p)n−1.
Let Zn be the expected number of vertices reached in S(x, n). Then, pc = 1

3 ,
since for p < 1

3 , as n→∞, Zn → 0, and for p > 1
3 , as n→∞, Zn →∞.

Lemma 1. If G is a transitive graph with more than one end, then pu(G) = 1.

Proof. Suppose for pu < p < 1 there is a unique infinite cluster C ∈ G. By
transitivity, a sequence in C would be equally likely to occur in any end, so
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since C is unique, it must have multiple ends. However, by the definition of
ends, there exists a finite subgraph T ∈ G such that G/T has disconnected
ends. Since p < 1, there is a positive probability that T will be removed, which
contradicts the assumption that C has multiple ends, so pu = 1.

Since T4 is transitive and has an infinite number of ends, pu(T4) = 1. That is,
T4 only has a unique infinite cluster when no edges are removed.

Note that calculating conditional expectation in the tree case is simple, since
there are single inward edges and a constant number of outward edges. Some of
the graphs we will study include multiple inward and lateral edges, which make
expectation calculations more difficult. First, however, we will extend several
theorems from [3] to include nonplanar graphs.

3 The Number of Infinite Clusters

The following theorem and proof follow results from Theorem 3.3 in [5].

Theorem 2. Each rotation system P on a locally finite graph G determines a
cellular embedding of G into some oriented surface S such that: i) the 2-cells
are in a bijective correspondence with cycles of P−1r and ii) the rotation system
of this embedding is equal to P .

In other words, every graph G of finite degree embeds in a surface such that
its cycles surround a disk. Let K(G) be the 2-skeleton of G for such an embed-
ding. Then, every edge bounds exactly two faces, and we can define the dual
G† as follows: let every vertex v† of G† lie in the corresponding face of K(G)
and every edge e ∈ E(G) intersect only the dual edge e† ∈ E(G†), and only in
one point. Such a dual graph will maintain the properties necessary to extend
several theorems from [3] to nonplanar graphs.

The following theorem and proof follow results from Theorem 1 in [6].

Theorem 3. For the random variable N0 denoting the number of infinite com-
ponents in a percolation, a.s. N0 = 0, 1, or ∞.

Proof. Let Ω be a configuration space {0, 1}G, P be a translation ergodic prob-
ability measure on Ω, and ω be a configuration in Ω. The random variable N0

and the events {N0 = k} are invariant under any shift Tj ; therefore by ergdoc-
ity there is some k0 = 0, 1, 2, . . . , or ∞ such that P (N0 = k0) = 1. Suppose
k0 6= 0, 1, or ∞; we wish to obtain a contradiction. Let Wn be the event that
N0 = k0 and each one of the k0 infinite clusters has nonzero intersection with the
ball B(1, n); then P (Wn) → P (N0 = k0) = 1 and so for some m, P (Wm) > 0.
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Let V = B(1,m) and define Ψ : Ω→ Ω by

(Ψω)v =

{
1, v ∈ B(1,m)

wv, v 6∈ B(1,m)

So, Ψ is the transformation which makes all sites in B(1,m) occupied and
leaves all other sites unchanged. By Proposition 9, P (Ψ(Wm)) > 0, but clearly
Ψ(Wm) ⊂ {N0 = 1}, thus P (N0 = 1) > 0, which contradicts the supposition
that k0 6= 0, 1, or ∞.

Let ω be the Bernoulli percolation on G. Then ω† will denote the set

ω† := {e† : e 6∈ ω}.

Let k be the number of components in ω and k† be the number of components
in ω†. Since they are both percolations, we know by Theorem 3 that

(k, k†) ∈ {(0, 0), (0, 1), (0,∞), (1, 0), (1, 1), (1,∞), (∞, 0), (∞, 1), (∞,∞)}.

Once we extend several theorems from [3] to include nonplanar graphs, we will
be able to use these results to narrow down the possibilities for (k, k†).

The following lemma and proof follow results from Lemma 3.3 in [3]. Note that
our definition of dual implies (G†)† = G, a property used in the following proof.
Let K be a finite component in ω and let ∂EK be the set of edges not in K
with one or two vertices in K. Let K ′ ⊂ G† be the set of edges dual to the
edges in ∂EK, and let K ′′ ⊂ {(G†)† = G} be a component enclosing K ′ ⊂ G†.
The following lemma also uses a result from Theorem 2.4 in [1] that says when
the expected degree E[degωv] of a vertex v in an invariant percolation on a uni-
modular nonamenable graph G is sufficiently close to degGv, there are infinite
clusters in ω with positive probability.

Lemma 4. Let G be a transitive, nonamenable graph with one end. Let ω be
an invariant bond percolation on G. If ω has only finite components a.s., then
ω† has infinite components a.s.

Proof. Suppose that both ω and ω† have only finite components a.s. Then a.s.
given a component K of ω, there is a unique component K ′ of ω† that surrounds
it. Similarly, for every component K of ω†, there is a unique component K ′ of
ω that surrounds it. Let K0 denote the set of all components of ω. Inductively,
set

Kj+1 := {K ′′ : K ∈ Kj}.
For K ∈ K0 let r(K) := sup{j : K ∈ Kj} be the rank of K, and define
r(v) := r(K) if K is the component of v in ω. For each r let ωr be the set of
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edges in E(G) incident with vertices v ∈ V (G) with r(v) ≤ r. Then ωr is an
invariant bond percolation and

lim
r→∞

E[degωrv] = degGv.

Consequently, by the above result from [1], we find that ωr has with positive
probability infinite components for all sufficiently large r. This contradicts the
assumption that ω and ω† have only finite components a.s.

The following corollary and proof follow results from Corollary 3.6 in [3].

Corollary 5. Let G be a transitive, nonamenable graph with one end. Let
ω be an invariant percolation on G. Suppose that both ω and ω† have infinite
components a.s. Then, a.s. at least one among ω and ω† has infinitely many
infinite components.

Proof. Draw G and G† in the plane in such a way that every edge e intersects e†

in one point, ve, and there are no other intersections of G and G†. This defines
a new graph Ĝ, whose vertices are V (G) ∪ V (G†) ∪ {ve : e ∈ E(G)}. Note that
Ĝ is quasi-transitive. Set

ω̂ := {[v, ve] ∈ E(Ĝ) : v ∈ V (G), e ∈ ω} ∪ {[v†, ve] ∈ E(Ĝ) : v† ∈ V (G†), e 6∈ ω}.

Then ω̂ is an invariant percolation on Ĝ. Note that the number of infinite
components of ω̂ is the number of infinite components of ω plus the number
of infinite components of ω†. By Theorem 3 applied to ω̂, we find that ω̂ has
infinitely many infinite components.

The following theorem and proof follow results from Theorem 3.1 in [3].

Theorem 6. Let G be a transitive, nonamenable graph with one end. Let ω be
an invariant percolation on G. Let k be the number of infinite components of
ω, and let k† be the number of infinite components of ω†. Then a.s.

(k, k)† ∈ {(1, 0), (0, 1), (1,∞), (∞, 1), (∞,∞)}.

Proof. Each of k, k†, is in {0, 1,∞} by Theorem 1. The case (k, k†) = (0, 0) is
ruled out by Lemma 4. The case (k, k)† = (1, 1) is ruled out by Corollary 5.
Since every two infinite components of ω must be separated by some component
of ω†, the situation (k, k)† = (∞, 0) is impossible. The same reasoning shows
that (k, k)† = (0,∞) cannot happen.

The following theorem and proof follow results from Theorem 3.7 in [3].
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Theorem 7. Let G be a transitive, nonamenable graph with one end, and
let ω be the Bernoulli bond percolation on G. Let k be the number of infinite
components of ω, and let k† be the number of infinite components of ω†. Then
a.s.

(k, k†) ∈ {(1, 0), (0, 1), (∞,∞)}.

Proof. By Theorem 6, it is enough to rule out the cases (1,∞) and (∞, 1). Let
K be a finite connected subgraph of G. If K intersects two distinct infinite
components of ω, then ω† −{e† : e ∈ E(K)} has more than one infinite compo-
nent. If k > 1 with positive probability, then there is some finite subgraph K
such that K intersects two infinite components of ω with positive probability.
Therefore, we find that k† > 1 with positive probability (since the distribution
of ω† − {e† : e ∈ E(K)} is absolutely continuous to the distribution of ω†). By
ergodicity, this gives k† > 1 a.s. An entirely dual argument shows that k > 1
a.s. when k† > 1 with positive probability.

The following theorem and proof follow results from Theorem 3.8 in [3].

Theorem 8. Let G be a transitive, nonamenable graph with one end. Then
pc(G

†) + pu(G) = 1 for Bernoulli bond percolation.

Proof. Let ωp be Bernoulli(p) bond percolation onG. Then ω†p is Bernoulli(1−p)
bond percolation on G†. It follows from Theorem 7 that the number of infinite
components k† of ω† is 1 when p < pc(G), ∞ when p ∈ (pc(G), pu(G)), and 0
when p > pu(G).

The following theorem is Theorem 1.3 from [1].

Theorem 9. Let G be a transitive, unimodular, nonamenable graph. Then a.s.
critical Bernoulli bond percolation on G has no infinite components.

The following theorem and proof follow results from Theorem 1.1 in [3].

Theorem 10. Let G be a transitive, unimodular, nonamenable graph with one
end. Then 0 < pc(G) < pu(G) < 1, for Bernoulli bond percolation on G.

Proof. Set pc = pc(G). By Theorem 9, wpc has only finite components a.s.
By Theorem 7, (wpc)† has a unique infinite component a.s. Consequently, by
Theorem 9 again, (wpc)† is supercritical; that is, pc(G

†) < 1 − pc(G). An
appeal to Theorem 8 now establishes the inequality pc(G) < pu(G). Using the
well-known inequality pc(G) ≥ 1/(d− 1), where d is the maximal degree of the
vertices in G, we see that pu(G) = 1− pc(G†) ≤ 1− 1/(d† − 1), where d† is the
maximal degree of the vertices in G†, and so we get pu(G) < 1, which completes
the proof.
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4 Geometric Consequences

For an infinite graph G and an infinite set of vertices V0 ∈ V (G), we define the
Cheeger constant of G as follows:

iE(G) = inf{ |∂EV0|
|V0|

: ∅ 6= V0 ⊂ V (G), |V0| <∞},

where ∂EV0 is the set of edges emanating from V0 that do not terminate in V0.

Note that iE = 0 for amenable graphs and iE > 0 for transitive, nonamenable
graphs. The following theorem is Theorem 4.4 from [2].

Theorem 11. Let G be a graph with a transitive closed unimodular automor-
phism group Γ ⊂ Aut(G), and suppose that iE > 0. Let ω be a Γ-invariant
percolation on G. Then, for Bernoulli percolation with p > pc, a simple random
walk on some infinite cluster of ω has positive speed with positive probability.

Assumption 12. Let G be a Gromov hyperbolic graph. Let ω be the Bernoulli
bond percolation on G. Then, any infinite cluster C ∈ ω is also Gromov hyper-
bolic.

Theorem 13. Let G be a transitive, unimodular, nonamenable Gromov hyper-
bolic graph. Let ω be the Bernoulli bond percolation on G. Then, for p > pc,
a.s. every simple random walk on an infinite cluster C ∈ ω tends to a unique
point in ∂∞G.

Proof. Let X(t) be a simple random walk on C. Then, by Theorem 11, there
exists a constant Λ > 0 such that

Λ|j − i| ≤ d(X(i), X(j)) ≤ `(X(i)
X−→ X(j)) ≤ |j − i|. (1)

Suppose the simple random walk tends to more than one point in ∂∞G. Then,
there exist sequences ik and jk such that X(ik) and X(jk) tend to different limit
points in ∂∞G. By Assumption 12, C is Gromov hyperbolic, so as ik and jk
tend to infinity, the Gromov product is bounded by some constant b. By (1), we
know the path from X(ik) to X(jk) must remain outside the sphere of radius
Λik. However, for large ik and jk, the length l of the path outside the sphere
is exponentially large, so, for constants b1, b2 > 0, which depend on δ and b, we
have

`(X(ik)
X−→ X(jk)) ≥ b1eb2Λ

ik+jk
2 ,

which, for sufficiently large k, is much greater than |jk− ik| and contradicts (1).
Therefore, the Gromov product could not have remained bounded and ik and
jk must tend to the same limit point in ∂∞G.
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We call G radially homogeneous if G is regular and there exist center-dependent
values do, di, and d` such that each vertex in G (except the center) has do
expected outward edges, di expected inward edges, and d` expected lateral edges.
We call G equi-traversed if G is radially homogeneous and do, di, and d` hold
for simple random walks on G which start at the center. Then, the speed Λ of
a simple random walk on G can be calculated as follows:

Λ =
do − di
d

,

where d = do + di + d` is the degree of each vertex.

For an infinite cluster C ∈ ω, we have expected outward, inward, and lateral
degrees eo, ei, and e`. Given a single v ∈ C, let dvo, d

v
i , and dv` be the expected

outward, inward, and lateral degrees from v to other vertices in C. Then, the
expected progress Λv of a simple random walk at a given v ∈ C can be calculated
as follows:

Λv =
dvo − dvi

dvo + dvi + dv`
.

By Theorem 11, every simple random walk on C has positive speed, so for the
expected net progress λC of a simple random walk, we have:

ΛC = Ev

[
dvo − dvi

dvo + dvi + dv`

]
≥ 1

d
Ev[d

v
o − dvi ] =

eo − ei
d

≥ 0.

Using this and the fact that infinite graphs must have ei ≥ 1, we have

eo > ei ≥ 1. (1)

Given a path σ(0)→ σ(n) along an infinite cluster C ∈ ω, a vertex v ∈ C is dead
if any path from v to infinity must pass through σ. Otherwise, v is undead and
there exists a non-retracing path from v to infinity.

Since G is hyperbolic, it has a compactification Ḡ = G∪ ∂∞G and C ⊂ G has a
compactification C̄ ⊂ Ḡ. Note that we can re-metrize C̄ to be a compact metric
space with the same geodesics using a method such as the Floyd method. A
generalized version of the Arzela-Ascoli theorem, Corollary 3.11 from [4], states
that any sequence of geodesic segments αn ⊂ C has a convergent subsequence
to a geodesic α ⊂ C̄. In our case, α will be a ray since our starting point is
x0 = αn(0) and the length of α(n) tends to infinity.

Then, we have the following algorithm to create two distinct C-geodesic rays, η
and γ, that tend to different points in ∂∞G.

1. Let σ(n) and τ(n) be walks on C. Start at the point x0 = σ(0) = τ(0).
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2. Assuming we have chosen σ(0), σ(1), ..., σ(n−1) and τ(0), τ(1), ..., τ(n−1),
we choose σ(n) and τ(n) among the undead vertices connected to σ(n−1)
and τ(n− 1), respectively, such that d(σ(n), τ(n)) is maximal. If multiple
edge choices establish maximal distance, we choose outward edges over
inward and lateral, and we choose lateral edges over inward.

3. Let σn and τn be C-geodesic segments from x0 to σ(n) and τ(n), respec-
tively. If multiple C-geodesic segments exist, we choose ones with the
minimum Hausdorff distance from σn−1 and τn−1, respectively.

4. Then, by the generalized Arzela-Ascoli theorem from above, we know σn
and τn have convergent subsequents to geodesics η and γ in C̄.

Theorem 14. Let G be an equi-traversed, transitive, unimodular, nonamenable,
Gromov hyperbolic graph. Let ω be the Bernoulli bond percolation on G. Then,
for p > pc, a.s. every infinite cluster C ∈ ω has more than one point in ∂∞G.

Proof. At each stage of the second step of our algorithm, we maximize the dis-
tance between σ(n) and τ(n). By (1), there is an average branching of outward
edges, so we can always increase the distance by some ε > 0 on average, so we
have

d(σ(n), τ(n)) > εn→∞.
However, by Assumption 12, C is Gromov hyperbolic, so if η and γ were C-
geodesics tending to the same point in ∂∞G, they would remain a bounded
distance apart. Therefore, η and γ tend to different points in ∂∞G.

5 pc Bounds for Equi-Traversed Graphs

We can adopt a lower bound for pc from the uniform tree case, since uniform
trees are the least connected equi-traversed graphs. For uniform trees, pc = 1

d−1 .
We can derive an upper bound for pc from a recursive equation for the expected
number of vertices in S(x, n) ∩ C.

Let Zn,Zn−1, and Zn+1 be the number of vertices in An = S(x, n)∩ C, An−1 =
S(x, n − 1) ∩ C, and An+1 = S(x, n + 1) ∩ C, respectively. Let eko,i,` be the
expected number of outward, inward, and lateral edges in G from vertices in
Ak. Note that eko,i,` = dko,i,` for graphs with a constant number of outward,

inward, and lateral edges. Let rk` be the expected number of vertices in Ak that
can only be reached from Ak and rk+1

i be the expected number of vertices in Ak
that can only be reached from Ak+1. We know Zn will be at least the expected
number of vertices reached from the previous layer: that is, the expected number
of outward edges from the previous layer, minus the overcount of the expected
number of inward edges for vertices in Zn. We also take into account the vertices
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that can only be reached laterally from An, as well as the vertices that can only
be reached from An+1. Then we have:

Zn =
∑

v∈S(x,n)

P[v ∈ C]

≥ p[en−1
o Zn−1 − (eni − 1)Zn + rn` Zn + rn+1

i Zn+1].

Since rni and rn+1
` are hard to estimate and likely to be small, we use an under-

estimate to find a lower bound for the exponential growth rate.

Zn ≥ pen−1
o Zn−1 − p(eni − 1)Zn

(1 + p(ei − 1))Zn ≥ peoZn−1

Zn ≥
(

peo
1− p+ pei

)n

Provided p > 1
1+eo−ei , the exponential growth rate will be greater than one, so

Zn →∞ as n→∞. So, we have an upper bound for pc:

pc ≤
1

1 + eo − ei
.

Note that pc < 1 when eo > ei. In conclusion, for equi-traversed graphs, we
have:

1

d− 1
≤ pc ≤

1

1 + eo − ei
.
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Searching for Solitary Pseudo-Anosovs

Yvonne Chazal∗

Summer 2016

Abstract

Pseudo-Anosov homeomorphisms of a surface can be represented by
their action on certain polygonal structures, called translation representa-
tions. In many cases, pseudo-Anosovs share the same translation represen-
tation [3]. If a pseudo-Anosov does not share its translation representation
with any pseudo-Anosov other than its powers, we will call it solitary. It
is not yet known whether or not solitary pseudo-Anosovs exist. In this re-
port, we consider the action of pseudo-Anosovs on homology and develop
tests for pseudo-Anosovs to have the same translation representation in
terms of this action. Using Mathematica, we apply these tests to genus 3
surfaces.1

1 Introduction

For this paper, we will assume that when we have a surface, which we will always
denote X, it is both closed and orientable with genus g. When we use the term
curve, we will assume it is both simple and closed with orientation.

Definition. A self-homeomorphism is a bijective map from a surface to itself
that is continuous and has a continuous inverse.

For the remainder of this report, we will use the term homeomorphism to
denote self-homeomorphism, as all homeomorphisms will be from a surface to
itself.

An example of such a function is a left Dehn twist defined geometrically as
follows. Let our surface X be a torus. With curve γ as shown below in orange
on the left. If we cut along γ as shown, twist the portion to the left along γ, then
re-identify along γ, we have a homeomorphism. This affects curves intersecting
γ, such as the green curve, as shown.

∗North Carolina State University, Indiana University - Bloomington
1This material is based upon work supported by the National Science Foundation under

Grant No. DMS-1461061.
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The Nielson-Thurston Classification [3] gives a classification for the homeo-
morphisms of a surface. A homeomorphism φ is called periodic if there exists
some integer k > 0 such that φk = id. φ is called reducible if some power of φ
maps a finite union of disjoint simple, closed curves on X back to themselves.

Nielson-Thurston Classification. If φ : X → X is a homeomorphism, one
of the following holds:

1. φ is periodic

2. φ is reducible

3. φ is pseudo-Anosov

The last type of homeomorphism is of particular interest to us, and is the
subject of this project.

Definition. A homeomorphism φ : X → X is called pseudo-Anosov if and only
if φk(γ) 6= γ for all γ and k > 1.

A self-homeomorphism of a surface can be understood by its action on curves
on the surface. If two curves are “parallel,” then their image under the home-
omorphism will also be “parallel.” Therefore, we can identify “parallel” curves
using a notion of “parallel” that is made precise by the homology equivalence
relation.

2 Homology

Definition. Two curves (not necessarily closed) are homologous if their differ-
ence bounds a surface.

In the two examples of homologous curves above, we have α (blue) is ho-
mologous to β (red), and ∂D = α− β = α ∪ −β, surfaces D colored orange.

Homology is an equivalence relation, meaning we can define equivalency
classes of homologous curves which we will call homology classes. The homol-
ogy class with representative γ will be denoted [γ]. If we take the set of formal
linear combinations of curves {Σaiγi : ai ∈ Z} and mod out by the equivalence
relation, these homology classes form a free abelian group together under addi-
tion which we will call the first homology group of X, denoted H1(X,Z) [5]. If
we extend this group to consider real coefficients, H1(X,R), it forms a vector
space.
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On this vector space, we will need to utilize a basis. The basis we will utilize,
which we will discuss further in the next section, will look as follows.

{ai, bi}gi=1 is just one set of representations of our basis elements {[ai], [bi]}gi=1.
Note that for all {[ai], [bi]}gi=1, aj ∩ bj is only one point and there are no other
intersections. Our first homology group will be all linear combinations of these
basis elements.

H1(X,R) =

{
g∑

i=1

mi[ai] + ni[bi] : mi, ni ∈ R

}
.

For a homeomorphism φ, we can induce a linear homeomorphism φ∗ on
the first homology group. We have that if two curves a1 and a2 are homol-
ogous, denoted a1 ∼ a2, then φ(a1) ∼ φ(a2), thus such a function would
be well-defined.2 For [γ] = a1[γ1] + a2[γ2] + · · · + ak[γk], define φ∗([γ]) =
a1φ∗([γ1]) + a2φ∗([γ2]) + · · ·+ akφ∗([γk]). Thus φ∗ : H1(X,R)→ H1(X,R) is a
linear transformation on vector space H1(X,R). We will use φ∗ and its matrix
representation, which we will denote Aφ, interchangeably.

Definition. Define i : H1(X,R) × H1(X,R) → R. The intersection form of
two differentiable curves α and β, denoted i(α, β), is the signed count of times
α and β intersect, where the sign of an intersection is positive if the order of
the vectors aligns with the orientation of the surface and is negative otherwise.3

Note that i(α, β) = −i(β, α) and that if i(α, γ) = 0 for all γ ∈ X, then α
does not intersect any curves on the surface, so it must be 0. Also note that for
our basis, we have i(ai, bi) = 1 and all other combinations are 0.

Definition. A bilinear form (·, ·) on vector space V is symplectic if and only if
the following hold:

• If (v, w) = 0 for all w ∈ V , then v = 0.

• (v, w) = −(w, v) for all v, w ∈ V .

Definition. In general, a collection of curves {ai, bi}gi=1 representing basis
{[ai], [bi]}gi=1 will be called a geometric set of representatives if i(aj , bj) = 1

2If α ∼ β, then for a homeomorphism φ, we have φ(α ∪ −β) = φ(∂D), and that φ(α) ∪
−φ(β) = ∂φ(D) = ∂D, so φ(α) ∼ φ(β).

3If α and β do not intersect transversely, then we can find homologous curves that do, and
the intersection number does not depend on the homology representative.
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and there are no other intersections. If {[ai], [bi]} has a geometric set of repre-
sentatives, we will call it a geometric symplectic basis.

Thus, the intersection form is symplectic, and the homology basis that we
have chosen is a geometric symplectic basis.

Definition. A linear transformation L is called symplectic with respect to (·, ·),
if and only if (Lx,Ly) = (x, y) for all x, y ∈ V .

For any symplectic linear transformation L, we have that det(L) = 1, and
characteristic polynomial PL is palindromic, which implies that if λ is an eigen-
value for L, then λ−1 is also an eigenvalue for L. It is also true that for J
defined below, LTJL = J for all L.

J =




0 1 0 0 . . . 0 0
−1 0 0 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 −1 0 . . . 0 0

. . . . . .
0 0 0 0 . . . 0 1
0 0 0 0 . . . −1 0




We have that for all φ∗, i(φ∗(α), φ∗(β)) = i(α, β). By definition, this means
that φ∗ is a symplectic linear transformation on vector space H1(X,R), and thus
we have all of the properties listed above for φ∗ (and its matrix representation
Aφ).

3 Translation Representations and Affine Group

To further examine homeomorphisms on a surface and their effects on curves,
one can consider a geometric realization of these topological functions in the
plane called the translation representation.

Definition. A translation representation Σ of surface X is a finite union of
polygons with set of edges E coupled with pairing function p : E → E such that

1. p ◦ p = id

2. p has no fixed points

3. p(e) has the same length as edge e for all e ∈ E

4. The outward normal vector to p(e) is opposite to the outward normal vector
of e

5. X is homeomorphic to the space obtained by identifying each edge e with
p(e) via translation of the plane.
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One should note that the number of edges within a translation surface will
be even, and that paired edges will be parallel. Curves on such structures will
traverse the structure as shown, leaving an edge at the same point that it entered
its pair.

The double pentagon is a translation representation for a torus of genus 2.
It is comprised of two adjoined regular pentagons with parallel sides identified.
Below we have pictured the double pentagon with solid like-colors representing
identified sides. The length of each side is 1.

We can use this translation representation to represent homeomorphisms on
the genus 2 torus. These homeomorphisms will need to preserve the identifica-
tions on paired edges. One such homeomorphism is a rotation about the center
of each of the two pentagons in a counter-clockwise direction of 2π/5, as shown
below.

As one can see, after being rotated the paired edges remain parallel, meaning
the identifications are preserved and we have a valid homeomorphism.

For the second homeomorphism we will consider, we will want to decompose
the double pentagon into cylinders. Each cylinder will represent one of the two
tori in our genus two torus, and will correspond to two parallelograms within
our translation surface. We will use the vertical cylinder decomposition shown
below. The black, dashed line represents the separating curve for each of the
cylinders.
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We are now able to look at homeomorphisms along each of these two cylin-
ders, representing homeomorphisms acting on each of the two tori in the surface.
We will call the cylinder bounded by the purple, green, and tan edges and the
separating curve the “inner” cylinder. The “outer” cylinder is bounded by the
red and blue edges and the separating curve.

Definition. A homeomorphism is called affine with respect to a translation
representation Σ if and only if φ is differentiable and the Jacobian dφ does not
depend on the point at which it is taken.

Proposition 1. For each affine homeomorphism φ on surface X, we have dφ ∈
SL2(R).

Proof. By the Change of Variables formula, we have

∫

X

dA =

∫

φ(X)

det(dφ)dA

Because φ is a bijective self-homeomorphism, φ(X) = X, so

∫

φ(X)

det(dφ)dA =

∫

X

det(dφ)dA = det(dφ)

∫

X

dA

Thus, by dividing out by the integral, we have that det(dφ) = 1.

If φ is an affine homeomorphism and γ : [0, 1] → R2 is a path, then (φ ◦ γ)
is also a path. From the Chain Rule, we have

(φ ◦ γ)′ = d(φ ◦ γ) = (dφ) ◦ γ′

It follows by the Fundamental Theorem of Calculus that

(φ ◦ γ)(t)− (φ ◦ γ)(0) =
∫ t
0
(φ ◦ γ)′(s)ds

=
∫ t
0
dφ ◦ γ′(s)ds

= dφ
∫ t
0
γ′(s)ds

= dφ(γ(t)− γ(0))

Thus we have

φ ◦ γ(t) = dφ(γ(t))− dφ(γ(0)) + φ ◦ γ(0)

We can combine the vectors that do not depend on t and call it c ∈ R2, making
our equation

φ(γ) = dφ · γ + c

Note that if γ is a line segment, then φ(γ) is also a line segment.
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In order to decompose our representation into cylinders, we can cut along the
separating curve, and identify the red and purple edges via translation. Then
we can make two more cuts (along the pictured blue dashed lines), and identify
the remaining blue and green edges.

Using basic geometry, we can find the heights and widths of each cylinder
as we have thus far preserved the geometric structure of our translation repre-
sentation. The moduli of the two cylinders (height/width) are

2 sin( 3π
10 )

cos( 3π
10 )

= 2.7528 . . .
2(1 + sin( π10 ))

cos( π10 )
= 2.7528 . . .

Suppose we have the orange, straight line shown below on each copy of the
translation representation, with points along the black dotted line (our sepa-
rating curve) identified. For a homeomorphism, the points will need to remain
identified. The two yellow curves below represent the image of the orange curve
under two valid homeomorphisms.

On the left, the two points remain identified, but the yellow curve is not
differentiable, and thus it is not affine. On the right, the yellow curve is a
straight line, with slope equivalent to the modulus of each of the cylinders. It
is because the moduli of these cylinders are rational multiples of each other,
namely equivalent, that we are able to produce such a straight line.

The affine homeomorphism shown to the right above is the second home-
omorphism we will consider–the left Dehn multitwist–on each of the two tori
represented by the two cylinders above. This will be a left Dehn twist about
both b1 and b2.
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In order to construct the matrix representations on Sp(4,Z) of these two
affine homeomorphisms, we need to compute their actions on a homology basis.
For this we will use the following basis vectors:

In order to show that these are indeed a valid homology basis, we will again
decompose the double pentagon into cylinders, this time, homotoping our cylin-
ders into the square representations of the two tori.

We know that the left Dehn twist about b1 and b2 will look as follows on the
two tori.

Thus we have the following, and we can construct its matrix representation.

T (a1) = a1
T (b1) = a1 + b1
T (a2) = a2
T (b2) = a2 + b2

=⇒ AT =




1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1




Note that we can separately compute the left Dehn twists about b1 and b2
and compose them to retrieve the same matrix representation.
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ATb1
◦ATb2

=




1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1


 ◦




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1


 =




1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1


 = ATb

As for the rotation, when applied to the homology basis, we get the following.

In order to determine the homology class of these curves, we must again split
the structure into tori, but we must be careful with the curves that traverse the
separating curve. For these, we must divide the curve into two curves that cancel
along the separating curve. The sum of these two curves will be homologically
equivalent to our original curve. We also want the curves to turn in the same
direction each time they run into the separating curve. We have chosen for the
curves to turn in the counter-clockwise direction, consistent with the standard
orientation. This is shown below.

We can homotope each cylinder into their square representations, homotop-
ing R(a1), R(b1), R(a2), and R(b2) along with them. Below we have each of the
four curves split into the two tori and homotoped to the square representations.
They are each on their own square representation to reduce clutter. From here,
it is fairly easy to see the decomposition of these curves into the basis elements.
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Thus, we have

R(a1) = −a1 + b1
R(b1) = −2a1 + b1 − a2 + b2
R(a2) = −a2 + b2
R(b2) = −a1 + b1 − a2

=⇒ AR =




−1 −2 0 −1
1 1 0 1
0 −1 −1 −1
0 1 1 0




The Dehn multitwist is classified as reducible, as each time the function is
applied, b1 and b2 remain fixed. The rotation is of finite order, as every power
of 5 will be the identity when the pentagons are rotated a full 2π. Thus neither
of these homeomorphisms constitute pseudo-Anosovs. However, we can find
pseudo-Anosovs in combinations of T and R.

The affine self-homeomorphisms of a translation representation Σ constitute
a group together with composition called the affine group of Σ, denoted Aff(Σ).

Definition. Two pseudo-Anosov homeomorphisms φ : X → X and ψ : X → X
are called friends if there exists Σ such that φ, ψ ∈ Aff(Σ).

Note that φk is friends with φ for all integers k 6= 0.

Definition. φ is called solitary if and only if Aff(Σ) = 〈φ〉.
By this definition, φ and its powers are the only affine homeomorphism

associated with the translation representation Σ. Such homeomorphisms are
exactly what we are searching for.

4 Function h

Now that we have a geometric structure of homeomorphisms on a given surface,
it is natural to construct a geometric measure on this structure. We will define
a linear functional h : H1(X,R) → R2 with respect to translation surface Σ as
follows.

h(γ) =

[
hx(γ)
hy(γ)

]
=

[∫
γ
dx∫

γ
dy

]

This function measures the amount γ travels in the direction of ex and ey
respectively and provides us with a geometric measure for γ.

h is a linear transformation , as both hx and hy are integral functions, and
are thus linear. To construct the matrix representation of this linear transfor-
mation, we only need to see what this function does to the basis elements on
the translation structure Σ of surface X. Thus we have the following:

Bh =


 h(a1) h(b1) . . . h(a2g) h(b2g)




=

[
hx(a1) hx(b1) . . . hx(a2g) hy(b2g)
hy(a1) hy(b1) . . . hy(a2g) hy(b2g)

]
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These values are easily computed from the geometry of the translation struc-
ture of a surface, by calculating the length of each ai and bi in directions x and
y.

Proposition 2. For translation representation Σ of surface X, h : H1(X,R)→
R2 is surjective.

Proof. Proceed by contradiction. Assume hx(γ) = 0 for all γ ∈ H1(X,Z). Fix
a point p0 in Σ, and let p be another point on Σ. Note that p could be located
on a different polygon from p0.

Let α and β be paths in Σ, joining points p0 and p. These paths may be a
collection of paths inside multiple polygons such that when the edges of these
polygons are identified, the paths form one continuous path from p0 to p. α∪−β
is a closed curve, and thus represents an element of H1(X,Z). By our initial
assumption, we have hx(α ∪ −β) = 0, and thus:

∫

α

dx−
∫

β

dx =

∫

α∪−β
dx = hx(α ∪ −β) = 0

so
∫
α∪−β dx is independent of path.

Let us define f : X → R by p 7→
∫
α
dx. It is clear that f is differentiable.

The union of finitely many polygons is a closed and bounded set. Thus,
by the Heine-Borel theorem, Σ is compact, so because f is continuous, f must
reach a maximum value at some pmax ∈ Σ, i.e. f(pmax) is the largest value for
f .

Consider the following three cases:

1. Suppose (by contradiction) that pmax belongs to the interior of a polygon
in Σ. Then there exists ε > 0 such that for t ∈ [0, ε], point pmax +
(t, 0) belongs to the polygon containing pmax. If we integrate dx over the
concatenation of the path from p0 to p with the path t 7→ pmax + (t, 0),
we have

f(pmax + (ε, 0)) = f(pmax) + ε > f(pmax)

This is a contradiction as f(pmax) is the maximum value for f .

2. Suppose (by contradiction) that pmax belongs to the interior of an edge e
of a polygon in Σ. Then the maximum value of f is achieved at every
point along e. Thus e is parallel to the y-axis and the outward normal
vector of e is (1, 0). Let T be the translation identifying e with p(e). Then
the outward normal vector of p(e) is (−1, 0). pmax is on the interior of e,
so T (pmax) is on the interior of p(e)=T (e). Then there exists ε > 0 such
that for t ∈ [0, ε], point T (pmax+(t, 0)) belongs to the polygon containing
edge p(e). If we integrate dx over the concatenation of the path from p0
to p with the path t 7→ T (pmax + (t, 0)), we have

f(T (pmax) + (ε, 0)) = f(pmax) + ε > f(pmax)

This is a contradiction as f(pmax) is the maximum value for f .

26



3. Suppose (by contradiction) that pmax is a vertex of a polygon in Σ. Then
pmax may be identified with multiple vertices. Let v1, v2, . . . , vk be ver-
tices identified with pmax, with polygons P1, P2, . . . , Pk containing those
vertices and translations T1, T2, . . . , Tk identifying those polygons. Let P
be the polygon containing point pmax. The union of P and all of the
images of Ti(Pi) contains an open disk centered at pmax. Thus Ti(pmax)
is a point on polygon Pi. Then there exists ε > 0 such that for t ∈ [0, ε],
point Ti(pmax + (t, 0)) belongs to polygon Pi. If we integrate dx over the
concatenation of the path from p0 to p with the path t 7→ Ti(pmax+(t, 0)),
we have

f(Ti(pmax) + (ε, 0)) = f(pmax) + ε > f(pmax)

This is a contradiction as f(pmax) is the maximum value for f .

Therefore, our initial assumption that hx(γ) = 0 for all γ ∈ H1(X,Z) must
be false. Then there exists γx ∈ H1(X,Z) such that hx(γx) 6= 0.

Let a = hx(γx) and b = hx(γx). Then we have

∫

γ

b · dx− a · dy = b

∫

γx

dx− a
∫

γx

dx = b · hx(γx)− a · hx(γx) = ba− ab = 0

Let ω = b·dx−a·dy. Apply the argument above to ω, making the assumption
that

∫
α
ω = 0 for all paths α. Creating a similar function f gives a gradient

vector field in the direction (b,−a) at the maxima of f . By the argument above,
there exists γω ∈ H1(X,Z) such that

∫
γω
ω 6= 0. Because

∫
γx
ω = 0, h(γω) is

independent of h(γx) = (a, b). Thus, the dimension of Im(h) is at least 2, so
because R2 is two dimensional, h is surjective.

In addition to our original definition of hx and hy, we have its relation to
the intersection number.

hx(γ) =

∫

γ

dx = i(γ, h∗x) (1)

So what is this h∗x? Let’s look at γ = ai and γ = bi. Recall, h∗x ∈ H1(X,R),
so h∗x = m1a1 + n1b1 + · · ·+mgag + ngbg.

γ = ai =⇒ hx(ai) = i(ai, h
∗
x) = i(ai,m1a1 + n1b1 + · · ·+mgag + ngbg)

= m1i(ai, a1) + n1i(ai, b1) + · · ·+mgi(ai, ag) + ngi(ai, bg) = nii(ai, bi) = ni

=⇒ ni = hx(ai)

γ = bi =⇒ hx(bi) = i(bi, h
∗
x) = i(bi,m1a1 + n1b1 + · · ·+mgag + ngbg)

= m1i(bi, a1) + n1i(bi, b1) + · · ·+mgi(bi, ag) + ngi(bi, bg) = mii(bi, ai) = −mi

=⇒ mi = −hx(bi)

and similarly for h∗y. Thus, we have
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h∗x = −hx(b1)a1 + hx(a1)b1 + · · · − hx(bg)ag + hx(ag)bg

=

g∑

i=1

−hx(bi)ai + hx(ai)bi

h∗y =

g∑

i=1

−hy(bi)ai + hy(ai)bi.

Combining our definition of h and hx in terms of h∗x (as well as hy), we have

h(γ) =

[
i(γ, h∗x)
i(γ, h∗y)

]
.

Proposition 3. h∗x, h
∗
y span ker(h)⊥.

Proof. For all curves γ in ker(h), h(γ) = (0, 0). By definition of h, this means
hx(γ) = 0 and hy(γ) = 0. Thus i(γ, h∗x) = 0 and i(γ, h∗y) = 0 for all γ ∈ ker(h).

By definition of ⊥, this means that h∗x, h
∗
y ∈ ker(h)⊥.

Suppose (by contradiction) that h∗x and h∗y are not linearly independent.
Then there exists some constant c such that h∗y = c ·h∗x. If this is the case, then
we have

h(γ) =

[
i(γ, h∗x)
i(γ, h∗y)

]
=

[
i(γ, h∗x)
c · i(γ, h∗x)

]
=

[
1 · i(γ, h∗x)
c · i(γ, h∗x)

]
= i(γ, h∗x)

[
1
c

]

Therefore, for all γ, h(γ) is a multiple of

[
1
c

]
. Thus, the image of h lies in

the line spanned by

[
1
c

]
. Thus Im(h) has dimension 1. But this contradiction

because from Proposition 2, we have that Im(h) has dimension 2. Thus, h∗x and
h∗y are linearly independent.

Because h is surjective, ker(h) has dimension 2g − 2, by the Rank-Nullity
Theorem. A general fact in symplectic linear algebra gives us that dim(ker(h))+
dim(ker(h)⊥) = 2g. Therefore, ker(h)⊥ has dimension 2. Because h∗x and h∗y
are in ker(h)⊥ and are linearly independent, they span ker(h)⊥.

Theorem 1. Let φ : Σ → Σ be an affine homeomorphism, inducing a linear
function φ∗ : H1(X,R) → H1(X,R), and let α : [0, 1] → Σ be a simple, closed
curve with homology class [α] ∈ H1(X,R). Then h(φ∗ ◦ α) = dφ · h(α).

Proof. [0, 1] ⊂ R is spanned by a standard basis vector {et}, which we can think
of as 1. Σ ⊂ R2 is spanned by standard basis vectors {ex, ey}.

hx ◦ φ∗([α]) = hx([φ ◦ α])
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As stated in Fulton’s Algebraic Topology, for all α ∼ β,
∫
α
dx =

∫
β
dx [1], so

when considering a homology class, we need only look at a single representative.
Here, we will examine φ ∈ [φ] and α ∈ [α]. By definition, we have

hx(φ ◦ α) =

∫

φ◦α
dx

We can then use the following theorem from Guillemin-Pollack’s Differential
Topology [2]:

Change of Variables in R2 . If U and V are open subsets of Rk, f : U → V
is an orientation-preserving diffeomorphism, and ω is an integrable k-form on
U , then

∫
U
ω =

∫
V
f∗ω.

Here, f∗ is the transpose map of f , and f∗ω is called the pullback of ω by
f . In our case, this gives us

∫

φ◦α
dx =

∫ 1

0

(φ ◦ α)∗dx (2)

Let us consider the integrand here pointwise, where v ∈ Tt0([0, 1]) for t0 ∈
[0, 1]. By the definition of pullback of dx by φ ◦ α [2],

(φ ◦ α)∗(dx)(φ◦α)(t0)(v) = v · (φ ◦ α)∗(dx)(φ◦α)(t0)(et) (3)

We will drop v for now and retrieve it later. It follows from the definition of
transpose map [2]

(φ ◦ α)∗(dx)(φ◦α)(t0)(et) = (dx)(φ◦α)(t0)

[
∂((φ ◦ α)x)t0

dt
(dt) +

∂((φ ◦ α)y)t0
dt

(dt)

]

=
∂((φ ◦ α)x)t0

dt

Retrieving v from (3),

v · (φ ◦ α)∗(dx)(φ◦α)(t0)(et) = v · ∂((φ ◦ α)x)t0
dt

= (dt)t0(v) · ∂((φ ◦ α)x)t0
dt

=
∂((φ ◦ α)x)t0

dt
(dt)t0(v)

From here, we can distribute x, as it will “trickle down” through the partials,
then we can apply the chain rule.
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=
∂(φx ◦ αx)t0

dt
(dt)t0(v)

=
(∂φx)(φ◦α)(t0) · (∂αx)t0

dt
(dt)t0(v)

Thus, we have

(φ ◦ α)∗(dx)(φ◦α)(t0)(v) =
(∂φx)(φ◦α)(t0) · (∂αx)t0

dt
(dt)t0(v) ∀v ∈ Tt0([0, 1])

And because we have equality pointwise on the whole interval, we have that
the functions are equivalent.

(φ ◦ α)∗(dx)(φ◦α)(t0) =
(∂φx)(φ◦α)(t0) · (∂αx)t0

dt
(dt)t0

Returning to (2) with our integral, we now have

∫ 1

0

(φ ◦ α)∗dx =

∫ 1

0

(∂φx)(φ◦α)(t0) · (∂αx)t0
dt

(dt)t0(v)

However, because φ is an affine homeomorphism, ∂(φx) does not depend on
t. Thus, we have

∫ 1

0

(∂φx)(φ◦α)(t0) · (∂αx)t0
dt

(dt)t0(v) = ∂φx

∫ 1

0

(∂αx)t0
dt

(dt)t0

However, we have that

∫ 1

0

(∂αx)t0
dt

(dt)t0 =

∫ 1

0

α∗(dx)

By retrieving ∂φx, applying the Change of Variables Theorem, and using
the definition of h, respectively

∂φx ·
∫ 1

0

α∗(dx) = ∂φx ·
∫

α

dx = ∂φx · hx(α)

Thus, we have

hx(φ ◦ α) = ∂φx · hx(α)

Using the same procedure with hy,

hy(φ ◦ α) = ∂φy · hy(α)
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then we have the following:

h(φ∗ ◦ α) =

[
hx(φ∗ ◦ α)
hy(φ∗ ◦ α)

]
=

[
∂φx · hx(α)
∂φy · hy(α)

]
= dφ ·

[
hx(α)
hy(α)

]
= dφ · h(α)

To further demonstrate the relationship between h, φ∗, and dφ, consider the
following commutative diagram. In this case, we say h intertwines φ∗ and dφ.

H1(X,R) H1(X,R)

R2 R2

φ∗

h h

dφ

Let us now switch to thinking of φ∗ as its matrix representation Aφ. Thus
we have

h(Aφ · v) = dφ · h(v) (4)

Suppose Aφ has eigenvalue λ with corresponding eigenvector v∗. We then have
the following:

dφ · h(v∗) = h(Aφ · v∗) = h(λv∗) = λ · h(v∗) (5)

Of course v∗ could be in the kernel of h, making h(v∗) = 0, and thus making
the equation trivial. However, if this is not the case, then λ is an eigenvalue for
both Aφ and dφ, and h(v∗) is an eigenvector of dφ. And vectors that satisfy
these conditions are of particular interest to us.

Theorem 2 (Thurston [3]). A homeomorphism φ ∈ Aff(Σ) is pseudo-Anosov
if and only if |tr(dφ)| > 2.

Proposition 4. If φ ∈ Aff(Σ) is pseudo-Anosov, then Aφ has two distinct
eigenpairs (λ+, v+) and (λ−, v−) such that the following hold true:

1. v+, v− ∈ ker(h)⊥

2. h(v+) and h(v−) are eigenvectors of dφ

3. |λ+ + λ−| > 2

4. λ+ · λ− = 1.

Proof. We will first consider the pullback of dx and dy by φ. Note that there is
a difference between φ∗ and φ∗.

φ∗(dx) = dφx =
∂φx
dx

dx+
∂φx
dy

dy

φ∗(dy) = dφy =
∂φy
dx

dx+
∂φy
dy

dy
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Let F denote the vectors space of 1-forms of the form a·dx+b·dy where a, b ∈ R.
Then φ∗ acts on F in the following way.

φ∗(a · dx+ b · dy) = a∂φx

∂x dx+ b∂φx

∂y dy + a
∂φy

∂x dx+ b
∂φy

∂y dy

=

[
a∂φx

∂x dx+ b∂φx

∂y dy

a
∂φy

∂x dx+ b
∂φy

∂y dy

]

=

[
∂φx

∂x
∂φx

∂y
∂φy

∂x
∂φy

∂y

] [
a
b

]
= (dφ)T

[
a
b

]

If the reader will recall, dφ is the Jacobian of φ. Because φ is an affine, pseudo-
Anosov homeomorphism, we have that dφ exists and has |tr(dφ)| > 2. Because
det(dφ) = 1, dφ is conjugate to a diagonal matrix with its two eigenvalues along
the diagonal. Thus the determinant, 1, is the product of the two eigenvalues,
so the eigenvalues are inverses, say λ and λ−1. Trace is also preserved by
conjugation, so |λ+ λ−1| = |tr(dφ)| > 2.

Because of this, dφT will have eigenvectors, say ω+ and ω− with the such
eigenvalues. Eigenpairs for dφT are also eigenpairs for φ∗, so (λ, ω+) and
(λ−1ω−) are eigenpairs for φ∗.

From here onward, we will mainly discuss ω+, but the same arguments can be
carried out on ω−. Let ω+ = a+dx+ b+dy. Define a function hω+

: H1(X,R)→
H1(X,R) such that

hω+
(γ) = a+

∫

γ

dx+ b+

∫

γ

dy = a+hx(γ) + b+hy(γ).

Thus, we have that the following. The matrix C is defined below in-context.

[
hω+

hω−

]
=

[
a+ b+
a− b−

] [
hx
hy

]
= C

[
hx
hy

]

Let h∗ω+
∈ H1(X,R) be defined as follows for all curves γ ∈ H1(X,R).

hω+
(γ) = i(γ, h∗ω+

) =

∫

γ

ω+

Note that h∗ω+
∈ ker(h)⊥ because h∗ω+

∈ span{h∗x, h∗y}.
It follows that

λi(γ, h∗ω+
) = λ

∫

γ

ω+ =

∫

γ

φ∗(ω+)

By the definition of pullback [2],

∫

γ

φ∗(ω+) =

∫

φ∗(γ)
ω+
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By the definition of hω+ , we have

∫

φ∗(γ)
ω+ = hω+(φ∗(γ)) = i(φ∗(γ), h∗ω+

)

Because i(·, ·) and φ∗ are symplectic, we have that

i(φ∗(γ), h∗ω+
) = i(γ, φ−1∗ (h∗ω+

))

and therefore, λi(γ, h∗ω+
) = i(γ, φ−1∗ (h∗γ+)). By basic algebra and the non-

degeneracy of i(·, ·), we have the following for all γ ∈ H1(X,R).

λi(γ, h∗ω+
) = i(γ, λh∗ω+

) = i(γ, φ−1∗ (h∗γ+))

=⇒ i(γ, λh∗ω+
)− i(γ, φ−1∗ (h∗γ+)) = 0

=⇒ i(γ, λh∗ω+
− φ−1∗ (h∗γ+)) = 0

=⇒ λh∗ω+
− φ−1∗ (h∗γ+) = 0

=⇒ λh∗ω+
= φ−1∗ (h∗γ+)

Thus, we have φ∗(h∗ω+
) = λ−1h∗ω+

. By a similar argument, we have φ∗(h∗ω−) =

λh∗ω− . Thus, φ∗ has eigenpairs (λ−1, h∗ω+
) and (λ, h∗ω−).

Let v+ = h∗ω+
, λ+ = λ−1, v− = h∗ω− , and λ− = λ.

Definition. The eigenvectors and eigenvalues as found in the theorem above
are called affine.

Definition. Eigenvalues λ1 and λ2 are called hyperbolic if λ1 · λ2 = 1 and
|λ1 + λ2| > 2.

Proposition 5. If pseudo-Anosovs φ and ψ are friends, then the affine eigen-
vectors of φ and ψ span the same plane.

Proof. If φ and ψ are friends, then they both belong to Aff(Σ) for some trans-
lation representation Σ with associated h. Because φ, ψ ∈ Aff(Σ), we have
that their affine eigenvectors are in ker(h)⊥. These eigenvectors are linearly
independent, and thus span the same plane.

Thus, if the affine eigenvectors of Aφ do not span the same symplectic plane
as the affine eigenvectors of any other pseudo-Anosov homeomorphism, then
φ may be solitary. However, this is almost impossible to check as there are
infinitely many homeomorphisms on any given surface.

Let (λ, v+) and (λ−1, v−) be affine eigenpairs for Aφ. By definition of eigen-
value, we have Aφv+ = λv+. However, by dividing by both λ and Aφ, we get
λ−1v+ = A−1φ v+. Now let us consider A−1φ +Aφ.

(A−1φ +Aφ)v+ = A−1φ v+ +Aφv+ = λ−1v+ + λv+ = (λ−1 + λ)v+
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Similarly, for v−, we have

(A−1φ +Aφ)v− = A−1φ v− +Aφv− = λv− + λ−1v− = (λ+ λ−1)v−

Thus, we have that (λ−1 + λ) is an eigenvalue of A−1φ +Aφ with eigenspace

〈v+, v−〉. Thus we have that if φ and ψ are friends, and {λ, λ−1} and {µ, µ−1}
are affine eigenvalues of Aφ and Aψ respectively, then eigenvalue (λ−1 + λ) of
(A−1φ +Aφ) and (µ−1 + µ) of (A−1ψ +Aψ) share common eigenspaces.

Thus, if the sum of the affine eigenvalues of Aφ constitute an eigenspace of
(A−1φ + Aφ) that is not shared by that of any other homeomorphism, then Aφ
does not have any friends, and thus may be solitary. However, as before, this
is almost impossible to check. But we are able to use this fact to check for
homeomorphisms that are potentially solitary, by checking them against large
numbers of pseudo-Anosovs.

5 Computing

We used the principles outlined above to explore sets of homeomorphisms that
we could generate. For all computation, we used Mathematica.

The Burkhardt Generators below span Sp(2g,Z) [4].

Transvection (T ): Factor Rotation (R):



1 0 0 0 . . . 0 0
1 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0

. . . . . .
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1







0 −1 0 0 . . . 0 0
1 0 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0

. . . . . .
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1




Factor Mix (M): Factor Swap (S1) (1↔ 2):



1 0 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
0 0 1 0 . . . 0 0
−1 0 0 1 . . . 0 0

. . . . . .
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1







0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0

. . . . . .
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1




When considering a surface with genus g, there are g− 1 factor swap gener-
ators swapping adjacent factors {ai, bi} ↔ {ai + 1, bi + 1} for all 1 ≤ i ≤ g.

In order to generate many symplectic matrices of genus 2 and 3, we took
combinations of these generators and their inverses in tuples of a certain word
length. We only considered genus 2 and genus 3.
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Farb-Margalit assert that we can further dissect these generators into Dehn
twists as follows, where Tγ denotes a left Dehn twist about curve γ [4].

Transvection Tb1
Factor Rotation Tb1 · Ta1 · Tb1

Factor Mix T−1b1
· T−1b2

· Tb2−b1
Factor Swap (i↔ i+ 1) (Tai+1 · Tbi+1 · Tai+1−bi · Tai · Tbi)3

After generating the matrices and eliminating duplicates that arose, we
checked for pseudo-Anosovs by checking for both hyperbolic eigenvalues and
satisfaction of the Casson-Bleiler Criteria below, adopted from Farb-Margalit’s
Primer on Mapping Class Groups [4].

Casson-Bleiler Criteria for Pseudo-Anosovs. Suppose φ is a homeomor-
phism with symplectic matrix representation Aφ. Let PA(x) be the characteris-
tic polynomial for Aφ. If each of the following conditions hold true, then φ is
pseudo-Anosov.

1. PA(x) cannot be written as a product of two polynomials that are the char-
acteristic polynomials of symplectic matrices.

2. PA(x) is not a cyclotomic polynomial.

3. PA(x) cannot be expressed as a polynomial in xk for any k > 1.

We began by checking all unique characteristic polynomials of matrices gen-
erated by combinations of the generators and their inverses. This gave us the
following percentage of characteristic polynomials of the specified word length
satisfying the Casson-Bleiler Criteria out of the total unique characteristic poly-
nomials of that specific word length.

Word Length 3 4 5 6
g = 2 16.667% 25.000% 26.000% 58.475%
g = 3 0% 0% 17.549% 29.310%

This same set of characteristic polynomials gave us the following percentage
of characteristic polynomials that had hyperbolic eigenvectors out of the total
unique characteristic polynomials of that specific word length.

Word Length 3 4 5 6
g = 2 16.667% 45.833% 62.000% 71.186%
g = 3 0% 25.926% 50.877% 56.0356%

Note the discrepancy in these values. The set of Casson-Bleiler pseudo-
Anosovs and the matrices with hyperbolic eigenvectors are not the same, neither
is one a subset of the other. Their relationship is described by the following Venn
diagram.
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If the reader will recall, in order for a homeomorphism φ to be pseudo-Anosov
if and only if φ has hyperbolic eigenvalues, we must know that φ is affine with
respect to some Σ. If this is not the case, we can define a 2:1 double covering
of the translation representation such that φ will be affine [6]. However, this
increases the genus of the representation, so we will not consider these matrices
further.

Among the matrices representing homeomorphisms on a genus 3 surface of
word length 6, we examined those that satisfied the Casson-Bleiler Criteria but
that have no hyperbolic eigenvalues, of which there were 11, by examining their
characteristic polynomials and their generators.

Our first thought was to consider their decomposition into Dehn Twists.
This was when we realized that for any pseudo-Anosov in genus 3, there will be
at least two factor swaps. If there is not, then it will be reducible. This means
that there are at least 30 Dehn twists comprising each pseudo-Anosov, which
would be very difficult to visualize.

In an effort to simplify these lengthy combinations of Dehn twists, I con-
sidered which Dehn twists would commute with each other, and composed the
following commutativity table. A X denotes that two Dehn twists commute
with each other.

Tai Tbi T−1ai T−1bi
Taj Tbj T−1aj T−1bj

Tai X X X X X X
Tbi X X X X X X

Unfortunately, this did not contribute to any significant decrease in length of
the combinations of Dehn twists. However it did spark my curiosity in whether
or not characteristics of matrices (Casson-Bleiler, hyperbolic eigenvectors, etc.)
could be determined by the generating combination of Burkhardt matrices. This
will be left to future work.

Once we had these sets of Casson-Bleiler pseudo-Anosov matrices, we tested
for friends among the matrices of the same word length in genus 3. It has
been proven that there are no solitary matrices among genus 2 surfaces. To do
this, we checked for friends using the following criteria discussed in the previous
section.

1. If φ and ψ are friends, then the affine eigenvectors of φ and ψ span the
same symplectic plane.
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2. If φ and ψ are friends, and {λ, λ−1} and {µ, µ−1} are affine eigenvalues
of Aφ and Aψ respectively, then eigenvalue (λ−1 + λ) of (A−1φ + Aφ) and

(µ−1 + µ) of (A−1ψ +Aψ) share common eigenspaces.

At first, we found that all of the matrices had friends. However, after a
bit of deliberation, we realized that this was due to the fact that for every
matrix we considered, we were also considering its inverse, which would always
constitute a friendship. Thus, we took out all matrix inverses, both cutting
down significantly on computation time and giving us more interesting results.

As there were no Casson-Bleiler pseudo-Anosovs for word lengths 3 or 4 in
genus 3, we did not test these word lengths for friends. For word length 5,
testing for friends with the first criteria given above, we found that the affine
eigenvectors for 54/222 matrices did not share a symplectic plane with the affine
eigenvectors of any of the other matrices in word length 5. We found the same
number of matrices with no friends by the second criteria.

In word length 6, we found that 378 matrices were not friends with any of
the other 1,928 unique matrices by both the first and second criteria, with 518 of
these 1,928 having no affine eigenvectors. When the lists of friendless matrices
among word length 5 and word length 6 were concatenated and run through the
code, no additional friendships were found.

It is important to note these matrices may have friends in Casson-Bleiler
matrices with longer word lengths, or the may have friends that are pseudo-
Anosov, but do not satisfy the Casson-Bleiler Criteria. Thus, we cannot state
that these are solitary pseudo-Anosovs; however, it is possible that there are
solitary pseudo-Anosovs among these matrices.

The next step in our work would be to produce an algorithm for constructing
the translation representations from affine eigenvectors. This would help us to
investigate why these matrices have no friends among their word length, and
perhaps we could construct friends from these translation surfaces in order to
rule out matrices that are not solitary.

One could also work to make the Mathematica code more efficient. Com-
putational time and memory was a limiting factor on what we could do, as the
number of matrices generated the five generators and their inverses for genus
3 is already 1,000,000 matrices for word length 6, increasing tenfold for each
added word. By eliminating calculations for matrix representations, we could
expand the number of matrices that we would be able to consider.
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Abstract

In this report we consider knotted Klein bottles in S4 generated from
an inversion of a knot. We use this construction to prove the existence of
a knotted Klein bottle which does not decompose as a connected sum of
an unkotted projective plane and a knotted projective plane.

1 Background

The theory of knotted surfaces is analogous to classical knot theory; it studies
the smooth embeddings of a surface in S4 up to smooth isotopy. A main reason
this topic can be difficult to analyze is that the surfaces and isotopies of the
surfaces in S4 are much harder to visualize. One way to describe a knotted
surface Σ is to use a banded link diagram.

A banded link diagram is an unlink in R3 with bands attached so that
surgering along these bands gives another unlink. To construct a surface from
this, view the banded link in R3 as a 3-dimensional hyperplane cross-section of
a surface in R4. This cross section splits R4 into R4

+ and R4
−. Disks can be

attached in R4
− to the pre-surgery unlink in the banded diagram and similarly

disks can be attached in R4
+ to the post-surgery unlink. The result of this gluing

is a surface in R4. Using Morse theory, one can show every knotted surface can
be specified by a banded link. The critical points of index of the Morse function
0 and 2 correspond to the disks attached in R4

− and R4
+, while the critical points

of index 1 correspond to the bands in the banded link diagram. Thus attaching
the correct bands is a matter of finding the saddle points of the surface. The
knot group π1(S4\Σ) can be computed from this diagram using a form of the
Wirtinger presentation.

The following are some interesting conjectures about knotted surfaces which
were relevant to our project:

This material is based upon work supported by the National Science Foundation under
Grant No. DMS-1461061
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Figure 1: A banded link diagram

Conjecture 1 (Unkotting Conjecture). Any orientable surface with knot group
Z or any non-orientable surface with knot group Z2 is unkotted.

Conjecture 2. Any knotted projective plane can be decomposed into the con-
nected sum of an unkotted projective plane and a knotted sphere.

2 Construction

A half-spun Klein bottle can be constructed using a knot K ⊂ B3 and an
inversion of K (an orientation-reversing isotopy). A surface Σ′ in B3 × I is
created applying the inversion as one proceeds along the interval. Associating
B3 × {0} with B3 × {1} gives a Klein bottle embedded in B3 × S1. B3 × S1

can then be embedded in the a standard way into S4 to create a knotted Klein
bottle.

The banded link diagram created by this mirrors the diagram created by
creating a knotted torus or a knotted sphere via spinning.

The Klein bottle construction can be thought of as removing the top half
of the spun torus and applying the inversion before re-gluing. For example, the
banded link for the unkotted Klein bottle can be thought of this way. (Insert
diagrams)

When the knot inversion is a simple rotation, the banded link diagram can
be used to show that an unkotted projective plane can be removed as a con-
nected summand of the spun Klein bottle. The result is a decomposition of the
spun Klein bottle into a knotted projective plane and an unkotted projective
plane. In fact, this knotted projective matches a construction given by Price
and Roseman, up to a change in Euler number arising from a choice of cross-cap.

Price and Roseman prove that two different inversions of the trefoil can
produce different knotted projective planes. These two inversions also produce
different knotted Klein bottles. Interestingly, the inversions are the same when
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Figure 2: Bottom half of a spun trefoil torus

considering the trefoil inside S3. A different construction of the same surface
provides some insight into the difference created the two similar inversions.

Start this time with a knot K ⊂ S3 and an inversion of K, and repeat the
same construction as before to create a surface embedded in S3 × S1. The two
inversions of the trefoil will now produce the same knotted surface Σ inside of
S3 × S1, though they do not when embedded in B3 × S1.

To get from a surface Σ embedded in S3 × S1 to a surface in S4, one can
surger along a B3 × S1 in S3 × S1 which wraps once along S3 × S1. Surgery
involves the removal of B3×S1 and replacing it with with S2×D2 in a standard
way. So long as the B3×S1 we surger along does not intersect the surface at all,
the result of surgery is a Klein bottle embedded in S4. However, the knotting
of the Klein bottle in S4 depends on the choice of B3 × S1 in S4.

One way to choose a B3 × S1 to surger along is to look at the immersed
surface in S3 cut out by the inversion of K. Choosing a B ∼= B3 in S3 that
does not intersect this immersed surface means that B × S1 will not intersect
Σ, thus one can surger along it. The different choices of B correspond to the
different surfaces generated by inverting the trefoil. To construct the banded
link diagram, draw a knot diagram for K in S3 with B at the point at infinity
while keeping track of the inversion.

With the surgery point at infinity, the entire surface Σ can be placed in a
B3 × S1 that is embedded in the standard way into S4. Thus the banded link
diagram is constructed in the exact same way as described before. Another way
to think of this is that the previous banded link construction implicitly had a
surgery at infinity.

3 Non-decomposable Surfaces

The third surgery point in the figure above gives a more interesting surface.
When constructing the banded link diagram, moving the surgery point out to
infinity causes the inversion to no longer act like a rotation in B3. As a result,
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Figure 3: Surgery points for the trefoil

the banded link diagram no longer easily decomposes to pull out an unkotted
projective plane as a connected summand. This specific surface can be shown
to be trivial and as such can be decomposed into the connected sum of two
unkotted projective planes

However for more complicated knots it’s possible that a non-rotation inver-
sion produces a knotted Klein bottle without a trivial projective plane summand.
In fact, this is the case with the surface generated by the knot in figure 4 and
inversion has this property.

Example 3.1. Using the Wirtinger presentation, the knot group of this Klein
bottle is given by

G = 〈a, b, c|a4, a2 = b2 = c2, aba = b, bab = a, aca = cac, bcb = cbc,

a−1ca = c−1ac, b−1cb = c−1bc〉
(1)

If an unkotted projective plane could be pulled out of the Klein, then all
meridians would square to 1 since all merdians are conjugate and the meridian of
the unkotted projective plane squares to 1. LettingH = G/〈a2〉, thenG ∼= H if a
trivial projective plane can be pulled out of the Klein bottle. However, entering
the groups into the Magma computer program lets us know that |G| = 48
and |H| = 24. Thus an unkotted projective plane cannot be pulled out. Other
decompositions such as splitting into two knotted projective planes can be tested
using H2(G) but as of now we do not know this group.
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Figure 4: Inversion that generates a non-decomposable Klein bottle

More surfaces with the same indecomposability can be generated by simply
adding twists to the bottom part of the knot. These types of inversions can also
be used to generate surfaces with knot group Z2 which may not decompose.
This would be a counterexample to the unkotting conjecture, however we have
no method to prove indecomposability without using the knot group.
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Abstract

We consider surfaces in Euclidean space parametrized on an an-
nular domain such that the first fundamental form and the principal
curvatures are rotationally invariant, and the principal curvature di-
rections only depend on the angle of rotation (but not the radius).
Such surfaces generalize the Enneper surface. We show that they are
necessarily of constant mean curvature, and that the rotational speed
of the principal curvature directions is constant. We classify the min-
imal case. The (non-zero) constant mean curvature case has been
classified by Smyth.
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1 Introduction

We begin this paper with some background on surface theory and briefly
describe some of the concepts we cover.

Definition 1.1. Let U ⊂ R2 be an open set. A parametrized surface is an
immersion f : U → R3.

We consider the parameters (u, v) ∈ U .
Recall that an immersion is a mapping whose Jacobian matrix Jf has

maximal rank, that is, whose columns are linearly independent. When con-
sidering a surface parametrization f , this reduces to the vectors ∂f

∂u
and ∂f

∂v

being linearly independent at every point.

Definition 1.2. The tangent space of R3 at a point P ∈ R3 is defined to
be the vector space {P} ×R3 with vector addition and scalar multiplication
defined as follows:

(P,X) + (P, Y ) = (P,X + Y ), c(P,X) = (P, cX) ∀ X, Y ∈ R3, c ∈ R .

Definition 1.3. Let f : U → R3 be a parametrized surface and p ∈ U . The
vectors ∂f

∂u
|p and ∂f

∂v
|p form a basis for a 2-dimensional subspace of Tf(p)R3,

which we call the tangent plane Tpf of f at p.

Note that for a point p ∈ U , Tpf is isomorphic to TpU .

Definition 1.4. Given an immersion f : U ⊂ R2 → R3, the isomorphism
df |p : TpU → Tpf defined by

df |p(X) = JpfX

is called the differential or push-forward of f .

The differential relates vectors in the tangent plane of f to the tangent
space of U . We call dfX the directional derivative of f in the X-direction,
and also denote it dXf .

Definition 1.5. The symmetric bilinear form Ip : TpU → R defined by

Ip(X, Y ) = 〈df |pX, df |pY 〉 ∀X, Y ∈ TpU
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is called the first fundamental form of f at p.
The first fundamental form is represented as the 2× 2 matrix

I =

(
〈∂f
∂u
, ∂f
∂u
〉 〈∂f

∂u
, ∂f
∂v
〉

〈∂f
∂v
, ∂f
∂u
〉 〈∂f

∂v
, ∂f
∂v
〉

)
.

The first fundamental form allows us to calculate angles between tangent
vectors, as well as their norms. It also allows us to calculate arc length and
surface area. The intrinsic geometry of a surface is the geometry that de-
pends only on the first fundamental form. Thus, if two surfaces that have
the same first fundamental form, they have intrinsic geometry. For example,
they have the same concept of distance, even if they are different extrinsi-
cally. The next notion reveals extrinsic information of the surface.

The unit-normal vector of a surface defined by N =
∂f
∂u
× ∂f
∂u

‖ ∂f
∂u
× ∂f
∂u
‖ at each point

can be viewed as a mapping into R3, which we call the Gauss map ν.

Definition 1.6. The endomophism Sp : TpU → Tpf defined by

SpX = dν |p ◦ (df |p)−1X ∀X ∈ Tpf

is called the shape operator of f at p. It is represented by its standard
matrix.

The shape operator gives us a notion of the curvature of the surface.
When studying curves in space we can calculate the curvature of a given
curve, which tells us how much the curve bends. At a point p on a surface,
the shape operator tells us the curvature of a curve going in each direction
in the tangent plane.

The extremal curvatures are called the principal curvatures, and the di-
rections where the curvatures are extremal are called the principal curvature
directions. These correspond respectively to the eigenvalues and eigenvectors
of the shape operator.

For more detailed background on these concepts, we refer the reader to
[4]. As we proceed, we will omit the point-dependence from our notation.

Now we approach the subject of our study.
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The Enneper surface (see Figure 1) is given in conformal polar coordinates
as

f(u, v) =
1

6
eu




3 cos(v)− e2u cos(3v)
−3 sin(v)− e2u sin(3v)

3eu cos(2v) .




Figure 1: The Enneper Surface

It was discovered in 1871 by Alfred Enneper [2]. Its first fundamental
form is given by

I =
1

4
e2u
(
1 + e2u

)2
(

1 0
0 1

)
.

This means that the Enneper surface is intrinsically a surface of revolution
(but obviously not extrinsically).

Definition 1.7. An intrinsic surface of revolution is a surface with first
fundamental form of the shape

I = Iρ = ρ(u)2
(

1 0
0 1

)
,

where ρ(u) is a positive function.
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Of course any surface of revolution is also intrinsically a surface of revo-
lution.

The shape operator of the Enneper surface is also rather special:

S =
4

(1 + e2u)2

(
cos(2v) − sin(2v)
− sin(2v) − cos(2v)

)
= R−v

(
4

(1+e2u)2
0

0 − 4
(1+e2u)2

)
Rv

where

Rv =

(
cos(v) − sin(v)
sin(v) cos(v)

)

is the counterclockwise rotation by v. This is in contrast to the shape op-
erator of a surface of revolution which always takes diagonal form in polar
coordinates. It is, however, rather special, because the principal curvature
directions rotate with constant speed independent of u and the principal
curvatures are independent of v.

Figure 2: The Enneper Surface with curvature lines

We are generalizing this property of the Enneper surface by introducing
the following concept:

Definition 1.8. Let α : R→ R be a C1-function. We say a surface has twist
α if its shape operator is of the form

S = R−α(v)
(
λ1(u) 0

0 λ2(u)

)
Rα(v) . (1)
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Note that this precisely means that the principal curvature directions are
independent of u, and the principal curvatures are independent of v.

In summary, the Enneper surface is an example of an intrinsic surface
of revolution with twist α(v) ≡ v. A standard surface of revolution, on the
other hand, has twist α(v) ≡ 0.

Note that while this is a generalization of the minimal Enneper surface,
we make no assumption on the principal curvatures, besides their indepen-
dence of v.

In this paper, we consider these general intrinsic surfaces of revolution
with twist α. Our goal is to find conditions on the conformal factor ρ(u) and
the twist function α(v) necessary for these surfaces to exist and to construct
and classify these surfaces.

Now we can formulate our main theorem, which is a consequence of the
Codazzi equations.

Theorem 1.9. Let Σ be an intrinsic surface of revolution with twist function
α. Assume that α is not identically equal to 0 or any other integral multiple
of π/2, on any open interval. Assume furthermore that the surface has no
open set of umbilic points. Then Σ has constant mean curvature, and the
twist function is linear α(v) = av.

Constant mean curvature surfaces that are intrinsic surfaces of revolution
have been studied by Smyth, see [5]. Thus our result complements Smyth’s
result by replacing his assumption about constant mean curvature with a
geometric assumption.

I order to begin a complete classification, we will invoke Bonnet’s theorem
to prove:

Theorem 1.10. Let Σ be an intrinsic surface of revolution of constant mean
curvature H = λ1 +λ2, first fundamental form Iρ for ρ : (u1, u2)→ R>0, and
linear twist α(v) = av. Then ρ satisfies the differential equation

ρ′(u)2 − ρ(u)ρ′′(u) =
1

4
H2ρ(u)4 − b2e4au (2)

for a constant b.
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Vice versa, given H, and α(v) = av, a constant b and ρ satisfying Equa-
tion (2), define

λ1,2(u) =
1

2
H ± b e

2au

ρ(u)2
.

Then the first fundamental form Iρ and the shape operator S given by Equa-
tion (1) satisfy the Gauss- and Codazzi equations and thus define an intrinsic
surface of revolution with constant twist α(v) = av and constant mean cur-
vature H.

In the special case of minimal surfaces, we can achieve a complete classi-
fication.

Theorem 1.11. Let Σ be an intrinsic surface of revolution that is also min-
imal with constant twist α(v) = av with a > 0. Then Σ belongs to an explicit
2-parameter family of minimal surfaces with Weierstrass data given by

G(w) = − 1

A
wB and dh =

1

2B
w2a−1 dw ,

with parameters A and B.

In the case that the twist function is α(v) ≡ a = 0, we prove:

Theorem 1.12. Given a conformal factor ρ(u) on an interval u1 < u < u2
and a constant c such that c2ρ(u) > |ρ′(u)| for all u1 < u < u2. Then there
is an intrinsic surface of revolution defined on the domain (u1, u2)× R with
first fundamental form Iρ and twist α(v) ≡ 0. Moreover, this surface can be
realized as an actual surface of revolution in R3 of the form

f(u, v) = (g(u) cos(cv), g(u) sin(cv), h(u))

with suitable functions g, h : (u1, u2)× R.

The paper is organized as follows:

• In section 2, we compute the Gauss- and Codazzi equations for intrinsic
surfaces of revolution, reduce them to a single ODE for ρ, and prove
Theorems 1.9 and 1.10.

• In section 3, we specialize this equation to the minimal case, integrate
the surface equations, find the Weierstrass representation of the sur-
faces, prove Theorem 1.11, and give examples.
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• In section 4, we briefly discuss the constant mean curvature case by
connecting our approach to Smyth’s. While we are not able to find ex-
plicit solutions for the Smyth surfaces, we can find numerical solutions
and make images.

• In section 5, we consider the case of twist 0, prove Theorem 1.12, and
show that sectors of the Enneper surface are isometric to sectors (with
different angle) of surfaces of revolution.

2 Gauss- and Codazzi equations for intrinsic

surfaces of revolution with twist a > 0

In order to determine when the first fundamental form and shape operator
of an intrinsic surface of revolution with twist function α are induced by an
actual surface in R3, we make use of an important theorem of surface theory,
Bonnet’s theorem. But first, we’ll introduce some of the machinery behind
this theorem.

We first introduce the covariant derivative. For a surface f and tangent
vector fields X, Y on f , the covariant derivative, or Levi-Civita connection,
DXY measures how Y varies when it goes along a curve in the X-direction.
However, it also acts on general tensor fields on the surface. We present some
of its properties, which are useful in the derivations that follow.

Lemma 2.1. Given a surface f , for all tangent vector fields X, Y, Z and
endomorphisms F,G of the tangent plane and for every scalar function φ
along f , we have

(1) DφXY = φDXY,

(2) DX(φY ) = φDXY + (dXφ)Y,

(3) DXI(Y, Z) = I(DXY, Z) + I(Y,DXZ)

(4) DXY −DYX = [X, Y ] = dXY − dYX,
(5) DX(F (Y )) = (DXF )Y + F (DXY )

(6) (DXFG) = (DXF )G+ F (DXG).

where dX is the directional derivative in the X-direction.
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We refer to these properties by their numbers in what follows.
The Gauss- and Codazzi Equations are two essential equations of surfaces

in Euclidean space. These can be written in terms of the covariant derivative,
as we will show when we derive their simplified forms.

Bonnet’s theorem states that, given any positive definite first fundamental
form and shape operator satisfying the Gauss- and Codazzi equations, there
exists a unique surface in R3 with these first fundamental form and shape
operator, up to rigid motion. Thus, we need only derive the Gauss- and
Codazzi equations for intrinsic surfaces of revolution with twist α and solve
them to determine the necessary conditions on the first fundamental form
and shape operator.

In order to derive the Gauss- and Codazzi equations we first determine
the relevant covariant derivatives. Much of this preparation is standard.

Introduce

U =
1

ρ(u)

∂

∂u
V =

1

ρ(u)

∂

∂v
(3)

as the normalized coordinate vector fields. Their orthonormality with re-
spect to Iρ follows from the orthonormality of ∂

∂u
and ∂

∂v
with respect to the

standard inner product and the definition of Iρ. Since they form a basis of
R2, our calculations only involve these two vectors. First, we have

Lemma 2.2. The Levi-Civita connection of the first fundamental form Iρ is
given by

DUU = 0 DUV = 0

DVU =
ρ′(u)

ρ(u)2
V DV V = − ρ

′(u)

ρ(u)2
U .

Proof. By the v-invariance of the first fundamental form, the curves s 7→
(s, v) are geodesics, and U is the unit-length tangent vector to these curves.
This implies DUU = 0. Next V = Rπ/2U and intrinsic rotations are parallel,
so that DUV = 0 as well.
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Using that D is torsion-free and metric, we compute

DVU = DUV + [V, U ] by (4)

= 0 + dVU − dUV

=
∂

ρ(u)∂v

∂

ρ(u)∂u
− ∂

ρ(u)∂u

∂

ρ(u)∂v

= − 1

ρ(u)

∂

∂u

∂

ρ(u)∂v

=
1

ρ(u)

ρ′(u)

ρ(u)2
∂

∂v

=
ρ′(u)

ρ(u)2
V

and

DV V = I(DV V, U)U + I(DV V, V )V

= dV I(V, U)U − I(V,DVU)U + 0 by (3)

= dV (0)U − I
(
V,
ρ′(u)

ρ(u)2
V

)
U = − ρ

′(u)

ρ(u)2
U,

where I(DV V, V )V = 0 because

I(DV V, V ) = dV I(V, V )V − I(V,DV V )V by (3)

= dV I(V, V )V − I(V,DV V )V

= dV (1)V − I(V,DV V )V = −I(DV V, V )V.

Lemma 2.3. The Gauss equation is equivalent to

λ1(u)λ2(u) =
ρ′(u)2 − ρ(u)ρ′′(u)

ρ(u)4
.
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Proof. The Gauss equation gives us:

I(R(U, V )V, U) = det(S) = λ1(u)λ2(u)

where R is the Riemann curvature tensor given by

R(X, Y ) = DXDY −DYDX −D[X,Y ]

for all tangent vector fields X, Y .
Let us calculate R(U, V )V .

R(U, V )V = DUDV V −DVDUV −D[U,V ]V

= DU

(
− ρ

′(u)

ρ(u)2
U

)
−DV (0)−D− ρ′(u)

ρ(u)2
V
V

= − ρ
′(u)

ρ(u)2
DUU − dU

(
ρ′(u)

ρ(u)2

)
U +

ρ′(u)

ρ(u)2
DV V by (2) & (1)

= 0− 1

ρ(u)

∂

∂u

(
ρ′(u)

ρ(u)2

)
U +

ρ′(u)

ρ(u)2

(
− ρ

′(u)

ρ(u)2
U

)

= − 1

ρ(u)

(
ρ′′(u)ρ(u)2 − ρ′(u)(2ρ(u)ρ′(u))

ρ(u)4

)
U − ρ′(u)2

ρ(u)4
U

=
−ρ′′(u)ρ(u) + 2ρ′(u)2 − ρ′(u)2

ρ(u)4
U

=
ρ′(u)2 − ρ(u)ρ′′(u)

ρ(u)4
U ,

and the claim follows.

In order to derive the Codazzi equations, we need to compute a few more
covariant derivatives regarding some endomorphisms of the tangent plane.

Lemma 2.4. The covariant derivatives of the twist rotation are given by

DUR
α(v) = 0 and DVR

α(v) =
α′(v)

ρ(u)
Rα(v)+π

2 .

Proof. The first equations follows because intrinsic rotations by a constant
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angle are parallel and α is independent of u. For the second, we have,

(DVR
α(v))U = DV (Rα(v)U)−Rα(v)DVU by (5)

= DV (cos(α(v))U + sin(α(v))V )− ρ′(u)

ρ(u)2
Rα(v)V

= dV (cos(α(v))U + cos(α(v)DVU + dV (sin(α(v)))V + sin(α(v))DV V

− ρ′(u)

ρ(u)2
(− sin(α(v))U + cos(α(v))V ) by (2)

=
1

ρ(u)

(
∂

∂v
cos(α(v)U +

∂

∂v
sin(α(v)V

)
+ cos(α(v)DVU + sin(α(v))DV V

− (sin(α(v))DV V + cos(α(v))DVU)

=
1

ρ(u)
(−α′(v) sin(α(v)U + α′(v) cos(α(v))V )

=
α′(v)

ρ(u)

(
cos
(
α(v) +

π

2

)
U + sin

(
α(v) +

π

2

)
V
)

=
α′(v)

ρ(u)
Rα(v)+π

2U ,

and likewise DVR
α(v)V = α′(v)

ρ(u)
Rα(v)+π

2 V .

Lemma 2.5. The covariant derivatives of the eigenvalue endomorphism Λ
are given by

DUΛ(u) =
1

ρ(u)
Λ′(u)

(DV Λ(u))U =
ρ′(u)

ρ2(u)
(λ1(u)− λ2(u))V

(DV Λ(u))V =
ρ′(u)

ρ2(u)
(λ1(u)− λ2(u))U .

Proof. First note that ΛU = λ1U and ΛV = λ2V . We derive the first
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equation as follows:

(DUΛ)U = DU(ΛU)− ΛDUU

= DU(λ1U)− Λ0

= (dUλ1)U + λ1DUU by (2)

=
1

ρ

∂λ1
∂u

U + 0

=
1

ρ
λ1U =

1

ρ(u)
Λ′(u)U ,

and likewise (DUΛ)V = 1
ρ(u)

Λ′(u)V .
For the second, we compute

(DV Λ)U = DV (λ1U)− ΛDVU

= λ1DVU − λ2DVU

=
ρ′(u)

ρ2(u)
(λ1(u)− λ2(u))V .

The third equation is proven the same way.

Lemma 2.6. The covariant derivatives of the shape operator are given by

(DUS)V =
1

ρ(u)
R−α(v)Λ′(u)Rα(v)V

(DV S)U = (λ1(u)− λ2(u))
ρ′(u)− ρ(u)α′(v)

ρ2(u)
R−2α(v)V .

Proof. In the statement, we have indicated the dependence of each function
by their respective variables. To improve legibility, we will drop the variables
in the computations below. Observe, however, that derivatives like α′ and ρ′

are always taken with respect the proper variables.
For both equations we differentiate the definition of S according to the
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product rule, and then use the lemmas above. For the first equation, we have

(DUS)V = DU(R−αΛRα)V

= (DU(R−α)ΛRα + V +R−αDU(Λ)Rα +R−αΛ(DUR
α))V by (6)

= (0 +R−αDU(Λ)Rα + 0)V

=
1

ρ(u)
R−α(v)Λ′(u)Rα(v)V .

For the second, we obtain

(DV S)U = DV (R−αΛRα)(U)

=
(
(DVR

−α)ΛRα +R−α(DV Λ)Rα +R−αΛ(DVR
α)
)

(U)

= R−α
(
−α

′

ρ
R

π
2 ΛRα + (DV Λ)Rα +

α′

ρ
ΛRα+π

2

)
(U)

= R−α(−α
′

ρ
R

π
2 Λ(cos(α)U + sin(α)V )+

(DV Λ)(cos(α)U + sin(α)V ) +
α′

ρ
Λ(− sin(α)U + cos(α)V ))

= R−α(−α
′

ρ
R

π
2 (λ1 cos(α)U + λ2 sin(α)V )+

ρ′

ρ2
(λ1 − λ2)(cos(α)V + sin(α)U) +

α′

ρ
(−λ1 sin(α)U + λ2 cos(α)V ))

= (λ2 − λ1)(−
α′

ρ
+
ρ′

ρ2
)R−α(− sin(α)U − cos(α)V )

= (λ1 − λ2)(−
α′

ρ
+
ρ′

ρ2
)R−2αV

Corollary 2.7. The Codazzi equations are equivalent to

(λ′1 + λ′2) sin(α) cos(α) = 0

1

ρ
(λ1 − λ2)(ρ′ − ρα′) = −λ′1 sin2(α) + λ′2 cos2(α)
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Proof. The Codazzi equations state that (DXS)Y = (DY S)X for any pair
of tangent vectors X and Y . As we are in dimension 2 and the equation is
symmetric, it suffices to verify this for X = U and Y = V . By the previous
theorem, this is equivalent to

ρΛ′RαV = (λ1 − λ2)(ρ′ − ρα′)R−αV

Pairing both sides with I(·, R−αU) and I(·, R−αV ) respectively gives

ρI(Λ′RαV,R−αU) = 0

ρI(Λ′RαV,R−αV ) = (λ1 − λ2)(ρ′ − ρα′)

as rotations preserve I, which gives I(R−αV,R−αU) = I(V, U) = 0 and
I(R−αV,R−αV ) = 1.

The first equation simplifies to

0 = I(−Λ′(sin(α)U + cos(α)V ), cos(α)U − sin(α)V )

= I(−λ′1 sin(α)U + λ′2 cos(α)V ), cos(α)U − sin(α)V )

= −(λ′1 + λ′2) sin(α) cos(α),

giving us the first result, and the second to

1

ρ
(λ1 − λ2)(ρ′ − ρα′) = I(Λ′RαV,R−αV )

= I(−λ′1 sin(α)U + λ′2 cos(α)V ), sin(α)U + cos(α)V )

= −λ′1 sin2(α) + λ′2 cos2(α)

as claimed.

We are now ready to prove Theorem 1.9

Proof. By assumption, the twist function α is not identically equal to an
integral multiple of π/2 on any open interval. By the first Codazzi equation,
the mean curvature H(u) = λ1(u) + λ2(u) is constant except possibly at
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isolated points. As we assume that H is at least C1, this implies that H is
constant.

Using this simplifies to the second Codazzi equation to

1

ρ(u)
(2λ1(u)−H)(ρ′(u)− ρ(u)α′(v)) = −λ′1(u)

As the right hand side is independent of v, so is the left hand side. This
can only be the case if α′(v) is a constant as claimed, or that H = 2λ1(u)
on an open interval. In the latter case we have on the same interval that
λ1(u) = λ2(u) = λ for a constant λ. But this means that this portion of the
surface is umbilic, which we have excluded.

Observe that we have not used the Gauss equations in the above proof.
We will now use the second Codazzi equation to eliminate λ1 and λ2 from
the Gauss equations.

Lemma 2.8. For α(v) = av and H = λ1(u) + λ2(u) a constant, the second
Codazzi equation has the general solution

λ1(u) =
1

2
H + b

e2au

ρ(u)2
,

where b is any real number.

Proof. Define

µ(u) = ρ2(u)

(
λ1(u)− 1

2
H

)
.

The second Codazzi equation is then equivalent to

µ′(u) = 2aµ(u) .

Integrating and substituting back gives the claim.

The following corollary proves Theorem 1.10.

Corollary 2.9. A first fundamental form Iρ with rho = ρ(u) and shape
operator S as in Equation (1) such that H = λ1(u) + λ2(u) is constant and
α(v) = av satisfy the Gauss and Codazzi equations if and only if

ρ′(u)2 − ρ(u)ρ′′(u) =
1

4
H2ρ(u)4 − b2e4au (4)

In particular, by Bonnet’s theorem, these data determine and intrinsic sur-
face of revolution, and every such surface arises this way.
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Proof. This follows by using the explicit solutions for λ1 and λ2 from Lemma
2.8 in the Gauss equation from Lemma 2.3, and simplifying.

To classify all intrinsic surfaces of revolution, we would need to find all
solutions to the differential equation (4), and then to integrate the surface
equation to obtain a parametrization. We will discuss the solutions of 4 for
H = 0 in Section 3.

We end this section by carrying out the first integration step of the surface
equation, which is quite explicit and shows that special coordinate curves are
planar.

Assume that ρ(u) is a solution of 4. To determine the surface parametriza-
tion, we will first determine a differential equation for the curve c̃ = f ◦ c
with c(s) = (s, 0).

Recall from Equations 3 and 2.2 that

X(s) = U(s, 0) and Y (s) = V (s, 0)

are a parallel frame field along c(s) with respect to the first fundamental
form.

Following the proof of Bonnet’s theorem, we derive a Frenet-type differ-
ential equation for the orthonormal frame X̃(s) = dfX(s), Ỹ (s) = dfY (s),
and Ñ(s) = X̃(s)× Ỹ (s).

X̃ ′(s) = df
D

ds
X(s) + 〈X̃ ′(s), Ñ(s)〉Ñ(s)

= −〈X̃(s), Ñ ′(s)〉Ñ(s)

= −〈dfX(s), dfS
∂

∂u
〉Ñ(s)

= −ρ(s)I(X(s), SX(s))Ñ(s)

where the second equality is due to the fact that X(s) is parallel and that
〈X̃ ′(s), Ñ(s)〉+ 〈X̃(s), Ñ ′(s)〉 = d

ds
〈X̃(s), Ñ(s)〉 = 0. Similarly,

Ỹ ′(s) = −ρ(s)I(Y (s), SX(s))Ñ(s)
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Finally,

Ñ ′(s) = 〈Ñ ′(s), X̃(s)〉X̃(s) + 〈Ñ ′(s), Ỹ (s)〉Ỹ (s)

= 〈dfS ∂

∂u
, dfX(s)〉X̃(s) + 〈dfS ∂

∂u
, dfY (s)〉Ỹ (s)

= I(S
∂

∂u
,X(s))X̃(s) + I(dfS

∂

∂u
, Y (s))Ỹ (s)

In our case, using the explicit formula for the shape operator and the
principal curvatures in terms of ρ and a, b, this simplifies to give the following
lemma:

Lemma 2.10.

X̃ ′(s) = −
(
e2asb

ρ(s)
+

1

2
Hρ(s)

)
Ñ(s)

Y ′(s) = 0

Ñ ′(s) =

(
e2asb

ρ(s)
+

1

2
Hρ(s)

)
X̃(s)

Corollary 2.11. The space curve f(s, 0) is planar.

Proof. This is immediate because Ỹ (s) is constant. Note that this only works
because v = 0.

This is as far as we can get in the general case. For the minimal case,
we will solve the Equation (4) explicitly and be able to integrate the surface
equations further.

3 The minimal case

In the minimal case H = 0 the differential equation for ρ simplifies to

ρ′(u)2 − ρ(u)ρ′′(u) = −b2e4au (5)

Without much loss of generality, we can assume b = 1 by scaling ρ by a
positive constant. There is one exception, namely when b = 0. In this case,
λ1 = λ2 = 0, so that the surface is a plane, which we disregard.
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Lemma 3.1. All positive solutions of

ρ′(u)2 − ρ(u)ρ′′(u) = −e4au (6)

defined in any open interval are given by

ρ(u) =
e2au

2B

(
AeBu +

e−Bu

A

)

for arbitrary A,B > 0.

Proof. It is easy to check that ρ satisfies Equation (6). To show that every
local solution σ is of this form, it suffices to show that for any fixed real u,
the initial values σ(u) > 0 and σ′(u) are equal to the initial data ρ(u) and
ρ′(u) for a suitable choice of A > 0 and B > 0. Then the local uniqueness
theorem for ordinary differential equations implies that ρ = σ near u and
hence everywhere.

To this end, we have to solve

σ(u) =
1

2B
e2au

(
eBuA+

e−Bu

A

)

σ′(u) =
1

2B
e2au

(
ABeBu − Be−Bu

A

)
+

1

B
ae2au

(
eBuA+

e−Bu

A

)

for A and B. Surprisingly, this is possible explicitly. The strategy is to solve
the first equation for A, choosing the larger solution

A = e−Bu
(
Be−2auσ(u) +

√
B2e−4auσ(u)2 − 1

)
.

Inserting this into the second equation and simplifying gives

σ′(u)− 2aσ(u) =
√
B2σ(u)2 − e4au

which can be solved for B. Again choosing the positive solution gives

B =
1

σ(u)

√
e4au + (σ′(u)− 2aσ(u))2 .
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Note that σ(u) > 0 as we are only interested in positive conformal factors.
This in turn makes the radicand in the preliminary expression for A, and
hence A itself, positive. Explicity:

A = e−
u

(
2aσ(u)+

√
(σ′(u)−2aσ(u))2+e4au

)

σ(u)

(
−2aσ(u) + σ′(u) +

√
(σ′(u)− 2aσ(u))2 + e4au

)
.

Remark 3.2. The Enneper solution ρEnn corresponds to a = 1, A = B = 1.

Using the solutions for ρ from Lemma 3.1 in Lemma 2.10 (and remem-
bering that we normalized b = 1), straightforward computations gives

X̃ ′(s) = − 2ABeBs

A2e2Bs + 1
Ñ(s)

Ỹ ′(s) = 0

Ñ ′(s) =
2ABeBs

A2e2Bs + 1
X̃(s)

Integrating gives the following lemma:

Lemma 3.3. Up to a motion in space, the solution to this equation is given
by

X̃(s) =
1

1 + e2BsA2




1− A2e2Bs

0
−2AeBs


 , Ỹ (s) =




0
1
0


 , Ñ(s) =

1

1 + e2BsA2




2AeBs

0
1− A2e2Bs




We have normalized the frame to that for s = −∞, X̃ = (1, 0, 0) and
Ñ = (0, 0, 1) in agreement with our parametrization of the Enneper surface.

Corollary 3.4. The space curve c̃(s) = f(s, 0) is given by

c̃(s) = −e
2as

2B

(
eBsA

B + 2a
+

e−Bs

A(B − 2a)
, 0,

1

a

)

if B 6= ±2a. If B = 2a (say, the other case being similar), we have

c̃(s) = −e
2as

4a2

(
1

4
Ae2as, 0, 1

)
+

s

4aA
(1, 0, 0) .
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Proof. This follows by integrating

c̃′(s) =
d

ds
f(s, 0)

= I(
∂

∂s
,X(s))X̃(s) + I(

∂

∂s
, Y (s))Ỹ (s)

= −e
2as

2B

(
AeBs − e−Bs

A
, 0, 2

)

using the previous lemma, and simplifying.

Instead of now integrating the surface equations likewise along the curves
s 7→ (u, s) for fixed u, we will use the Björling formula [1] to obtain the
parametrization more easily.

Recall that given a real analytic curve c̃ : (u1, u2)→ R3 and a real analytic
unit normal field Ñ : (u1, u2)→ R3 satisfying 〈c̃′(u), Ñ(u)〉 = 0, there exists
a unique minimal surface containing c̃ and having surface normal Ñ along c̃,
and this surface can be given in a neighborhood of (u1, u2) ⊂ C by

f(z) = Re

(
c̃(z)− i

∫ z

Ñ(w)× c̃′(w) dw

)

where we write z = u+ iv and have extended c̃ and Ñ to holomorphic maps
into C3.

In our case, we obtain the explicit formula for f :

f(u, v) =
e2au

2B




e−Bu cos((2a−B)v)
2aA−AB − AeBu cos((2a+B)v)

2a+B
e−Bu sin((2a−B)v)

2aA−AB + AeBu sin((2a+B)v)
2a+B

− cos(2av)
a




for B 6= 2a, and

f(u, v) =
1

4a2




au
A
− 1

4
Ae4au cos(4av)

av
A

+ 1
4
Ae4au sin(4av)

−e2au cos(2av)




for B = 2a. Note that in the last case scaling a by a constant and (u, v) by
the reciprocal only scales the surface, so we can as well assume that a = 1 in
this case.
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The Weierstrass data [1] of these surfaces are particularly simple. Using
z = u+ iv, let (also for B = 2a)

G(z) =
1

A
e−Bz and dh = − 1

B
e2az dz .

be the Gauss map and height differential of the Weierstrass representation
formula

f(z) = Re

∫ z




1
2
(1/G−G)
i
2
(1/G+G)

1


 dh .

This gives the surfaces f(u, v) above. This can be verified either by
evaluating the integral or by solving the Björling integrand c̃′(z) − iÑ(z) ×
c̃′(z) for G and dh.

Of particular interest are the cases when B and 2a are integers. Then the
substitution z = − log(w) changes the Weierstrass data into

G(z) =
1

A
wB and dh =

1

B
w−2a−1 dw ,

defined on the punctured plane C∗ and being minimal surfaces of finite total
curvature.

A substitution in the domain of the form w 7→ λw will scale G and dh by
powers of λ, so we can assume without loss of generality that A = 1.

Some of the minimal surfaces we have obtained are described in [3]. We
will now discuss examples.

Figure 3: The Enneper Surface of order 5
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In case that B = 2a − 1 ∈ N, we obtain the Enneper surfaces of cyclic
symmetry of order B + 1, see Figure 3. For B = 2a − 1 = 1, we obtain the
original Enneper surface.

The planar Enneper surfaces of order n are given by choosing B = n+ 1
and 2a = n. See Figure 4 for the cases n = 1 and n = 6. These surfaces
feature an Enneper type end and a planar end. Remarkably, in the non-zero
CMC case, there are only one-ended solutions [5].

(a) order 1 (b) order 6

Figure 4: Planar Enneper surfaces

Other choices of a and B lead to more wildly immersed examples. In
Figure 5 we show images of thin annuli u1 < u < u1.
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(a) B = 1, a = 3/2 (b) B = 7, a = 2

Figure 5: Generalized Enneper surfaces

There is one case that deserves attention: If B = 2a, the Weierstrass
1-forms have residues, and hence the surface can become periodic. The pro-
totype case here is B = 1 and a = 1/2 (see Figure 6) which leads to a
translation invariant surface that hasn’t made it into the literature to our
knowledge. It deserves attention because it is in the potentially classifiable
list of minimal surfaces in the space form R3/Z (where Z acts through a
cyclic group of translations) of finite total curvature −4π. Other surfaces in
this list include the helicoid and the singly periodic Scherk surfaces.
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Figure 6: The Translation Invariant Enneper Surface

4 Constant Mean Curvature

In [5], Smyth considers intrinsical surfaces of revolution under a different
viewpoint: He assumes from the beginning that his surfaces have constant
mean curvature, but does not make further assumptions about the shape
operator. Nevertheless, we both end up with the same class of surfaces.
Therefore we would like to connect our approach with Smyth’s in the CMC
case.

First we can compute the Hopf differential using the coordinate z = u+iv:
Using the Definitions 1.7 of I and 1.8 of S, and the formulas for α, λ1 and
λ2 from Theorem 1.10, a straightforward computation shows that
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Ω = I

(
S · d

dz
,
d

dz

)

= I

(
S · 1

2

(
1
−i

)
,
1

2

(
1
−i

))

=
1

2
be2au (cos(2av) + i sin(2av))

=
1

2
be2az

is indeed holomorphic and agrees with Smyth’s computation. Secondly, to
show that our equation for ρ is equivalent to Smyth’s equation, we substitute

ρ(u) = eφ(u)/2

φ(u) = F (u)− 2au+ log(b)

and obtain
F ′′(u) = −4be−2au sinh(F (u))

in the case that H = 2 (which is Smyth’s case H = 1). This again agrees
with Smyth’s equation, up to a normalization of constants.

In general, there are apparently no explicit solutions to Equation (4) for
H 6= 0 in the literature. There is, however, one explicit solution given by

ρ(u) =

√
2
√
beau√
H

.

By Lemma 2.8, the principal curvatures become simply λ1 = H and λ2 = 0.
This implies that the surface under consideration is in fact a cylinder. This
is somewhat surprising, as the standard parametrization of a cylinder over a
circle of radius 1/H as an extrinsic surface of revolution has twist 0. In our
case, however, the cylinder is parametrized using geodesic polar coordinates
(see the left image in Figure 7) as

f(u, v) =
1

H




cos
(

1
a

√
2bHeau cos(av)

)

sin
(

1
a

√
2bHeau cos(av)

)

1
a

√
2bHeau sin(av)



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For other initial data of the Equation (4), only numerical solutions are
available. These can be obtained easily by integrating the surface equations.
The right image in Figure 7 was obtained using a = 1, b = 4.2625, H = 1/2,
and ρ(0) = ρ′(0) = 2.

(a) Cylinder in polar coordinates (b) Intrinsic CMC surface of revolution
(numerical solution)

Figure 7: Two CMC surfaces

5 The untwisted case

In this section, we will consider the exceptional case of Theorem 1.9 where
α(v) = a with a being an integral multiple of π/2, and prove Theorem 1.12.

Thus we are given a first fundamental form Iρ and shape operator

S = ±
(
λ1(u) 0

0 λ2(u)

)
or S = ±

(
λ2(u) 0

0 λ1(u)

)
,

depending on the congruence class of amodulo 2π. Without loss of generality,
we will assume a = 0 and therefore

S =

(
λ1(u) 0

0 λ2(u)

)
.
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The Gauss- and Codazzi equations become

λ1(u)λ2(u) =
ρ′(u)2 − ρ(u)ρ′′(u)

ρ(u)4

and
ρ′

ρ
(λ1 − λ2) = λ′2

Eliminating λ1 from the first equation using the second equation leads to
the differential equation

ρ′(u)2 − ρ(u)ρ′′(u)

ρ(u)4
= λ2(u)

(
λ2(u) +

ρ(u)λ′2(u)

ρ′(u)

)

for λ2. Surprisingly, this equation can be solved explicitly by

λ1(u) =
ρ(u)ρ′′(u)− ρ′(u)2

ρ(u)2
√
c2ρ(u)2 − ρ′(u)2

λ2(u) = −
√
c2ρ(u)2 − ρ′(u)2

ρ(u)2

for any choice of c that makes the radicand positive.
We now show that any untwisted surface is a general surface of revolution.

Recall that typically a surface of revolution is being parametrized as:

f(u, v) = (g(u) cos(v), g(u) sin(v), h(u))

However, by changing the speed of rotation, a surface of revolution can
also be given by

f(u, v) = (g(u) cos(cv), g(u) sin(cv), h(u))

where c is a positive constant.
We now show that we can find g and h defined on the interval (u1, u2)

having the first fundamental form and shape operator of the untwisted in-
trinsic surface of revolution above, with the rotational speed-up c being the
constant c in Theorem 1.12 introduced above as an integration constant.

The first fundamental form of f is given by:
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I =

(
g′(u)2 + h′(u)2 0

0 c2g(u)2

)
.

Comparing this to the definition of Iρ gives the following equations:

g′(u)2 + h′(u)2 = ρ(u)2

c2g(u)2 = ρ(u)2

This determines g(u) = ρ(u)
c

and h(u) by h′(u) = 1
c

√
c2ρ(u)2 − ρ′(u)2.

Note that the radicand is positive by our assumption about c.
Straightforward computation shows that the shape operator of f(u, v)

with g and h as above coincides with the shape operator S of the intrinsic
surface of revolution.

This completes the proof of Theorem 1.12.

Example 5.1. Knowing this, we can find surfaces of revolution with speed-
up c ≥ 3 that are locally isometric to the Enneper surface.

For the Enneper surface, we have

ρ(u) =
1

4
e2u
(
e−u + eu

)

so that the radicand c2ρ(u)2 − ρ′(u)2 becomes

1

16
e2uu

((
c2 − 9

)
e4u +

(
2c2 − 6

)
e2u + c2 − 1

)
.

Thus for c ≥ 3, we can find g and h as needed. The integral for h is generally
not explicit, but for c = 3 we can obtain

g(u) =
1

12
e2u
(
e−u + eu

)

h(u) =
1

36

(
2
√

3 sinh−1
(√

3

2
eu

)
+ 3eu

√
2 + 3e2u

)
.

This means that the surface of revolution in Figure 8 is isometric to one
third of the Enneper surface, punctured at the “center”.
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Figure 8: Surface of revolution isometric to one third of the Enneper Surface

In contrast, if c = 1, the radicand is negative for all u, which implies that
no piece of the Enneper surface can be isometrically realized as a standard
surface of revolution (with no speed-up).
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Abstract

Elastic networks can be thought of as networks of rubber bands
which can be stretched in different configurations. Stretching an elas-
tic network in Euclidean space has a direct analogy to the study of
resistor networks. However, stretching elastic networks along more
general graphs is more complicated. A fundamental question is how
to determine when one elastic network is “looser” than another. One
way to attack this problem is to find the energy of the network as a
piecewise-quadratic function of the lengths of the graph in which it is
stretched. This is done by examining so-called “train track structures”
on the network. We also use geometric methods to prove that an elas-
tic tripod is “looser” than any electrically equivalent graph and that
an elastic delta is “tighter” than any electrically equivalent graph. We
give some generalizations of these results. We give an example of a
class of elastically equivalent graphs and assorted proofs that a tripod
is “looser” than the electrically equivalent delta. 1

Introduction

An elastic network, informally speaking, can be thought of as a network
of rubber bands, which has different energies when stretched into different
configurations. Mathematically, the act of “stretching” an elastic network
is simply a map (up to some notion of homotopy) from the network to some
target space. When one stretches an elastic network in a Euclidean space,
there is a direct analogy with the well-understood theory of resistor networks
(see 2). However, we want to stretch networks in more general spaces; we
focus on the case mapping to trees, but one result generalizes to maps to
Hadamard spaces.

1This material is based upon work supported by the National Science Foundation under
Grant No. DMS-1461061.
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This paper is largely self-contained, with the exception of a few, more
laborious proofs.

In 1, we give basic definitions and some criteria for harmonicity of maps.
In 2 we make explicit the analogy to resistor networks. In 3 we introduce
train track structures and show how they are used to relate the energy of a
map to the dimensions of the target tree.

We then use some geometry and the electrical analogy to prove some
results about “looseness.” In 4 we give a proof that tripods are in some
sense “minimal-energy” elastic networks for maps to trees and that deltas
are “maximal-energy” elastic networks for maps to Hadamard spaces.

As a sort of appendix, we include several other proofs that a tripod is
“looser” than its electrically equivalent delta, in the hope that these different
perspectives may be generalized further.

1 Definitions

Throughout this paper, graphs will denote finite 1-dimensional CW com-
plexes, with a linear structure on each open edge (1-cell). Maps between
graphs are continuous maps, which are not required to map vertices to ver-
tices. However, we will be focusing on marked graphs, which are graphs with
a distinguished finite subset whose points are designated as “marked.” Maps
between marked graphs are continuous maps which map marked points to
marked points. Whenever we refer to homotopy, we mean homotopy relative
to marked points; that is, all maps in a given homotopy class are equal when
restricted to the marked points.

With this in mind, we can make precise the notion of an elastic network.

Definition 1.1. An elastic structure α on a graph Γ is an assignment of
a positive real number to each edge of Γ. We call the real number assigned
to an edge e the elasticity of e. The pair (Γ, α) is called an elastic graph
or an elastic network. Usually we will use a single symbol, say G, for
(Γ, α).

The greater the elasticity of an edge, the “looser” it is. If we treat the
elasticities of edges as lengths, the elastic structure induces a metric on the
graph in an obvious way, and this, in turn, induces a measure on the graph
in an obvious way.

For most of this paper, we will consider the case of mapping our network
to a graph (usually a tree) with specified edge lengths, which we think of as
stretching a network of rubber bands within a network of thin pipes.
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Figure 1: We visualize a map from an elastic graph to a length graph as
stretching out a network of rubber bands along a pipe network. The map
shown above is quite “unnatural” (that is, it is not harmonic), since the two
loosest edges are stretched the least.

Definition 1.2. A length structure L on a graph Γ is an assignment
of a nonnegative real number to each edge of Γ. We call the real number
assigned to each edge e of Γ the length of e. The pair (Γ, L) is called a
length graph or a pipe graph. Usually we will use a single symbol, say
K, for (Γ, L).

If all edges have nonzero length, the length structure induces a metric struc-
ture on the graph in an obvious way. Otherwise, the length structure on a
graph induces a pseudometric on the graph in an obvious way, and there is
an associated metric graph given by collapsing to a single point all points
which have distance zero from one another. This new graph is called the
“collapsed graph.” If the length graph is denoted K, we denote the collapsed
graph by K∗.

When we refer to, for example, a map f : G→ K, where G is a marked
elastic graph and K a marked length graph, we simply mean maps of the
underlying marked graphs.

Now, we rigorously define what we mean by the “energy” of a stretched
network. In fact, there are several notions of energy for maps between graphs
with different structures (see [1, Appendix A]), but we will be focusing on
the so-called Dirichlet energy. If the target space is Euclidean space or a
graph, then the definition below is fairly straightforward. It requires some
delicacy to flesh out when the target is simply a metric space.

Definition 1.3. Let G = (Γ, α) be an elastic graph, M be a metric space.
Let f : G→M be a Lipschitz map. Then the Dirichlet energy of f is the
quantity

Dir f =

∫

x∈Γ
|f ′(x)|2dx.

Moreover, we define the Dirichlet energy of the marked homotopy class [f ]
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to be
Dir[f ] = inf

g∈[f ]
Dir g.

If M is Euclidean space or a graph, then we can define |f ′(x)| to be

lim
y→x

d(f(x), f(y))

d(x, y)
,

and this will be defined almost everywhere if f is Lipschitz. More generally,
we define |f ′(x)| to be the infimum over all local Lipschitz constants at
x, where a local Lipschitz constant at x is just a Lipschitz constant for a
restriction of f to a sufficiently small neighborhood of x.

If f minimizes Dirichlet energy within its homotopy class, then |f ′| is
constant on each edge, and for each edge e, we have

|f ′(x)| = `(f(e))

α(e)

for each x ∈ e, where `(f(e)) is the length of the image of e, in a sense
appropriate to M . Moreoever, the Dirichlet energy is then

Dir f =
∑

e∈Edge(Γ)

`(f(e))2

α(e)
.

In the case that M is a tree or Euclidean space, this just turns out to be
the distance between the images of the endpoints of e. Also note that, if
the target is a geodesic space, the images of edges under a harmonic map
are geodesics. We call maps which minimize energy within their homotopy
class harmonic maps. The existence of harmonic maps is not obvious, and
is not true in general. A proof for existence in the case of maps into length
graphs can be found in Theorem 4 of [1].

We will be dealing primarily with maps into trees in this paper, and
there is a simple criterion (precisely stated in Proposition 5.2 of [1]) which
determines whether a map from a marked elastic graph to a length graph is
harmonic. We can think of |f ′| as the tension at a point, and then harmonic
maps correspond to a sort of physical equilibrium. Specifically, tensions are
constant at each edge, and “balance” at each vertex. That is, the total ten-
sion pulling in any one direction cannot exceed the sums of the (magnitudes
of the) tensions pulling in all other directions. This condition is referred
to as satisfying the “triangle inequalities.” (See 2.) Notice that if there are
only two directions going out from a point, the inequalities force an equality,
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Figure 2: A harmonic map must be such that the tensions satisfy the “tri-
angle inequalities” at each vertex. Since there are only two directions going
out from the blue vertex, the total tension in one direction equals the total
tension in the other.

and in fact the sum of the tensions in one direction is equal to the sum of
the tensions in the other.

One of the problems we were particularly interested in was determining
if one elastic network is “looser” than another in the following sense:

Definition 1.4 (Looseness). Given marked elastic graphs G1 and G2 with
a bijection between their marked vertices, G1 is looser than G2, or G1 � G2,
if for any choice of target points in any pipe tree L for the marked vertices,
the corresponding harmonic maps f1 : G1 → L and f2 : G2 → L satisfy
Dir f1 ≤ Dir f2.

Notice that as the target is a pipe tree, specifying the images of the
marked points of G1 and G2 specifies unique marked homotopy classes, so
there’s no ambiguity in which homotopy classes are under consideration.

We obtain some results in 4, and the methods of 3 can be used to obtain
a decision procedure for this relationship.

2 The electrical case

2.1 Analogies between resistor networks and elastic networks

Consider the following dictionary for converting between resistor and elastic
networks:
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Rubber Band⇔ Resistor

Tension⇔ Current

Position⇔ Voltage

Elasticity⇔ Resistance

Hooke’s Law⇔ Ohm’s Law

Dirichlet energy⇔ Power dissipated

This dictionary translates between Hooke’s law T = L
α and Ohm’s law

I = V
R , and the last correspondence is a corollary of the others. This also

allows us to consider elastic graphs as resistor networks: simply let the
resistances be the elasticities.

This dictionary is useful for the following reason. If we identify position
with voltage, f : G→ R1 is harmonic iff it satisfies Kirchhoff’s junction rule
at unmarked nodes: both are equivalent to

∑

e incident to u

f (other node incident to e)− f (u)

α (e)
= 0

for every unmarked node u. (Kirchhoff’s loop rule comes for free, as
shown in 3.) Thus, under this dictionary, the theories of harmonic maps to
R1 and solutions to Kirchhoff’s laws are the same.

0V 10V

0m 10m

Figure 3: That the sum of the red displacements is 0 is Kirchhoff’s loop
rule, and that the sum of the blue tensions is 0 is Kirchhoff’s junction rule.

This allows us to “import” facts about resistor networks, which are
better-understood, into the context of harmonic maps to R1.

We can talk about resistor networks being equivalent in the following
sense:
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Definition 2.1 (Response matrix). For a resistor network with n marked
points, the vector of currents flowing into the resistor network at each exte-
rior node is a linear function of the voltages at those nodes. The response
matrix of the resistor network is the corresponding n× n matrix.

Remark 2.2. The response matrix is symmetric. Additionally, interpreted
as a bilinear form on the space of boundary voltages, the norm-squared of
a given set of voltages is the power dissipated in the network when given
those voltages.

Definition 2.3 (Electrical equivalence). Two resistor networks with a bi-
jection between their exterior nodes are electrically equivalent if they have
the same response matrix. Two elastic graphs are electrically equivalent if
they’re electrically equivalent as resistor networks.

Remark 2.4. By 2.2, electrically equivalent resistor networks dissipate the
same power when given the same voltages. Therefore electrically equiva-
lent elastic networks have the same Dirichlet energy when “given the same
voltages;” that is, when the two networks map harmonically to R1 and cor-
responding marked vertices have the same image in R1.

This does not mean that electrically equivalent graphs have the same
Dirichlet energy when mapping harmonically to a pipe network; voltage is
R1-valued, so the analogy fails in this situation.

Example 2.5 (Resistors in series and in parallel). Resistors in series and
parallel follow the familiar laws: two resistors α1 and α2 in series are elec-
trically equivalent to a single resistor α1 + α2, and two resistors in parallel
are electrically equivalent to a single resistor 1

1/α1+1/α2
.

Example 2.6 (Y − ∆ equivalence). If Y and ∆ are a tripod and delta,
respectively, with the resistances below, then Y and ∆ are electrically equiv-
alent if and only if βi = α1α2+α1α3+α2α3

αi
for i ∈ {1, 2, 3}.

α3 α2

α1

β1

β3β2

Figure 4: Y -∆ equivalence

Example 2.7. Using the above examples, the following are electrically
equivalent:
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2.2 Classification of networks with three marked vertices

The above “A”-shaped graph was electrically equivalent to a tripod and a
delta; is this always true? The answer is no: for example, a network with
no edges isn’t equivalent to any tripod or delta. If we include some limit-
ing cases corresponding to tripods/deltas with “zero elasticity” or “infinite
elasticity,” the statement is true. More specifically, define the following:

Definition 2.8. A generalized delta is a delta or one of the graphs in 5 and
a generalized tripod is a tripod or one of the graphs in 5.

Figure 5: The generalized tripods/deltas

Then we have

Proposition 2.9 (Classification of networks with three marked vertices).
Every elastic network with three marked vertices is electrically equivalent to
a unique elastic generalized tripod and a unique elastic generalized delta.

Proof. We first show it’s electrically equivalent to a unique generalized ∆.
The response matrix of the delta in 4 can be calculated to be



β−1

2 + β−1
3 −β−1

3 −β−1
2

−β−1
3 β−1

1 + β−1
3 −β−1

1

−β−1
2 −β−1

1 β−1
1 + β−1

2


 .

With the convention 1
∞ = 0, the response matrices of the other gen-

eralized deltas are this matrix in the cases that one or more of the βiis is
∞, and all such cases have a generalized delta realizing them. That is, the
response matrix of a generalized delta is a generic matrix of the above form
with βi ∈ (0,∞], which is a generic symmetric matrix with nonpositive off-
diagonal terms and rows summing to 0. It therefore suffices to show every
network has such a response matrix.
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Symmetry is taken care of by 2.2. That the off-diagonal terms are non-
positive is simply the fact that when two exterior nodes are at 0V and the
other at 1V there’s a net flow out from the 0V nodes. That the rows sum
to 0 is the fact that no current flows when all exterior nodes are brought to
1V, as then all interior nodes will be at 1V also.

All the conditions are satisfied, so every network is electrically equivalent
to a generalized delta.

This implies the network is also electrically equivalent to a generalized
tripod: if the generalized delta is a delta, it’s Y −∆ equivalent to a tripod.
Otherwise, it’s already a generalized tripod.

Uniqueness is easy to check.

2.3 Harmonic maps to Rn

In this section we generalize 2.4 into 2.12.
The following definition is analogous to the case of mapping to a tree,

and agrees with our previous definition in the case n = 1:

Definition 2.10 (Harmonic map). A continuous map f : Γ → Rn is har-
monic if

1. Every edge of Γ is sent linearly to the segment connecting its endpoints
(and continuously, so no edges are “flipped”)

2.
∑

e incident to u

f(other node incident to e)−f(u)
α(e) = 0 for every unmarked vertex

u of Γ.

Condition 1 states that each edge is “taut,” and condition 2 states that
the tensions on each edge cancel.

These maps behave exactly as in the electrical (i.e. → R1) case:

Proposition 2.11. Let f : Γ → Rn be PL from an elastic graph Γ to Rn,
and let fi = πi◦f : Γ→ R1 be the ith projection of f . Then Dir f =

∑
i

Dir fi.

Further, TFAE:

(1) f is harmonic

(2) Every fi is harmonic

(3) Every fi minimizes Dirichlet energy within its marked homotopy class

(4) f minimizes Dirichlet energy within its marked homotopy class
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Figure 6: Illustration of 2.11

Proof. The first equation is the Pythagorean Theorem: Dir f =
∫

Γ ‖f ′‖
2 dx =∫

Γ

∑
i
|f ′i |2 dx =

∑
i

∫
Γ |f ′i |

2 dx =
∑
i

Dir fi.

(1) ⇔ (2): The only nontriviality is that the tensions of f on a node
cancel iff the tensions of every fi on the node cancel. However, this is also
simple, as a tension of fi is the ith component of the corresponding tension
of f .

(2)⇔ (3): Easy to verify.
(3)⇔ (4): By Dir f =

∑
i

Dir fi.

As a corollary, 2.4 also holds for maps to Rn:

Corollary 2.12. For electrically equivalent Γ1 and Γ2 and harmonic maps
f : Γ1 → Rn and g : Γ2 → Rn sending corresponding marked vertices to the
same point, Dir f = Dir g.

Proof. Dir f =
∑
i

Dir fi =
∑
i

Dir gi = Dir g.

3 Train tracks

3.1 Calculating Energy

One way to try to determine whether an elastic network is “looser” than
another is to try to get a sort of “energy function” for each, and compare
them directly. For resistor networks, the power dissipated in the network is
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22

2

L3L1

L2

`3`1

`2

`1

`2

`3

Figure 7: We must make combinatorial assumptions about the harmonic
map in order to predict how the stretched lengths relate to the target lengths.
On the left, we assume the central elastic vertex is mapped to the central
pipe vertex. On the right, the central elastic vertex has been “pulled up into
an edge.”

just a quadratic function of the boundary voltages. Analogously, we would
like to determine the Dirichlet energy of a map from an elastic graph to
pipe graph as a function of the pipe lengths. More precisely, given a marked
elastic graph G, a marked graph Γ, and a marked homotopy class [f ] of maps
from G to Γ, there is a harmonic map fL in [f ] for each length structure
L on Γ. A length structure on Γ can be viewed as a point in Rn≥0 :=
{(L1, ..., Ln) ∈ Rn : Li ≥ 0}, where n is the number of edges in Γ. What we
want to determine is the energy function E[f ] : Rn≥0 → R, E[f ](L) = Dir fL.

If Γ is topologically a line segment, then the analogy to resistor networks
tells us that E[f ] is simply a quadratic function of the length(s) of Γ. More-
over, the electrical analogy tells us that we can find the stretched lengths of
G on Γ as a linear function of the length(s) of Γ.

More generally, the stretched lengths of G are a piecewise-linear function
of the target lengths, and E[f ] is piecewise-quadratic. The reason that our
case is more complicated than the electrical case is that positions are not
parametrized by real numbers, and so we have to consider cases where dif-
ferent combinations of tensions work with or against each other separately.

Example 3.1. Consider the elastic tripod Y pictured in Figure 7. We
map it to another marked tripod K, and attempt to calculate the stretched
lengths (`1, `2, `3) of Y as a function of the lengths (L1, L2, L3) of the edges
of K. There are (up to symmetry) two cases to consider. If the central
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vertex of Y is mapped to the central vertex of K, we clearly have

`1 = L1

`2 = L2

`3 = L3.

If the central vertex of Y is “pulled up” into an edge of K, then we have
two concerns: the forces at the central vertex must balance, and lengths
must “match.” That is, the sum of the lengths of the stretched edges in any
path which goes “straight” from one marked vertex to another must equal
the length of the unique geodesic between the marked vertices given by the
length structure on K. So we have

`1
2

+
`3
2
− `2

2
= 0

and

`1 + `2 = L1 + L2

`2 + `3 = L2 + L3.

Row reducing then gives the relationship



`1
`2
`3


 =




2
3

1
3 −1

3
1
3

2
3

1
3

−1
3

1
3

2
3





L1

L2

L3


 .

From the above example, we see that we need to make some assumptions
about the combinatorics of the harmonic map to calculate what the rela-
tionship between stretched lengths and target lengths is. It turns out the
relevant combinatorial information is recorded by “train track structures”
on the source graph. These are designed to keep track of which “directions”
on the source graph are mapped “in the same direction” on the target.

Intuitively, the “directions” at a point in a graph are simply the direc-
tions one can take on a path from the point. Formally, we have the following
definition.

Definition 3.2. If Γ is a graph, and x ∈ Γ, then a direction at x is the
germ of a piecewise-linear map (R≥0, 0)→ (Γ, x), considered up to piecewise-
linear reparametrization.
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Figure 8: There are two nonzero directions at the red point, and three
nonzero directions at the blue point.

The germ of the constant map is called the zero direction. There are two
nonzero directions at any point in the interior of an edge, but there may be
more at a vertex (see 8). Directions push forward by piecewise-linear maps
in an obvious way; if f : Γ→ Γ′ is piecewise-linear, and γ : (R≥0, 0)→ (Γ, x)
is a representative of a direction d at x ∈ Γ, then the germ of the composition
f ◦ γ is a direction at f(x), which we denote by f(d).

Definition 3.3. A train track structure τ on marked graph Γ is a par-
tition of the nonzero directions into equivalence classes, called gates, with
at least two gates at each unmarked point.

Directions and train tracks are introduced (in the context of maps be-
tween graphs) in [1].

Given a piecewise-linear map f : Γ→ Γ′, the train track of f is the train
track structure τ on Γ such that

(d1 ∼τ d2)⇔ (f(d1) = f(d2)).

That is, τ identifies precisely the directions which are mapped to the same
direction under f .

Since at each point in the interior of an edge, there are only two di-
rections, and these must belong to two different gates, we are really only
concerned about the gates at each vertex of our source graph. We can record
the train track diagrammatically by connecting edges which are identified
with arcs (see 9). In this way, we see that we can also think of the train track
structure as a partition at each vertex of the edges adjacent to that vertex.
(If some edge only one boundary vertex, i.e. is a loop, than that edge will
be counted twice, once for each direction out of its boundary vertex). We
will also call these equivalence classes of edges gates.
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Figure 9: A map and its associated train track.

The key observation is that a train track structure on G tells us how to
“balance tensions” and “match path lengths.” This gives a linear system,
which in turn gives a linear relationship between the stretched lengths and
the target lengths which holds for all harmonic maps which have a given
train track.

Example 3.4. Consider mapping the A graph in 10 to a tripod with varying
lengths. Suppose we assume the harmonic map has the train track structure
shown. Then we get the system of equations:

`1
3

+
`3
5
− `2

3
= 0

`3
5

+
`4
2
− `5

4
= 0

by balancing forces and

`1 + `2 = L1 + L2

`4 + `5 = L2 + L3

`2 + `3 + `5 = L2 + L3

by matching lengths. We can row reduce to get the relationship



`1
`2
`3
`4
`5




=
1

47




28 25 −3
19 22 3
−15 −5 10

4 17 13
−4 30 34






L1

L2

L3


 .
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L1

L2

L33

3

5

2

4

`1

`2

`3

`4

`5

Figure 10: Calculating the relationship between stretched and target lengths
for a specific train track. Notice that although the blue vertex is mapped to
a different edge on the left and on the right, both maps have the same train
track.

In general, we generate the equations thus. For each vertex of G which
has exactly two gates g1 and g2,

∑

e∈g1

`(e)

α(e)
−
∑

e∈g2

`(e)

α(e)
= 0

since the tensions must balance. Notice that the left side is a linear com-
bination of the stretched edge lengths. “Matching path lengths” is a little
more involved.

We say that a (piecewise-linear) path γ : I → G is straight (or makes
valid turns) if it does not “backtrack” with respect to the train track struc-
ture τ on G; that is, at no point x ∈ I do two distinct nonzero directions
from x map under γ to directions identified by τ . Put another way, if
g : G→ K is a map inducing the train track structure on G, then the train
track structure induced on I by the composition g ◦ γ : I → K never identi-
fies two different nonzero directions. We say a path γ : I → K is straight if
it simply does not “backtrack;” for all x ∈ I, no two nonzero directions from
x map under γ to the same direction in K. Put another way, the train track
structure induced by γ never identifies two different nonzero directions.

We can define a similar notion of “straight” for chains. A chain is an
alternating sequence of vertices and edges, where each edge connects the
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vertices on either side of it. A chain (v0, e1, v1, ..., em, vm) is called straight
if it does not “backtrack.” That is, if the chain lies in a graph with a train
track structure, then we require that ei and ei+1 lie in different gates at vi
for each 1 ≤ i ≤ m − 1. If the chain lies in a graph with no train track
structure, then we must have ei 6= ei+1 for all 1 ≤ i ≤ m− 1, unless ei is a
loop whose two directions out from its boundary vertex are not identified.

Given a straight path between vertices, we say a chain parametrizes the
path if some orientation on the edges is such that the path given by concate-
nating all the edges in order is homotopic to the original path. Thence, given
our elastic graph G, our length graph K, our homotopy class [f ] : G → K,
and a train track structure on τ , we have a way to associate straight chains
with marked endpoints on G to straight chains with marked endpoints on
K. Specifically, we associate our chain in G to a (marked) straight path
γ in G which it parametrizes; the homotopy class [f ◦ γ] contains (up to
PL reparametrization) a unique representative which is straight. (In fact,
if g ∈ [f ] induces the train track structure τ on G, then g ◦ γ is a straight
path between two marked points in K). We then parametrize the straight
path in [f ◦γ] by a straight chain (v′0, e

′
1, v
′
1, ..., e

′
q, v
′
q). You can think of this

chain as the “image” of our first chain. (We can do a similar process with
straight cycles and straight loops).

Clearly, the total lengths of associated straight chains must match; the
first chain is a chain of stretched lengths with no backtracking, and the
second is the path of target lengths along which they are stretched. Thus,
having fixed our train track structure, we get

m∑

i=0

`(ei) =

q∑

j=0

L(e′j)

for each straight chain (v0, e1, v1, ..., em, vm) (either with marked endpoints
or with v0 = vm) inG and each associated straight chain (v′0, e

′
1, v
′
1, ..., e

′
q, v
′
q).

Notice that the left side a linear combination of stretched lengths and the
right is a linear combination of target lengths.

Note that if K is a tree, then any straight chain in K is determined
by its endpoints. This makes computations a lot easier; one simply must
find straight chains with marked endpoints in G and keep track of where
the endpoints map in K. (Since K has no cycles, there will be no straight
cycles in G if τ is actually induced by a map to K). This method is fairly
straightforward to program; in fact, we used this method to write a program
giving the relationship between stretched lengths and target lengths and the
energy function for maps from 3-marked elastic graphs to a tripod.
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In all of our experiments mapping different 3-marked networks to the
tripod, the system produced had a unique solution for each assignment of
target lengths (although most of the time there were redundant equations).
We do not yet have a proof that these systems of equations have unique
solutions, but we suspect that they do in the case that K is a tree.

Assuming the systems are sufficiently determined, then for a specified
train track τ , by row-reducing our system, we get a matrix we get a matrix
T such that 


`1
...
`N


 = T



L1
...
Ln


 .

If

A =



α1

. . .

αN




is the diagonal matrix of the elasticities of the source graph, then the Dirich-
let energy of a map is

Dir g =
[
`1 · · · `N

]
A



`1
...
`N


 =


T



L1
...
Ln







t

A



L1
...
Ln




=
[
L1 · · · Ln

]
M



L1
...
Ln


 ,

where M = T tAT . Thus, we have explicitly obtained a piece of our energy
function.

3.2 Regions of Validity

In order to get our system of equations, we had to assume that the har-
monic representative of [f ] had a specific train track structure. However,
the assignment of target lengths (L1, ..., Ln) already determines the har-
monic representative(s), which in turn determines a train track structure
(or structures) which may differ from our assumption. Therefore, we want
to determine which assignments of target lengths correspond to which train
track structures, and thence how the “pieces” of our piecewise-quadratic
energy function are shaped and arranged.
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Figure 11: Map an elastic tripod to a tripod. If we assume that our har-
monic map has the train track structure on the left, and then try to calculate
the stretched lengths for L2 large compared to L1 and L3, we get the non-
sensical answer that `2 > L2. Although this solution satisfies our system of
equations, it clearly does not correspond to a continuous map.

Definition 3.5. Given a marked elastic graph G, a marked graph Γ, and a
homotopy class [f ] : G → Γ, we say that a train track structure τ is valid
for a length structure L on Γ if there exists g ∈ [f ] such that g : G→ (Γ, L)
is harmonic and τ is the train track of g. We call the subset {L ∈ Rn≥0 :
τ is valid for L} the region of validity for τ .

Conjecture 3.6. A train track τ to is valid for a length structure L =
(L1, ...Ln), if and only if following criteria must be satisfied:

1. The stretched lengths must be nonnegative. That is, if T is the matrix
obtained from τ as in 3.1, then each component of TL must be greater
than or equal to zero.

2. The triangle inequalities must be satisfied at each vertex of G. The
cases where only two nonzero directions go out from a vertex are taken
care of in the course of the calculation of T , but we must still apply the
triangle inequalities for vertices with three or more nonzero directions.

3. The track cannot “split hairs.”

This last criterion is a bit difficult to characterize. An example of “split-
ting hairs” is given in 11.

The explicit inequalities prohibiting “splitting hairs” compare the lengths
of straight chains in G and K. That is, the length of a straight chain from
an unmarked vertex to a marked vertex in G cannot exceed the length of a
corresponding straight chain in K. The trouble is that the straight chain in
K no longer has fixed endpoints, and so is not determined by the homotopy
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class. Instead, the corresponding chain is the smallest that contains the
image of the original under any map which has the given train track.

Clearly, the criteria in 3.6 are necessary for a train track to be valid.
The conjecture is that they are sufficient. More work needs to be done to
prove this, and perhaps find a better characterization of the last condition.

So long as these conditions are the correct ones, we then know that the
regions of validity are polyhedra. That is, they are intersections Euclidean
half-spaces. This is because each of the conditions manifests itself as a
system of linear inequalities of the stretched lengths, which, through our
calculated relationship T from 3.1 are transformed into linear inequalities
of the target lengths. (The solution sets of linear inequalities are, of course,
polyhedra). Moreover, we know that the regions of validity are cones (that
is, invariant under positive scalar multiplication), since scaling up the target
lengths uniformly will not change the combinatorics of the harmonic map.
Alternatively, one may note that the inequalities correspond to whether
some linear transformation maps into the first quadrant.

Since the regions of validity are cones, we can get all the information we
need about them from their projection onto the standard (n − 1)-simplex
(the subset on which the sum of all the target lengths is 1). This is especially
convenient, since then for maps to a tripod, we have a clear 2-dimensional
representation of the regions of validity.

Using code written by the authors, as well as code written by Andrew
Henderson and code written by Dylan Thurston, we were able to experi-
mentally determine and plot the regions of validity for different train track
structures on some maps into tripods. These are presented in 12 and 13.

Understanding regions of validity allows one to understand the global
structure of the energy functions of maps between graphs. For each n,
there are only finitely many trees with n boundary vertices, and so we can
understand the energies of maps from a fixed elastic graph with n marked
points into a tree by examining finitely many homotopy classes of maps and
finitely many train track structures. This would give a decision procedure
to check whether one network is looser than another directly; we just check–
on finitely many sufficiently small regions of Rn≥0–whether one quadratic
function is greater than another. Geometric approaches to getting results
about looseness are given in the next section.
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Figure 12: On the left, we have pictured experimentally determined regions
of validity for maps from an A graph with uniform elasticities graph into the
tripod. The different colors represent different train track structures on A.
On the right, we have all the different train track structures that will occur
for a map from any elastic A to the tripod. Edges are drawn between train
track structures which are in some sense similar. We see that this graph
corresponds nicely to the regions on the left.

1

1 1

1

11

1 1 1

1 1

1

12

1 1

Figure 13: We map the elastic (“M”) graphs shown in the top row to the
tripod and plot the regions of validity of the train tracks that appear. For the
uniformly elastic M , only 9 distinct train tracks are valid in a 3-dimensional
region. When we break the symmetry as in the graph on the right, 5 more
regions appear. If we try to make a graph of all possible train track structure,
as in 12, we get a much larger graph that does not correspond nicely to either
of these, and, in fact, does not embed nicely into the plane. Further work
must be done to characterize how regions of validity collapse and evolve as
we vary elasticities on the source.
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4 The tripod and the delta are extremal

We now prove one of our main results, that elastic tripods, in some sense,
minimize Dirichlet energy, while elastic deltas maximize it. Our methods do
not make use of the train track structures detailed above, but rather some
Euclidean geometry. The precise result is as follows:

Proposition 4.1. Let G be any 3-marked elastic network, and let Y be
the electrically equivalent generalized tripod and ∆ the electrically equivalent
generalized delta. Then Y � G � ∆.

The proof is simplified because the image of a harmonic map from a
3-marked elastic network to a tree lies is a 3-marked tripod, 2- or 3-marked
interval, or a single marked vertex (14 should make this clear, but this also
makes an instructive exercise).

Figure 14: If any of the image lies outside the bold tripod, it would re-
tract onto the tripod, decreasing Dirichlet energy, thus contradicting that
harmonic maps minimize Dirichlet energy

The proposition is trivial in the case of the single marked vertex, and
it follows trivially from electrical equivalence in the case of the interval.
Therefore, we really only need to consider maps to a length tripod K; that
is, it suffices to show the following:

Proposition 4.2. Let G, ∆, and Y be as in 4.1, let L be a length tripod,
and let fG : G → L, f∆ : ∆ → L, and fY : Y → L be harmonic and send
corresponding marked points of the three graphs to the same outer vertices
of L, hitting all three vertices. Then Dir fY ≤ Dir fG ≤ Dir f∆.

4.1 The tripod is extremal

First we prove Dir fY ≤ Dir fG.
The idea of the proof is that fY “looks like” a harmonic map to Euclidean

space, while fG may be “tighter” than a harmonic map to Euclidean space.
Specifically, we use the following lemma:
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Lemma 4.3. Let H be a marked elastic graph and K be a marked length
tree. Let f : H → K be harmonic. Suppose there exists a choice of marked
points in Rn and a map ι : K → Rn which is isometric onto its image on
each edge of K and such that the composition ι ◦ f is also harmonic. Then,
for any elastic graph H ′ which is electrically equivalent to H, we have

Dir f ≤ Dir g,

where g : H ′ → K is harmonic and in the homotopy class corresponding to
f .

Proof of 4.3. Since ι is isometric on each edge, clearly Dir ι ◦ f = Dir f and
Dir ι ◦ g = Dir g. Moreover, since H and H ′ are electrically equivalent, their
corresponding harmonic maps to Euclidean space have equal energy; that
is, Dir[ι ◦ f ] = Dir[ι ◦ g]. Therefore, we have

Dir f = Dir(ι ◦ f) = Dir[ι ◦ f ] = Dir[ι ◦ g] ≤ Dir(ι ◦ g) = Dir g

as desired.

The trick is actually constructing such a map ι, as follows.

Proof of Dir fY ≤ Dir fG. Apply 4.3 with H = Y H ′ = G, and K = L. We
need only find an appropriate ι. Pick any point in R2 for the central vertex
of L to go to. As ι is isometric on the edges of L, it’s determined uniquely
once the angles of its edges are specified, so we need only specify angles
making ι ◦ fY harmonic.

If Y is a generalized tripod which is not a tripod, the correct choice of ι
lays 2 edges at a 180° angle to one another; the reader can fill in the details.
If Y is a tripod and the central vertex of Y maps to the interior of a leg of
L, lay that leg at a 180° angle to the other two.

More interesting, however, is the last case, that Y is a tripod and its
central vertex maps to L’s central vertex. Here, if we can pick three vectors
with the stretched tensions of Y as magnitudes whose sum is 0, just let ι
orient each leg parallel to the corresponding tension vector. We now only
need to choose these three vectors.

As in this case the tensions satisfy the triangle inequalities, a triangle
with those tensions as sides exists, so the vectors corresponding to the sides
of the triangle, oriented say counterclockwise, suffice, as shown in 15.
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Figure 15: These vectors sum to 0, so take these as the tensions.

Remark. In fact, the proof above can easily be adapted to show that every
n-star (configuration of n marked points each connected by one edge to
a central vertex) is looser than any elastic graph electrically equivalent to
it. Once again, it suffices to consider maps from elastic n-stars to length
n-stars (after considering some degenerate cases), and we simply need to
construct the map ι from 4.3. The tensions on the central vertex satisfy all
the triangle inequalities, so there exists an n-gon in R2 whose side lengths
are the (magnitudes of the) tensions. We once again orient each leg in the
direction of the corresponding tension in the n-gon to get the map ι.

4.2 The delta is extremal

Now we prove that Dir fG ≤ Dir f∆.

Definition 4.4 (Comparison triangles). Given 3 points (p, q, r) in a metric
space, a (Euclidean) comparison triangle is a choice of 3 points (p′, q′, r′) in
R2 with matching distances; that is, d (p, q) = d (p′, q′) and similarly for the
other pairs.

Remark. As metric spaces satisfy the triangle inequality, (possibly degener-
ate) comparison triangles always exist.

Proposition 4.5. Let ∆ be any elastic generalized delta with its 3 ver-
tices marked, and let G be any electrically equivalent elastic network with 3
marked vertices. Then G � ∆.

We need the following lemma:

Lemma 4.6. If L is a pipe tripod and (p′, q′, r′) is a comparison triangle for
the outer vertices (p, q, r) of L, a short (i.e. distance-decreasing) PL map π
from the solid triangle 4p′q′r′ (i.e. the convex hull of the three points) to L
exists sending p′ 7→ p, q′ 7→ q, and r′ 7→ r.
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Proof of 4.6. A map from the boundary of the comparison triangle (that is,
the union of the segments connecting two of the comparison points) to L
exists which is isometric on each edge: send segment p′q′ isometrically to
the geodesic pq, and so on. Informally, we can think of this map as adding
a hinge to the comparison triangle at each of its vertices and each of the
three preimages of the central vertex, and then “collapsing” the triangle, as
shown in 16.

3

45
2 1

3

Figure 16: A comparison triangle collapsing onto its tripod

Notice that the pink preimages of the central vertex are the points where
the incircle of 4p′q′r′ meets the triangle; this can be seen, for instance, by
the fact that only one choice of three pink points satisfies the congruences
in the first triangle of figure 1 and the points where the incircle meets the
triangle also satisfy them.

We can therefore extend this collapse to the entire solid triangle: sub-
divide the triangle into 3 via its angle bisectors and orthogonally project
each subtriangle onto its corresponding side as shown in 17 before collaps-
ing. Notice this is well-defined on the angle bisectors: no matter which side
we project onto to resolve the ambiguity, the image in the final tripod is the
same. Call the extension π.

p′ r′

q′

p r

q

Figure 17: The extended map π

Now π is short, as desired: the pullback metric (in the sense of differential
geometry) from the tripod, which is defined a.e., is simply the appropriate
orthogonal projection of the Euclidean metric, and so measures distances no
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greater than the Euclidean metric. That p′ 7→ p, q′ 7→ q, r′ 7→ r, and that π
is PL are clear.

Proof of 4.5. Let L be a pipe tripod, and let fG : G → L and f∆ : ∆ → L
be harmonic and send corresponding marked points to the same outer nodes
of L. We wish to show Dir fG ≤ Dir f∆.

Let fpreG : G→ R2 and fpre∆ : ∆→ R2 be harmonic and send the marked
points of G and ∆ to the corresponding vertices of a comparison triangle for
L. Let π be the short map of 4.6. The image of fpreG lies entirely in the solid
comparison triangle, as otherwise we could retract fpreG onto the comparison
triangle, decreasing distances and therefore Dirichlet energy, contadicting
harmonicity of fpreG . Thus π ◦ fpreG makes sense, and the following diagram
commutes up to marked homotopy:

∆

G R2

L

fpre∆

fpreG

π

f∆

fG

Now we have

Dir fG
(1)

≤ Dir
(
π ◦ fpreG

) (2)

≤ Dir fpreG

(3)
= Dir fpre∆

(4)
= Dir f∆,

where (1) follows as fG is harmonic and harmonic maps minimize Dirich-
let energy in their homotopy class, (2) follows as π is short and therefore
decreases energies, (3) follows from 2.12, and (4) follows as both f∆ and fpre∆

stretch the sides of ∆ to the same lengths.

Remark 4.7. The above proof almost generalizes to arbitrary Hadamard
targets rather than pipe tripods; the only thing that doesn’t generalize easily
is the construction of the short map π. However, [4, Theorem 5.4] guarantees
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its existence (the construction is amusing: fill it in one point at a time!) Thus
deltas are also extremal when mapping to Hadamard spaces.

5 Elastically equivalent graphs

Another interesting relationship between graphs is the following:

Definition 5.1 (Elastic equivalence). DefineG1 andG2 to be elastically equivalent
if G1 � G2 and G2 � G1; that is, whenever the two have the same Dirichlet
energies when stretched out in a tree.

Of course, replacing an edge of a graph with two edges in series or in par-
allel gives another elastically equivalent graph, but are there any examples
of elastically equivalent graphs which aren’t “trivially” elastically equivalent
in this way?

There in fact are.

Proposition 5.2. Let g1 and g2 be any electrically equivalent graphs with
3 marked vertices pasted into triangles as shown below (with their marked
vertices placed on the pink vertices), let G1 and G2 be the resulting networks,
and let α1β1γ1 = α2β2γ2. Then the graphs of 18 are elastically equivalent.

α1 γ2

γ1

β2β1

α2 g1

α1 γ2

γ1

β2β1

α2 g2

Figure 18: Elastically equivalent networks

Some intuition can be gained as follows: the condition α1β1γ1 = α2β2γ2

roughly translates to “the amounts the gis get twisted in the clockwise and
counterclockwise directions cancel,” forcing them to flatten, which is just
the electrical case; thus we only see the electrical properties of the gis.

Proof. We prove this in the case that g2 is a generalized delta; 2.9 and
transitivity of elastic equivalence take care of the rest.

Again we only have to consider maps to an arbitrary pipe tripod L. It
suffices to show that the harmonic map f : G2 → L doesn’t pull the three
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pink vertices into different legs of the tripod, for then they lie along a single
geodesic of L, so by electrical equivalence we can “cut” out g2 from f and
“paste” in g1 without affecting harmonicity or Dirichlet energy.

α1 γ2

γ1

β2β1

α2

Figure 19: G2 if g2 is a generalized delta; some or all of the dashed lines
may be missing.

We prove the impossibility of f pulling the three pink vertices into dif-
ferent legs of L by casework. All cases except the counterclockwise one in
20 and its clockwise “mirror” are rather trivial: a node maps to the middle
of an edge of L, but the only tensions on it pull it to the center of L, so f
can’t be harmonic. For brevity, we omit the details of those cases.

L1 L3

L2

α1 γ2

γ1

β2β1

α2

Figure 20: The main case to be eliminated

In this case, the tension of α2, which is < L1
α2

, must be at least strong

enough to cancel β1’s tension, which is > L2
β1

; that is,

L2

β1
<
L1

α2
.
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Similarly,

L3

γ1
<
L2

β2
and

L1

α1
<
L3

γ2
.

Therefore

L1 <
α1L3

γ2
<
α1γ1L2

γ2β2
<
α1γ1β1L1

γ2β2α2
= L1,

contradiction. The impossibility of the “mirror” case is similar.

6 Open questions and conjectures

We raise the following questions.

6.1 Generalizing to more marked vertices

Conjecture 6.1. Trees are extremal; that is, if T is any elastic tree with
some number of marked vertices and G is any electrically equivalent elasticc
graph, T � G.

Remark. Directly generalizing 4.1’s argument results in problems if two dis-
joint bits of the elastic graph run through the same pipe node; that is, if the
preimage of small neighborhoods of that node are disconnected. Then the
disjoint bits might try to angle the adjacent pipes in two different configu-
rations, making ι impossible to construct.

Question 6.2. When we move to 4 or more marked vertices, not everything
is equivalent to a tree; for example, with 4 marked vertices we need to add
in networks of the following form:

(This can be seen, say, by [2, Theorem 2]: depending on the elastici-
ties, the possible response matrices of this graph have 6 degrees of freedom,
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whereas trees can only have up to 5.) What is the correct generalization of
the tripod’s extremality in this case?

Question 6.3. What analogue does the delta have in cases with more marked
vertices?

More generally, we have the following question.

Question 6.4. What other criteria are there for looseness?

6.2 Elastic equivalence

Question 6.5. Is there a better proof of 5.2 than ad hoc casework?

Elastic equivalence seems a rare phenomenon; therefore it may be pos-
sible to give a characterization.

Question 6.6. Is there a characterization of elastic equivalence?

6.3 Generalizations to Hadamard space targets

As pointed out in 4.7, the delta is still extremal for Hadamard target spaces.

Conjecture 6.7. The tripod is also still extremal when mapping to Hadamard
target spaces.

Conjecture 6.8. The graphs of 5 are still equivalent when mapping to Hadamard
targets. (We expect this is false.)

6.4 Exploring Regions of Validity

Question 6.9. Are the conjectured criteria for validity in in 3.6 sufficient?

Question 6.10. Is there a more straightforward description of the third cri-
terion in 3.6?

Question 6.11. How do we characterize the evolution of regions of validity
as elasticities are varied on the source graph?

6.5 Assorted unexplained phenomena

6.5.1 “Refraction Patterns”

Question 6.12. The plots in 13 and 21 have an appearance suggestive of a
refraction pattern. Is the evolution of regions of validity at all related to
refraction?
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Figure 21: Comparing regions of validity with different source elasticities
reveals “refraction patterns.”

Figure 22: Duality.

6.5.2 Duality

The tripod and the delta can be considered “dual” to one another, as follows:
That is, they’re in some sense “duals on a circle;” this easily general-

izes to planar graphs embedded in a circle with their marked nodes on the
boundary of the circle. The best way of describing the dual of an elastic
graph makes the following conversions:
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Tension⇒ Length

Length⇒ Tension

Elasticity⇒ 1

Elasticity

Hooke’s Law⇒ Hooke’s Law

Dirichlet energy⇒ Dirichlet energy

The most remarkable things, however, are the following:

Kirchoff’s loop rule⇒ Kirchoff’s junction rule

Kirchoff’s junction rule⇒ Kirchoff’s loop rule

This has been explored for resistor networks; for example, in [3, Section
3] the electrical case with 2 marked vertices is examined.

Due to a number of suggestive facts, we believe this should generalize
somehow to harmonic maps from elastic graphs to pipe graphs. Firstly, the
triangle inequality condition for harmonicity is exactly dual to the metric
triangle inequality between the endpoints of a pipe tripod, generalizing the
swap between Kirchoff’s laws in the electrical case. In addition, a number
of matrices that seemed related to duality (from calculations of how duality
should behave) appeared in other calculations. Even the two triangles in
the proofs of 4 are dual to one another!

A full description of duality seems elusive, however. We hope future
work can shed some light on this.

A Assorted proofs that Y � ∆

Over the course of our research, we found several proofs of the following
proposition:

Proposition A.1. Let Y be an elastic tripod, let ∆ be an electrically equiv-
alent delta, and let K be a length tripod. If f : Y → K is harmonic,
and g : ∆ → K is harmonic in the corresponding homotopy class, then
Dir f ≤ Dir g.

This is, of course, implied by our main results in 4. However, it may
be fruitful to examine the different proofs we found and search for gen-
eralizations. Therefore, we include several proofs (sometimes under more
assumptions) of A.1 below.
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Proof (Algebraic, Vertex-to-vertex case only). Let f : Y → K be a har-
monic map from an elastic tripod to a length tripod, both with outer vertices
marked. If f maps the central vertex of Γ to the central vertex then we know
that the triangle inequalities are satisfied:

L1

α1
≤ L2

α2
+
L3

α3
,
L2

α2
≤ L3

α3
+
L1

α1
,
L3

α3
≤ L1

α1
+
L2

α2
,

where Li are the lengths on K and αi are the corresponding elasticities on Y .
We define elasticities on a delta graph ∆ by the familiar Y -∆-transformation:

αa =
α

α1
, αb =

α

α2
, αc =

α

α3

where α := α1α2 +α2α3 +α3α1. Doing the inverse transform gives another
set of triangle inequalities:

L1
αa + αb + αc

αbαc
≤ L2

αa + αb + αc
αaαc

+ L3
αa + αb + αc

αaαb

and so on, which, dividing by αa+αb+αc

αaαbαc
, in turn yields

αaL1 ≤ αbL2 + αcL3, αbL2 ≤ αcL3 + αaL1, αcL3 ≤ αaL1 + αbL2.

Combining two triangle inequalities at a time gives

|αaL1 − αbL2| ≤ αcL3, |αbL2 − αcL3| ≤ αaL1, |αcL3 − αaL1| ≤ αbL2,

which gives the inequality:

(αaL1−αbL2)2+(αaL2−αbL3)2+(αaL3−αbL1)2 ≤ (αaL1)2+(αbL2)2+(αcL3)2.

Expanding and rearranging terms gives

α2
aL

2
1 + α2

bL
2
2 + α2

cL
2
3 ≤ 2(αaαbL1L2 + αbαcL2L3 + αcαaL3L1),

and dividing both sides by αaαbαc gives

αa
αbαc

L2
1 +

αb
αcαa

L2
2 +

αc
αaαb

L2
3 ≤ 2

(
L1L2

αc
+
L2L3

αa
+
L3L1

αb

)
.
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Adding αb+αc

αbαc
L2

1 + αc+αa
αcαa

L2
2 + αa+αb

αaαb
L2

3 to both sides and factoring gives

αa + αb + αc
αbαc

L2
1 +

αa + αb + αc
αcαa

L2
2 +

αa + αb + αc
αaαb

L2
3

≤ (L2 + L3)2

αa
+

(L3 + L1)2

αb
+

(L1 + L2)2

αc
.

The right side is easily seen to be the energy of the harmonic map from ∆ to

K. Applying the inverse Y -∆ transform to the left side gives
L2
1

α1
+

L2
2

α2
+

L2
3

α3
,

which is the energy of the harmonic map f : Y → K.

Proof (linear algebra bash, vertex-to-vertex case only). We need only consider
the case that the central vertex of the tripod maps to the central vertex of
the pipe tripod; that is, the case that `1

α1
, `2α2

, and `3
α3

satisfy the triangle
inequalities. This is true iff the vector

L =



`1
`2
`3




is a nonnegative linear combination of




0
α2

α3


 ,



α1

0
α3


 , and



α1

α2

0


 ;

that is, iff

L =




0 α1 α1

α2 0 α2

α3 α3 0


L′

for some L′ in the first quadrant of R3.
The Dirichlet energy of Y is
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LT



α−1

1

α−1
2

α−1
3


L

= L′T




0 α2 α3

α1 0 α3

α1 α2 0





α−1

1

α−1
2

α−1
3






0 α1 α1

α2 0 α2

α3 α3 0


L′

= L′T



α2 + α3 α3 α2

α3 α1 + α3 α1

α2 α1 α1 + α2


L′. (A.1)

Similarly, if we let σ = α1 · α2 + α1 · α3 + α2 · α3, the Dirichlet energy of
∆ is

LT




0 1 1
1 0 1
1 1 0





β−1

1

β−1
2

β−1
3






0 1 1
1 0 1
1 1 0


L

=
1

σ
LT



α2 + α3 α3 α2

α3 α1 + α3 α1

α2 α1 α1 + α2


L

=
1

σ
L′T




0 α2 α3

α1 0 α3

α1 α2 0





α2 + α3 α3 α2

α3 α1 + α3 α1

α2 α1 α1 + α2






0 α1 α1

α2 0 α2

α3 α3 0


L′

= L′T





α2 + α3 α3 α2

α3 α1 + α3 α1

α2 α1 α1 + α2


+

2α1α2α3

σ




0 1 1
1 0 1
1 1 0




L′

= (A.1) +
2α1α2α3

σ
L′T




0 1 1
1 0 1
1 1 0


L′ (A.2)

Clearly, as L′ is in the first quadrant and the αis are positive, (A.2)≥(A.1),
as desired.
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Abstract

Phylogenetics is the study of trees that describe the evolution of
organisms. Mathematics provides models for DNA evolution that
enable Biologists to determine trees in a rigorous statistical frame-
work. In order for these models to be useful, the models need to be
identifiable. That is, with an infinite amount of data from the true
model, we should be able to recover all the parameters in that model
uniquely. One commonly used model, especially in phylogenetic soft-
ware, is the GTR+Γ+I model, whose parameters include: T, the phy-
logenetic tree, Q, the General Time Reversible (GTR) Markov rate
matrix, and R, a random mutation rate taken from a mixture of a
Gamma distribution and invariant sites. This model has already been
shown to be identifiable when the Gamma distribution is continuous.
However, all known software packages use a discrete version of the
Gamma distribution instead. In this REU project, we are exploring
both numerically and analytically whether the model with only two
rate classes and no invariant sites is identifiable.1

1This material is based upon work supported by the National Science Foundation under
Grant No. DMS-1461061.
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This summer, I pursued a problem in mathematical biology, in the identi-
fiability of trees. Phylogenetics is the study of trees that describe how species
evolve. Biologists find themselves intrigued with the actual trees themselves,
while the math involved revolves around the models used to generate said
trees. Our work was centered around one such model, the GTR+Γ+I Model
and an attempt to prove the identifiability of this model for a specific case.

The main term to be aware of here is identifiabilty which means: if given
an infinite amount of data all of the model’s parameters can be uniquely
determined. In our case the data comes in the form of DNA sequences of
our species. We shall assume two important details about our sequences:
the first is that we have at least 4 species, as there is only one unrooted
tree topology involving 3 species, and the second being that we assume our
sequences contain an infinite amount of data. Through using these infinite
sequences we hope to show that we can uniquely determine the parameters of
the model. For the model we’re using, the GTR+Γ+I Model, the parameters
are Q, T and R.

Our parameter Q will be some general time reversible rate matrix with at
least two non-zero distinct eigenvalues. The T that we are hoping to deter-
mine is the phylogenetic tree itself, which we will consider to be unrooted and
as having three or more distinct inter-species distances. The final parameter
R, represents a rate of evolution. It has already been proved that if R is a a
continuous gamma distribution with mean 1 than the model will be identifi-
able. My work this summer was with using R as a two rate class parameter
still with mean 1. We chose to work with a discrete Gamma distribution as
this typically is the distribution that software packages use, although they
typically use four rate classes. We hoped to be able to show that working
with 2 rate classes would give some insight into using a discrete distribution,
and possibly have our work extended to more rate classes.

Thus starting with 4 or more DNA sequences our hope is from pairwise
sequence comparisons we can uniquely determine the above parameters. Due
to having an assumed infinite amount of data for pairwise comparisons we
can easily determine the stationary frequencies for each nucleotide and hence
probability matrix for any pair of species. We know through Markov chains
that we can arrive at an equation that looks like

Pi,j(t) = Eeti,jQR

where we take the expected value of R, our discrete distribution of two rate
classes. It’s known that the eigenvectors of P are the eigenvectors of Q. Thus
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our eigenvalues of Q are related to those of P through the equations:

m1 = (etrλ1 + e(2−r)tλ1)/2,

m2 = (etrλ2 + e(2−r)tλ2)/2,

m3 = (etrλ3 + e(2−r)tλ3)/2

Where λ1, λ2, λ3 are our 3 distinct non-zero eigenvalues of Q and where
m1,m2,m3 are the associated eigenvalues from P . We can generalize this
to just thinking of the eigenvalues of P of functions of two parameters such
that we get something like this:

m1 = µ(tλ1, r),

m2 = µ(tλ2, r),

m3 = µ(tλ3, r).

We can then assume by contradiction that for one of our eigenvalues of
P, say m1 that we have functions of different parameters that generate it:

µ(tλ1, r) = m1 = µ(TL1, s)

where we define 0 < r < s < 1. This would create a problem as it would mean
that the same data m1 is being generated by different sets of parameters. As
our functions are already of two parameters essentially, this can happen a
few times, but not too many. From this point we shall invert one side of our
equality with respect to the TL1 component giving:

µ−1(µ(tλ1, r), s) = m1 = TL1.

We can also do this using the same pair of species (same t/T values), and
with a different distinct eigenvalue to get an equation of the form:

µ−1(µ(tλ2, r), s) = m2 = TL2.

Dividing one equation by the other gives a ratio of the form:

µ−1(µ(tλ1, r), s)

µ−1(µ(tλ2, r), s)
=
TL1

TL2
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Which through some simplification of variables can be written as

C =
µ−1(µ(λ1, r), s)

µ−1(µ(Bλ1, r), s)

where C is a constant and B is a constant with value greater than 1. Both C
and B are ratios of eigenvalues which is why we are allowed to assume that
B is greater than 1 as we can arbitrarily assume 1 eigenvalue greater than
the other to get a value greater than 1. To make sure that this model is
identifiable we needed to show that for our ratio doesn’t equally C too many
times.

Previous work, notably a proof of identifiability of the continuous case
showed solved the similar problem through calculus and proving that the line
C was crossed only once or twice. We attempt a similar approach looking to
find a finite small amount of crossings of C. One way to do this is search for
the minima/maxima of the function as these will bound how many times our
ratio can cross C. Thus we took the derivative of our ratio. One way to prove
that our function only crosses C one time is if our derivative can be broken
up into two parts; one increasing and the other decreasing. We attempted
to do this and ended up with:

d

dx
[
µ−1(µ(x, r), s)

µ−1(µ(Bx, r), s)
] =

µ−1(µ(Bx, r)s) 1
µ′(µ−1(µ(x,r),s),s)

µ′(x, r) − µ−1(µ(x, r)s) 1
µ′(µ−1(µ(Bx,r),s),s)

µ′(Bx, r)B

µ−1(µ(Bx, r), s)2
.

Focusing only on the numerator we can get this too look like the following
by utilizing the fact that we have a difference in the numerator:

LHS =
1

b
[
µ−1(µ(Bx, r)s)

µ−1(µ(x, r)s)
][

µ′(x, r)

µ′(µ−1(µ(x, r), s), s)
][
µ′(µ−1(µ(Bx, r), s), s)

µ′(Bx, r)
] − 1

and

RHS = (
1

b
−1)[

µ−1(µ(Bx, r)s)

µ−1(µ(x, r)s)
][

µ′(x, r)

µ′(µ−1(µ(x, r), s), s)
][
µ′(µ−1(µ(Bx, r), s), s)

µ′(Bx, r)
]+B−1.

These two functions yields a graph of the form:
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We realized that this isn’t the desired result of one increasing and one
decreasing function, however the functions are neatly symmetric and meet
at the axis. This changed the goal to showing our LHS and RHS functions
have this form, which would give us one critical point in our ratio and hence
at most 2 crossings of the line C. To show that our LHS and RHS functions
have this form we can only work with one due to the resulting symmetry.
Working with the LHS we must show that it is decreasing at 0, at some point
crosses the x-axis, and then goes off to some asymptote without crossing the
axis again.

Part 1: Increasing at 0

Theorem 1. The Derivative of the left hand side is negative, hence showing
that our LHS function is decreasing and making the RHS function increasing
through symmetry

Proof. The first part we wished to show was that our function LHS decreases
at 0. As shown, we break the function up into three parts and individually
take their derivatives. The parts

[
µ′(x, r)

µ′(µ−1(µ(x, r), s), s)
]

and

[
µ′(µ−1(µ(Bx, r), s), s)

µ′(Bx, r)
]
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derive and evaluated at 0 pose no problems but when we take the derivative
of

[
µ−1(µ(Bx, r)s)

µ−1(µ(x, r)s)
]

and evaluate it at 0, we run into some 0/0 terms. As a work around we
approximate the µ−1 term with a second order Taylor series as shown in the
aside.

ASIDE:

We know the second order Taylor series of µ(x, r) is

µ(x, r) = 1 + x+
(r2) + (2 − r)2

4
x2 + ...

To find the inverse of this expansion we shall first find the inverse of the
function

(µ(x, r) − 1) = x+
(r2) + (2 − r)2

4
x2 + ...

Thus we know that (µ− 1)−1(x, s) has no constant term and thus has some
expansion that looks like

µ− 1)−1(x, s) = b1x+ b2x
2 + ...

Since we know that

(µ−1)−1((µ(x, r)−1), s) = x = b1(x+
(r2) + (2 − r)2

4
x2+...)+b2(x+

(r2) + (2 − r)2

4
x2+...)2+...

we can easily solve for the coefficients b1 and b2 which we can see are b1 = 1
and

b2 = −(r2) + (2 − r)2

4
This yields the second order Taylor series of

(µ− 1)−1(x, s) = x− (s2) + (2 − s)2

4
x2 + ...

However this can also be used as the Taylor series for

µ−1(µ(x, r) − 1), s) = (µ− 1) − (s2) + (2 − s)2

4
(µ− 1)2 + ...
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because we just need to make sure that the Taylor series is still expanded
about 0. By evaluating our function at (µ(x, r)− 1) which at x = 0 is 0, our
µ−1 is being expanded about 0 as desired. Hence we can use this form, and
then substituting in for the above equations for µ yields

µ−1(µ(x, r)−1, s) = [x+
(r2) + (2 − r)2

4
x2+...]−(s2) + (2 − s)2

4
[x+

(r2) + (2 − r)2

4
x2 + ...]

2

Which simplifying to only the second order terms of our Taylor expansion
about zero gives

µ−1(µ− 1(x, r), s) = x+ [
(r2) + (2 − r)2

4
− (s2) + (2 − s)2

4
]x2 + ...

BACK TO WORK

Now we can go back to looking at our function LHS and its derivative.
We have:

LHS =
1

b
[
µ−1(µ(Bx, r)s)

µ−1(µ(x, r)s)
][

µ′(x, r)

µ′(µ−1(µ(x, r), s), s)
][
µ′(µ−1(µ(Bx, r), s), s)

µ′(Bx, r)
] − 1

Looking at this in its three parts as

LHS =
1

b
XY Z − 1

where

X = [
µ−1(µ(Bx, r)s)

µ−1(µ(x, r)s)
]

Y = [
µ′(x, r)

µ′(µ−1(µ(x, r), s), s)
]

Z = [
µ′(µ−1(µ(Bx, r), s), s)

µ′(Bx, r)
]
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we see that we’re solving for

LHS ′(0) = X ′Y Z +XY ′Z +XY Z ′.

Note that we’re excluding the 1/B term as it wont effect whether our funciton
is positive or negative when evaluated at 0. The derivatives of each of the
parts are:

X ′ =
Bµ′(Bx, r)µ−1(µ(x, r), s)µ′(µ−1(µ(x, r), s), s) − µ′(x, r)µ−1(µ(Bx, r), s)µ′(µ−1(µ(Bx, r), s), s)

[µ−1(µ(x, r), s)]2µ′(µ−1(µ(Bx, r), s), s)µ′(µ−1(µ(x, r), s), s)

Y ′ =
µ′(µ−1(µ(x, r), s), s)µ′′(x, r) − µ′(x, r)µ′′(µ−1(µ(x, r), s), s) 1

µ′(µ−1(µ(x,r),s),s)
µ′(x, r)

[µ′(µ−1(µ(x, r), s), s)]2

Z ′ =
µ′(Bx, r)µ′′(µ−1(µ(Bx, r), s), s) 1

µ′(µ−1(µ(Bx,r),s),s)
µ′(Bx, r) − µ′(µ−1(µ(Bx, r), s), s)µ′′(Bx, r)

[µ′(Bx, r)]2
.

We also know what the components evaluated at 0 are:

µ(0, r) = (e0 + e0)/2 = 1

µ′(0, r) = (re0 + (2 − r)e0)/2 = 1

µ′′(0, r) = (r2e0 + (2 − r)2e0)/2 = (r2 + (2 − r)2)/2

Using the above information it is easy to see that both Y and Z evaluated
at 0 are both 1. Evaluating X at 0 would give 0/0 but using a first order
Taylor series we can see goes to B. So far that leaves us with LHS(0) =
X ′+B ∗Y ′+B ∗Z ′. Then utilizing the information from the ASIDE for the
µ−1(µ(x, r), s) terms that appear in X and evaluating at our derivatives we
get something that simplifies out to

LHS ′(0) = B(1−B)(
r2 + (2 − r)2 − s2 − (2 − s)2

4
+
r2 + (2 − r)2 − s2 − (2 − s)2

2
).

All that’s left is to show that based on 0 < r < s < 1 and B > 1 this is
negative. The only part whose sign isn’t immediately determined is whether

r2 + (2 − r)2 − s2 − (2 − s)

is positive. We can see that this equals

(r + s)(r − s) + (s− r)(4 − r − s) =
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(r − s)(r + s− 4 + r + s) =

2(r − s)[r + s− 2].

Which based on restrictions is positive. And therefore the equation

LHS ′(0) = 2B
r2 + (2 − r)2 − s2 − (2 − s)2

4
(1 −B)

is indeed negative due to the (1−B) term. Hence we’ve shown that derivative
of the LHS at 0 is negative, and so due to symmetry our LHS is decreasing
and our RHS is increasing at x = 0.

Part 2: Goes to asymptote

I was unable to show that my functions LHS and RHS have asymptotes
at some constant as X goes to infinity. However we were able to find the
asymptote at infinity of the original ratio. Furthermore as this asymptote is
a constant, we could hypothesize that the LHS and RHS would at infinity go
to 0 as they are derivatives of our original ratio. Knowing this could provide
more unique bounds for Part 3.

Lemma 1. The original ratio of [ µ−1(µ(x,r)s)
µ−1(µ(Bx,r)s)

] goes to an asymptote of 1/B
at infinity.

Proof. Looking at the ratio we have

[
µ−1(µ(x, r)s)

µ−1(µ(Bx, r)s)
].

We know that

µ(x, r) =
erx + e(2−r)x

2
=
e(2−r)x

2
(1 + e−2(1−r)x).

This will be dominated by the e(2−r)x

2
part as x goes to infinity. Thus as x

goes to infinity

µ−1(x, r) =
ln (2x)

2 − r
.

Therefore we can see that

µ−1(µ(x, r)s) =
ln (2e(2−r)x)

2 − r
=

2 − r

2 − s
x.
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Using the same logic we can see that

µ−1(µ(Bx, r)s) =
ln (2e(2−r)Bx)

2 − r
=

2 − r

2 − s
Bx.

Therefore as x goes to infinity our ratio

[
µ−1(µ(x, r)s)

µ−1(µ(Bx, r)s)
]

goes to 1/B.

Part 3: Crosses a small finite amount of times

We were unable to prove this but we do have a hypothesis that the LHS
(and hence through symmetry RHS) both only cross the axis a finitely small
amount of times. In fact our hypothesis would by they cross only the axis
only once each. We believe it to be a true hypothesis due to extensive work in
mathematica, and that we have yet to find a counterexample for any values
of our parameters of r, s, B. A lot of our work in this area has been hoping to
find bounds that we could use to approximate our functions and work with
them instead. As of yet we haven’t managed to complete our goal.
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