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Preface

During the summer of 2015 five students participated in the Undergraduate Re-
search Experience program in Mathematics at Indiana University. This program
was sponsored by Indiana University and the Department of Mathematics. The
program ran for eight weeks, from June 7 through July 31, 2015. Five faculty
served as research advisers to the students from Indiana University:

• Chris Connell worked with Ben Briggs.

• Kevin Pilgrim worked with Sarah Butchko.

• Dylan Thurston worked with Andrew Henderson.

• Jeffrey Meier worked with Samuel Pilgrim.

• Matt Bainbridge worked with Zachary Wampler.

Following the introductory pizza party, students began meeting with their
faculty mentors and continued to do so throughout the next eight weeks. The
students also participated in a number of social events and educational oppor-
tunities and field trips.

Individual faculty gave talks throughout the program on their research,
about two a week. Students also received LaTeX training in a series of work-
shops. Other opportunities included the option to participate in a GRE and
subject test preparation seminar. Additional educational activities included
tours of the library, the Slocum puzzle collection at the Lilly Library and the IU
cyclotron facility, and self guided tours of the art museum. Students presented
their work to faculty mentors and their peers at various times. This culmi-
nated in their presentations both in poster form and in talks at the statewide
Indiana Summer Undergraduate Research conference which we hosted at the
Bloomington campus of IU.

On the lighter side, students were treated to a reception by the graduate
school as well as the opportunity to a fun filled trip to a local amusement park.
They were also given the opportunity to enjoy a night of “laser tag” courtesy
of Prof. Elizabeth Housworth.

The summer REU program required the help and support of many different
groups and individuals to make it a success. We foremost thank the Indiana
University and the Department of Mathematics for major financial support for
this bridge year between two National Science Foundation grants. We especially
thank our staff member Mandie McCarty for coordinating the complex logisti-
cal arrangments (housing, paychecks, information packets, meal plans, frequent
shopping for snacks). Additional logistical support was provided by the Depart-
ment of Mathematics and our chair, Elizabeth Housworth. We are in particular
thankful to Jeff Taylor for the computer support he provided. We thank In-
diana graduate student Anne Carter for serving as our LaTeX consultant and
for compiling this volume. Thanks to those faculty who served as mentors and
those who gave lectures. Thanks to David Baxter of the Center for Exploration
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Figure 1: REU Participants, from left to right: Ben Briggs, Sam Pilgrim, Sarah
Butchko, Zachary Wampler, Andrew Henderson.

of Energy and Matter (nee IU cyclotron facility) for his personal tour of the
cyclotron facility and lecture. Thanks to Andrew Rhoda for his tour of the
Slocum puzzle collection.

Chris Connell
September, 2015
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Abstract

We consider the problem of embedding an everywhere negatively curved,
regular and intrinsically complete surface, S, in B0(1) ∈ R3. By modify-
ing a construction of Rozendorn’s ([Ro66])we reduce the problem to two
parts: a topological index manipulation and an embedding problem of
patches. The first part having been resolved leaves a constrained PDE
system whose solution corresponds to a patch embedding. We then ex-
tend this patch embedding solution to a global embedding by an iterative
scheme, producing our target surface.
An upshot of this iterative patch embedding method is the existence of
everywhere negatively curved surfaces of arbitrary genus with only cusp
ends.

1 Background on Curvature

The purpose of this section is to familiarize the reader with technical as-
pects of differential geometry that play vital roles in embedding problems. This
section assumes no familiarity with differential geometry beyond typical meth-
ods of multivariable calculus.

1.1 Introducing Surfaces

”Surfaces” admit a large family of definitions, several of which you may
be familiar with. For our purposes the following definitions will suffice (see
[doC76]).

Definition 1 (Surface). Given S ⊂ R3, suppose at every point p ∈ S there
exists a neighborhood V ⊂ S, a open patch U ⊂ R2 and a differentiable map
X : U→ R3 s.t. X(U) = V . Then S is a surface so long as X has a continuous
inverse X−1 : V ⊂ S → U ⊂ R2.
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Remark 1. Note that I haven’t specified how differentiable X is. Take it to be
”smooth”, i.e differentiable enough to admit any of the operations we want to
perform on it.

Much of what we do requires our surface S to be regular. This property is
defined as follows.

Definition 2 (Regular Surface). A surface S, locally parameterized by a differ-
entiable map X : U → R3 is regular if ∀ p ∈ S dX is injective. i.e ∂X

∂u ,
∂X
∂v are

linearly independant.

This substantial property will later allow us to repeatedly use the partial
derivatives ∂X

∂u ,
∂X
∂v at a point p ∈ S as a basis for the tangent space at p,

Tp(S).

1.2 Introducing Curvature

In this section, I will introduce some straightfoward notions of curvature
and the paradigms which accompany them.

Curve-Curvature in R3 To begin thinking about curvature, consider a map

α : [a, b]→ R3 a, b ∈ R

Call this map a curve in R3, and let it be parameterized by it’s arc length ”s”.

Remark 2. It is true that any curve α : [a, b] → R3 arbitrarily parameterized
can be equivalently parameterized by arc length. The proof of this fact is left
to the reader.

We like parameterizing by arc length because it normalizes the derivative

function. i.e if α(s) =

αx(s)
αy(s)
αz(s)

, then we have

∥∥∥∥ dds [α(s)]

∥∥∥∥ =

∥∥∥∥∥∥ dds
αx(s)
αy(s)
αz(s)

∥∥∥∥∥∥ =

∥∥∥∥∥∥∥

dαx(s)
ds

dαy(s)
ds

dαz(s)
ds


∥∥∥∥∥∥∥

=

√
dαx(s)2 + dαy(s)2 + dαz(s)2

ds2
=

√
ds2

ds2

= 1

(1)

This insures the second derivative of α(s) only measures the change in di-
rection of the curve, allowing the following definition.

Definition 3 (Curvature). Let a curve α(s) : [a, b] → R3 be a differentiable
map from an interval [a,b] to R3, parameterized by arc length s. The number
|α′′(s)| = k(s) is called the curvature of α at s.
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This notion of curvature makes sense; it measures the size of local changes
in direction of the tangent space. As we would want, curvature is independent
of orientation, and thus is directly a function of position.

Gaussian Curvature Now we will generalize our notion of curvature to sur-
faces in R3. We will see similar intuition applies to our definition of Gaussian
curvature as applied to curve curvature.

Consider a regular surface S, parameterized by a differentiable function X :
U → R3, with U ∈ R2 a patch with basis {u, v}. There exists a vector field on
S associating each point p ∈ S with the unit normal vector on S at p. The map
defining this vector field is called the Gauss map.

Definition 4 (Gauss Map). Let S ∈ R3 be a surface with orientation N . The
map N : S → R3 takes values in the unit sphere

S2 = {(x, y, z) ∈ R3 ; x2 + y2 + z2 = 1}

and is called the Gauss map.

The regularity of S allows us to formulate the Gauss map in terms of the
parameterization, X. Writing the partial derivatives of X,

∂Xp

∂u ,
∂Xp

∂v as xu,xv
respectively, we know {xu,xv} is a basis of the tangent space at the point p∈ S,
called Tp(S). Then we have

Np :=
xu ∧ xv
‖xu ∧ xv‖

Where ∧ denotes the cross product.

Looking back to curves, the Gauss map is like the first derivative of α(s); it
has normal length, but changes in direction exactly as the tangent space does.
Knowing this, you should not be surprised we are interested in the derivative
of the Gauss map. To elaborate, notice the differential dNp takes vectors in
Tp(S) to TN(p)(S

2), and since these are parallel planes, we can think of dNp as
a linear transformation

dNp : Tp(S)→ Tp(S)

Equivalently, but more explicitly notice

∃ a, b, c, d ∈ R s.t.

Nu = axu + bxv

Nv = cxu + dxv

Thus we can write

dNp =
[
Nu Nv

]
=

[
a b
c d

] [
xu
xv

]
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Where you can see the matrix

[
a b
c d

]
represents a linear transformation Tp(S)→

Tp(S). Finally, we define Gaussian Curvature.

Definition 5 (Gaussian Curvature). Let p ∈ S and dNp : Tp(S) → Tp(S) be
the differential of the Gauss map at p. Then the Gaussian Curvature of the
surface S at the point p is given by

K = det[dNp]

To see why we choose this definition, consider the following. For a unit vector
−→w ∈ Tp(S), dNp(

−→w ) is the local change of N in the direction −→w . So we should
understand the action of the linear transformation dNp : Tp(S)→ Tp(S) on the
basis {xu,xv} to completely describe the local change in the normal vector (and
consequently the tangent plane). The determinant of a linear transformation
is the scale factor associated with the transformation’s volumetric effect on a
paralellogram, and we can think of the basis {xu,xv} as a parallelogram. Thus
we see the determinant of dNp measures the scale of local changes in the tangent
space.

Principle Curvature We know the linear transformation dNp has two or
more associated eigendirections. If v is an eigenvector of the matrix dNp then

dNpv = λv λ ∈ R

Which we can take to mean, at a point p ∈ S, there are at least two directions
along which the position change and the normal direction change are parallel.

These are called the principle curvature directions. Curves which travel
everywhere tangent to principle directions are called principle curves. Of all
curves on S through p, the principle curves have the maximum and minimum
normal curvatures. Moreover, these curvatures are the eigenvalues associated
with the given eigendirections. Thus we have

Theorem 1. Let S be a surface with a point p, and Gauss map Np at p. Let
the normal curvatures of the principles curves be k1 and k2. Then k1 and k2
are eigenvalues of dNp and

K = det[dNp] = k1k2

1.3 Fundamental Forms

This section introduces two vital geometric objects known as the first and
second fundamental forms. Their meanings are closely related to the distinction
between intrinsic and extrinsic geometry. So before formally defining the first
and second fundamental forms we will characterize this distinction.
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Figure 1: A hyperboloid, a cylinder and a sphere with K < 0, K = 0 and K > 0
respectively.

Intrinsic Geometry The distinction between instrinsic and extrinsic view-
points is often explained in the following way: imagine you are a two dimensional
person living inside of a surface. Properties of the surface which are distinguish-
able to you should viewed as instrinsic. In particular, your ability to distinguish
various surfaces (were you able to travel) should define intrinsic equivalence
classes on the set of surfaces. As an aide you can imagine that any surface
which can be laid on top of another without stretching is intrinsically identical
to the other, such as a half pipe and a plane. Briefly, it is accurate to say that
any properties of a surface which are determined solely by distances or angles
within the surface are intrinsic properties.

Extrinsic Geometry The extrinsic viewpoint is more discerning, distinguish-
ing intrinsically identical surfaces which are differently embedded, for example
the half pipe and the plane. Extrinsically two surfaces are only identical if an
isometry of R3 takes one onto the other.

The First Fundamental Form The first fundamental form is associated
with intrinsic geometry. It is an object which defines distances on the surface.
Given a surface S of arbitrary curvature we can always calculate the length
of some curve by integrating over infintesimal line segments along the curve.
On increasingly smaller neighborhoods of p ∈ S, S becomes increasingly flat.
This leads to ds = PTp(S)ds where ds is the length of a line segment in an
infinitesimally small neighborhood of p and PTp(S)ds is the projection of ds
onto the tangent space at p. So we have for two points, p,q in S, infinitesimally
separated by ds = du+ dv the distance d(p, q) is equivalent to

√
ds2 =

√
E du2 + 2F du dv +Gdv2

Collecting coefficients we define the first fundamental form.

Definition 6 (First Fundamental Form). If ds ⊂ S is an infinitesimal line
segment in an arbitrarily small neighborhood of a point p ∈ S. Then the
quadratic form corresponding to the squared length of PTp(S)ds is the First
Fundamental Form. I.E:

I = E du2 + 2F du dv +Gdv2
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Conventionally, we treat as this form the associated 2x2 matrix[
E F
F G

]
Moreover, This form is often called the ”metric” of a surface.

Significantly, the I-form of S at p can be expressed in terms of the parame-
terization of S at p.

Theorem 2. Let S ⊂ R3 be a surface parameterized by the map X : U ∈ R2 →
R3 with the I-form [

E F
F G

]
at an arbitrary point p ∈ S. We can express the I-form in terms of the param-
eterization X. [

E F
F G

]
=

[
〈xu,xu〉 〈xu,xv〉
〈xv,xu〉 〈xv,xv〉

]
where 〈., .〉 denotes the Euclidean inner product.

Proof. Let S ∈ R3 be a surface parameterized by the map X : U ∈ R2 → R3

with a point p ∈ S. The natural inner product of R3 ”induces” an intrinsic inner
product on the tangent space Tp(S) by composing with the map that reexpresses
points in intrinsic coordinate as identical points in extrinsic coordinates, namely
the parameterization. i.e. Vectors −→q ,−→r ∈ Tp(S) can be written

−→q = axu + bxv
−→r = cxu + dxv

(2)

Writing the Euclidean inner product of these vectors produces

〈−→q ,−→r 〉 = 〈
[
xu xv

][a
b

]
,
[
xu xv

][c
d

]
〉

=
[
xu xv

][a
b

]t [
xu xv

][c
d

]
=
[
a b

] [xu
xv

][
xu xv

][c
d

]
=
[
a b

] [〈xu,xu〉 〈xu,xv〉
〈xv,xu〉 〈xv,xv〉

] [
c
d

]
(3)

Thus, for an infinitesimal line segment projected onto the tangent plane at p,
we have

〈ds, ds〉 =
[
dx dy

] [〈xu,xu〉 〈xu,xv〉
〈xv,xu〉 〈xv,xv〉

] [
dx
dy

]
= 〈xu,xu〉 dx2 + 2〈xu,xv〉 dx dy + 〈xv,xv〉 dy2

(4)
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The Second Fundamental Form Predictably, the second fundamental form
encodes extrinsic information about the surface S. It does so by tracking the
distance between arbitrary infinitesimal vectors in S, based at p ∈ S and the
tangent plane Tp(S).

Figure 2: Defining the II-form

Definition 7 (Second Fundamental Form). Let S ∈ R3 be a surface and p =
(u, v) ∈ S, u, v ∈ R be a point expressed using intrinsic coordinates. Then
the distance between a point p′ = (u+ du, v+ dv) and the nearest point on the
plane Tp(S) (2) takes the form

d(p′, Tp(S))) = II = e du2 + 2f du dv + g dv2

and is called the Second Fundamental Form of S at p. As before, there is a
conventional matrix form [

e f
f g

]
The form e du2 + 2f du dv + g dv2 is obtained by considering the general

polynomial expansion of the surface near p, and restricting the neighborhood
until the higher order terms are omittably small.

As it was with the I-form, we have equivalent ways of expressing the II-form.

Theorem 3. Let S ⊂ R3 be a surface with Gauss map dNp at p ∈ S. The
II-form of S at p can be written

IIp = −〈dNp(
−→w ),−→w 〉 −→w ∈ Tp(S)

=

[
〈Nu,xu〉 〈Nu,xv〉
〈Nv,xu〉 〈Nv,xv〉

]
(5)

Proof. Pick an infinitesimal vector −→w ∈ Tp(S), then ∃ a parameterized curve

11



α(s) : [a, b]→ R3 s.t. α(0) = p and α′(0) = −→w . Then we have

IIp = −〈dNp(α
′(0)), α′(0)〉

= −〈Nu du+Nv dv,xu du+ xv dv〉
= e du2 + 2f du dv + g dv2

(6)

Using

〈N ,xu〉, 〈N ,xv〉 = 0

⇒
〈Nu,xu〉+ 〈N ,xuu〉 = 0

〈Nv,xv〉+ 〈N ,xvv〉 = 0

(7)

we get

e = −〈Nu,xu〉 = 〈N ,xuu〉
f = −〈Nu,xv〉 = 〈N ,xuv〉 = 〈N ,xvu〉 = −〈Nv,xu〉
g = −〈Nv,xv〉 = 〈N ,xvv〉

(8)

Then there is a somewhat straightforward computation, left to the reader,
that produces this significant result.

Theorem 4 (Weingarten Equation). Let

Ip =

[
E F
F G

]
IIp =

[
e f
f g

]
be the first and second fundamental forms, respectively, of a surface S at a point
p. Then the Gaussian curvature of S at p is given by

K =
eg − f2

EG− F 2
=
det[IIp]

det[Ip]

1.4 Gauss, Bonnet and Compatibility

In the following section, we will fill out our understanding of the previously
discussed objects with the introduction of several fundamental results. These in-
clude the Remarkable Theorem, The Compatibility or ”Gauss-Codazzi-Mainardi”
equations, and the Bonnet Theorem, otherwise known as the Fundamental The-
orem of Surfaces.
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Christoffel Symbols This may seem mysterious at first, but bear with me.
As always, let S denote a regular surface with parameterization X : U ⊂ R2 →
S. Then for all points on S the vectors xu,xv, N form a basis. Now take the u
and v derivatives of xu,xv and express each as linear combinations of the basis
vectors with undetermined coefficients, Γijk.

xuu = Γ1
11xu + Γ2

11xv +R1N

xuv = Γ1
12xu + Γ2

12xv +R2N

xvu = Γ1
21xu + Γ2

21xv +R3N

xvv = Γ1
22xu + Γ2

22xv +R4N

(9)

Now take the inner products of each of these four relations with each of the
three basis vectors {N,xu,xv}.

〈N ,xuu〉 = e = R1

〈N ,xuv〉 = 〈N,xvu〉 = f = R2 = R3

〈N ,xvv〉 = g = R4

(10)

〈xuu,xu〉 = Γ1
11E + Γ2

11F =
1

2
Eu

〈xuu,xv〉 = Γ1
11F + Γ2

11G = Fu −
1

2
Ev

〈xuv,xu〉 = Γ1
12E + Γ2

12F =
1

2
Ev

〈xuv,xv〉 = Γ1
12F + Γ2

12G =
1

2
Gu

〈xvv,xu〉 = Γ1
22E + Γ2

22F = Fv −
1

2
Gu

〈xvv,xv〉 = Γ1
22F + Γ2

22G =
1

2
Gv

(11)

Notice this is a solvable system of equations, thus we can always express
these coefficients, hereafter referred to as Christoffel symbols, in terms of the
coefficients of the first fundamental form. This fact is significant, and you will
see why.

The Remarkable Theorem Continuing with our analysis, we consider the
equations

(xuu)v − (xuv)u = 0

(xvv)u + (xvu)v = 0

Nuv −Nvu = 0

(12)

13



Using the second derivative expressions in [9], we can rewrite the above
formulas as combinations of xu,xv,N .

α1xu + β1xv + γ1N = 0

α2xu + β2xv + γ2N = 0

α3xu + β3xv + γ3N = 0

(13)

Where the coefficients αi, βi, γi, i = 1, 2, 3 are functions of E, F, G, e, f, g. Since
xu,xv,N are linearly independant, each coefficient is zero, thus we have nine
relations:

αi = 0 βi = 0 γi = 0 i = 1, 2, 3

The relation β1 = 0 is the equation

(Γ2
12)u − (Γ2

11)v + Γ1
12Γ2

11 + Γ2
12Γ2

12 − Γ2
11Γ2

22 = −E eg − f2

EG− F 2

= −EK
(14)

This formula is called the Gauss formula. Earlier, we proved the Christoffel
symbols may all be expressed in terms of the I-form. Using this fact, and the
above equation, we have an expression for the Gaussian curvature K which
respects only the first fundamental form. Thus we know Gaussian curvature is
an intrinsic property of a surface, and thus invariant under local isometries.

Theorem 5 (The Remarkable Theorem). The Gaussian Curvature K is deter-
mined solely by the First Fundamental Form and thus is invariant under local
isometry. The equation relating K and I is called the Gauss Formula.

Compatibility Two other important equations are obtainable in much the
same manner as the Gauss Formula. They are called the Codazzi-Mainardi
equations and together with the Gauss Formula they are called the compatibility
equations.

Of the nine relations implied by 13 we only used one, β1 = 0, to find the
Gauss formula. Analyzing the rest of these equations, we find that α1 = 0,
α2 = 0 and β2 = 0 all produce equivalent versions of the Gauss formula. We
also find γ3 = 0 is an identity. The remaining relations, γ1 = 0,γ2 = 0,α3 = 0
and β3 = 0 between them produce two unique relations:

ev − fu = eΓ1
12 + f(Γ2

12 − Γ1
11)− gΓ2

11

fv − gu = eΓ1
22 + f(Γ2

22 − Γ1
12)− gΓ2

12

(15)

These are called the Codazzi-Mainardi equations.
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The Bonnet Theorem This result is paramount.

Theorem 6 (Fundamental Theorem of Surfaces). Letting E, F, G, e, f, g be
functions subject to the following specifications

1. all are differentiable

2. all are defined on an open patch W ⊂ R2

3. E,G,EG− F 2 > 0

4. they collectively satisfy the Gauss-Codazzi-Mainardi system

then you have ∀p ∈ W , ∃ a neighborhood U ⊂ W of p and a diffeomorphism
X : U → x(U) ⊂ R3 s.t. x(U) is a regular surface with functions E, F, G, e, f,
g as the coefficients of its fundamental forms. Moreover, this diffeomorphism is
unique up to rigid motion in R3. Such a diffeomorphism is called an immersion.

This adds up to a geometric explanation for those mysterious compatibility
functions. If we think of the first and second fundamental form as matrices
of functions over local surfaces instead of matrices of scalars at point, then for
arbitrary choices of a I-form and a II-form the compatibility equations specify
whether there exists a surface in R3 with said forms. Our notion of existence
here allows for S to intersect with itself. Immersions which do not admit self-
intersections are called embeddings.

2 Approaching the Problem

Recall the problem: we want to ”embed” a surface in a ball, B0(1) ⊂ R3

such that the surface is everywhere negatively curved. With more precision, we
want to prove there are compatible I and II forms which correspond to a surface
of everywhere negative curvature, and for which there exists a diffeomorphism
x : U ⊂ R2 → x(U) ⊂ R3 satisfying the conditions x(U) ⊆ B0(1) and x(U) is
a regular complete surface without self-intersection.

2.1 A Perfunctory Sketch of a Solved Embedding Problem

For clarity’s sake I will make a sketch of a solution to an arbitrary embedding
problem.

Suppose I want to find an embedded surface with some arbitrary curvature
specification. The first step amounts to finding a metric or metrics associated
with desirable curvatures. The metric is all we need to specify curvature per
the Remarkable Theorem. Then, I find a ”compatible” II-form by solving the
compatibility system. Now I apply Bonnet’s theorem and I know there exists a
diffeormorphism which is an immersion into R3. All that’s left is to prove the
diffeomorphism obtained by Bonnet’s theorem does not self intersect. Thus we
have an embedding, and the surface hunt is over. Bare bones, we have:
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1. Start: ”I want an embedded surface of given curvature”

2. (uses Gauss Formula) ”I have a metric producing the desired K”

3. (solves G-C-M Compatibility eq.) ”I have a II-form compatible with my
metric”

4. (uses Bonnet’s Theorem) ”I have an immersion of a surface with the de-
sired K”

5. (proves no self intersection) ”I have found an embedded surface with the
desired K”

2.2 Our Embedding Problem

Like the generic problem above, we are searching for an embedded surface with
a specification on K. We have other specifications on our surface as well. In
total, they are:

1. The Gaussian Curvature K is strictly negative at all points.

2. The surface is bounded in R3, i.e we can scale it to fit in the unit ball.

3. The surface is embedded (it does not intersect itself).

4. The surface is ”nice” everywhere. (i.e. complete, smooth and regular).

”Wait. That Can Exist?” It can (hopefully), but only in a certain sense.
The conventional wisdom is that any bounded surface must in some instant
intersect for the first time with a plane drawn from infinity. If we additionally
specify completeness and smoothness, then at any point p where intersection
first occurs, in all directions the surface either curves away from the the tangent
space or stays in the tangent space. I.e. the surface has non-negative curvature
at this point.

There is a way around this problem. Remove the the set of points which first
intersect planes from infinitity, leaving open boundaries behind. Extrinsically,
the surface is no longer complete. However, it may still be intrinsically complete
if the incomplete points are an infinite distance away from all the other points.

This tells us that the best we are going to get in terms of completeness is
intrinsic completeness.

Remark 3. Without further developments, our solution prospects would be
rather bleak. However, a clever construction of Rozendorn’s allows us to re-
duce the problem and remarkably improve our chances at a solution.
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3 Rozendorn’s Surface

Rozendorn has constructed an embeddable, one parameter family of bounded,
intrinsically complete surfaces, with everywhere nonpositive curvature. We can
use the existence of this family to our advantage, as you will see. For now, we
survey the construction.

3.1 Construction of Rozendorn’s Surface

Rozendorn constructs his surface by developing an infinite set of tinkertoy-
like building blocks which he then glues together along their boundaries. The
manner in which he does this takes advantage of the variance in limiting behavior
between intrinsic and extrinsic distances.

Figure 3: Tripod

”Tinker Toys” The above tripod figure is where Rozendorn’s tinkertoys be-
gin their life. Rozendorn develops them by a thickening procedure where the
parameter over which the family of surfaces varies is the scale of the thickening
relative to the absolute size of the tinker toys.

This object has negative curvature everywhere except at four monkey saddle
points. These points are located in the center of each ”face” of the tinkertoy
corresponding to each face of the overlaid tetrahedron. Starting with a single S4

symmetric tinkertoy we begin a gluing procedure that attaches another tinker
toy to each open end of the first along respective boundary elements [5].
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(a) Fattened Tripod (b) Fattened tripod overlaid with a tetra-
hedron.

Figure 4: Two images of Rozendorn’s Tinkertoys

The dimensions change across generations; extremal tinkertoys have smaller
symmetric groups because their open ”branch” ends are smaller than the ”trunk”
end. This change scales with generation.

The gluing is done so that distinct generations are contained in disjoint
concentric shells, the outer radii of which increase proportionally to

n∑
i=1

1

i2

where n is the generation of the shell. This guarantees boundedness, as
∑∞
i=1

1
i2

converges.

Completeness Simply gluing on an infinite number of‘ tinkertoys won’t ever
compactify the surface, so to obtain intrinsic completeness Rozendorn employs
the following beautiful argument. On any pair of concentric spherical shells
there is a relation between the ratio of radii and the maximum length of line
segments contained in the shell.

Calculating this reveals that concentric spherical shells with a radial quotient
on the order of

Rn
Rn−1

=

∑n
i=1

1
i2∑n−1

i=1
1
i2

contain a tangent vector of maxium length on the order 1
n [6].

Rozendorn manages to show that he is free to choose tinkertoy dimensions
s.t. the surface curve paths from the center out to the nth spherical shell have
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Figure 5: The first and second generation tinkertoys glued together.

Rn

Rn 1

O(1/n)

Figure 6: A cross section of concentric spherical shells with radii Rn, Rn−1, and
maximum length tangent ray.

limiting behavior qualitatively identical to the sum of these tangent line lengths.
The sum of tangent line lengths is

n∑
i=1

1

i

This sum is divergent. Thus, the distance from any point on the surface to the
”end” of the surface is infinite, thus the surface is intrinsically complete.

4 What’s Rozendorn to Us?

The embeddibility of Rozendorn’s surface implies its I and II forms are a solution
to the compatibility system. Since it is negatively curved except on a countable
set, Rozendorn’s surface is the surface we want nearly everywhere. This means
if we choose a subset of Rozendorn’s surface containing all of its K = 0 points,
and solve the embeddibility problem along this much simpler set, then we get
the rest of the embedding for free. We attempt this with a reduction to patches.
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4.1 A ”Patchy” Deformation

So consider a patch V : [0, 1] → S on Rozendorn’s surface of arbitrary size,
containing a single K=0 point. Let I0[u, v] and II0[u, v] be the fundamental
forms of Rozendorn’s surface, as functions in intrinsic coordinates. We cannot
perturb away the zero point, so we will ”push” the zero-curvature points to the
infinitely far away boundary, intrinsically removing them from the surface.

To accomplish this, we attempt to construct an iterative patching method. It
should go something like this: Let V be the patch defined above, and let I[u, v, t]
and II[u, v, t] be the fundamental forms on the patch where t=0 corresponds to
the Rozendorn surface and the parameter t ∈ [0, 1] tracks the progress of the
deformation. Specify ∀ t ∈ [0, 1] and ∀ (u0, v0) ∈ ∂V that

I0[u0, v0] = It[u0, v0]

II0[u0, v0] = IIt[u0, v0]
(16)

This condition fixes the boundary of V, thus keeping it in agreement with
the rest of Rozendorn’s surface. Now, we construct this deformation so that the
compatibility equations stay satisfied, and analyze the resultant constraints on
the fundamental forms. That analysis will tell us whether or not we may choose
a metric on V s.t. the K = 0 point moves up the surface.

Figure 7:

Supposing we can choose such a metric, we then iterate this procedure by
choosing a new patch further out on the surface which contains the same zero
point, but in its new location, and pushes it using the same technique. This
is possible because we are always able to pick a patch whose local geometry is
identical to the original patch’s local geometry. Why this is true is described in
the following section.

5 Topological Hurdles

A major obstacle to removing these critical points is the topological constraint
described by the Poincaré-Hopf Theorem. To introduce this theorem’s role in
our problem, we must first introduce the notion of asymptotic line curves.
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5.1 Asymptotic Line Fields

All negatively curved surfaces admit line fields obtainable from the II-form.

Definition 8 (Asymptotic Directions). let S be an everywhere negatively curved
surface with a point p. Let [

e f
f g

]
be the II-form of S at p. Then vectors w, r ∈ Tp(S), in intrinsic coordinates,
point in asymptotic directions if

wt
[
e f
f g

]
w = rt

[
e f
f g

]
r = 0

At each point there are two solutions, which respectively correspond to two
families of lines on the surface. These form line fields on the surface which
correspond to each other and the principle curvature directions in the following
way: at any paticular point, the angle bisectors of the two asymptotic directions
are the principle curvature directions of the surface at said point.

On the Rozendorn surface, the asymptotic line fields look like this

Figure 8: The center Tinkertoy with asymptotic lines drawn in blue.

5.2 Poincaré-Hopf Theorem

Theorem 7 (Poincaré-Hopf). Let S ∈ R3 be a surface, L a line field on S and
xi, i = 1, 2, 3... be a countable number of critical points. Then∑

i

Indexxi
(L) = χ(S)

To make sense of this we must define the ”index” of a critical point.

Definition 9 (index). Let S be a surface, L be a line field on S, and p ∈ S
be a point on S at which there is a critical point of L. Then consider the set
Dp(ε) = Bp(ε) ∩ S s.t. ε > 0 is small enough to exclude any other critical
points. Then the degree of the Gauss map along ∂Dp(ε) is called the index of
the critical point at p.
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We can more easily calculate around the index of a critical point by drawing
the asymptotic line field on ∂Dp(ε) and counting the number of times it ”turns”.
For example:

-3 -2 -1 0 1 2 3
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-2

-1

0

1

2

3

(a) Index=1
-3 -2 -1 0 1 2 3

-3
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-1

0

1

2

3

(b) Index= 1
2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(c) Index=0

Figure 9: These depict the disk boundary ∂Dp(ε), and the asymptotic line field.

it is important to note that a turn contributes negative values to the index
if it turns in the direction opposite the orientation of ∂Dp(ε). Thus,

(a) Index=− 1
2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Index=-1

Figure 10: Boundary elements with negative index.

5.3 Index Manipulations

We now show we can push the critical points to the boundary without violating
the Poincaré-Hopf theorem. To achieve this, we topologically evaluate individual
tinkertoys in a quasi-inductive fashion.

First Generation To start, we illustrate the center toy, pre-deformation.
For all index calculations, we treat a toy as a sphere where our boundaries

correspond to some ∂Dp(ε) for a virtual critical point p outside the toy. For this
particular toy we have,
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- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

Figure 11: Critical Indices on a Tinkertoy

Thus

Indexboundary = 1 IndexK=0point = −1

2∑
i

Indexxi
= 4(1) + 4(−1

2
) = 2 = χ(S2)

Now we draw each critical point through an adjacent neck, such that no two
points leave through the same neck [fig : 12].

Figure 12: The deformed first generation toy

At each boundary the line field looks like figure 9(b). Thus the index contri-
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bution of each end is 1
2 and∑

i

Indexxi
= 4(

1

2
) = 2 = χ(S2)

satisfying the Poincaré-Hopf theorem.

Second Generation Every tinker toy in the second generation recieves a
single critical point along the ”trunk”. This critical point is naturally matched
to native critical point on the second generation toy by the asymptotic line fields
[13].

Figure 13: Asymtotic lines (in blue) connect pairs of points across tinkertoy
trunks

Proceeding, we drag the non-native critical point behind this matched native
critical point through one of two branches adjacent to the native critical point.
This leaves behind 3 points and two unaffected branches. One of the remaining

A

B

C

Figure 14:

three points will be pushed, alone, through an available neighboring branch,
just as was done in the first generation. This point should be adjacent to the
trunk boundary. Now there are two points and only one remaining branch. One
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of these two is adjacent to the trunk boundary. We push this point along a
principle curvature direction towards the other. Then, we push both of them
through the unused branch. Now we evaluate the index contributions of each

A

B

C

Figure 15:

boundary element to check against the Euler characteristic.

1. Branch A has accepted two critical points across its boundary. The result-
ing asymptotic line field along the boundary is identical to Figure 9(c),
thus

IndexA = 0

2. Branch B appears different from A. Now, the two points are not ”con-
nected” as they were in A. However, the interstital behavior and the index
is identical to branch A.

IndexB = 0

3. Branch C is identical to the branches of the first generation, thus we know

IndexC =
1

2

4. The asymptotic line field around the trunk is the inversion of the line field
on the first generation boundary the trunk was glued to. This has the
following effect:

Indextrunk = χ(S2)− IndexC = 2− IndexC =
3

2

Thus we have ∑
xi

Indexxi
= 2(0) +

1

2
+

3

2
= 2
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We should explain the result for the trunk boundary. Remember when we
calculate the index contribution of a boundary element ∂D, we are imagining
there is a disk, D, containing a virtual critical point, p, such that D completes
the figure along ∂D and the index of the virtual critical point p is identically
the index contribution of ∂D.

p D

(a) The ”virtual” critical
point p and it’s home disk
D

p
D

p
D

(b) Gluing p and D to p and
D

Figure 16:

Now consider a new figure having an identical boundary element ∂D and
calculate the index contribution of ∂D to the new figure. Again, we imagine
a disk D containing a critical point, p, such that D completes the new figure
along ∂D and the index of p is identically the index contribution of ∂D. Now
we see the crux: If we glue together the old and new figures along the boundary
element ∂D and ∂D [16(b)], then we also glue together the imaginary disks, D
and D. Since these disks contain critical points p and p, and together will form
a 2-sphere, we have

Indexp + Indexp = χ(S2) = 2

Since we identify the index contribution of p and ∂D on the new figure, we have

Index∂D = χ(S2)− Index∂D = 2− Index∂D

Generalization In subsequent generations, the toys become increasingly di-
verse, so a generational treatment is ugly. Instead, we reclassify every tinkertoy
by the index of their trunk boundary, and induct over this index. We see this
is the right thing to do by generalizing the pattern from the second generation.

The second generation toys’ critical point pairs which crossed branches A
and B behave identically thereon: the leading non-native critical point collects
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a new, native critical point it is matched with. Then the resulting order three
critical point bundle crosses an adjacent boundary element into the fourth gen-
eration toys. The remaining three native critical points and two branches are
treated identically as in generation two. Thus we see although there are two
methods of generating an order two critical point bundle, the treatment there-
after is identical. Moreover, this method of critical bundles ”collecting” the
matched point and moving on shows every tinkertoy on Rozendorn’s surface
can be treated identically up to the order of the critical point bundle. Since
the order of the incident critical point bundle determines the index of the trunk
boundary, classifying tinkertoys by trunk index makes sense.

Theorem 8. Given an arbitrary tinkertoy which has accepted a critical point
bundle of order n, the index of the trunk boundary element can be written

1 +
1

2
n

Proof. Recall that given a trunk boundary element ∂D glued to a branch bound-
ary element ∂D we have

Index∂D = χ(S2)− Index∂D = 2− Index∂D

If we send a critical bundle of order n across ∂D, the asymptotic line field will
contain the wake of each point. Each wake corresponds to negative half turn in
the asymptotic line field, thus we can write

Index∂D = 1− 1

2
n

Immediately producing the desired result

Index∂D = 2− Index∂D = 1 +
1

2
n

Example 1. Consider the second generation tinkertoys. They accept an order
n=1 critical point, thus they have a trunk index 1 + 1

2n = 3
2

Finally we can perform our quasi-induction. We consider a tinkertoy which
accepts a critical point bundle of arbitrary order n, thus in the class of tinkertoys
with trunk index 1 + 1

2n. As before, the leading point in the critical point
bundle is naturally matched via the asymtotic lines to a native critical point.
The critical point ”collects” this new point, thus becoming of size n+1, and
exits through an adjacent boundary element A. The remaining three critical
points, and two branches are treated identically to generation two. The index
contribution of A can be calculated using the formula in the above proof:

IndexA = 1− 1

2
(n+ 1) = 1− 1

2
− 1

2
n
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using n+1 because the bundle has acquired the native point. Thus we have

IndexA + Indextrunk =
3

2

This is an identical result to generation two. Since the other two boundaries
are also identical to the generation two solution we have a solution for abitrary
trunk index and thus for the whole surface.Fig

Pushing Bundles The previous work makes a great use of our ability to
push bundles of critical points along the surface. However, when describing
the patch embedding problem in a previous section, we specified each patch to
contain exactly one critical point; our solution was not generalized to arbitrary
order bundles. To do this, we push the leading point forward some arbitrary
distance, thus giving us space to push the second in line and so on.

Figure 17: How to push an order 2 point bundle

Notably, the asymptotic line fields around a particular zero point do not
qualitativly change as we iterate the patch deformations. This means the local
geometry of the zero points do not change, and thus the arbitrary patch solution
is iterable.

6 A Single Patch

Finally, we attack the single patch deformation problem. The following section
consists of approaches used and the various results produced. All methods make
use of a conformal choice of intrinsic coordinates to simplify the calculations.
This technique is developed in the following subsection.

6.1 Conformal Coordinates

Earlier, we proved the following relation: given a surface S and a parameteriza-
tion X : U ⊂ R2 → R3 such that X(U) = S, we can write the first fundamental
form of S as the matrix

I =

[
E F
F G

]
=

[
〈xu,xu〉 〈xu,xv〉
〈xv,xu〉 〈xv,xv〉

]
So the first fundamental form can be thought of as a function of the param-
eterization. With this in mind, we recall that a surface can be equivalently
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parameterized in many ways, more if we’re using the intrinsic notion of equiv-
alence. Then, we see the possible expressions for the I-form of a given surface
form a corresponding equivalence class in the 2x2 symmetric matrices.

This business of conformal coordinates amounts to a special case of the above
fact. Our freedom to choose a coordinate basis for the patch U⊂ R2 tells us
the above equivalence class is at least as big as the class of similar matrices.
Furthermore, the I-form’s symmetry implies it is similar to a diagonal matrix.
Thus we always have a choice of coordinates that diagonalizes the I-form locally,
i.e F=0. More than this, the I-form is positive definite, allowing us to then scale
the diagonalizing coordinate choice to force E=G.

6.2 Direct Manipulation

We first consider a patch V [0, 1]→ S on Rozendorn’s surface, with a conformal
choice of coordinates. The conformal I-form on V

I0(u, v) =

[
E0(u, v) 0

0 G0(u, v)

]
s.t. E0(u, v) = G0(u, v)

is positive definite; thus

∃ λ0(u, v) s.t. E0(u, v) = G0(u, v) = e2λ0(u,v)

We want the deformation to be smooth, and thus trackable by a continuous
parameter t ∈ [0, 1]. Clearly the patch’s I-form will depend on t, so we write

I(u, v, t) =

[
e2λ(u,v,t) 0

0 e2λ(u,v,t)

]
where λ0(u, v) = λ(u, v, 0).

Similarly, we write the second fundamental form as a function in u,v and t.

II =

[
L(u, v, t) M(u, v, t)
M(u, v, t) N(u, v, t)

]
Using L,M and N instead of e,f and g to avoid confusion with the number e. As
before, the parameter t tracks the deformation, i.e.

II0 =

[
L(u, v, 0) M(u, v, 0)
M(u, v, 0) N(u, v, 0)

]
is the II-form on Rozendorn’s original surface. We write the Codazzi-Mainardi
system in terms of the functions L,M, and N.

Lv −Mu = LΓ1
12 +M(Γ2

12 − Γ1
11)−NΓ2

11

Mv −Nu = LΓ1
22 +M(Γ2

22 − Γ1
12)−NΓ2

12

(17)
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Recalling the Christoffel symbols are expressable in terms of the entries of the
I-form, we make the appropriate substitutions. This produces the system

Lv −Mu = L
1

2

Ev
E

+M(
1

2

Gu
G
− 1

2

Eu
E

) +N
1

2

Ev
G

Mv −Nu = −L1

2

Gu
E

+M(
1

2

Gv
G
− 1

2

Ev
E

)−N 1

2

Gu
G

(18)

Now we make use of the conformal choice of coordinates, rewriting the above
system in terms of the function λ[u, v, t].

Lv −Mu = (L+N)λv(u, v, t)

Nu +Mv = (L+N)λu(u, v, t)
(19)

Given λ(u, v, t) is Lipschitz continuous, we can produce the integral equation:

λ(u, v, t) = A(u, t) +

∫ v

0

Lv(u, s, t)−Mu(u, s)

L(u, s) +N(u, s, t)
ds (20)

Where A(u,t) is an arbitrary function in u corresponding to the u dependent
terms of λ(u, v, t). Substituting the above expression for λ(u, v, t) into the sec-
ond Codazzi-Mainardi equation produces the relation

∫ v
0

(Luv−Muu)(L+N)−(Lv−Mu)(Lu+Nu)

(L+N)2
ds+Au(u, t) = Nu−Mv

L+N (21)

Let the derivative Au(u, t) be represented by an arbitrary function in u and
t, f(u, t), and we have a constant C such that

A(u, t) = C +

∫ u

0

f(w, t)dw (22)

Substituing f(u, t) for Au(u, t) in [21], we get the relation:

f(u, t) =
Nu −Mv

L+N
−
∫ v

0

(Luv −Muu) (L+N)− (Lv −Mu) (Lu +Nu)

(L+N)
2 ds

and because f is independent of v, we let v=0 and see

f(u, t) =
Nu(u, 0, t)−Mv(u, 0, t)

L(u, 0, t) +N(u, 0, t)

Applying this result to [22] and the subsequent result to [20] we produce the
following equation.

λ(u, v, t) = C +
∫ u
0
Nu(w,0,t)−Mv(w,0,t)
L(w,0,t)+N(w,0,t) dw +

∫ v
0
Lv(w,s,t)−Mw(w,s)
L(w,s)+N(w,s,t) ds (23)

Where ∀ t ∈ [0, 1], C = λ(0, 0, t) and A(u, t) = λ(u, 0, t). Notably, this de-
mands mixed partial equality from λ(u, v, t). To summarize, a conformal/isothermal
metric with a function λ = 1

2 ln(E) = 1
2 ln(G) such that λ is at least C2 differen-

tiable, and solves equation [23] must satisfy the Codazzi-Mainardi equations.
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Now, we will introduce constraints on λ(u, v, t) so that any solution satisfying
all constraints would correspond to a metric with the desired qualities. To start,
we want for any (u0, v0) ∈ ∂V , and ∀t ∈ [0, 1],

λ(u0, v0, t) = λ(u0, v0, 0)

II(u0, v0, t) = II(u0, v0, 0)
(24)

i.e. the deformation maintains the boundary values for the I and II forms. We
also need the point at which K = 0 to ”move” up the patch. This condition
can be written as∫ 2

3

0
e2λ(u,v,t)|λ(u, v, t)| du−B

∫ 2
3

0
e2λ(u,v,0)|λ(u, v, 0)| du ≥ 0 (25)

Where B is some positive constant, and v is fixed. This specifies that the length
of the image curve grows by some factor B large enough to diverge as we iterate.

Now we do a funny thing. We introduce a new function, b(u,v,t), defined in
relation to the II form by the equation

II = eb(u,v,t)II

with det[II] = 1. We are pushing a bit of our freedom to choose II into this
simpler function b, hoping that b will have enough freedom to guarantee some
solution for λ despite the constraints. In general, we proceed as follows

1. We specify the function λ(u, v, t) to agree on the boundary v=0 and cor-
responding to the target patch curvature given by

K =
−1

2e2λ
(λuu + λvv)

2. Choose λ to satisfy the length condition 25

3. We pick the function b(u,v,t) so that∫ ε

0

∂t

(
∂v(b(u, v, t)L)− ∂u(b(u, v, t)M)

b(u, v, t)(L+N)

)
dv = 0

thus satisfying the boundary at v = ε.

The equation for curvature under item 1 above is equivalent to the Gauss
equation for curvature. Thus this method will automatically satisfy the Gauss
equation. Furthermore, rexpressing our previous results to contain b(u,v,t) and
the entries of II is very nice. However, there aren’t relevant general existence
results for equations like 23, so we considered other methods.
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6.3 Rozhdestvinskii-Poznyak Reformulation

We found a useful reformulation of the compatibility equations attributed to
Rozhdestvinskii-Pozynak (see [Ve67] and [BVK73]). It starts by scaling the
L,M,N functions with respect to the I-form. We let

l,m, n =
(L,M,N)√

det[I]
=
L,M,N

e2λ

which produces a new expression for the compatibility equations.

lv + lλv = nλv + 2mλu +mu (26)

mv + 2mλv = nu + (n− l)λu (27)

K2 = m2 − ln (28)

Then we introduce new functions R and S, with

S(u, v, t) :=
(m−K)

n
R(u, v, t) :=

−(m+K)

n

Substituting these into our new compatibility system yields an even newer ex-
pression for the compatibility equations.

0 = −→w u +A−→w v +
−→
B (29)

Where the vectors −→w ,
−→
B and the matrix, A, are given below.

−→w =

[
K(u, v)
λ(u, v)

]

A =

 (2S2+1)R2+S2

(R+S)(RS+1)

2K(R2+1)(S2+1)
(R+S)(RS+1)

− (R−S)2
2K(R+S)(RS+1) − R2+S2+2

(R+S)(RS+1)



B =


2K(R(Rv(−(S3+S))−Ru(S2+1)+(R2+1)SSv)+(R2+1)SSu)

(R−S)(R+S)(RS+1)

RvS+Ru+RSv+Su

(R+S)(RS+1)


Although this formulation is not simpler, the form of equation 29 allows us to
use the method of characteristics, a powerful method of solving PDE.

6.4 Method of Characteristic Curves for PDE

The big idea behind the method of characteristics is that for a PDE on some
domain there is a family of curves in the domain along which the PDE reduces
to an ODE.
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Starting with our equation

0 = −→w u +A−→w v +
−→
B

we introduce an arbitrary curve, α parameterized in s: α(s) = (u(s), v(s)). We
want to solve for the function −→w in terms of the R and S functions. We can
write the function −→w along α(s) as

−→w =

[
K(u(s), v(s))
λ(u(s), v(s))

]
and subsequently differentiate in s to produce the relation

−→w s(u(s), v(s)) = u′(s)−→w u + v′(s)−→w v

If we let

u′(s) = 1

v′(s) = A
(30)

then for any solutions −→w on the characteristic curves defined by 30

−→w s = −B (31)

In other words, the curve φ : [0, 1]→ R4 such that φ(s) = (u(s), v(s),K(u(s), v(s)), λ(u(s), v(s)))
has derivative

d

ds
φ(s) =


u(s)
v(s)

K(u(s), v(s))
λ(u(s), v(s))

 =

 1
A
−B


Defining the ”Characteristic Vector Field” for the system. Given some initial
data, the union of integral curves of this vector field form a solution to the PDE.

For us, the difficulty lies in that we are specifying a complete boundary, not
just an initial value line. We have solutions for the characteristic curves of
the system, so the problem now amounts to proving the set of solutions for
−→w contains elements which both match up with our boundary conditions and
satisfy the curvature and distance constraints. This is equivalent to showing we
have enough freedom to choose functions R and S which fix the boundary and
determine λ(u, v) favorably.

7 A Related Problem

The reason we reduced our global embedding problem to a patch embedding
problem is, of course, to simplify the problem at hand. However, this reduction
has the extra effect of generalizing our result. By that, I mean if we were to
solve the embedding problem on the Rozendorn patch, then our result would be
valid for other nonpositively curved surfaces with isolated umbilical points!
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Cool. So? Well, you probably know there are a lot of strictly negatively
curved surfaces out there, but there is only one with just cusp ends. This
is Vaigant’s surface [BZ92]. There’s likely more that we don’t know of yet,

Figure 18: Vaigant’s surface

so discovering these kinds of surfaces is nontrivial result. The generality of
our patch embedding method lets us take surfaces, like Rozendorn’s tinkertoys,
which are negatively curved except on a countable number of isolated umbilical
points, stretch their boundaries out to infinity (thus giving them cusp ends),
and then intrinsically remove their umbilical points. The result is a strictly
negatively curved surface with only cusp ends.

”But WAIT! There’s more.” An interesting question to ask about these
kinds of surfaces is can they have an arbitrary genus? This is non-trivial because
maybe for some obscure reason a genus five (or two or 17) surface can never
have cusp ends and be negatively curved. This question is answered very quickly
because we can do the obvious thing and build tori with of Rozendorn’s tinker
toys.

If we get four of those nice looking, symmetric, first generation tinker toys,
we can build a punctured torus. We glue each tinker toy to two others forming
a ring with eight open tubes. We then extend the tubes to infinity, remove the
zero points and we have a strictly negatively curved surface with only cusp ends
and genus 1. This process is clearly extendable; two more tinkertoys glued in
the right place adds another handle to our figure, increasing the genus by 1 and
so on.

It gets even better. There is a tinkertoy similar to the Rozendorn tinkertoy,
but it has six ends instead of four. If I were to construct a surface in the
manner previously described, but using one of these six ended doodads in place
of a Rozendorn tinkertoy, the swap would not affect the genus of the resulting
surface, but would increase the number of ends by two. In fact, if we specify
these constructions make chains like FIG, we can choose any number of ends
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from the set n ∈ N s.t. 4(g + 1) ≤ n ≤ 8(g + 1). More complicated orientations,
such as cubical lattices, allow for other numbers of cusp ends.

References

[BVK73] I. Ya. Bakel’man, A. L. Verner, B. E. Kantor, Introduction to Differ-
ential Geometry in the Large, Nauka, Moscow, 1973, Zbl.276.53093.

[doC76] M. do Carmo, Differential Geometry of Curves and Surfaces, (1976)
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Classification of Pillowcase Covers

Sarah Butchko
Advisor: Professor Kevin Pilgrim, Indiana University Bloomington

Abstract

We begin with a surface obtained by gluing two squares together. One
square is white and labeled with a Q, the other is black and has the re-
flection of Q as a label, which we will call Q-bar, Q̄. This surface Z is
called the square pillowcase and is homeomorphic to the sphere.We then
can examine branched covering spaces of the square pillowcase, which are
the gluing X of several white and black squares such that each white edge
is paired with exactly one black edge. The covering map f : X −→ Z
from a pillowcase cover to the square pillowcase is done in the obvious way
by sending white squares in the cover to the white square labeled Q in
the square pillowcase, similarly for the black squares.This research project
involves the classification of such pillowcase covers f : X −→ Z. Classifi-
cation can be determined in an algebraic way by using permutations that
represent each pillowcase cover. This is inherently an idea of sameness
between some pillowcase covers and thus we can find equivalence classes
in both a visual representation as well as an algebraic process.
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1 Preliminaries

1.1 Motivation

Similar research of different surfaces has been previously done, motivating our
study of the square pillowcase. Some methods used in this research were adapted
from the work of two former Indiana University Bloomington REU students
studying the punctured torus, since the torus has many similarities with the
square pillowcase. The method for coding and classifying pillowcase covers
by use of permutations was inspired by the work of Kathleen Moriarty in her
paper on Covering Spaces of the Punctured Torus.[1] The work of Naomi Utgoff
looking at affine diffeomorphisms of the torus was useful when in our study
of affine transformation of the square pillowcase and its effect on codes. [2].
The work of G. Shmithusen on finding an algorithm for the Veech group of an
origami also motivated this study. [3]

1.2 Conventions

Before introuding the research, I will clarify a few conventions and notations to
be used throughout the paper:
• 〈x, y〉 represents a group generated by x and y.
• Composition of functions, in particular permutations, will always be shown as
f ◦ g. and the rightmost function is evaluated first.
•When two permutations are multiplied without use of an operator symbol, i.e.
στ , we evaluate from left to right, so computing σ then τ .

2 The square pillowcase

As shown below, the square pillowcase Z is the gluing by translation and 180
degree rotations of two squares, one labeledQ, the other the reflection of Q called
Q̄. It is defined as Z := R2/Γ where Γ := {x 7→ ±x + (m,n)|m,n ∈ Z}. The
fundamental domain of Γ is given be the rectangle, {(0, 0), (1, 0), (0, 12 ), (1, 12 )}.

Figure 1: The square pillowcase
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2.1 Geometry of the square pillowcase

The square pillowcase is homeomorphic to the sphere, i.e. there exists a one-to-
one, onto, continuous map from Z to S2 with continuous inverse.

Furthermore, geometry in the real plane induces a geometry on Z.

Lemma 1. Any curve of rational slope on Z will close up, given that it does
not intersect one of the corners.

Proof. The group Γ acts on R2 and the group elements of Γ preserve slope. So
for a rational slope curve in R2, there is a translation in Γ that sends it to the
square pillowcase as a closed curve.

Remark 4. It is interesting to note also that a rationally sloped curve with an
orientation separates the corners as two on the left and two on the right.

One can also look at the group of affine symmetries on the square pillowcase.
The transformations occurring in the real plane descend to a rich group of
transformations of the square pillowcase.

Definition 10. The affine group on R2 is the set of automorphisms given by
Aff(R2) := {fA,b(x) = Ax+ b|A ∈ GL2(R), b ∈ R2}.

Definition 11. For x ∈ R2, a point in the square pillowcase Z is Γ.x the orbit
of x under Γ.

Theorem 9. The affine group of area preserving and orientation preserving au-
tomorphisms of the square pillowcase is Aff+(Z) := {f̄A,b(Γ.x) = Γ.fA,b(x)|A ∈
SL2(Z), b ∈ 1

2Z
2}.

Proof. It is easy to check that this is a group. Closure and associativity follow
from Aff(R2) being a group. The identity element is f̄I,(0,0). One can also find
inverses: (f̄A,b)

−1 = f̄A−1,−A−1b

Next we must show that f̄A,b is well-defined, i.e the function does not depend
on our choice of x:
f̄A,b(Γ.x) = Γ.fA,b(x) = Γ.(Ax+ b)
Now we send x 7→ x+ (i, j) for i, j ∈ Z.
f̄A,b(Γ.(x+(i, j))) = Γ.fA,b(x+(i, j)) = Γ.[A[x+(i, j)]+b] = Γ.[Ax+A(i, j)+b]
Since A(i, j) ∈ Z2 and Z2 ⊂ Γ, A(i, j) ∈ Γ.
So f̄A,b(Γ.(x+ (i, j))) = Γ.(Ax+ b)

3 Covering spaces of the square pillowcase

Definition 12. A square-tiled half translation surface, STHTS, is a closed,
connected surface obtained by gluing several squares together along their edges
in pairs by translations and 180 degree rotations.
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Definition 13. A square-tiled half translation surface with a reflection struc-
ture, STHTSwRS, is a STHTS that glues white and black squares such that
each white edge is paired with exactly one black edge.

Definition 14. A square-tiled half translation surface with a reflection structure
and a labeling is a STHTSwRS such that all white squares are labeled Q, and
all black squares are labeled Q̄, and the labels preserve the reflection structure.

Figure 2: A square-tiled half translation surface with a reflection structure and
a labeling. The top is an unfolding of the glued surface below.

There is an obvious map from a STHTSwRS+labeling to the square pillow-
cases that sends Qs in the cover to Q on Z and Q̄s to Q̄.

Definition 15. For X a STHTSwRS+labeling, a covering map of the square
pillowcase is given by f : X −→ Z. We call this a pillowcase cover.

Remark 5. A STHTSwRS+labeling is equivalent to being a pillowcase cover.

4 Classification of pillowcase covers

In order to discuss the classification of pillowcase covers, we must first define
the parameters by which pillowcase covers are classified.

Definition 16. The degree d of a pillowcase cover is half the total number of
squares in the cover.

Definition 17. A cone point is a point whose angle is not equal to 2π.

Definition 18. If the angle of a cone point is nπ
2 , the weight of a cone point is

n. We can also consider weight as the number of squares in the cover meeting
at a cone point.
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We also will use the genus of the surface to classify our pillowcase covers.
The genus of a cover can be found using the Euler Characteristic:

χ(X) = 2− 2g = V − E + F

where g=genus, V=number of vertices, E=number of edges, F=number of faces.

Figure 3: An example of a pillowcase cover X with an explanation of its classi-
fication below.

Example 2. There are 10 total squares so the degree d=5.
The colored numbers identify each vertex. From this we can determine the
weight of each vertex. The vertices labeled 1, 3, 6, 7, and 9 have angle π. The
vertices labeled 2, 4, 5, 10, 11, and 12 have angle 2π. And vertex 8 has angle
3π. Noting only vertices that are cone points, we can list the weights as such:
(2, 2, 2, 2, 2, 6).
There are 12 vertices, 20 distinct edges (after gluing), and 10 faces. Thus the
Euler Characteristic is χ(X) = V −E+F = 2 and this implies the genus g = 0,
so this cover is a sphere.

Definition 19. Two pillowcase covers f : X −→ Z and g : Y −→ Z are equiv-
alent if there exists a preserving isomorphism h : X −→ Y . [4]

X //

f   

∃h? // Y

g
��

Z

Proposition 10. For two pillowcase covers f : X −→ Z and g : Y −→ Z,
if there exists such an equivalence h : X −→ Y , then h preserves the color of
squares, labels, cone angles, and genus.

5 Coding pillowcase covers

Definition 20. A code of a pillowcase cover of degree d is a bijection {squares} −→
{1, 2, 3, ..., 2d} such that {white} 7→ {odd} and {black} 7→ {even}.

40



Figure 4: Example of two equiv-
alent covers by mapping the red
square in the top cover to the
red square in the bottom cover.

Figure 5: Example of two non-
equivalent covers. There is no map
between the two preserving color,
labels, cone angles, and genus.

When representing a pillowcase cover by a diagram, we draw the numbers
{1, 2, ..., 2d} on squares such that the base of each number is the same as the base
of Q or Q̄, respectively. With this convention, given a code, we can reconstruct
the labeling so that it is not necessary to draw both numbers and the Qs and Q̄s.

To clarify some convention: The position of the label, whether Q, Q̄, or a
number, determines the top, bottom, right, and left edges of the squares. The
top of the label matches the top of the square; the right side of the label matches
the right edge of the square; and similarly for the left and bottom edges. When
we say go up from a square, that means go through the top of that square.
Going down means go through the bottom. Going left means go through the
left edge of the square and similarly for going right.

Definition 21. The permutation σ ∈ S2d represents the horizontal permutation
of a pillowcase cover. In cycle notation, σ always begins on an odd numbered
square. Going right through the permutation is the same as going right from
that square on the cover.

Definition 22. The permutation τ ∈ S2d represents the vertical permutation
of a pillowcase cover. In cycle notation, τ always begins on an odd numbered
square. Beginning at an odd number, going right through the permutation is
the same as going up from that square on the cover.

Remark 6. Due to the reflection structure of pillowcase covers, τ(odd) is going
up from that square and τ(even) is going down from that square.

A code allows us to use a pair of permutations (σ, τ) to represent the cover.

Since implementing a code on a pillowcase cover requires a choice, we must
define equivalence among codes so that any choice of code for the same pillowcase
cover will be equivalent.

Two codes, (σ1, τ1) and (σ2, τ2) are equivalent if there exists x ∈ S2d,
x(odd) = odd and x(even) = even, such that σ2 = x◦σ1◦x−1 and τ2 = x◦τ1◦x−1
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Figure 6: (σ = (1234), τ =
(14)(32))

Figure 7: (σ = (1234)(56), τ =
(14)(3652))

Example 4. Let σ1 = (1234), τ1 = (12)(34), and σ2 = (1432), τ2 = (14)(32).
Then the pillowcase covers given by (σ1, τ1) and (σ2, τ2) are equivalent by con-
jugation by x = (13):
σ2 = x ◦ σ1 ◦ x−1
τ2 = x ◦ τ1 ◦ x−1

Theorem 11. Two pillowcase covers, f : X −→ Z, g : Y −→ Z are equivalent
iff their codes are equivalent.

6 Determining pillowcase covers algebraically

A code can be easily obtained when we have a surface X that is a pillowcase
cover. Next we aim to build a convention that will allow us to understand and
classify a pillowcase cover given only a pair of permutations (σ, τ).

Proposition 12. A pair of permutation (σ, τ) is a pillowcase cover if:
(i) σ : odd 7→ odd σ : even 7→ even τ : odd 7→ odd τ : even 7→ even
(ii) The group generated by σ and τ acts transitively on {1, 2, ..., 2d}, i.e, for
each i, j ∈ 1, 2, ..., 2d there is a permutation g ∈ 〈στ〉 such that g.i = j.

Remark 7. Given a pair (σ, τ) known to be a pillowcase cover, we inherently
know the degree d of the cover since σ, τ ∈ S2d.

6.1 Monodromy action on codes

In order to continue to classify pillowcase covers by a code (σ, τ), we want to be
able to determine the genus and weight of all cone angles. In order to do so we
will define four functions that act on codes.

Definition 24. On the square pillowcase R2/Γ, let a, b, c, d be the points
( 1
2 ,

1
2 ), (0, 12 ), (0, 0), ( 1

2 , 0), respectively. Note, these are the four corners of the
pillowcase.

Definition 25. Let be α, β, γ, δ be respectively the loops based at the center of
( 1
4 ,

1
4 ) of the face labeled Q on the square pillowcase. The loops encircle a, b, c, d

on the left-hand side, respectively.
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We get α, β, γ, δ to be the following:
α = στ−1

β = τσ
γ = σ−1τ
δ = τ−1σ−1

Note that here we are not using standard composition of function, instead we
will compute from left to right.
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The following pictures represent how we determined α, β, γ, δ:

Figure 8: Loop around corner a at ( 1
2 ,

1
2 ). Go right (red), then go up (blue).

Figure 9: Loop around corner b at (0, 12 ). Go up (orange), then go right (red).

Figure 10: Loop around corner c at (0, 0). Go left (green), then go down
(orange).

Figure 11: Loop around corner d at ( 1
2 , 0). Go down (blue), then go left (green).
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Given these four functions, we can compute the monodromy of α, β, γ, δ from
the code of a pillowcase cover by only computing the restriction of α, β, γ, δ to
the odd numbers.

For a pillowcase cover f : X −→ Z represented by a code (σ, τ), the mon-
odromy of α, β, γ, δ provides the following information:
• The total number of cycles in α, β, γ, δ is the total number of vertices in the
cover. Note: Cycles of length one also contribute to the total number of cycles.
• Each cycle length is the local degree of a vertex v, denoted deg(f, v).
• The local degree of a vertex implies the weight of a cone point: weight =
2deg(f, v).

At this point, for a pillowcase cover f : X −→ Z given by a pair (σ, τ), we
know the degree and weight of all cone points. We still wish to determine the
genus of the cover. This can be done by computing the Euler Characteristic
using the Riemann-Hurwitz Formula:

χ(X) = deg(f)χ(Z)−
∑
v

(deg(f, v)− 1)

Note: χ(Z) = 2 since Z our square pillowcase is homeomorphic to the sphere.

Example 5. We examine a pillowcase cover given by the pair of permutations
σ = (12345678) and τ = (12)(34)(56)(78):
•σ, τ ∈ S8 so the degree of the cover is d = 4.
• α = (1)(3)(5)(7), β = (1357), γ = (1753), and δ = (1)(3)(5)(7)
• Using the cycle lengths of α, β, γ, δ give us the local degree of vertices, so we
can list the weights of each vertex: (2,2,2,2,2,2,2,2,8,8).
• Computing the Euler Characteristic: χ(X) = (4)(2) − [3 + 3] = 2. Since
χ(X) = 2− 2g the genus of this cover is g = 0, so the surface is a sphere.

7 Action of the affine group on codes

Returning to the geometry of the square pillowcase and its group of affine sym-
metries, we are interested in observing how these symmetries affect codes by
post composition.

Recall that the affine group of the square pillowcase is Aff+(Z) := {f̄A,b(Γ.x) =
Γ.(fA,b(x))|A ∈ SL2(Z), b ∈ 1

2Z
2}.

Aff+(Z) acts on equivalence classes of pillowcase covers by post-composition:
g.f := g ◦ f . So, Aff+(Z) acts on codes.

We are particularly interested in elements of the affine group that are in
PSL2(Z) = 〈

(
0 −1
1 0

)
, ( 1 1

0 1 )〉. These matrices that generate PSL2(Z) are respec-
tively a counter clockwise 90 degree rotation and a sheer to the right.
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Theorem 13. Let A :=
(
0 −1
1 0

)
and B := ( 1 1

0 1 )
For a given pillowcase cover (σ, τ) we can compute:
(i) A.(σ, τ) = (σ′, τ ′) = (τ−1, σ)
(ii) B.(σ, τ)= (σ′, τ ′)= (σ, στ−1σ−1 if odd and τ if even)

Proof. We begin with sections of two arbitrary pillowcase covers with a code,
as shown below. The letters i, j, k, l are elements in S2d.

Figure 12: An arbitary cover,
called X. We know σ(i) = j,
σ(k) = l, and τ(i) = k.

Figure 13: An arbitrary cover,
called Y . We know σ(l) = k,
σ(j) = i, and τ(k) = i.

Since affine transformations are done post composition, we must apply the in-
verse of that transformation to the pillowcase cover in order to see how the code
changes.
(i) Under the inverse of the rotation matrix A, the arbitrary cover X changes
to:

Figure 14: σ′(k) = i, τ ′(i) = j, and τ ′(k) = l.

and the abritrary cover Y changes to:

Figure 15: σ′(i) = k, τ ′(j) = i, and τ ′(l) = k.

From these new surfaces, we can see that σ′ = τ−1 and τ ′ = σ. Thus rotation
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by 90 degrees affects codes in the following way: A.(σ, τ) = (τ−1, σ).
(ii) Under the inverse of the shear B, the arbitary cover X changes to:

Figure 16: sigma′(i) = j, σ′(k) = l, and τ ′(l) = j.

and the arbitrary cover Y changes to:

Figure 17: sigma′(j) = i, σ′(l) = k, and τ ′(k) = i.

From these new surfaces, it is easy to see that σ′ = sigma. However, τ ′ does not
act the same on white squares and black squares, or equivalently odd and even
numbers. τ ′(even) = τ since τ ′(k) = τ(k) = i. It is harder to define τ ′(odd) in
terms of σ, τ . Since τ ′(l) = j, the following picture uses the arbitrary cover X
to show how 〈σ, τ〉 send l to j:

Figure 18: σ ◦ τ−1 ◦ σ−1(l) = j

Thus the right shear B affects codes in the following way:
B.(σ, τ) =(σ, σ ◦ τ−1 ◦ σ−1 if odd or τ if even).

7.1 Future work

We would like to continue looking into the effects of post-composition by these
affine symmetries. In particular, future work will include computing stabilizers
of this group as it acts on codes.
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Treatment of Elastic Networks
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Abstract

In this project, elastic networks were defined as undirected graphs
with weighted edges (rubber bands tied together are good examples of
these networks). Stretching an elastic network in R1 can be thought of
as being equivalent to an electrical network and can be examined using
the techniques of computing the equivalent resistance across a network
of resistors. The first problem this project approached was a Dirichlet
problem involving an L-shaped graph.

Secondly, this project developed methods for embedding elastic net-
works inside “pipe graphs” which were defined as undirected graphs with
edge weightings corresponding to lengths of pipes. In this case, the use of
electrical methods breaks down as Kirchhoff’s laws no longer apply. Thus,
an algorithm was developed to numerically compute the energies of such
embeddings. This algorithm was used to analyze the energies of graphs
obtained by triangulating hexagons and it is able to accurately predict
whether some hexagons can be embedded in others. In the future, we
expect to generate graphs from tilings of other interesting surfaces.

1 Introduction

In this project, we were concerned with computing energies of elastic networks;
we will begin with a definition of an Elastic Network.

Definition 26. Elastic Network an undirected, weighted graph.

An elastic network as defined can be thought of as a network of ideal springs.
The weightings on the edges of the graphs correspond to the spring constants
of the springs. These springs are ideal springs in that they have resting length
0 and they always obey Hooke’s law (they are never deformed).

1.1 Resistor Networks

There is a simple correspondence between elastic networks and resistor networks.
To see this, compare the form of Ohm’s law to that of Hooke’s Law.

49



Ohm’s Law:

V = IR ≡ I =
V

R
≡ I = CV

where I = current, V = Voltage, R = Resistance, and C =
1

R
= Conductance.

Hooke’s Law:
T = kX

where T = tension, k = spring constant, and X is displacement.
Here, we have

Tension → Current
Displacement → Voltage and
Spring Constant → Conductance

Then we have that the power dissipated through a resistor P = IV =
V

R
V =

V 2C which is analogous to the potential energy stored in a stretched spring

U =
kX2

2

1.2 Finding Equilibrium

In this section, we are concerned with finding the optimal configuration of an
elastic network when it is mapped to R1 (the interval [0, 1]).

Definition 27. Map (to interval) A map is a function which takes vertices of
some elastic graph to a position

Definition 28. Position (Interval) A position in an interval is a real number
paired with a Boolean

The Boolean describes whether the position is moveable. The definition
of Position will be modified later, when the map destinations become more
complicated. When mapping to the interval, each vertex is mapped to a position.
These positions are analogous to the potentials at junctions in a resistor network.
Some of the vertices are “pinned” to particular positions (represented by a
Boolean False) which is analogous to applying a potential difference to some
junctions in a resistor network. Our algorithm finds the optimal positions for
these moveable vertices.

2 Developing an Algorithm

2.1 Binary Search

As a first attempt, we designed an algorithm using a binary search method. The
algorithm follows

1. Given an elastic network and a map to the interval, the moveable vertices
are identified.
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2. Then, the signed sum of the tensions on each moveable vertex was com-
puted and unbalanced vertices (sum 6= 0) were identified.

3. The most unbalanced vertex was balanced using a binary search algorithm.

4. This process was repeated until no unbalanced vertices remained.

This process was functional, but the vertex by vertex algorithm had intoler-
able runtimes with even relatively small numbers of vertices (n > 10). Thus, a
different algorithm was developed.

2.2 Linear Equations

It is known that at equilibrium, the sum of tensions on any vertex must be zero
(this is analogous to Kirchhoff’s Current Law). Define Tvi,vj to be the tension
on vertex vi from vj , let M be the set of moveable vertices in some graph, then:

∀vi ∈M ,
∑

vj adjacent to vi

Tvi,vj = 0 (1)

When an elastic network is mapped to R1

Tvi,vj =
pj − pi
αi,j

(2)

Where pi is the position of vi
Thus if there are n moveable vertices in M then we have a system of n linear

equations of n variables which can be solved to find the equilibrium position of
each vertex.

This algorithm generated the terms of these linear equations and put them
into matrix form so that they could be solved using the Numeric Linear Algebra
Package hmatrix for Haskell. When this system of linear equations was solved,
the optimal position of each vertex was returned.

2.3 L-Shaped Graph

The first problem this algorithm was used to solve was a discrete Dirichlet
problem which we referred to as an L-Shaped Graph

1

0
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Above is a continuous Dirichlet problem. The region consists of the union of
five congruent squares. The red (dotted) region is mapped to 0 and the green
(dashed) region is mapped to 1 on the interval [0, 1]

First, we wanted to compute the effective resistance of graphs produced by
tiling the shape with successively smaller squares and assigning unit resistance
to the edges of each square.

1

0

1

0

Above are the first two discretizations of the L-Shaped graph, n = 1 and n =
2. Each edge was assigned unit resistance and the linear algebra algorithm was
used to compute the power dissipation through the network when the vertices
on the dotted lines were set to voltage 0 and those on the dashed lines were
set to voltage 1. This was then used to compute the effective resistance of the
network. The effective resistance of the first 40 discretizations were computed.
Unfortunately for higher values of n, the number of vertices grows too large to
be effectively computed using dense matrices. Thus, we are of the precise limit
of the sequence.

10 20 30
n

0.7

0.8

0.9

1.0

1.1

EffectiveResistance

Second, we were interested in examining the behavior of the shape under
factors of horizontal and vertical stretching.

Maxime Fortier Bourque showed that in the continuous case, the effective
resistance of this figure remains bounded. His argument is summarized below.

1

0

1

0
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Under horizontal stretching, the blue region above will always be congruent
to the same region in the original shape. Additionally, if we cut the white
regions we can only have increased the effective resistance which implies that
the blue region gives an upper bound on the effective resistance of the graph.

1

0

1

0

Again, the green shaded region is present regardless of horizontal stretching
factors, thus if we short out the unshaded region we can only have decreased
the resistance. Therefore the green region gives a lower bound on the effective
resistance. Analogous arguments exist for vertical strech factors. Thus, we
believe the effective resistance of the L-shaped region remains bounded under
stretching.

In order to discretize the stretched versions of the L-Shaped region, we as-
signed modified resistances to the horizontal and vertical edges in the discretiza-
tions. When the shape was stretched horizontally by a factor of R, we assigned

resistance R to the horizontal edges of the discretization and resistance
1

R
to

the vertical edges.
Unfortunately, the discretization breaks down unless n >> R and our finite

computational power limited our ability to compute varied values of R.
A suggestion for future work is to implement the linear solution function

using sparse matrices which should improve runtime considerably and enable
the effective computation of much finer discretizations.

3 Mapping to Pipe Graphs

The behavior of springs and resistors in R is well understood; however, moti-
vations regarding conformal embedding of surfaces motivate examining elastic
networks in other spaces. We were interested in describing the behavior of
elastic networks embedded in graphs, prompting the following modified set of
definitions

Definition 29. Pipe Graph A pipe graph is an undirected graph with weighted
edges

The weightings on the edges of a pipe graph correspond to length

Definition 30. Map (to Pipes) A map is a function which takes elastic vertices
to positions in pipes and elastic edges to paths through pipes.
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Definition 31. Position (Pipe Graph) A position (in a pipe graph) is the
location of an elastic vertex in a map. It includes a Boolean and either a target
pipe (with a parameterized position on that pipe) or a target pipe vertex.

A good way to conceptualize these definitions is to consider the pipe graph
as a plumbing system with the elastic network stretched through it in some
way. The map contains all of the relevant information necessary to describe the
positions of the elastic vertices in the pipes.

3.1 Modifying the Algorithm

The algorithm to find the optimal positions for the moveable vertices under
some map was developed by extending the algorithm for the R1 case.

In this case, we still begin by solving a system of linear equations defined by
the tension equations. The only modification necessary here is to keep track of
the sign of the tension which corresponds to the orientation of the parameteri-
zation of the pipes (e.g. it is necessary to consider which end of the pipe each
vertex is being pulled towards).

When an elastic vertex is mapped to a junction in the pipe system, there
exists the possibility of a stable configuration which violates the tension equa-
tions. In this case, an elastic vertex will remain stationary unless the tension
pulling it towards one pipe exceeds the sum of the tensions pulling in the other
directions. We refer to this requirement as the generalized triangle inequality
as it takes the same form as the triangle inequality when the number of pipes
is equal to three.

With the exception of such pipe vertices, all other moveable vertices must
satisfy the equilibrium of tensions, thus we can use linear algebra to solve for
the positions of these vertices and then check the triangle inequality to see if
any vertices violate the triangle inequality.

The solution to this system of equations, however, may yield degenerate
solutions in which vertices are pulled past the ends of their target pipes. Thus,
when this occurs, we “pull” the elastic vertex onto the pipe vertex.

By repeating this process until the triangle inequality is satisfied on all of the
vertices and no degenerate positions remain, we find the optimal configuration
of the elastic network, and thus its minimal energy.

3.2 Results

We chose to begin by mapping to the tripod. This graph consists of three edges
joined at a single central vertex. This allows us to omit the information about
paths because there is only one path connecting any two points on the tripod.

We began by computing energies of elastic graphs obtained by triangulating
the regular hexagon and mapping them to the tripod.
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Above are the first two discretizations, n = 1 (left) and n = 2 (right). The
vertices on each colored edge were sent to the ends of one of the tripods. n− 1
refers to the number of vertices on each edge of the hexagon (e.g. there are 2
vertices on each mapped edge when n = 1).

We are interested in computing the energies of these meshes because we
believe these energies are related to the existence of conformal embeddings. [1]

It is useful to compare the energies of multiple graphs over the space of
possible tripod lengths. By fixing the sum of the lengths to 1, we get a two
dimensional plot where x is the length of the first leg, y is the length of the
second, and 1 - x - y is the length of the third.

Above is a plot of the energies of three discretizations of the regular hexagon
(from the bottom: n=5, n=6, and n= 7)
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Above is a plot of the ratio of the energy of the n=5 case to that of the n = 6.
The maximum value in the center of the plot indicates that the mesh converges
fastest when the legs of the tripod are equal in length. Near the corners, the
tripod approaches the interval and the difference between the iterations becomes
more pronounced.

We then examined energies obtained by triangulating irregular hexagons
with interior angles of 120◦

Here is one of the irregular hexagons we examined. Left is the regular
hexagon. Middle is a hexagon on which three of the edges have been length-
ened. Right shows an embedding of the regular hexagon inside the irregular
one. We triangulated both of them using the same triangulation (n=10) and
plotted their energies as we did before.
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Above is a plot of the n=10 mesh on the regular hexagon (bottom) and the
modified hexagon (top). We expect there to exist a conformal embedding of the
regular hexagon in this modified hexagon. The experimental data agree with
this expectation.

Above is a plot of the ratios between the n = 10 discretization and the
modified hexagon. Again, we see that the energies are closest when the tripod
legs are close to equal in length.
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4 Conclusions

This program allows us to compute the energies of various graphs. We can
evaluate graphs generated by triangulating the hexagon and the in the future
we will examine graphs obtained by other surfaces in the hope of examining the
existence of conformal embeddings.
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Abstract

We investigate subgroups of the braid group conjugate to the wicket
group as a way of obtaining stabilizer groups of various tangles. These
groups, together with a generalization of the plat closure of a braid to
closures by arbitrary tangles gives a new classification of (2, 1) triplane
diagrams. In the future, it is possible that these techniques may be applied
to open questions about higher bridge triplane diagrams.

Groups Conjugate to the Wicket Group

and Classification of Triplane Diagrams

Sam Pilgrim

Introduction This paper presents a new proof of the classification of (2, 1)
diagrams using a lower-tech, algebraic approach involving the braid group. We
begin with an introduction to the terminology of classical knot theory, which
will be used throughout this paper. We go on to introduce tangles, bridge
splittings of knots, braids, and their closures. Using these tools, we develop a
generalization of the plat closure of a braid. This generalization, together with
an understanding of subgroups of the braid group that fix various tangles, allow
us to classify (2, 1) triplane diagrams by studying how the braid group acts on
them. The remarks at the end give a brief discussion of the application of this
strategy to the 3 and 4−bridge cases.

1 Knots and Links

Definition 32. A knot is an embedding of the circle, S1, in S3 (see figure 1).

Figure 1: The trefoil – the simplest knot
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If we want to make statements about equivalence or in-equivalence of 2
knots, we need to introduce an equivalence relation. We say that two knots
are equivalent if there is an ambient isotopy between them. Intuitively, all this
means is that one knot can be deformed into the other without breaking it
anywhere or passing it through itself. This is exactly the type of equivalence we
would wish to capture if we were thinking of knots tied out of string.

Next, we want to establish a notion of a knot being “untie-able” (and hence
not a knot at all). If an embedding of S1 is isotopic to a Euclidean circle, we
call it unknotted, or simply an unknot.

A generalization of the definition of knot gives us the following:

Definition 33. A link consists of multiple embeddings of S1 in S3.

These copies of S1 may be knotted or unknotted, and they may be linked
together (see figure 2) or separable. We call n copies of the unknot, none of
which are linked together an unlink of n components.

Figure 2: The Hopf Link – the simplest link

Although knots and links exist in 3−space, it is much more convenient if we
can study them via diagrams in the plane such as our previous 2 figures. To
that end, we give the following definition:

Definition 34. A knot diagram is the result of projecting a knot in (x, y, z)
space onto the (x, y) plane. Any point where one arc of the knot passes over
another (meaning that two points have the same x and y coordinates we call a
crossing point. We call the arc containing the point with greater z coordinate
the overstrand, and the arc containing the point with smaller z coordinate the
understrand. At each crossing point, we add crossing information to our diagram
by breaking the understrand.

We need to be sure that no information is lost during this projection. It is
possible, for instance, that more than one strand passes directly under another,
in which case more than 2 points in our original knot may be sent to the same
point in the diagram. Furthermore, if the curve making up our knot is ever
parallel to the z-axis, we end up sending infinitely-many points of our knot to
a single point in the diagram.

The latter of these two problems may be resolved by applying an isotopy
that rotates the knot slightly in 3−space. The former is fixed by perturbing (via
isotopy) the understrands, changing the (x, y) coordinates slightly so that no
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Figure 3: The Reidemeister moves

more than 2 points of the knot are sent to the same point in the plane. These
arguments are explained in greater detail in [Liv93].

Now that we’ve established that a knot diagram can be constructed without
any loss of information, we have that every knot (or link) has a unique diagram.
We are therefore free to consider a knot and its diagram as interchangeable.

Finally, we would like to formalize a way to move between equivalent dia-
grams, thereby giving a geometric intuition to the concept of ambient isotopy
that will allow us to make pictorial arguments about knots. The process of
changing a diagram of a knot into another such that the two remain the same
up to isotopy is captured by three types of geometric manipulations called Reide-
meister moves (see figure 3). One can see that all three of these moves preserve
the isotopy class of a knot (i.e. none of them involve breaking a strand or passing
one strand through another).

If two diagrams represent equivalent knots, the two can be related by a series
of Reidemeister moves. With this in hand, we may further say that equivalent
diagrams represent equivalent knots. Our convenient way of studying knots as
diagrams in the plane is therefore complete and ready to use.

2 Bridge Splittings of Knots

2.1 Bridge Position and Bridge Splittings

As a knot is a simple closed curve in S3, it has local maxima and minima with
respect to some height function, h. We therefore have the following definition.

Definition 35. Let K be an arbitrary knot (or link). If all minima of h|K occur
below all maxima of h|K , we say that K is in bridge position with respect to h
(see figure 6).

We call the minimum possible number of such maxima the bridge number
of K (the trefoil, for example is a 2−bridge knot). Importantly, the number
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of bridges (maxima) of a knot in bridge position is not necessarily the bridge
number of the knot.

Definition 36. An n−bridge tangle is a set of n disjoint arcs embedded in a
ball with their endpoints in the boundary of the ball. To make diagrams of
tangles more comprehensible, we often flatten the part of the ball containing
the endpoints so that the endpoints of the arcs appear to lie on a line, as in the
example below.

Figure 4: A 3−bridge tangle

As with knots, two tangles are equivalent if there is an ambient isotopy
between them – though we require that such an isotopy fixes their endpoints.

A tangle consisting of n non-linking arcs is known as the trivial tangle (the
3−bridge trivial tangle is shown in figure 5). We also call any tangle trivial
if its arcs can be simultaneously isotoped into the boundary of the ball (again
without moving the endpoints). This is equivalent to these arcs, together with
their images after such an isotopy, bounding disks, which we will call bridge
disks. While trivial tangles are homeomorphic to the trivial tangle, they are
not, in general, isotopic to it.

Figure 5: The 3−bridge trivial tangle

It should be clear that one can create a knot or link by taking a union of
2 n−bridge tangles that identifies the endpoints of one with the endpoints of
another. Going the other direction, we now introduce a way that a knot may
be split into a pair of tangles.

Definition 37. Let K be a knot or link in bridge position. Let Σ ⊂ S3 be a
2−sphere that separates S3 into two 3−balls. We call Σ the bridge sphere. The
sets of disjoint arcs contained in each 3−ball are tangles, and if both tangles are
trivial, we refer to Σ and the pair of tangles collectively as a bridge splitting of
K (see figure 7).

Furthermore, there is always a way to split K such that the tangles obtained
are trivial.
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One can see from the example bellow (again involving the trefoil) that an
n−bridge knot gives a pair of n−bridge tangles. We therefore call it an n−bridge
splitting.

One can think of Σ as comprising all points in S3 at some fixed height with
respect to a height function. Thus, choosing different heights gives different
spheres, and therefore different bridge splittings. When convenient, we may
even assume that one tangle is the n−bridge trivial tangle, and that all the
complexity of the knot lies in the other.

Figure 6: The trefoil in bridge position

Figure 7: A bridge splitting of the trefoil and the resulting tangles – we represent
the surface of Σ by the dashed red line

Definition 38. If a pair of arcs, one in each tangle of a bridge splitting, bound
bridge disks that intersect each other exactly once in their boundary (see figure
8), we say that the bridge splitting is stabilized (refer to the following subsection
and figures for more about stabilization).

Figure 8: Bridge disks of this form are the result of stabilization, and can be
removed through destabilization
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Figure 9: A stabilized bridge splitting of the trefoil

2.2 Equivalence of bridge splittings

Given 2 bridge splittings of the same knot, those splittings may be related by
the following 3 types of moves:

1. Tangle isotopies – We may deform each of the tangles by an ambient
isotopy (Reidemeister moves) that fixes the endpoints.

2. Bridge sphere braiding – We may perturb the bridge sphere so as to move
the endpoints of each of the tangles around one another. This has the effect of
braiding the loose ends of one tangle, and performing the opposite braiding on
the ends of the other (braiding will be explained more fully in the section 4).

3. Stabilization/destabilization – We may deform a tangle to push it into
the bridge sphere or pull it out, thereby adding or removing bridge disks of the
type shown in figure 8.

2.3 Bridge splittings of the unknot

We conclude this section with a theorem about bridge splittings of the unknot.

Theorem 14. [Ota82] Every bridge splitting of the unknot is stabilized.

Though this theorem was previously known, we sketch a proof of it anyway.

Proof. Since the unknot bounds a disk, we begin by considering arbitrary inter-
sections of the bridge sphere, Σ, with a disk, D. These come in two basic types.
The first, represented by the blue arcs whose boundary points are contained in
the boundary of D, denote intersections created by the disk “crashing through”
the surface of the sphere (figure 10, left). The second type, represented by the
purple circles, are created when part of the sphere “bubbles through” the surface
of the disk (figure 10, right).

Next, we begin removing the purple circles one by one. We pick one circle
with no others inside it. Since it bounds a smaller disk inside the surface of our
original disk, we may perform surgery along it and discard the portion of the
bridge sphere that doesn’t intersect D anywhere else. Σ is still a sphere after
surgery, and since the intersection we removed did not contain any part of the
boundary of D, the new bridge sphere still gives the same bridge splitting. We
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Figure 10: Two types of intersections of a sphere with a disk

repeat this process as many times as necessary until no more intersections of
this type exist.

Through some additional deformation (see figure 11), we make our picture
more familiar and obtain a stabilization of the unknot.

A consequence of this result (which can also be found in Otal), is that all
n−bridge presentations of the unknot are equivalent through isotopies of tangles
and bridge sphere braiding. The fact that stabilization is not necessary will be
important later.

Figure 11: An arbitrary 3-bridge splitting of the unknot. Note that, no matter
how we took this 3-bridge splitting, the result would be equivalent to the figure
on the right by tangle isotopies and bridge sphere braiding.

3 Splittings in higher dimensions

Every embedding of S1 in S4 is unknotted, so if we want to discuss knots in
four dimensions, we need to use knotted surfaces as opposed to knotted circles.
Just like with classical knots in S3, we can study these surfaces through a
decomposition of the manifold in which they are embedded. In the case of
surfaces in dimension 4, however, we split the 4−sphere into three 4−balls.
This process leads us to the following definition.

Definition 39. A (b, c1, c2, c3) triplane diagram is a triple of b−bridge tangles
whose pairwise unions are unlinks of c1, c2, and c3 components, respectively. If
c1 = c2 = c3, we refer to it simply as a (b, c) triplane diagram (see figures 12
and 13 for examples of (2,1) diagrams).
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Triplane diagrams represent knotted surfaces in S4. To see this, we can place
the three tangles in figure 13 end to end (see figure 15) and imagine thickening
the edges in their fourth coordinate. Moreover, since the knots formed by any
two of the tangles in figure 15 are unknots (see figure 14), each of them bounds
a disk, and so can be “capped off” with a disk to close the surface.

In this way, triplane diagrams can be viewed as a higher dimensional analog
of bridge splittings of knots. For this reason, we may also refer to the triplane
diagram of a knotted surface as a bridge trisection. This introduction to triplane
diagrams is superficial, as the topological theory underlying them is complex,
and outside the scope of this paper. Our goal here is to provide a relatively
lower-tech approach to their classification.

Figure 12: The triplane diagram of RP 2
+

Figure 13: The triplane diagram of RP 2
−

Figure 14: The pairwise unions of the tangles in the diagram of RP 2
−. Notice

that the tangles below are horizontal reflections of the tangles above.

Theorem 15. All surfaces admitting a (2,1) bridge trisection are equivalent to
one of two unknotted embeddings of RP 2.

Hence, all (2, 1) triplane diagrams are equivalent to one of the diagrams
given above. Though this is already known, our main result will be a second
proof in section 5 that uses a more direct, algebraic approach.
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Figure 15: A triple of tangles giving rise to a surface

4 The Braid Group – Bn

4.1 Introduction

The braid group, Bn, is a group with an intuitive geometric interpretation –
the braiding of n strings. Multiplication of braids is defined from left to right
by appending them with the braid on the left at the top, and the identity is the
trivial braid on n strands (n strands with no crossings).

Although infinite, Bn is finitely generated by elements si with 1 ≤ i ≤ n− 1,
where si represents a positive half-twist between the ith and (i+ 1)st strands.

Figure 16: s3 (left) and the inverse of s3 (right), which we denote s̄3

The Braid Group also has 2 families of relations, namely

sisj = sjsi when |i− j| > 1, and

sisi+1si = si+1sisi+1

Both of these relationships describe the ability to push twists along adjacent
strands via isotopy (see figures 17 and 18), and thereby obtain an equivalent
braid.
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Figure 17: sisj = sjsi when |i− j| > 1

Figure 18: sisi+1si = si+1sisi+1

4.2 Actions of the braid group

B2n acts on n−bridge tangles in the obvious way, that is, by braiding the loose
ends at the bottom. If a is an n−bridge tangle and β is a 2n−stranded braid
acting on this tangle, we denote the resulting tangle by aβ.

This action is also transitive, meaning that any n−bridge tangle can be
turned into any other n−bridge tangle in this way. To see this, notice that any
n−bridge tangle can be thought of as n non-linking arcs whose endpoints are
braided in some way (see figure 19).

Figure 19: The 3−bridge tangle shown earlier isotoped so that it appears as the
3−bridge trivial tangle with some braid acting on it

Thus, the trivial tangle shown above the blue dashed line can be turned into
any other tangle via braiding (in this example, the braid being applied in figure
17 is s2s4s̄

3
3).

We now give notation for four tangles that will be used later (the tangles
that appear in the triplane diagrams of RP 2

+ and RP 2
−):

We call the first tangle of each diagram (the tangle consisting of two non-
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linking arcs) a0, the second tangle (the one consisting of 2 nested, non-linking
arcs) a∞, the third tangle in the diagram of RP 2

+, a+, and the third tangle of
the diagram of RP 2

−, a− (see figure 20).

Figure 20: From left to right: a0, a∞, a+, a−

Transitivity of the action of B2n tells us that all these tangles are related.
In particular

a∞ = a0s2s3

a+ = a0s3

and

a− = a0s̄3

These observations can be generalized to arbitrary tangles (again using tran-
sitivity), so we further have that, for any tangle b, b = a0δ where δ is some braid
[Taw08].

Since the process of taking the pairwise unions of tangles in a triplane di-
agram involves reflecting each tangle horizontally, we want to be able to talk
about both a tangle and its image under such a reflection. Therefore, given a
tangle a, let â = a and ǎ denote a reflected horizontally. If a and b are tangles,
we may denote this aforementioned sort of union by âb̌.

Notice that B2n acts on â on the right and on ǎ on the left, so just as any
tangle â can be written as â0δ, any reflected tangle ǎ can be written as δǎ0.

If a contains any crossings, those crossings will be reversed by a horizontal
reflection which means that, if we apply a braid to â0 on the right and then
reflect it, we will obtain the inverse of that braid acting on the left of ǎ0. For
example, â+ = â0s2, so ǎ+ = s̄2ǎ0, which is the same as â−, albeit rotated by
180 degrees.

4.3 Stabilizers of tangles

As we have established how the braid group acts on tangles, we can now begin
to discuss the stabilizer groups of tangles. The stabilizer group of an n−bridge
tangle a, is the subgroup of B2n with the property that, for β in this subgroup,
aβ is isotopic to a. If this is the case, we say that β “fixes” a. We now introduce
another group that will be critical to our discussion of stabilizers.

The wicket group, Wn, is a subgroup of B2n preserving the configuration of
n wickets. Thus Wn is the stabilizer group of the n−bridge trivial tangle (shown

69



below). In particular W2 can be thought of as the stabilizer group of the tangle
a0.

Wn is generated by three families of elements: σi, ρi, and τj with 1 ≤ i ≤
n− 1 and 1 ≤ j ≤ n [BH13].

Intuitively, σ can be understood as representing passing one wicket over
another, ρ as passing one wicket through another, and τ as putting a half-twist
in one wicket.

Wn also has a number of relations, all of which come from B2n:

[τi, τj ] = 1 for i 6= j
[σi, τj ] = 1 for j 6= i, i+ 1 and [ρi, τj ] = 1 for j 6= i, i+ 1

τ εi σ
η
i = σηi τ

ε
i+1 and τ εi+1σ

η
i = σηi τ

ε
i for ε, η = ±1

τ εi ρi = ρiτ
ε
i+1 and τ εi+1ρi = σ−ερ̄σετ εi .

τ εi+1ρ̄i = ρ̄iτ
ε
i and τ εi ρ̄i = σ−ερσετ εi+1

Figure 21: From left to right: σ, ρ, τ

4.4 Groups Conjugate to Wn

Now that we have a group of stabilizers for the first tangle of each of our
triplane diagrams, we are interested in finding the stabilizers for the second
tangle. Since tangles fixed by Wn as well as tangles of the form below appear
not just in (2, 1) diagrams, but (n, 1) diagrams in general, we want to present
this group in general before returning to the 2−bridge case.
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Recall that any n−bridge tangle b can be written as an0 δ where an0 is the
n−bridge trivial tangle (the tangle fixed by Wn) and δ ∈ B2n. Then stabilizer
groups of any tangle may be related to Wn by conjugacy.

In particular, we call the stabilizer group of the n−bridge tangle shown
above W∞n . Let’s call this tangle an∞. Since an∞ = an0 s2s3 · · · sn−1, W∞n =
s̄n−1s̄n−2 · · · s̄2Wns2s3 · · · sn−1. Essentially, a braid of this form sends an∞ to
an0 , fixes an0 , then changes it back to an∞.

Returning to the 2−bridge case, we have some additional examples of this
which will be used later:

LetW∞2 be the stabilizer group of a∞. Since a∞ = a0s2s3, W∞2 = s̄3s̄2W2s2s3.
Let W+

2 be the stabilizer group of a+. Since a+ = a0s3, W+
2 = s̄3W2s3.

Finally, let W−2 be the stabilizer group of a−. Since a− = a0s̄3, W−2 =
s3W2s̄3.

4.5 The intersection group – In

Now that we have the stabilizer groups of a0 and a∞, we can find the stabi-
lizer group of all (2, 1) triplane diagrams (see the beginning of section 5 for an
explanation of braid group action on triplane diagrams).

Definition 40. Let In = Wn ∩W∞n

I2 = 〈τ1τ̄2, ρ, στ21 〉

We claim that this set of elements in I2 is generating, which we will prove
using the following lemmas. For now, it can be verified that these elements of
W2 are in I2 by showing pictorially that they preserve a∞.

The lemmas that follow present 2 useful facts about I2, both of which will
be used in our proof in section 5.

Definition 41. We call w ∈Wn twist if wτ
kj
j ∈ In for 1 ≤ j ≤ n and k ∈ Z.

Lemma 2. w ∈Wn is twist if and only if w = iτ
kj
j where i ∈ In.

Proof. ⇒: If wτ
kj
j ∈ In, then w = wτ

kj
j τ
−kj
j = iτ

−kj
j .

⇐: If w = iτ
kj
j , then wτ

−kj
j ∈ In and w is therefore twist.

Lemma 3. All w ∈W2 are twist.

Proof. Let w ∈ W2. Using the wicket group relations to push any τ ’s to the
right hand side, we may assume w = w′τk1 τ

l
2 where w′ is a word in σ and ρ. We

begin by looking at the letters of w′ from left to right. Since ρ ∈ I2, we can
assume the first letter is σ. Now, στ21 ∈ I2 and στ22 ∈ I2, so we can insert either
the canceling pair τ21 τ̄

2
1 or τ22 τ̄

2
2 . However, when we try to push our extra τ ’s

to the right (and in particular, past the first ρ appearing in w′), we may add
additional σ’s in front of the first ρ, which means our process will never end.
We therefore want to choose our canceling pairs so that, by the time each τ is
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immediately to the left of the first ρ, its index is one (or two if it’s ρ̄) instead of
ρ. We can then move all of these τ ’s to the end of w. One can see that it really
doesn’t matter how many σ’s are between each ρ, as long as we can “get past”
the first ρ. Even if that involves adding 100 more σ’s in front of the next one,
we know our process will eventually terminate because eventually there will be
no ρ’s left.

More formally, let w′ = σkρε · · · where ε = ±1.
If k is even and ε = 1, or if k is odd and ε = −1, we write w′ = στ22 τ

−2
2 σk−1ρε · · · .

If k is odd and ε = 1 or if k is even and ε = −1, we write w′ = στ21 τ
−2
1 σk−1ρε · · · .

Doing this for every σ, we obtain w′ = (
∏k
k=1 στ

2
i )ρετ−2kj · · · where i = 1

when k is even and ε = −1 or k is odd and ε = 1 and i = 2 when k is even and
ε = 1 or k is odd and ε = −1 and j = 1 when ε = −1 and j = 2 when ε = 1.

Since (
∏k
k=1 στ

2
i )ρε ∈ I2, we now have w′ = iτ−2kj · · · . We push τ−2kj to the

end of w′, possibly adding additional σ’s, but not ρ’s. We can then look further
along the letters of w′ until we see the next ρ, at which point this process can
be repeated.

Theorem 16. I2 is generated by τ1τ̄2, ρ, and στ21 .

Proof. Let w ∈W2. By our lemma 4.4, we have that w = iτk1 τ
l
2. Since τ1τ̄2 ∈ I2,

we have w = i′τk+l1 .
It remains to be shown that τk+l 6∈ I2 unless k + l = 0. We do this by

showing that â∞τ
k+l
1 6= â∞ unless k + l = 0.

If â∞τ
k+l
1 = â∞, then â∞τ

k+l
1 ǎ∞ is an unlink of two components (see figure

22). We first note that if k + l is odd, â∞τ
k+l
1 ǎ∞ is a knot, so we may assume

k + l is even. Next, we see that the linking number of â∞τ
k+l
1 ǎ∞ is precisely

−(l+k)/2 (our conventions regarding τi and si are some confusing, as τi = s̄2i−1)
. Since the unlink of 2 components has linking number 0, â∞τ

k+l
1 ǎ∞ is an unlink

of two components exactly when l + k = 0.

-(k+l)

Figure 22: â∞τ
k+l
1 ǎ∞
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Lemma 4. I2 ⊂W+
2 and I2 ⊂W−2 .

Proof. To see this, we simply note that the generators of I2 all fix a+ and
a−.

We now take a brief detour to obtain some classification results from our
generating set for I2.

4.6 Classification of 2−bridge tangles with closures to the
unknot

The generators of I2 give a complete list of 2−bridge tangles whose unions with
both ǎ0 and ǎ∞ are the unknot (see figure 23).

Figure 23: If α ∈ I2, both of these knots are the unknot

Furthermore, given a braid α′ whose plat and shifted plat closures (see figure
24) are both the unknot, one can change this closed braid into one of the closed
tangles in figure 23. Thus, we also have a list of all braids whose plat closure
and shifted plat closure are the unknot.

4.7 Closures of braids

A braid α can be closed by connecting the loose ends at the top and bottom
in various ways to give a knot or a link. In particular, the closure obtained
by connecting the adjacent strands at the top and bottom is known as the plat
closure of α. With the notation introduced in subsection 4.2, we may write the
plat closure of a 4−stranded braid α as â0αǎ0.

Theorem 17. [Taw08] Given a knot or link L, there exists a (non-unique)
2n−stranded braid α such that the plat closure of α is L.

This follows from the fact that any knot or link can be put in bridge position.
We can now use our new notation to generalize this theorem to closures by

arbitrary tangles, which we do in the following corollary.
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Figure 24: Plat closure and shifted plat closure of α′

Corollary 18. Given a knot or link L, there exists a (non-unique) 2n−stranded

braid α such that b̂1αb̌2 is L and b1 and b2 are two n−bridge tangles.

Proof. We have that L = â0αǎ0. By inserting canceling pairs of braids and
using transitivity of braid group action on tangles, we obtain L = â0δδ̄αδ̄

′δ′ǎ0
such that â0δ = b̂ and δ′ǎ0 = b̌2. Thus we have L = b̂1α

′b̌2 and the proof is
complete.

As a further consequence of Theorem 2.4, we can now present the following
lemma about braid closures to the unknot.

Lemma 5. If t0 and t1 are two n−bridge tangles such that t̂0ť1 is the unknot
and α is a 2n−stranded braid such that t̂0αť1 is the unknot, then α = β0β1
where β0 and β1 are stabilizers of t0 and t1 respectively.

Proof. We suppose t̂0αť1 is the unknot and take an arbitrary bridge splitting.
By Theorem 2.4, our bridge splitting is equivalent to t̂0ť1 via tangle isotopies
and bridge sphere braiding. Thus, there exists a braid γ ∈ B2n such that t̂0αγ
is isotopic to t̂0 and γ̄ť1 is isotopic to ť1.

Then γ̄ is a stabilizer of ť1 (and hence γ is a stabilizer of t̂1 via a horizontal
reflection) and αγ is a stabilizer of t̂0. This implies that γ = β1 and αγ = β0
and therefore that α = β0β̄1, which is what we wanted to show.

We now have all the tools we need to present our main result.

5 Classification of (2, 1) triplane diagrams

Theorem 19. All surfaces that give a (2,1) triplane diagram are unknotted
embeddings of either RP 2

+ or RP 2
−.
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Proof. Let P be the triplane diagram of RP 2
+. Since B4 acts transitively on

2− bridge tangles, it also acts transitively on 2−bridge triplane diagrams.
Let Pα be the triplane diagram resulting from the action of α ∈ B4 on P . As

with bridge splittings of classical knots, we may assume that all the complexity
is contained in the final tangle (see figure 26). Our proof amounts to showing
that if Pα is another (2,1) diagram, then Pα is the diagram of either RP 2

+ or
RP 2
−

Figure 25: P

Figure 26: Pα

Let β0 ∈W2, β∞ ∈W∞2 , and β+ ∈W+
2

Let α be a braid such that Pα is another (2, 1) diagram. Then the pairwise
unions of the tangles in Pα are unknots.

Figure 27: The pairwise unions of the tangles in Pα.

Since â+αǎ∞ is the unknot, lemma 4.9 implies that α = β+
1 β
∞
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Since â0ᾱǎ+ is the unknot, so is it’s reflection â+αǎ0, so we further have
that α = β+

2 β
0 = β+

1 β
∞
2 .

Since β+
2 β

0 = β+
1 β
∞

β̄+
1 β

+
2 = β∞β̄0

So â∞β̄
+
1 β

+
2 ǎ0 is the unknot.

Since β̄+
1 β

+
2 ∈W

+
2 , β̄+

1 β
+
2 = s̄2w

0s2 for w0 ∈W2

By Lemma 4.4, we can write β̄+
1 β

+
2 = s̄2iτ

k
1 s2

Thus, â∞s̄2iτ
k
1 s2ǎ0 is the unknot.

i

k-

Figure 28: â∞s̄2iτ
k
1 s2ǎ0

If k is odd, â∞s̄2iτ
k
1 s2ǎ0 is a link of > 1 components, so we know k must be

even.
Since s̄2i fixes â∞, we see by an isotopy that the resulting knot is a torus

knot with −k − 1 crossings (see figure 29). Since the resulting diagram will be
alternating (possibly after eliminating the first crossing at the top), we know
that it is a minimal-crossing diagram for the resulting knot. Therefore, it is the
unknot exactly when the number of crossings is < 3. This happens when k = 0
or k = −2. The argument then breaks down into handling each of these cases.

Case 1: k = 0 If k = 0, β̄+
1 β

+
2 = s̄2is2, which fixes â∞. So β̄+

1 β
+
2 ∈W∞2 .

Therefore, β̄∞β̄+
1 β

+
2 ∈W∞2 . But then β̄0 ∈W∞2 , and is thus in I2.

Since β0 ∈ I2 and α = β+
2 β

0, α ∈W+
2 by lemma 4.6, and we may conclude

that Pα = P .
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k- k-i

k-

Figure 29: Simplifying the resulting knot

i

Figure 30: Simplifying s̄2iτ
−2
1 s2ǎ0

Case 2: k = −2 If k = −2, we can see geometrically (see figure 30 and recall
that I2 ⊂W−2 ) that s̄2iτ

k
1 s2ǎ0 = s̄22ǎ0, so β̄+

1 β
+
2 = s̄22w

0 for some w0 ∈W2.

So
s̄22 = β∞(β̄0w̄0),

and
1 = (s22β

∞)(β̄0w̄0).

Since s22 ∈ W∞2 , β̄0w̄0 ∈ W2, and 1 ∈ W2, we have that s22β
∞ ∈ W2 and

thus that s22β
∞ ∈ I2.

So
s22β
∞ = j for some j ∈ I2

.
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Then
β∞ = s̄22j

and we have
α = β+

1 s̄
2
2j

Since â+s
2
2 = â−, j fixes â−, and P is the triplane diagram of RP 2

+, we
conclude that Pα is the triplane diagram of RP 2

−

Thus, we have shown that, if Pα is a (2,1) diagram, then Pα is the diagram
associated to an unknotted embedding of either RP 2

+ or RP 2
−. It follows that

all (2,1) triplane diagrams represent unknotted surfaces.

6 Remarks

It has been previously established that all (b, n) triplane diagrams with b ≤ 3
represent unknotted surfaces, and that all (b, 1) triplane diagrams represent
topologically unknotted surfaces. A number of difficulties arise when applying
these algebraic techniques to the classification of (3, 1) diagrams. In particular,
most elements of W3 are not twist. Consequently, we do not have a convenient
normal form for writing elements of W3 as we did in the 2−bridge case. How-
ever, a successful application of this style of argument to higher-bridge triplane
diagrams may give an explanation as to why not all (4, 1) diagrams represent
smoothly unknotted surfaces.
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Degree 2 covers of the regular octagon

and double pentagon translation

surfaces
Zachary Wampler

1 Introduction

Many properties of translation surfaces have been discovered by investigating
their SL(2,R)-orbit closures. The translation surfaces of a genus g which have
closed SL(2,R) orbit, called Veech surfaces, have especially nice properties. In
this paper, we compute the SL(2,R)-orbits of degree 2 covers of two Veech
surfaces: the regular octagon and double pentagon translation surfaces, X8 and
X5.

2 Translation surfaces

Here, we define a few types of surfaces which will help us analyze X8 and X5.1

Definition 42. A Euclidean cone is a space obtained by cyclically gluing to-
gether a finite number of sectors. The cone angle is the sum of the angles of
the sectors in the gluing construction. The cone point is the image of the origin
under the gluing.

For example, if we glue together three quadrants of R2, each of these being
a sector of angle π/2, we get a Euclidean cone with cone angle 3π/2.

Definition 43. A Euclidean cone surface is a compact, oriented surface X such
that

(i) Every point x ∈ X has a neighborhood which is isometric to a neighbor-
hood of the cone point in a Euclidean cone

(ii) All but finitely many points have neighborhoods which are isometric to
the Euclidean plane

Definition 44. A translation surface is a collection of polygons with pairs of
parallel edges identified in such a way that the identifications are restrictions of
translations, every edge is identified with exactly one other edge, and when two
edges are identified, their normal vectors point in opposite directions.

1The first two definitions here are taken from [1].
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It follows that a translation surface is a Euclidean cone surface with a finite
number of cone points, all of whose cone angles are integer multiples of 2π.

2.1 The regular octagon surface

Let X8 denote the translation surface obtained by gluing together opposite sides
of a regular octagon.

By following the edge identifications, we see that the resulting surface has a
single cone point with cone angle 6π. Using the formula 2 − 2g = V − E + F ,
where g is the genus of the surface, V the number of vertices, E the number of
edges, and F the number of faces, we can determine the genus of X8:

2− 2g = 1− 4 + 1

⇔ g = 2

2.2 The double pentagon

For odd n, there is a family of ”double n-gon” translation surfaces, each of these
consisting of a pair of regular n-gons with a single edge of the first glued to a
single edge of the second. The double 5-gon, X5, like the octogaon, is a genus
2 translation surface with a single cone point with cone angle 6π. To determine
what distinguises X5 from X8, we will take a look at their images under certain
transformations.

3 The Veech group

Definition 45. An affine automorphism of a translation surface X is a home-
omorphism φ : X → X such that
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(i) φ permutes the nontrivial cone points of X
(ii) Every ordinary point of X has a neighborhood in which φ is an affine

map

The group of all affine automorphisms of a surface X is denoted by Aff(X).
Of particular interest is the subgroup which preserves orientation, denoted by
Aff+(X).

Definition 46. The Veech group of a translation surface X, denoted by Γ(X),
consists of derivatives of affine automorphisms of the surface.

The Veech groups Γ(X8) and Γ(X5) were identified by Veech in his original
paper. They are the subgroups of SL(2,R) generated by the matrices

Rn =

(
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

)
and

Tn =

(
1 λn
0 1

)
where λn = 2 cot(π/n), and n = 8 or 5.

The transformation represented by Rn is a counter-clockwise rotation by
angle 2π/n, while Tn corresponds to a horizontal shear, in this context often
referred to as a Dehn twist. On a regular n-gon translation surface where n is
even, the rotation is applied in the obvious way to the polygon in the gluing
construction. On a double n-gon surface, such as X5, the rotation is applied to
each n-gon individually.

The affine automorphism AT with derivative Tn is a less obvious transfor-
mation of the surface. On the polygon, Tn fixes a set of parallel lines joining its
vertices. These lines partition the surface into cylinders, i.e. rectangles whose 2
horizontal boundary components are distinct but whose vertical boundary com-
ponents are identified. Such a partition of a translation surface is known as a
cylinder decomposition.

To illustrate, take X8 and consider the cylinder decomposition indicated in
the figure. Let P be the polygon from which X8 is constructed, and let 1

c be
the distance from the center of P one of its vertices. Let hi and wi denote the
height and width, respectively, of cylinder I. Then some simple trigonometry
gives us

h1 = c · (1−
√

2

2
)

h2 = c · (
√

2

2
)

w1 = c · (
√

2)

w2 = c · (2 +
√

2)
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Figure 1: cylinder decomposition of the regular octagon

This lets us compute the modulus of each cylinder, which is the ratio of a
cylinder’s height to its width, or equivalently, the inverse modulus:

w1

h1
=
w2

h2
= 2 + 2

√
2 = 2 cot

π

8

For a surface to have a cylinder decomposition such that each cylinder has the
same modulus is quite rare, but every regular n-gon translation surface has such
a decomposition.2

The transformation AT maps the cylinder I to R2 so that its vertices map
to vectors (

0
0

)
,

(
w1

0

)
,

(
0
h1

)
,

(
w1

h1

)
The linear part of AT , represented by the matrix T8, acts on the cylinder as

indicated in the figure. Since the shear preserves area, the image of cylinder I
can be cut, reglued, then mapped back to the surface.

The transformation acts similarly on cylinder II, twisting vertical segments
within the cylinder once around horizontally.

4 SL(2,R)-orbits

This secion assumes familiarity with some fundamental results in algebraic
topology. The relevant definitions and theorems are included in the appendix.

The group SL(2,R) acts on the space of translation surfaces in the following
way. Let (X,ω) be a translation surface, and let A ∈ SL(2,R). Let A ·ω denote

2For a nice trigonometric proof of this, see [4]
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Figure 2: the twist applied to cylinder I
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the atlas obtained by mapping each chart (Uφ, φ) to the chart (UA◦φ, A ◦ φ).
This defines a group action of SL(2,R) on the set of translation surfaces.

For a regular n-gon translation surfaceXn, it can be shown that the stabilizer
of Xn is precisely the Veech group Γ(Xn).3 This allows us to compute the orbits
SL(2,R)/Γ(Xn) explicitly.

4.1 The orbits of degree 2 covers of X8

Let Y1 and Y2 be degree 2 coverings of X8 with covering maps p1 and p2, and
let f ∈ Γ(X8). It can be shown that f ◦ p lifts to an affine automorphism of
Y1 with Y2 if and only if f∗(p1∗(π1(Y1))) = (p2∗(π1(Y ))). This means that two
coverings Y1 and Y2 are equivalent if and only if the images of their fundamental
groups lie in the same orbit under the induced group homomorphisms g∗, where
g ∈ Γ(X8).

For degree 2 coverings, the images of fundamental groups are kernels of
homomorphisms from π1(X8) onto Z/(2). Since these homomorphisms fac-
tor through the fundamental group’s abelianization H1(X8), we can determine
these orbits by examining the induced action of Γ(X8) on the first cohomology
H1(X8,Z/(2)) = Hom(H1(X8),Z/(2)).

The explicit correspondence is this: let Y1 and Y2 be degree 2 coverings
of X8, let Ki = pi∗(π1(Yi)), such that Ki is the kernel of a group homomor-
phism φi : H1(X8)→ Z/(2). Then there is some f ∈ Γ(X8) so that f∗(φ1) = φ2.

SinceH1(X8) is isomorphic to Z4, we will compute the orbits of φ ∈ H1(X8,Z/(2))
by representing the generators R8 and T8 of Γ(X8) as integer matrices R∗ and
T ∗, then applying these to each nonzero element v ∈ Z4. 4 The resulting
triples (v,R∗(v), T ∗(v)) can then be used to construct a graph whose connected
components will correspond to the orbits.

4.2 The matrices R∗ and T ∗

To construct R∗ and T ∗, we let x ∈ X8 be the sole cone point, and choose as
a basis of H1(X8, x) the images of 4 loops corresponding to 4 adjacent directed
edges of the octagon v1, v2, v3, v4 so that the head of vi is the tail of vi+1. The
remaining edges then correspond to the inverses −v1,−v2,−v3,−v4.

The rotation maps vi to vi+1 for i = 1, 2, 3, and v4 is mapped to −v1. If we
represent v1, ..., v4 as the standard basis vectors in Z4, then R is given by the
matrix

3See [3]
4These are actually elements of the module dual to H1(X8,Z/(2)), but computing these

orbits will still give us the equivalence classes we want.
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R∗ =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


The matrix T ∗ is somewhat more difficult to construct. Using the indicated

cylinder decomposition, v2 and v3 are contained in cylinder I, while v1 and v4
are contained in cylinder II.

The tail of the vector −v3 is fixed by the twist, and its head travels once
around the cylinder. In terms of our basis, the image of −v3 is −v3 − v2 −
v3 = −v2, so that v3 7→ v2. The images of the remaining vectors are found
analogously, resulting in the matrix

T ∗ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


By applying these two matrices to the fifteen nonzero elements of Z/(2)4,

we construct a graph with 15 vertices. The vertices are labelled 1, ..., 15, each
representing an element of Z/(2)4 interpreted as a 4-digit binary number.

The vertices contained within a circle here correspond to orbits under the
action of the rotation. Traveling clockwise around the circle corresponds to an
application of R∗. A line segment joining two vertices corresponds to applying
T ∗. Isolated vertices within a circle correspond to vectors stabilized by the
twist, i.e. eigenvectors of T ∗ with eigenvalue 1.
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This graph gives us the 5 equivalence classes of degree 2 covers of X8. In
particular, there is a single degree 2 cover whose orbit contains no other cover.
Since the Veech group of this cover Y is the stabilizer subgroup of of Γ(X8), we
have that Γ(Y ) = Γ(X8). This agrees with a theorem of Hubert and Schmidt
[5] which says that every regular 2n-gon X2n has a degree 2 cover X2n,2 which
is a double 2n-gon whose Veech group is the same as that of X2n.

4.3 Orbits of degree 2 covers of X5

Applying the same method to the double pentagon surface, we can construct
matrices R∗ and T ∗ to obtain another graph with 15 vertices whose connected
components correspond to affine equivalence classes of degree 2 covers of X5.

Each of the pentagons here corresponds to an orbit of the rotation, and again,
traveling clockwise around the pentagon corresponds to applying the rotation.
A line segment joining two vertices within a pentagon corresponds to applying
the twist.

That there are 3 orbits here agrees with the results of Finster [3], who has
computed the orbits of degree d covers of X5 for d = 2, ..., 5. But this and other
properties of this group action are actually easy to infer without constructing
the graph. Instead, we examine the rotation matrix:

R∗ =


0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1


It is clear that the orbit of the first standard basis vector under this matrix will
consist of the ramaining standard basis vectors and the vector (1, 1, 1, 1). This
implies that the vectors (1, 1, 0, 0) and (1, 0, 1, 0) will also have orbits of order
5, and that these will be distinct.

5 Other double-n-gon translation surfaces

We conclude with a conjecture which generalizes the discussion of the previous
section. Using the same method, we construct the matrices R∗ and T ∗ for the
double-n-gon translation surfaces where n = 7 and n = 9. In each case, the
matrices are of the following form:
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R∗ =


0 . . . . . . 0 1
1 0 . . . 0 1

0
. . . 0 0 1

0 . . . 0 1 1



T ∗ =


0 . . . 0 1
... . .

.
0

0 . .
. ...

1 0 . . . 0


Conjecture 20. Let Xn be a double-n-gon translation surface, n odd. Let Y
be a degree 2 cover of Xn. Then Γ(Xn) 6= Γ(Y ).5

6 Appendix

6.1 Algebraic topology

All definitions here can be found in [2]

Definition 47. Let X be a topological space with x ∈ X. The fundamental
group π1(X,x) is defined to be the set of homotopic loops in X with basepoint
x, with the following multiplication: for two equivalence classes [f ], [g], define
[f ] · [g] by [f · g], where f and g are representatives of [f ] and [g], and f · g is
given by

f · g(t) = g(2t), for t ∈ [0, 1/2]

and
f · g(t) = f(2t), for t ∈ [1/2, 1]

Definition 48. Let X,Y be topological spaces and let f : Y → X be a con-
tinuous surjective map. An open set U ⊂ X is evenly covered by f if f−1(U)
consists of a countable union of disjoint open sets Vα such that f(Vα) is a home-
omorphism of Vα onto U .

Definition 49. A covering space of a topological space X is a space Y to-
gether with a continuous map p : Y → X such that every point x0 ∈ X has a
neightborhood which is evenly covered by p.

Definition 50. Let X,Y be topological spaces and let Y be path-connected and
locally path-connected. Let C be a covering space with covering map p : C → X.
Let f : Y → X be a continuous map. A lift of f is a continuous map f ′ : Y → C
such that p ◦ f ′ = f .

5This may be known already, but I couldn’t find it in the literature.
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Theorem 21. Let X,Y be topological spaces and let Y be path-connected and
locally path-connected. Let C be a covering space with covering map p : C → X.
Let f : Y → X be a continuous map, and let f(y0) = p(c0) = x0 for y0 ∈ Y, c0 ∈
C, x0 ∈ X. Then there exists a unique lift f ′ : X → C such that f ′(y0) = c0 if
and only if

f∗(π1(Y, y0)) ⊂ p∗(π1(C, c0))

Theorem 22. Let p : E → B be a covering map; let E be path connected; let
p(e0) = b0. Then

• (a) p∗ : π1(E, e0)→ π1(B, b0) is injective.

• (b) There is a bijection

φ : π1(B, b0)/H → p−1(b0),

where H = p∗(π(E, e0)) and π(B − b0)/H is the collection of right cosets
of H in π1(B, b0).

Corollary 23. Let f : X → X be an automorphism of a path-connected and
locally path-connected space X, and let Y be a covering space of X. Then f lifts
to an automorphism of Y if and only if f∗(p∗(π1(Y, y0))) ⊂ p∗(π1(Y, y0)).

This implies that an element f ∈ Γ(X) lifts to an element of Γ(Y ) if and
only if f∗ ∈ Stab(p∗(π1(Y, y0))).

Theorem 24. The fundamental group of a compact orientable surface of genus
2 is isomorphic to the group

< a, b, c, d | abcda−1b−1c−1d−1 = 1 >

Theorem 25. A compact, orientable surface of genus 2 has exactly 15 degree
2 covers.

Proof. (Sketch). Let G = π1(X,x0) be the fundamental group of a genus 2
surface, and let g1, g2, g3, g4 be generators of G. Define a map φ : G → Z/(2)
by setting φ(gi) = 0 or φ(gi) = 1 for i = 1, 2, 3, 4. Then φ can be extended to a
group homomorphism in the obvious way. To verify that φ is a homomorphism,
we need only check that the relator

g1g2g3g4g
−1
1 g−12 g−13 g−14

is mapped to the identity:

φ(g1g2g3g4g
−1
1 g−12 g3−1g−14 )

= φ(g1)φ(g2)φ(g3)φ(g4)φ(g1)−1φ(g2)−1φ(g3)−1φ(g4)−1

= φ(g1)φ(g1)−1φ(g2)φ(g2)−1φ(g3)φ(g3)−1φ(g4)φ(g4)−1 = 0

All but one of these 16 maps is surjective, so the kernels are exactly the 15
index 2 subgroups of G.
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6.2 Miscellanious Proofs

Theorem 26. If n is odd then the regular 2n-gon translation surface has 2 cone
points.

Proof. Recall that this surface is constructed by identifying parallel edges. If
we cyclically order the 2n vertices v1, ..., v2n, then such an identification maps
the edge vi−1vi to vk−1vk, where k = i+ n mod 2n. Note that the vertex with
index i is mapped to that of index i+n−1 mod 2n. This means we can find all
vertices identified with vi by finding the orbit of an arbitrary element i ∈ Z/(2n)
under repeated addition by n− 1. But since n is not divisible by 2, n(n− 1) is
divisible by both 2 and n, hence it is congruent to 0 mod 2n. Since the order
of i under this action must divide 2n and since the order is not 2, the order is
exactly n, so there are n elements in the orbit of i. This means that there are
2 sets of vertices of the 2n-gon corresponding to 2 distinct points in the surface
obtained.
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