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Preface

During the summer of 2014 ten students participated in the Research Experi-
ences for Undergraduates program in Mathematics at Indiana University. The
program ran for eight weeks, from June 7 through July 31, 2014. Eight faculty
served as research advisers:

e Chris Connell worked with Eamon Quinlan Gallego (U. Glasgow)
e Michael Jolly worked with Zachary Helbert (East Tennessee State U.)

e Chris Judge worked with Kathryn Marsh (Purdue U.) and Elizabeth
Winkelman (U. of Rochester)

e Matvei Libine worked with Lyndee Govert (Indiana U. North) and Surya
Raghavendran (U. Texas)

o Gerardo Ortiz (Physics) worked with John Gardiner (Brigham Young U.)

e Amr Sabry (Informatics and Computing) worked with Richard Wong
(Rutgers U.)

e James Townsend (Psychological and Brain Sciences) worked with Aleina
Wachtel (Harvey Mudd College).

e Bryce Weaver worked with Aleksandra Niepla (Rutgers U.)

Following the introductory pizza party, students began meeting with their
faculty mentors and continued to do so throughout the next eight weeks. The
students also participated in a number of social events and educational oppor-
tunities and field trips.

Individual faculty gave talks throughout the program on their research,
about two a week. Students also received LaTeX training from grad student
Anne Carter in a series of workshops. Students also were given the opportunity
to opt into a GRE and subject test preparation seminar. Other educational ac-
tivities inclued tours of the library, Slocum puzzle collection at the Lilly Library
and the IU cyclotron facility, and self guided tours of the art museum. Students
presented their work to faculty mentors and their peers at various times. This
culminated in their presentations both in poster form and in talks at the Sum-
mer Undergraduate Research conference which took place at the ITUPUI campus
in Indianapolis.

On the lighter side, students were treated to a reception by the graduate
school as well as a fun filled trip to a local amusement park. They were also
given the opportunity to enjoy a night of “laser tag” courtesy of Prof. Elizabeth
Housworth.

The summer REU program required the help and support of many differ-
ent groups and individuals to make it a success. We foremost thank the Na-
tional Science Foundation for major financial support through the REU program
through NSF grant DMS-1156515. Additional logistical support was provided



by the Department of Mathematics and our chair, Elizabeth Housworth. Kevin
Pilgrim’s guidance as the previous REU coordinator and PI was invaluable as
was the assistance of co-PI Larry Moss. We thank the staff of the Department
of Mathematics for their assistance, including Jeff Taylor and Zeke Henline
for computer support, and most especially Mandie McCarty for coordinating
the complex logistical arrangments (housing, paychecks, information packets,
meal plans, frequent shopping for snacks). We thank Indiana graduate stu-
dent Anne Carter for serving as our LaTeX consultant and for compiling this
volume. Thanks to those faculty who served as mentors and those who gave
lectures. Thanks to David Baxter of the Center for Exploration of Energy and
Matter (nee IU cyclotron facility) for his personal tour of the cyclotron facil-
ity and lecture. Thanks to Andrew Rhoda for his tour of the Slocum puzzle
collection.

Chris Connell
September, 2014



Figure 1: REU Participants, Row one (from left to right): Elizabeth Winkelman,
Lyndee Govert, Aleina Wachtel, Kathryn Marsh, Aleksandra Niepla. Row two:
John Gardiner, Richard Wong, Surya Raghavendran, Zachary Helbert, Eamon
Quinlan Gallego, Chris Connell (coordinator).



Notes on Quantum Mechanics over a
Finite Field

John Gardiner

Abstract

In the usual formulation of quantum mechanics the state of a system
is described as a vector over the complex numbers. Replacing the field of
complex numbers with a field of positive characteristic results in a family
of toy theories with novel properties, which we call finite field quantum
mechanics (FFQ). This work contains a discussion of some salient features
of FFQ in particular with a focus on the meaning and structure of entan-
glement. On the study the structure of entanglement in FFQ we provide
some preliminary results and highlight questions for further study.

1 Introduction

In the usual formulation of quantum mechanics the state of a system is described
as a vector over the complex numbers. Various toy theories have been proposed
that replace the field of complex numbers with other algebraic structures in-
cluding the real numbers [10], the quaternions [3], and the subject of this work
finite fields [9, 5].

One motivation for studying quantum mechanics over a finite field is related
to some potential conceptual difficulties raised by the complex numbers [5]. Not
all complex numbers are computable with finite resources. For nature to make
fundamental use of complex numbers might seem incompatible with the premise
that the universe is in some way a large computer. On the other hand, fields
of positive characteristic are finite, making them attractive from a computa-
tional standpoint, yet they still have the same kind of algebraic structure as the
complex numbers. Simply replacing complex numbers with finite field elements
results in a toy theory with properties analogous to ordinary quantum theory.
Different choices of finite field result in different theories. We call this family of
toy theories finite field quantum mechanics (FFQ).

In this work only finite fields F,> where p = 3mod4 are considered. The
fields F,, where p = 3mod 4 are exactly those finite fields where 22 + 1 has no
root. Where i is a root of #2 + 1 we can adjoin i to the field F,. The resulting
field is isomorphic to F,> and has a sense of complex number. The map a — o
is analogous to complex conjugation and we write a* = oP. For vectors of finite
dimension d, the conjugate transpose is defined in the natural way giving us the
notion of dual vector (¢| for every vector |¢) € FgQ as well as unitary operators.
For a review of the arithmetic of vectors over “complexified" finite fields see [5].



Among the first immediately noticeable features is that the Hermition dot
product, the map from IFZQ ><IF§2 to Fp2 given by ([¥) , |¢)) — (¢|1), is no longer
an inner product as there are zero norm vectors other than the zero vector, i.e.
vectors ) # 0 such that (¢|¢p) = 0. Also, without an ordering on the field
elements the map from vectors to I, given by |¢)) — (¢[¢)) is neither a norm
nor a seminorm. Many other familiar properties such as (|¢) = 1 = [¢) = |¢)
no longer hold. From the outset FFQ is seen to be very different from ordinary
quantum mechanics.

So it is an abuse of terminology and notation, but throughout this work
a*a = aP™! will be referred to as the norm of a and will be notated |a|2. In
a similar abuse of terminology (¢|¢)) will be referred to as the inner product of
[1) and |¢), and (1h|)* T will be called the norm of |t)).

In ordinary quantum theory the Born rule gives a physical meaning to the
state vectors. Given a state |1)), a measurement of state |1)) will result in one of
some number of mutually exclusive outcomes. The probability that an outcome
corresponding to a (normalized) state |¢) will occur is given by |(¢|¢)|*. Via the
Born rule the state vectors of ordinary quantum theory can be seen as holding
the information regarding outcomes of measurements. It is worth asking whether
the state vectors in FF(Q contain information about measurement outcomes.
When the Born rule is translated directly into the finite field framework the
quantity |(¢|)]* can no longer be interpreted as a probability as it is an element
of the field I, rather than a real number from 0 and 1. So to get a rule for
extracting probabilities from the state vectors the Born rule must be either
modified or replaced.

To be precise, we need a function that takes as input a state and an outcome
then gives as an output a probability, namely the probability of a measure-
ment on the input state resulting in that outcome. That is we seek a function
I ng X Iﬁ‘gz — [0, 1]. For the output of this new rule to truly be interpreted
as probabilities the rule f must satisfy certain properties. First, as the outputs
are probabilities they must satisfy a normalization requirement:

i.) For any orthonormal basis {|i)} and any state |¢)), Zf(h[)} L)) = 1.
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That is, the sum of probabilities for a complete set of mutual exclusive outcomes
must be 1. To motivate the next requirement consider the state « |0) + 5 |1) in
the Hilbert space spanned by |0) and |1). We can embed this Hilbert space in the
larger space spanned by |0), |1), ..., |n) and view our state in the larger Hilbert
space, i.e. view a|0)+51) as a|0) +F]1) +02) +- - - +0|n). The probabilities
corresponding to outcomes |0) and |1) should not depend on whether we are
viewing the state in the original two-dimensional Hilbert space or the larger
one. So, in light of property (i), the probabilities corresponding to outcomes
[2), ..., |n) should all be zero. This suggests the following necessary condition:

i) It (¢[w) = 0 then f(jv), |¢)) = 0.

The final property we require of a rule for deriving probabilities is that it be
basis independent:



iii.) f(U |¢),U ) = f(|¢),|v)) where U is any unitary.

In ordinary quantum theory, Gleason’s theorem shows that properties similar
to these are sufficient to uniquely identify the Born rule as the only consistent
rule for extracting probabilities from states. Considering this it should not
surprise us if properties (i), (ii), and (iii) constitute a serious constraint on the
form of f. In fact, we have the following no-go theorem:

Theorem 1.1 There is no map f: Fgg X ng — [0, 1] satisfying properties (i),
(ii), and (iii).

Proof Assume such a map f satisfying all three properties exists. Consider the
state

[¥) = a(|0) + 1) +12) +513))

where 3 € 2 is chosen so that |B|2 =p—1and a € Fy2 is a constant such
that |¢) is normalized. Let |¢) = |1) + |2) 4+ 3 |3). Note that |¢) is normalized.
We can write our original state [¢) as [¢) = «(]0) + |¢) ) The vectors |0) and
|¢) are orthonormal and so are part of some larger orthonormal basis. Thus by
properties (i) and (ii) we have

1= F(19),10)) + F([0),]0))- (1)

Let U be the unitary that simply permutes the orthonormal vectors |0) and |¢).
Note that [¢)) is invariant under U, so invoking property (iii) we have

FC1),10)) = F(U ), U0)) = f(1) 1))

This along with equation (1) gives

L= f(1).10)) + f(¥),10)),

F(99,10)) = 7(18).16)) = 5. )

For ¢ = 0,1,2 let V; be the unitary that simply permutes the basis vectors
|0) and |¢). Note that |¢) is invariant under V;. So again by property (iii) we
have

PO 1)) = £ (Vi l) i 0)) = F(19).10)) = &

for i = 0,1,2. These probability assignments are inconsistent with the require-
ment that the probabilities for orthogonal outcomes add up to 1. By property

()
L= F(10.10)) + (1), 1) + £(19,12)) + £(16).13))
b5+ F(19).13)



a clear contradiction. The assumption of a satisfactory map f is thus false. [
(It should be pointed out that the argument above explicitly uses states from a
Hilbert space of four dimensions or larger so does not hold if the largest Hilbert
space one can consider is only three-dimensionsal or smaller. But it does hold
in any universe that contains more than a single qubit.)

What are the implications of this theorem? Given a state, there is no way
of extracting probabilities from it that is independent of how we have written
the state, i.e. independent of our choice of basis in which to write the state and
independent of our choice of ambient Hilbert space in which to view the state.
This justifies ruling out FFQ as a quantum theory that describes reality.

Intuitively one might think that the lack of an order on the field elements is
the main obstacle to extracting probabiliities from FFQ, but the above result
shows that this is not the case. Even supplementing the field elements with an
ordering does not allow for a rule that satisfies the three properties above. And
any other scheme for extracting probabilities from quantum mechanics over a
finite field will violate one of the three properties above. In particular the
cardinal probability scheme of [5] first maps 2 to Z + iZ, forgetting the field
structure of the coefficients and thus disallowing most unitary transformations
(changes of basis) other than permutations.

2 Bell’s Theorem

The lack of a satisfactory way of assigning probabilities in FFQ has implications
for many other results from ordinary quantum theory. The violation of Bell’s
inequalities in ordinary quantum theory is an important example of the failure
of local realism as well as an example of entanglement as a resource. Bell’s
inequalities are, however, inequalities involving expectation values, and thus
probabilities. In FFQ, where there is no concept of probability, it is worth
asking whether Bell’s theorem holds and whether entanglement can be viewed
as a resource.

Of course, there are proofs of Bell’s theorem that do not involve inequalities
and we will consider this option in section 2.2. But it is instructive to first
consider the status of Bell’s inequalities in FFQ, as doing so will involve a
discussion of the concepts of measurement and observable that will establish a
way of talking about performing experiments in the FFQ framework and that
may also shed light on some assumptions of ordinary quantum theory.

2.1 Observables in FFQ

In ordinary quantum mechanics Hermitian operators are identified with observ-
ables. In FFQ this is problematic. Hermitian operators in FFQ are not in
general diagonalizable, and the eigenvalues of a Hermitian operator, when they
do exist, are necessarily elements of 2. As measurement results need not have
any algebraic structure, specifying that the results of measurements be eigen-
values of Hermitian operators, and thus field elements, does not make sense.



So in FFQ the usual identification of Hermitian operators and observables will
not work, and whatever principle replaces it should be one that refrains from
imposing an algebraic structure on the results of measurements. To elaborate,
in ordinary quantum theory measurable properties such as spin, momentum, or
position are always labeled with real numbers (sometimes with units) even when
the property has an algebraic structure different from the reals, or perhaps no
algebraic structure at all.

For instance position on a lattice with periodic boundary conditions has a
structure like that of the integers modulo some number of lattice points. But
in ordinary quantum theory these positions will necessarily be labeled with real
numbers (the eigenvalues of the observable corresponding to position) which
“forget" this periodic structure. Another example would be a quantum system
that could be in one of two configurations, say “on" or “oftf". In ordinary quantum
theory, an observable corresponding to the measurement of on-ness or off-ness
would have two real numbers as eigenvalues, one corresponding to on and the
other corresponding to off, even though the measurement results themselves, on
and off, can’t be added or multiplied like the real number eigenvalues which label
them. So identifying observables with Hermitian operators and measurement
values with eigenvalues of Hermitian operators imposes superfluous structure
on the set {on,off}.

Similarly, in FFQ if observables are to be identified with Hermitian operators
then the algebraic structure of the eigenvalues will be imposed on the measure-
ment values. In this case the eigenvalues are field elements so the field structure
will be imposed on any measurable property. This causes serious difficulties.
Take again the example of position on a lattice with periodic boundary condi-
tions. Suppose the number of points along a dimension of the lattice happens to
be relatively prime to the field characteristic p. Then arithmetic involving posi-
tion will lead to inconsistencies. So again, the usual identification of Hermitian
operators and observables leads to difficulties in FFQ.

What then should observables in FFQ look like? One path to avoiding
the problems outlined above would be to replace the eigenvalues of Hermitian
operators with formal values that have no algebraic structure. The significance
of the stipulation that the results of measurements in ordinary quantum theory
be real numbers is that real numbers are invariant under conjugation. One can
generalize this picture by replacing the real number eigenvalues of observables
with formal objects that have the single property that they are invariant under
conjugation. We then write observables as formal sums of progection operators.
For example consider an observable with orthonormal eigenstates |¢1), |p2),. ..,
|¢n) and the formal values xy, %a,..., @, as the corresponding measurement
values. This observable would be written as the formal sum

0= Z% |pi) (il -

As long as we stipulate 7 = x; this operator is Hermitian. From this form of



the observable one can calculate formal expectation values:
(W|Ol) = (¥ (Z i 16:) <¢>z-> ) =D wil(gilw)[*.

Considering observables this way allows us to remain agnostic as to the algebraic
structure of measurement values, i.e. whether the results of measurements are
field elements, real numbers, or anything else. And this in turn allows us to cre-
ate observables for any property we can measure. We can translate observables
from ordinary quantum mechanics, like spin operators, into FFQ while avoiding
the question of how to label properties, like spins, with field elements.
Equipped with a way of constructing observables and expectation values
for spin one can translate the experiments like the thought experiments behind
Bell’s theorem into FFQ. In ordinary quantum theory, when the usual real values
(for instance i%h for spin % measurements) are plugged into the formal variables
we can compare the expectation values with inequalities. Bell’s inequalities can
be seen as a way of expressing certain constraints on the formal expectation
values. In the case of FFQ constraints on the formal expectation values can’t
take the form of inequalities, and so must be expressed in some other way.

2.2 GHZ experiment

As mentioned there are well-known proofs of Bell’s theorem that do not rely on
inequalities. The Greenberger—Horne—Zeilinger (GHZ) experiment, for instance,
provides just such a set up [6]. Briefly, the experiment is as follows. Three
experimenters share a specific three-qubit quantum state with one qubit given
to each experimenter. Each experimenter chooses one of two measurements to
perform on her qubit: measurement of spin along the x-axis or measurement
of spin along the y-axis. After each experimenter makes the measurement they
come together and compare results. This process of sharing a particular state,
making measurements, and comparing the results is repeated many times so
that a statistical analysis can be made.

Using the idea of observables as formal sums discussed above we can translate
the GHZ experiment into the FFQ framework. Let myp and mgown be formal
values representing the two possible outcomes of a spin measurement. Spin
along the z-axis is associated with the observable muy, [14) (12| +Mdown ) (x|
where |1,) is defined as a(|0) + |1)) and [l,) as «(]0) —|1)), « being a con-
stant for normalization. Spin along the y-axis is associated with the observable
Mup [Ty) (Tyl + Mdown [1y) (Jy| where [1,) is defined as a( |0) + |1>) and [l,)
as a(]0) —i|1)). After each of the three parties has made its measurement
they come together and compare results. They count how many of the three
measurements resulted in up. In particular they note whether the number of
spin up outcomes was odd (1 or 3) or even (0 or 2).

We can view this observation of either “odd" or “even" as a measurement
and can construct a corresponding observable. This observable will have the
formal eigenvalues moqq and Meyen. Let a, b, and ¢ be the axes (z or y) along
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which parties one, two, and three make their measurements respectively. The
vectors [LadoTe)s [daTode)s [Tadode), and [ToTpTe) form an orthonormal basis for
the eigenspace associated with mogq, while [ToTode)s [TadoTe), HaToTe), and
[4adbde) form an orthonormal basis for the eigenspace associated with meyen.
Our observable for the choice of axes a, b, and c is

Oabe =Modd ( [Ladste) (JaloTel + LaTole) (latolel
+ adode) Talode] + [Tatote) (Tatolel)
+ Meven ([TaTode) (TaTode] + [TaloTe) (Talstel
+ Hatote) Gatolel + Nadode) Ladodel )-

We can use these observables to calculate (formal) expectation values for the
measurements in the experiment. In the version of the GHZ experiment we are
considering the shared state is |GHZ) = a/( [000) —|111) ). The experimenters do
measurements for each of the following four choices of axes: (a,b,c) = (z,y,y),
(y,z,9), (y,y,x), and (x,z,x). These choices of axes correspond to the observ-

ables Ogyy, Oyzy, Oyye, and Oy, respectively. Straightforward calculations
give the expectation values as

(GHZ|O42yy|GHZ) = moaa

(GHZ|0,0,|GHZ) = moaq

(GHZ|Oyy|GHZ) = moaa

(GHZ| 0,00 | GHZ) = e

Theorem 1.1 suggests that there is no way to interpret these expectation
values as giving probabilities. But the four expectation values above are all
rather special expectation values; they all contain a single term. All we need
to make sense of the GHZ experiment is to be able to interpret these one-term
expectation values. If we were using real number coefficients then calculating
an expectation value of 1mgyqq + 0Meyven Would mean that the outcome of the
measurement was always meyqq and never meyven. But we are using finite fields
where we have shown that Bmedq + (1 — 8)Meven cannot in general be inter-
preted as giving the probability of mgqq or of meyen. So is there a scheme for
interpreting these formal expectation values that does not involve probability
but that does allow us to assign meaning like “always moqq and never Mmeyen"
to expectation values like 1moqq + OMeven-

This question suggests a modal interpretation of the coefficients. Rather
than interpret coefficients as probabilities we can look for a different meaning
for them, one that tells about possibilities, not probabilities. A state may not
provide information on the probability of any measurement outcome, but per-
haps it can provide information on the possibility of any measurement outcome.
That is, while there is no equivalent of the Born rule in FFQ, there may be some
function that takes as inputs a state and a measurement outcome and outputs
either "impossible" or "possible" rather than a probability. More precisely we
seek a function g: FZQ X ]FZQ — {impossible, possible} which must satisfy cer-
tain properties, in order for the output of this new rule to have the correct modal

11



interpretation. It should satisfy at least the following requirements which are
analogous to properties (i), (ii), and (iii), listed in section 1. First g must satisfy
a normalization requirement:

1.) For any orthonormal basis {|i)} and any state |¢), for at least one choice
of i we must have g(|9) , |i)) = possible.

That is, at least one outcome from a complete set of mutually exclusive outcomes
must be possible. Reasoning similar to that behind property (ii) suggests the
following condition:

2.) If (¢|yy) = 0 then g(|¢) , |¢)) = impossible.

The final property is that of basis independence:
3.) fU|¢),U)) = f(|$),]¥)) where U is any unitary.

These three properties are satisfied by the obvious choice of g:

g(l).19)) =

impossible if (1|¢) =0
possible otherwise
Equipped with this “modal Born rule" the GHZ experiment in FFQ can be
interpreted. The expectation value 1myqq + 0Meven can be interpreted as saying
that the outcome mgqq is possible while the outcome Mmeye, is impossible. In
other words an expectation value of myqq means that upon measurement there
will be an odd number of spin up results. And similarly an expectation value of
Meven Means that there will be an even number of spin measurements resulting in
up. From here the arguments establishing Bell’s theorem are the same as those
used in the case of ordinary quantum theory. See [6] for the full argument.
Thus in FFQ, as in ordinary quantum theory, local realism is violated. More-
over, it is true in FFQ, as it is in ordinary quantum theory, that any variation
of the GHZ experiment where the state shared by the researchers is separable
(the tensor product of three qubits) will not lead to a violation of local realism.

3 Entanglement

That local realism can be violated only with a shared entangled state suggests
the view of entanglement as a resource. The GHZ experiment involves a rather
specific task and a rather specific entangled state, however, so it by itself does
not give the full picture of entanglement as a resource. An important part of any
such "full picture" would be a way of quantifying entanglement. Entanglement,
viewed as a nonlocal resource should be a quantity that does not increase under
local operations or classical communication (LOCC) [8]. We can associate the
amount and kind of entanglement in a state to its LOCC relationships to other
states. When two states can be reached from each other via local operations
and classical communication they must be equally entangled. The equivalence
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relation of being reachable from each other via LOCC divides the space of states
into equivalence classes. The LOCC relationships between these classes give a
partial ordering on the classes where |¢)) > |¢) when one can transform |i))
into |¢) via local operations and classical communication. This partial order
provides a complete description of entanglement.

One of the few desirable properties of FFQ is that all the states as well
as operations between them can be enumerated. Thus, in principle, we can
explicitly chart the partial ordering imposed by LOCC on the states in any
given vector space ]F;j; ® FZ% R ® Fzg. Let the states be the vertices of a
direted graph. For any pair of states we can ask if they are related by LOCC
and if so draw an arrow between them. This directed graph would completely
describe the structure of entanglement.

We here present some partial results on characterizing the LOCC structure
of states. For simplicity the discussion is restricted to pure states. First it is
clear that any separable state can be obtained from any other state via LOCC.
This can be done via the local operation that simply replaces each subsystem
with the desired pure state. This is same as in ordinary quantum theory and is
expected. A more surprising fact is that it is not immediately obvious, as it is in
ordinary quantum mechanics, that a nonseparable state can never be obtained
from a separable one via LOCC. If a LOCC existed that took a separable state
to a non-separable one that would imply that non-separability per se is not a
resource, and that non-separability is distinct from entanglement. This would
be in contrast to ordinary quantum mechanics where any non-separable state
gives an advantage in some tasks [8]. A cursory search for a LOCC from a
separable to a non-separable state was insufficient to find any, however.

In ordinary quantum mechanics entanglement between two qubits is com-
pletely characterized by the Schmidt decomposition of a state [7], a result known
as Nielsen’s majorization theorem. However, similarly to the case of diagonaliza-
tion of matrices, the Schmidt decomposition of a state in FFQ does not usually
exist. We have not found a result in FFQ comparable to the majorization the-
orem that would completely characterize entanglement. Instead, in numerical
searches we have found that many if not all two-qubit states can be reached via
LOCC from a Bell state. By Bell state we mean a two-qubit pure state whose
two qubits viewed individually are both the maximally mixed state, the mixed
state whose density matrix is proportional to the identity. All Bell states are
LOCC equivalent in FFQ), i.e. any Bell state can be reached by any other Bell
state via LOCC. This picture is illustrated in the following figure:

13
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2+100+ 1[11) 2100) + 2[11) L4+ k(00) + /4 - k|11) 1[00) + /2 +1]11)

N\

In the above figure, in an abuse of notation we mean by 1/ a choice of element of
F,2 such that /3" /B = |vB |2 = B. The states in the figure are representative
from their LOCC class. An arrow between from one state to another means
that via LOCC one can transform anything in the LOCC class of the first
state into anything in the LOCC class of the second. The above chart is very
incomplete. There are other LOCC classes whose position in the chart is not
known and there may possibly be additional arrows between the classes shown.
For instance investigations for small characteristic p have found paths between
some of the states in the middle row of the figure above. This observation leads
to a conjecture that for all p there are three LOCC classes, Bell states, separable
states, and everything else. Then as there are LOCCs from Bell states to the
other two as well as LOCCs to separable states from the other two, the complete
picture of entanglement for two qubits would be the following: Bell states are
the most entangled, separable states are not entangled at all, and everything
else has the same amount of entanglement, more than separable states but less
than Bell states. As a picture the conjecture is the following:

Bell states

v

other states

v

separable states
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For bipartite entanglement in more dimensions and for multipartite entan-
glement we expect the picture to be more complex.

3.1 Counting entangled states

In the partial ordering of LOCC classes some LOCC classes are maximal, i.e.
states in a maximal class cannot be obtained via LOCC from any other state
outside the class. This defines a concept of maximal entanglement. The states in
maximal LOCC classes are in some sense the most entangled states. There may
be many distinct maximal LOCC classes, as in the case of ordinary quantum
mechanics, where for instance the states |GHZ) = |000) + |111) and |W) =
[001) + ]010) + |100) are both maximally entangled but are not related via
LOCC [2].

As discussed above, in the case of two qubits the Bell states likely form a
maximal class. The Bell states are the two-qubit pure states whose individual
qubit density matrices are proportional to the identity. Generalizing this we call
a pure state of n qubits maximally entangled if its qubits viewed individually
each have density matrices proportional to the identity. For example, in the state
«(]000) + [111) ) (where o is for normalization) each qubit has density matrix

( (%) g ), so by the above definition a( [000) +[111) ) is maximally entangled. We
conjecture that these maximally engtangled states, like the Bell states in the
case of two qubits, form maximal LOCC classes.

This definition of maximally entangled differs from one proposed previously

in [4]. There, a maximally entangled state is defined as a state |¢) such that

0= @i’ (3)

Jj=1p=r,y,2

where ai is the p Pauli operator acting on the jth qubit:

0,=1919 9180, 019 ---®1.

This definition is unsatisfactory. Given a state, simply adding an extra pure
qubit will increase the sum in (3) by 1. So adding some multiple of p pure
qubits to a state does not change the sum at all. This allows for some states
that are mostly made up of separable qubits to be counted among the maxi-
mally entangled states. This is unacceptable for the view of entanglement as a
resource. Intuitively, adding a separable qubits to a system makes it no more
useful than before as pure qubits can be created by any party locally and without
communication.

Fortunately this definition can be modified into a satisfactory one. Our
differing definition of maximally entangled, phrased above as the density matrix
of each qubit being proportional to the identity, is equivalent to the condition

Vi, 0= ($log|v).
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This is a modification of (3). Whereas our definition requires that each of
several expectation values equal zero, the condition (3) requires only that their
sum equal zero. Note that in the case of ordinary quantum mechanics these
two definitions coincide, because for real numbers a sum of square terms is zero
if and only if each term is zero. In FFQ, however, because of the modular
arithmetic of finite field elements the definitions are very different.

Because the state space in FFQ is finite the maximally entangled states
in any number of qubits n can be enumerated. The problem of counting the
number of maximally entangled states was attempted in [4]. We again attempt
this problem but with the improved definition of maximal entanglement. For
small p and n the number of maximally entangled states can be computed by
explicitly listing all states, testing them for maximal entanglement, and counting
the results. Results of such computations are summarized in the following table:

(n,p) | total states = % [4] | maximally entangled states
(2, 3) 540 24
(2,7) 102900 336
(2,11) 1623820 1320
(2,19) 44693244 6840
(3,3) 3586630 2160
(3,7) 593445085800 823200

These values suggest the formula p(p?—1) for two-qubit states, while the formula
for three-qubit states remains unclear. This brute-force method quickly becomes
intractable as n and p increase, and in any case it cannot prove a formula for
arbitrary n and p, the eventual goal.

The problem of counting the number of maximally entangled states can
be reformulated in terms of orbits under a group action. The local unitary
transformations U(dy)®@U (d2) ®- - -®U(d,,) form a group that acts on the space
of states. As local unitary transformations are reversible, two states related by
a local unitary are in the same LOCC class. Thus entanglement is unchanged
by local unitary transformations. What this means is that given a state |¢), all
states in its orbit O, have the same entanglement properties. In particular the
orbit of a maximally entangled state should contain only maximally entangled
states, and in fact it does. Under the action of the group of local unitaries the
space of states splits into several different orbits a certain number of which will
contain maximally entangled states. Counting the size of each of these orbits
gives the desired number, the number of maximally entangled states. With the
problem formulated in terms of orbits results like the well-known orbit-stabilizer
theorem can be applied to the problem. This may allow the derivation of a
general formula in p and n for the number of maximally entangled states.

4 Conclusion

The incompatibility of FFQ with a probabilistic interpretation suggests it is not
a quantum theory describing reality. At the very least it is cannot be a complete
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description of reality. The state vector does not contain the full information on
the probabilities of various outcomes. For nature to use FFQ it must keep track
of the probabilities through some other object or hidden variable.

FFQ is useful, on the other hand, as a foil theory. Certain properties that
may be taken for granted in ordinary quantum theory fail in FFQ. Thus a study
of FFQ can clarify the conceptual structure of ordinary quantum mechanics.
The role of Hermitian operators as observables in ordinary quantum mechanics,
for example, is clarified through the lense of FFQ, as is discussed above. A
look at FFQ can also clarify other concepts that are not discussed in this work,
including quantum dynamics.

In the search for quantum theories amenable to computation there are likely
other choices besides quantum theory over finite fields. There are many ways
to generalize quantum theory including such natural ways as generalizing the
space of states to other convex spaces [1]. It is conceivable that among these
sorts of generalizations are theories that are amenable to computation and that
simultaneously have some bearing on reality.
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Conformal Compactification of R4
Lyndee M Govert *

Abstract

In this paper we are concerned with the conformal transformations
on the general RP? setting. We will explore and establish the conformal
compactification of the space. Further, we will generalize the property of
mapping circles and lines into circles and lines that exists on the extended
complex plane.

1 Introduction

We can describe RP+? as the generalized Minkowski space. This is the vector
space R™ where n = p + ¢ together with the indefinite quadratic form Q(z) =

(x1)%+...+(2p)? = (2pt1)? —...— (Tptq)? with p pluses and q minuses. Related to
this quadratic form we have the bilinear form given by the polarization identity
B(z,y) = %[Q(m +y) = Q@ —Y)|= T1y1 + -+ TpYp — Tp1Ypt1 — o — Tptq¥pta-

Also related to this quadratic form we have the indefinite orthogonal group of
linear transformations O(p, q)={ M € GL,4(R),Q(Mz) = Q(z)Vz € RPT1}.
The group SO(3,1) gives precisely the group of Mobius transformations over
the extended complex plane which will be discussed in the next section.

2 Fractional Linear Transformations

Let us consider the action of the general linear group of invertible 2 x 2 matrices
with complex entries over the complex plane. That is GL(2,C) acting on C.

So for z € C, M = < a b ) € GL(2,C) takes z — %2t These are the
c d cz+d

orientation preserving transformations. We also have the orientation reversing
transformations which will take z — gig where Z is the complex conjugate of
z. In the specific instance that cz +d = 0 we can consider z — oco. These
transformations also have the property that for M; and M we have Mz —
% and Msz — %. The composition of these M; and M, gives the
transformation associated with Mg = My Mj.

Three types of transformations described by this group are the parallel trans-
lations, dilations, and rotations. Parallel translations will take z — z + b and

0 Zl) ) The dilations act by a factor

are given by the matrices of the form (

*Indiana University Northwest, lgovert@iun.edu
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of A on z such that z — Az by the matrices of the form ( 3 (1) ) Similarly

the rotations act by a factor of # with the identity a = € = cos(6)+ i sin(6)
such that z — az given by the matrices of the form ( 8 (1)

Finally, in this group we also have the transformations described as inver-

(1) é ) This group produces
the transformations we are particularly interested in this paper in that they
have the property that they will take circles and lines into circles and lines.
One inversion is shown here where we map the vertical line at 1 into the circle
centered at % This example leaves the point at 1 fixed and maps points on the
line that approach co to points on the circle that approach the origin.

sions. These take z — % given by the matrices

06 4

064

-0.8 4

This transformation gives us a slight problem in the situation where we wish
to examine maps including 0 or co. We would like to say that 0 — co, however
this is not defined under this mapping. This problem can be eradicated by
considering, instead of C, the extended complex plane C U {oo}.

3 Projective Plane and Compactification

As we have just seen, when considering transformations we sometimes run into
a problem at infinity. For the complex plane we have an established solution to
this by use of the extended complex plane. This is one example of a one point
compactification. In general however this is not enough. It is possible that we
have more than just one point hiding at infinity and this will require a more
involved compactification.

For purposes of completeness we will recall the definition of the projec-
tive plane using the notion of representative vectors. Given that V is an n-
dimensional vector space, then any 1-dimensional subspace of V is the set of

20



multiples of a non-zero vector v € V [Hitch03]. So we say v is a representative
vector for the point [v] € P,_1(V). It is clear from this definition that [Av] = [v]
for A € R\{0}. Another way to say this for R would be P,_1(V) = V\{0} with
respect to the equivalence of proportionality.

Consider now the following map:
L RP9 — Rp+1La+1 _y P 1(R)

1—Q(x) 1+ Q(x) 1—Q(x) 1+ Q(x)

= (21,0, Tpn) = ( 5 STy ey Ty 5 ) — ] 5 ’xl’m’me]

The conformal compactification of RP? is defined as the closure of the image
from this map.

L(RP) = NP

NP9 = {(20,21,..; T, Tni1) € Ppi1(R) such that

Qz) = (330)2 +o (xp)z - (xp+1)2 - (-Tp+q+1)2 =0}

[Schot08]

Example 3.1 R"
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For an example that we can visualize we look at RYC. This is the real line. The
first part of the map takes the real line to the cone R%>! as shown by the orange
parabola in the graphic. Next we project the parabola to the circle shown in green
in the graphic. FEvery part of the line maps except for the "point” at infinity.
This is included as we take the closure of the image. Thus we have mapped the
real line into a closed circle by this map.

Example 3.2 (A Line at Infinity) In the case where p # 0 and q¢ # 0 we
have to consider there may be more than just one point at infinity. In the case
of R when we apply the inversion map x — ﬁ consider what happens with
the lines x =y or x = —y.

The quadratic form associated with RV will give us Q(z,y) = 2* — y? and
thus this inversion mapping will send the entire x = y line and r = —y line
to infinity. This idea motivates us to reconsider how we define spheres and
hyperplanes in the conformal compactification NP9,

Just as we have the group O(p, q) acting on RP*? as described earlier now we
have O(p+1,q+ 1) acting on N?-4. This group O(p+1,¢+ 1) acts on NP4 by
linear transformation and has the property of preserving the quadratic form.

We look at the intersection of N?¢ with a hyperplane in RPT19+! and we
obtain the hypersurfaces given by aQ(z) + B(a,z) + v = 0. We claim that our
hyperplanes in RPT1:4+! are given by a linear equation of the form agzg + ... +
ApTp — Apt1Tp+1 — --- — Aptq+1Tp+g+1 = 0. To prove this is the case we can pull
back the image here by the map above.

From the image of z given above we have zg = 1-%(7&) and £pyqi1 = %(E)
- 14+ Q(x
(10#4-@11‘1 T+ ApTy —App1Tpr1 — oo — QpigTpiq _ap+q+1# -0
ao ap Uptgt1 Aprai
?*EQ(@JFB(&,J:)* p2q _ P2q Q(z) = 0.

_ 00 F Optait C;p+q+1 Q(z)+ B(a,x) + 20— piqtt C;p+q+1 =0
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Let o = — 20H9ztatl apd o = W=%tatl thep we have aQ(z) + B(a,z) +7 = 0,
which shows we have the correct definition for a hypersurfaces in RP+1:4+1 In
the lower dimensional cases like the extended complex plane as mentioned earlier
we have the concept of the mapping circles and lines into circles and lines. Now
we have generalized this idea to the case where we replace circles and lines with
quadratic hypersurfaces, spheres, hyperboloids, cones, and hyperplanes.

4 Hypersurfaces, p=0or ¢ =0

Let us first recall that NP7 = {(zg, 21, ..., Tn, Tnt1) € Ppi1(R) such that Q(m) =
(0)? + oo + (7)? — (@ps1)? — .. — (Tpig+1)? = 0}. And our hyperplanes
in RPT19+1 are now given in the form agxg + ... + ApTp — Apy1Tptl — - —
Aptq+1ZTp+q+1 = 0. Where vector A = (ao, ..., Gp, Ap+1, -, Gprqg+1) 1S the vector
perpendicular to the plane. With these definitions at hand we can define a
hyperboloid as the intersection of a hyperplane with N?:9.

In the case where either p = 0 or ¢ = 0 it may be possible that this intersec-
tion is empty or a single point. We want to identify these situations since we
would not want to call these particular intersections spheres. We will examine
here the case where ¢ = 0.

When ¢ = 0 we have:
agTo + ... + apTp — apr1Tp11 = 0 and (20)? + ... + ()% — (2p41)> =0

Acting on the hyperplanes described here we have the indefinite orthogonal
group of n x n matrices O(p+1) C O(p+ 1,1). With the appropriate selection
of M € O(p+ 1) we obtain a hyperplane with all but possibly the first and last
entry of the A vector being zero. We allow for the first or the last entry to be zero
but not both. Thus we are looking at the intersection of apzg — apt1Tp+1 =0
and (z0)% + ... + (2,)% — (zp+1)®> = 0. We have three cases to consider.

4.1 Case 1l
Let ap =0, apy1 #0
Upt1Tpr1 =0 = Tpy1 =0
(o) 4+ ... + (z)> =0
Thus we obtain only the trivial solution [x] = [0] and since N(p,q) does not

contain 0 this trivial solution corresponds to @), and we have Q(A) < 0.
4.2 Case 2

Let ag 7é 0, Qpt1 = 0

aprg =0 = 20=0

(£1)* + o+ () = (2p1+1)? = 0
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Thus we obtain hyper surfaces, in the case where p = 0 or ¢ = 0 these are
hypersurfaces, and we have Q(A4) > 0.

4.3 Case 3

Let ap # 0, apt1 # 0, So xp = a‘;r

(xp-l‘l)

(ap-i-l

a0 )2($p+1)2 + (371)2 +.t (xp)Q - (xp-&-l)Q =0

(€1)? + o+ (2p)? = (1= (22)*) (2p41)”

We have here three possibilities for 1 — (#2£4)2,

4.3.1
Ap+1
1- (252 =0
()
So |ag| = %|ap41], solutions are of the form (0,0,...,0,A), A € R, where zy =
2y = ... =1, =0, and we have Q(A) = 0.

4.3.2

1—(“%1)2>0

So |ao| > |ap+1], all solutions give hypersurfaces, and Q(A) > 0.

4.3.3

1—((12—:)2<0

So |ao| < |apy1|, only solution is trivial, and Q(A) < 0.

Since we originally used the action of invertible O(p + 1) C O(p + 1,1)
to simplify this intersection we can apply the inverse of the necessary M €
O(p + 1,1) to generalize these results. The important notion here is that all
elements of O(p + 1,q + 1) preserve quadratic form so the properties of Q(A)
will not be changed.

We have established three distinct families of hypersurfaces given by the
intersections of hyperplanes in RP*1:9+1 and NP9, When p = 0 these families
are classified by their representative quadratic form. Q(A) = 0 are the one point
intersections in the projective space. Q(A) > 0 give the hyper surfaces we wish
to call hyperboloids. Finally Q(A) < 0 represent the trivial intersections which
in the projective space give exactly (. When p = 0 our Q(A) < 0 and Q(A) >0
cases are reversed.
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5 Hypersurfaces, p # 0 and ¢ # 0

The case where both p # 0 and g # 0 is similar in approach to the previous
section. We have hyperplanes in RPT1471 given as agzo+ ... +apTp — api1Tp i1 —
o= Qptg+1Tprgr1 = 0. We use an element of O(p+1) xO(¢+1) C O(p+1,g+1)
which acts as a rotation bringing all but possibly the first and last entries of the
A vector to be zero. Again we allow for either ag = 0 or apyq+1 = 0 but not for
both. Now we are considering the intersection of the plane apxo —apr12p4+1 =0
with (20)2 + ... + (zp)? — (Tp+1)? — ... — (Tp1g+1)> = 0. We again have three
cases to consider.

5.1 Casel
Let ag = 0, Aptq+1 7& 0
Uptq+1Zptqt1 =0 = Tpigr1 =0
(20)? + oo+ (2) = (2p41)? — oo = (Tpag)® =0

Here we obtain a hypersurface and we have Q(A) < 0.

5.2 Case 2
Let ap # 0, apirq+1 =0
aprg =0 = 29=0
(1) + o+ (2)? = (2p41)? — oo = (Zpig1)? =0

Again we obtain a hypersurface but here we have Q(A) > 0.

5.3 Case 3

_ Opiq+l
Let ag # 0, apyq+1 # 0, So zp = B Ty g4

(ap+q+1 )2(

ag Tprqr1)? + (€1)° 4 o+ (2)? = (2p11)" = o = (Tp1g1)® =0

(@1)% 4o () = (@p1)? = oo = (2prg)® = (1 = (%27?)2)(1»1)_~_q+1)2

( Ap+q+1 )2.

Now again we have three possibilities for 1 — o

5.3.1
1— (ap+q+1 2 =0
Qo

Here we obtain hypersurfaces, and we have |ag| = +|a,4q11| 50 Q(A) = 0.
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5.3.2
a 1
1— p+q+1\2
()

>0
Here we obtain hypersurfaces and we have |ag| > |ap4q:1] 0 Q(A) > 0.

5.3.3

1- (LZZ“ )2 <0

Finally we again obtain hypersurfaces and we have |ag| < |apsq11]| 50 Q(A) < 0.

As we have now seen it is not possible to obtain a surface of co-dimension
greater than 1 when both p # 0 and g # 0. We do still however end up with the
families of hypersurfaces characterized by their quadratic form being Q(A) = 0,

Q(A) >0, or Q(A) < 0.

6 Conclusion

We have established a conformal compactification of RP>? which we have called
NP4 We have also considered a new way to define hypersurfaces in this con-
formal compactification.

Definition 6.1 Quadratic Hypersurfaces in NP9 are given by the intersection
of hyperplanes in RPTL4TL qoqg 4+ +apy — Api1Tps1 — oo — Gpiqi1Tptgr1 = 0
and (z0)” + ... + (2p)? = (2p+1)* — .. = (Tp1q11)* = 0.

With the exception of the following cases:

1. When q = 0 we must exclude Q(A) = 0 which gives a one point intersec-
tion and Q(A) < 0 which gives ().

2. When p = 0 we must exclude Q(A) = 0 which gives a one point intersec-
tion and Q(A) > 0 which gives (.

With this definition in mind we can now establish a generalization to the
property of mapping circles and lines into circles and lines where we replace
circles and lines with quadratic hypersurfaces.

Theorem 6.2 The indefinite orthogonal group O(p+1,q+ 1) acts conformaly
on RPYLAHL in such a way that it maps quadratic hypersurfaces onto quadratic
hypersurfaces of the same dimension.

Proof Let a quadratic hypersurface be defined as the intersection of N?>7 and a
hyperplane in RPT14+1 a5 in Def 6.1. We can then say the action of O(p+1, g+1)
gives another intersection of a hyperplane in RP*1:9+! with N?:¢ which is another
hypersurface. So O(p + 1, ¢ + 1) maps hypersurfaces onto hypersurfaces. O
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Removing noise from a coarse-grain signal
Zachary Helbert: Michael Jolly'

Abstract

The long term behavior of a dissipative differential equation in a pos-
sibly infinite-dimensional phase space can be captured by a determining
form which is an ODE in Cy(R,R"™), a space of projected trajectories.
Here n is the number of determining parameters which could be nodal
values in a coarse-grain, a finite difference method, or Fourier modes in
a low-dimensional Galerkin approximation, just to name two examples.
We seek to remove noise in a coarse-grain signal (time series in t), which
acts as an initial condition for the determining form. As the solution of
the form evolves, it converges to a steady state, which is a portion of a
trajectory in ¢t on the global attractor. We apply this technique to both
the Lorenz and Kuramoto-Sivashinsky equations, showing the effects of
changing damping parameters in the determining form. All results show
the reduction of noise and convergence toward a solution on the global
attractor.

1 Introduction

Determing parameters were first introduced as a way to gauge the number of
degrees of freedom for the Navier-Stokes equations (NSE) [1]. Determining
parameters can be described by a projector P (onto, for example nodal values in
a coarse-grain, finite difference method) such that any complete solution u(-) =
{u(t): t € R} on the global attractor A is uniquely determined by its projection
p(-) = Pu(-). This defines a map W from the set S of projected trajectories
in A into the space Cy(R, H), where H is the phase space of the 2D NSE. The
extension of this map from the set S to the Banach space X = C,(R, PH) leads
to a determining form, which is an ordinary differential equation in X. This
was first done in [2] for the particular case where P is the projection onto a
finite number of Fourier modes. In that case trajectories in the global attractor
of the NSE correspond to traveling waves of the determining form. Later, a
different extension and determining form were derived for the 2D NSE in [3],
which allows for the use of a variety of determining parameters. In this more
general approach solutions in A are identified with the steady states of the
determining form.

The extension in [3] follows a method of data assimilation. This refers to
a process for completing, or improving an inadequate initial condition. For

*East Tennessee State University, helbertz@Qgoldmail.etsu.edu
fIndiana University, msjolly@imap.iu.edu
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most applications the initial data which should be defined on the entire physical
domain, can be measured only discretely, often without the sufficient resolution.
The classic example is the way weather data is collected at a limited number of
stations. In [4], the observational measurements are used in a feedback control
term on the large scales of the model, enabling the recovery of the small scales.
To extend the map W, the measurements p(-) = Pu(-) for u(-) C A are replaced
by v € X = Cy(R, PH). The determining form in [3] is then

9~ —ysup o~ PW )| (0 — Pu), (1)
T t
where 7y is a damping parameter and u* is any steady state of the NSE.

It is worthwhile to compare determining forms with inertial forms. An iner-
tial form is the restriction of an evolutionary equation to a finite dimensional,
invariant, Lipschitz manifold (called an inertial manifold) [5, 6]. It follows that
an inertial form is an ODE in a finite dimensional space. The catch is that
some of the most important physical systems are not known to have inertial
manifolds. In particular, this is still open for the 2D NSE. The theoretical sig-
nificance of the determining forms described above is that even though each is
a differential equation in an infinite dimensional space, it is an ODE in the true
sense, as it can be shown to satisfy a global Lipschitz property. Often partial
differential equations are formally written as ODEs where the phase space is a
function space for the spatial variable. Due to differential operators, however,
such equations do not enjoy the Lipschitz condition.

In this paper we exhibit numerical evidence that determining forms can
remove noise from a coarse-grain signal. We start with a time series of a high-
resolution solution on A, take a low-resolution projection and then add a random
perturbation at each time step. From this initial condition the solution to the
determining form settles rather quickly to a steady state that is the original
low-resolution projection. In the process, the high-resolution is recovered as
well. This is illustrated first for the Lorenz system, and then demonstrated on
the Kuramoto-Sivashinsky equation.

2 Preliminaries

Consider an evolution equation

% = F(u), ue H (2)
where the initial data «(0) = wug is missing. The phase space H may be R™ for a
finite system of coupled ODEs or, in the case of a PDE, an infinite dimensional
space such as L?(Q2), the Hilbert space of Lebesgue square-integrable functions,
or a subspace thereof consistent with boundary conditions. Equation (2) is
dissipative if there exists an absorbing ball. This means that that for any initial
condition ug there exists T = T'(|lug||) such that u(t,ug) € B, for all ¢t > T,
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where B is an absorbing ball. Here wu(t, ug) is the solution at time ¢ starting at
an initial condition ug. The global attractor A can be defined as

A= ﬂ u(t, B),
t>0
or equivalently as,
A = {ug| u(t,ug) is bounded V ¢t € R}.

As a consequence, A contains all steady states, limit cycles, and unstable man-
ifolds of such, as well as chaotic trajectories.

Suppose u(-) C A and let Pu(-) represent the observations of the reference
solution at a coarse spatial resolution. The algorithm in [7] constructs a solution
w(+) that is governed by

% = F(w) — pP(w — u), (3a)
w(0) = wy, (3b)

where g > 0 is a relaxation parameter and wy can be taken to be arbitrary
initial data. Under certain conditions on both p and the spatial resolution, one
has that ||w(t) — u(t)||zr — O at an exponential rate as t — oo [7]. The idea is
to evolve (3) over a relaxation time period [0,7Tp] after which w(Tp) is within
some tolerance of u(Tp). In data assimilation the state w(Tp) would then be
used as an initial condition for a high resolution simulation. To compute the
determining form, however, u is replaced by v, and W (v)(t) = w(t) for t > Ty,
ie., w(t) for ¢t € [0,Tp] is discarded.

In this paper we carry out numerical computations using the determining
form

dv

= sl - PW ()[l3 (v = PW (v)). (4)
which is chosen so that small perturbations of u(-) € A evolve toward u(-)

rather v*, as in (1). Note that there are two time variables: the time ¢ in the

original equation (2), and 7, the evolutionary variable in the determining form.

For this reason, it is at times convenient to write v = v(7, ).

3 Lorenz equation

The Lorenz equations can be written as

%——u — Ul

i 1 2U3

d

% = —0Usg + ouq (5)
du-

%:—bug—br—l—ugug.
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We use the classic parameter values o = 10,b = 8/3, and r» = 28. After a
sufficient transient period just about every solution is essentially on the well
known chaotic trajectory shown in Figure 1(a). The role of the low-resolution
observables is played by the single component u;. It is easy to see that u; by
itself is a determining mode. Indeed we can solve for us in terms of uq(+)

t
uz(t) = 7Dy (tg) +/ 7Dy (s)ds.

to

Taking tg — —oo and using the fact that u(-) C A is bounded for all time, we
have .
us(t) = / e? Dy (s)ds.
— 00
Similarly, us can be expressed in terms w;(-) and us(-), and since uy is deter-
mined by w1, so is ug.
To calibrate the relaxation time, we solve (5) simultaneously with

%*f’w — wows — p(wy —uq)

a 1 2W3 — plw1 1

d

% = —0ws + ocw1 (6)
d

%:7b'IU3*b7’+’(U2’w3

until ||w—ul| is less than some acceptable tolerance. For simplicity time stepping
is done by the explicit Euler method. Once the relaxation time is determined,
we evolve the determining form (4) by solving (6) at each time step in 7 with
uy replaced by v. In order to optimize our results for this equation we test
various values of . We then evolve the equation over time 7 in order to see the
convergence to a solution on the global attractor.

3.1 Numerical Results

We seek an optimal p value that produces the smallest relaxation time. Experi-
menting with p = 30,40, 50, 100, we found that p = 40 gave the least relaxation
time (see Figure 1 (b)).
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B=100 ——

0 —
30—

Figure 1: (a) The chaotic reference trajectory u(-). (b) The discrepancy |lu—wl||
between solutions to (5) and (6).

Thus, after a relaxation time of Top = 1 we have computed W (p) to within
0.01, where p(-) = Pu(-), and u(-) is the reference chaotic attractor. We assume
that this same relaxation time is sufficient when we replace p(-) for an arbitrary
veX.

We take v(0, t) = uq (tx)+7% as an initial condition for the determining form
(4), for randomly generated ry € (—e, €], and ¢, = 0, At,2A¢t,...10, where At
is the explicit Euler time step used to solve (6). This represents a noisy, coarse-
grain observable. We then take explicit Euler steps for (4) with A7 = 0.0005.
To account for the relaxation time for the W — map, we truncate the time
interval at each step. At the first step we keep v(Ar, ;) only for t; € [Tp, 10],
at the second only for ¢, € [2Tp,10], and so on. Thus, as the solution to (4)
approaches a steady state, we see in Figure 2 a progressively shorter portion of
the trajectory.
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perturbed trajectory ——
target trajectory

Figure 2: Evolution of the determining form of the Lorenz equation for v = 20.
The final value 7 = 0.01 is superposed over v(0.01, ).

After observing that there is indeed reduction of the noise, we wish to op-
timize the damping parameter v. In Figure 3 we plot the error and note that
increasing v too much causes a deterioration in the error. The relatively large
value of the error measured in this way is probably unavoidable due to the highly
oscilliatory nature of the chaotic target solution.

25 T T T T

T
y=5 —

10
20 ——
2 50 ——

ave | [v(t)p(O)]]

05 F —

1] 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
T

Figure 3: Average pointwise error as 7 advances.
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4 Kuramoto-Sivashinsky Equation

We write the Kuramoto-Sivanshinsky equation (KSE) with periodic and odd
boundary conditions as

ou 0*u 0%u ou

u(t,x) =u(t,x 4+ 2m), u(t,—z) = —u(t, ).

This system has been derived independently to model both combustion and
fluid flow down an inclined plane. Though it is known to have an inertial form
[8], it is not evident how to exploit this to remove noise from a coarse-grain
signal. We discretise the KSE in space using both the Galerkin method and
finite difference methods. Two reference solutions in the global attractor, a
limit cycle, and a chaotic orbit are first found by the Galerkin method, and
then translated to nodal values. We then apply the determining form to the
finite differences method.

Let P be the projector from the space of odd, periodic functions onto the
span of sin(z), ..., sin(nx). To obtain the Galerkin approximation we substitute

p:pu=§:%ummgm (8)

into the KSE and apply the projector P.

d,
Ly Ap+ PF(p) =0
dt
where o o2 p
U U
A=— Fu)=a=— —
g (u) s + auz
The Galerkin approximation is thus a system of ODEs for aq,as,...,a, with

n = 32. These equations are used along with Euler’s method to find reference
solutions which are then converted to its nodal representation using (8).

This nodal representation is used as an initial condition in a finite difference
scheme specified by

w2y ~ Ui (=1 = uj—1) + Ui — U1
ox "’ 6Ax

@(z ) ~ 7(Uj+2 — 4’U,j+1 + GUj — 4Uj_1 + ’U,j_g)

ozt Azt

@(z,) o Wil — 2uj + U

0xz2 Ax?

where u; ~ u(z;), ©; = jAz. The nonlinear term is treated in this way in
order to make the scheme dissipative [9]. After a sufficient transient period the
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solution of the finite difference approximation, combined with Euler’s method
settles onto an analogue of the reference solution. The cartoon in Figure 4
depicts the nodal positions in a coarse-grain sample. In our implementation
n = 32, and m is varied somewhat.

Figure 4: Here m = dim PH = the number of [’s, and n = dim H = the
number of hash marks.

4.1 Numerical Results

The first reference solution for the KSE is a periodic solution at o = 32 shown
in Figure 5.

-8 ! 1 1 1 I ! ! 1 1 I
1 11 1.2 13 14 15 16 1.7 18 19 2 21

t

Figure 5: The periodic solution to the KSE at the 12! and 26" nodal positions.

We first kept p fixed at 4000, and varied m by equally distributing 4, 8, and
16 coarse mesh points with the result shown in Figure 6.
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0.01

0.0001

1e-06

le-08

le-10

le-12

flu = wil

le-14

le-16

le-18

le-20

1e-22 1 1 1 1 L 1 1 L 1
"] 0.2 0.4 0.6 0.8 1 1.2 14 16 18 2

Figure 6: The discrepency ||w — u|| where u(-) is the periodic solution to the
finite difference approximation at 32 nodes, p = 4000, At = .0000001

We see that for the periodic reference solution we can use just 4 out of
32 mesh points, and achieve close to double precision accuracy after a short
relaxation time. In Figure 7 we fix m = 4, and vary p to find that p = 4000
works best.

100 T T T T T T
W=2500 ——

1k 4000
001 f\ 8000 — _

Y 1000 ——
0.0001 H|

1e-06
T le08
5 le-10
le-12
le-14
le-16
le-18

le-20

Figure 7: The discrepency ||w — u|| where wu(-) is the periodic solution to the
finite difference approximation at 32 nodes, m = 4, At = .0000001

With the relaxation time calibrated for m = 4 and p = 4000, we evolve the
determining form to remove noise added to the periodic reference solution (see
Figure 8).
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“““““M”NH

Figure 8: Evolution of the determining form solution from the perturbed initial
condition. The target trajectory is superposed at the final value of 7 = 0.0005.
Here v1 — uy = u(Ax).

We then vary in Figure 9 the damping parameter v for the KSE periodic
reference solution. This leads to a - value of 500 for our determining form.
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ave | Iv(t)-p(t)l|

0.1

0.001

0.0001

1

T T
gamma =10 ——

L

500 ——

Shbdbloanena

0.0002

Figure 9:

0.0003

0.0004
T

0.0005

0.0006

0.0007 0.0008

(a) Average pointwise error as T advances with the logscale of the

y-axis. (b) Chaotic reference solution for Galerkin approximation.

Next we consider a chaotic reference solution of the KSE. It has been shown
that there is such a solution at o = 133.73454 in [10]. This is shown for the first
few Galerkin modes in Figure 9.

We then proceed as for the periodic reference solution, translating to nodal
values, running through a transient period to settle on an initial chaotic trajec-
tory for the finite difference approximation (see Figure 10).

20 T T T T T T

H,‘ H \\
U \ \“\

'H J f |H|H|

“wl" n\"‘“i'ﬂ‘“\" R

i 'M m il V

| ."u' i

-20

.25 L 1 L 1 1 1 1 1 I 1

Figure 10:

1 11

(a) The chaotic solution to the KSE at the 3"¢ and 26" nodal
positions on a decreased interval to show the occilatory nature of the solution.
(b) The same chaotic solution on the entire interval from ¢ = [1,2].

We then fixed p at 4000, and varied m by equally distributing 8 and 16
coarse mesh point with the result shown in Figure 11
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100 T T T T T T T
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0.01

0.0001

le-06 =

flu —wil

1e-08 |f B
le-10 1 B

le-1z

le-14

le-16

Figure 11: The discrepency ||w — u|| where u(-) is the chaotic solution to the
finite difference approximation at 32 nodes, p = 4000, At = .000001

We find that for the chaotic reference solution we must use 8 out of 32
mesh points, rather than 4, and achieve close to double precision accuracy after
a short relaxation time. Using 8 mesh points seems reasonable due to the
excessive number of oscillations. In Figure 12 we fix m = 8 and vary pu to find
that pu = 4000 works best.

100 T T T T T T
p=2000 ——
1 3000

4000 —— |
0.01 5000 ——

0.0001
le-06 [t
= le08 |
5 lelo
el
le-14
le-16
le-18
le-20 L 1 1 1 1 1 L L 1

Figure 12: The discrepency ||w — u|| where u(-) is the chaotic solution to the
finite difference approximation at 32 nodes, m = 4, At = .000001

With the relaxation time calibrated for m = 8 and p = 4000, we evolve the
determining form to remove noise added to the chaotic reference solution (see
Figure 13).
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perturbed trajectory ———
target trajectory

Figure 13: Evolution of the determining form solution from the perturbed initial
condition. The target trajectory is superposed. Here v; — uy = u(Ax).

We then vary in Figure 14 the damping parameter v for the KSE chaotic
reference solution. This leads to a - value of 200 for our determining form.

ave | v(t)-p(t)l |

0 1 1 L 1 1 1
0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008
T

Figure 14: Average pointwise error as 7 advances.

5 Discussion & Conclusion

We have shown that the detemining form can reduce noise in a coarse-grain
signal. In Figures 13, 8 and 2 we can see the perturbation decrease as we advance
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in 7. We are able to optimize somewhat our parameter values to enhance the
rate of noise reduction. The proper values of i and «y are chosen for both the
Lorenz and the Kuramoto-Sivashinsky cases. The determining form is a large
system of equations, as it is in a space of trajectories. Determining parameters
for PDEs can be nodal values at sparse spatial positions, coefficients in Fourier
expansions, or others, such as finite elements. One can take a relatively large
step, AT when evolving the determining form. We continue to work on how to
deal with the relaxation time.
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Configuration Space of Eight-Bar
Linkages
Kathryn Marsh

Abstract

A closed planar n-bar linkage can be regarded as a collection of n
vectors in the plane whose sum equals zero. The set of all closed n-bar
linkages is a subset of R?™ and hence has a natural topology. I will describe
the subset of unit-length, 8-bar linkages with a packing radius of % A
linkage of this type is the minimal vector decomposition of a well-rounded
translation surface of genus 2 with one singularity of 67. The space has
a natural decomposition as a 3-dimensional cell complex with relations
between the cells described via a cutting and pasting identification. I will
discuss the details of this decomposition and the resulting cell complex.

1 Linkages and Translation Surfaces

The set of well-rounded translation surfaces of genus 2 with a 67 singularity, can
be thought of in terms of linkages in the following way. Firstly, we call a linkage
an n-bar linkage if it has n distinct, rigid parts. An n-bar linkage can be repre-
sented by an ordered set of n vectors. An n-bar linkage is closed if Z?:l v; = 0.
We will consider closed 8-bar linkages together with a matching of the vectors.
In particular, each vector v; is matched with a unique and distinct ’partner’
vector v;. In addition, we assume that each vector is parallel to its partner but
with opposite direction, that is v; +v; = 0. Each such linkage with a matching
scheme can be uniquely described by four vectors (vq, ve, v3,v4) and a skipping
pattern between partners. The number of skips is given by (ny, ns,n3,ny) € N*
so that v; is partnered with v;4,,+1. For example, the linkage that corresponds
to an octagon with opposite sides acting as partners would have a distance pat-
tern of (3,3,3,3) and vectors (vy,vs, v3,v4). For simplicity, we will call linkages
by listing the order of the vectors as they would appear reading counterclockwise
around the octagon. Therefore the linkage with a distance pattern of (3,3,3,3)
will be represented by the 8 letter "word" 12341234.
Let us add the following restrictions to our set of linkages:

1. Vector partners cannot be adjacent.

2. Pairs of vectors cannot show up in the same word in a different order. This
amounts to excluding words such as 12342134 since we have v; followed
by vs and later encounter v followed by v .

3. Vertices cannot be closer than distance 1 to each other.
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By taking these restrictions into consideration, we end up with a set of link-
ages which are all the minimal vector decomposition of a well-rounded transla-
tion surface of genus 2 with a conical singularity of 6.

Proposition 1.1 Let L be the ordered set of unit vectors (vy,vs,...vs) such that
L is the minimal vector decomposition of a well-rounded translation surface of
genus 2 with a conical singularity of 6. Fach v; in L has a partner v; in L such
that v; = —v;. Then up to relabeling, there exist three distinct arrangements of
partner vectors.

Proof To begin, we will make use of the notation using 'words’ and skipping
patterns as established above. The minimal distance between any element of
{1,2,3,4} and an element {5,6,7,8} in Z/8Z is 3. Hence the set of possible
arrangements of skipping patterns is a subset of {1,2,3}*. Therefore the maxi-
mum possible number of distinct distance patterns is 3*3*3%3 = 81. Since this
is a rather large set to check all at once, we will break it up into three subsets
of size 27 which are the skipping patterns where ny =1, ny = 2, and ny; = 3.

Let’s start with the set of distance patterns that have n; = 1 first. This
corresponds to a word of the form 1*¥*1***** If n, = 1 we immediately violate
the condition that vertices have distance greater or equal to 1 from each other.
Therefore we are down to only 18 possibilities with n; = 1.

Now examine the first 9 corresponding to (1,2, n3,n4). Immediately, ng = 2
and ny = 1 because any other arrangement either forces a distance to be 0 (which
violates that vector pairs cannot be adjacent) or cannot be made without calling
two vectors by different names. Figure 1 shows how this octagon arises.

Figure 1: Labeling an octagon

Now we examine what happens when no = 3. When ny = 3, ng automat-
ically cannot be 1 because the second 2 is in the way. If ng = 2 then ny4 and
if ng3 = 3 then ny = 1. So we have the two new patterns of (1,3,2,2) and
(1,3,3,1). These correspond to the words 12134234 and 12134243 respectively.
However, 12134243 violates the restriction that pairs of vectors cannot show up
in the same word in a different order because we have a 34 followed by a 43. So
(1,3,3,1) is not a valid pattern for our purposes and we have found only two
patterns, (1,2,2,1) and (1, 3,2,2) thus far.
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Now we look at the set of distance patterns where n; = 2. If ny = 2 then
ny cannot be 1. So we only need to examine the cases for (2,2,n3,n4) and
(2,3,n3,n4). Looking at the cases for (2,2, n3,n4) we notice that nz cannot be
equal to 1 because of the placement of the second 2. Similarly, ns cannot be
equal to 2 because then ny would have to equal 0. Therefore the only choice is
(2,2,3,n4) which then forces ny = 1. This corresponds to the word 12312434.
However, this is only a relabeling of the word 12134234 we discovered earlier so
does not represent a distinct type.

If we investigate the case of (2,3,n3,n4) we note that ng cannot be 1 or it
would force ny to be 0. Likewise, n3 cannot be 2 because of the placement of
the second 2. Therefore, ng = 3 which forces ny = 2. This results in the word
12314234 which violates our restriction because we have a 14 followed by a 41.

Moving on to the last category where n; = 3, we let no = 1 and see that
the only viable candidate is for (3,1,3,1). This is a relabeling of a previous
distance pattern and fails by the same reason. If ny = 3 then ny cannot be 2
because of the placement of the second 1. In the category of (3,3, n3, ny) we see
that n3 cannot be 1 or 2 because of the placement of the second 1 and 2. So
n3 = 3 which forces ny = 3. So we have a new unique type of (3,3, 3,3) which
corresponds to the word 12341234. Therefore, there are only three distinct
arrangements for the four partner vectors corresponding to distance patterns
(1,2,2,1),(1,3,2,2), and (3, 3,3,3) with respective words 12132434, 12134234,
and 12341234.

O

2 Configuration Space

We will now build the configuration space for each type of linkage. As each
linkage is comprised of four distinct vectors, each linkage has four degrees of
freedom and therefore the configuration space is a subset of R*. In order to
visualize the configuration space in 3-dimensions, we will mod out by rotations
by fixing v1 = (1,0). Let «;; be the interior angle between vectors v; and
vj. Each linkage can be uniquely determined (up to rotation) by three interior
angles so we set up our coordinate system such that (z,y, z) = (a2, @23, a34).

(1,221) Type

(333.3) Type (1,3,2,2) Type
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Let our configuration space for linkage type (3,3,3,3) mod rotation be called
Py, type (1,3,2,2) Py, and type (1,2,2,1) P2. Py is the intersection of half spaces
given by the boundaries of the linkage and is a subset of R3. The interior of each
configuration space is determined by the restriction that the minimal interior
distances between any two vertices be greater than 1.

The boundary of a configuration space will be the set of linkages which
have some interior distances between vertices equal to 1 such that the degree of
freedom of that linkage is less than 3. The boundary can be divided into linkages
with 2 degrees of freedom, 1 degree of freedom, and 0 degrees of freedom. These
correspond to 2-cells (faces), 1-cells (edges), and 0-cells (vertices). For reference,
a pictorial description of each face is provided within each section. In each
linkage picture, the dashed lines denote a distance of 1 which is fixed.

2.1 P,

Py consists of 12 faces, 30 edges, and 20 vertices. The faces are shown below in
the first table.

Name Linkage Name Linkage

F1

46



F3

F5
F7 F8
w1
-3
-2 1
-vé
y vd
b SV
V3
F9 F10
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F11

F12

The table below gives equations for each face and associated edges and ver-

tices.

Face | Edges Vertices Equation

F1 | B10, E14, E15, E19, £23, E27 | V2, V4, V13, V8, V12, V17 | a2 + aias + aza = 871/3

F2 | EI3, E16, £24, B9, B28, E20 | V1L, V7, V14, V3, VL, VI8 | a2 = 7/3

F3 | B12, B17, £25, E10, £29, E21 | V10, V6, V15, V2, V4, VIO | ag; = /3

F4 | E9, B30, E22, B11, BI8, E26 | VI, V3, V20, V9, V5, V16 | azi = /3

F5 | E8, 28, E26, E1, E14 V1, V16, V12, V8, V18 cos(Qiz3) — cos(aizs +ovza) —
cos(agg) — cos(aya) —
cos(a12 + aa3) — cos(aa +
Qo3 + agq) = —3/2

F6 E13, E7, E29, E23, E4 V4, V19, V7, V11, V13 cos(aag)+cos(aag —aizq) —
cos(azs) + cos(age) —
COS(O{lQ + 0423) + COS(Ong +
Qo3 + aze) = 3/2

F7 E6, E30, E24, E3, E12 V3, V14, V10, V6, V20 —cos(agz) + cos(aaz —
0434) — COS(O(34) —
cos(a2)+cos(ara+aos)+
cos(aiz + o3 + azy4) =
—3/2

FS | E5, B11, E2, E25, B27 V5, V9, V15, V2, V17 cos(Qra3 ) — Co(vz3 — vz )+
cos(azs) — cos(are) +
cos(a12 + aa3) + cos(aa +
Qo3 + azq) = 3/2

F9 | Bl, EI8, E5, B19 V12, V16, V5, V17 a1z + oz = 21

F10 | B4, E20, E8, E15 V11, V13, V8, V18 Qo3 + Qza = 270

F11 | B21, E3, E16, E7 V19, V10, V14, V7 PP ——

F12 | B6, E17, B2, E22 V6, V15, V9, V20 PRI ——

The table below gives oy; coordinates for each labeled vertex. By using
this information concatenated with the tables above, one can construct all the
appropriately labeled edges and faces and arrive at the same Py shown below.
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Vertices | Coordinates

V1 (w/3,47/3,m/3)
V2 (4w /3,7/3,m)
V3 (w/3,7,m/3)

V4 (w,7/3,4m/3)
V5 (m,m,m/3)

V6 (w,7/3,2m/3)
V7 (r/3,27/3,m)
V8 (27 /3, 7, )

V9 (m,2m/3,m/3)
V10 (2w /3,7/3,m)
V11 (w/3,7,m)

Vi2 (m,7,2m/3)

Vi3 (27/3,21/3, 41/3)
Vi4 (w/3,27/3,2m/3)
V15 (47 /3,7/3,2m/3)
V16 (27/3,4w/3,7/3)
V17 (47 /3,27/3,27/3)
V18 (r/3,4m/3,2m/3)
V19 (27 /3,7/3,4m/3)
V20 (27 /3,27/3,7/3)

49



All faces on Py are planar except for F5-F9. Shown below is a close-up of F5.

2.2 P

P, has 8 faces, 18 edges, and 12 vertices. Below is a tabular description of the
cell.
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Name

Name

Linkage

1

5

2

Fi6

R3

F7

V3 -vl

4

8

o1




The table below gives equations for each face and associated edges and ver-

tices.
Face | Edges Vertices Equation
1 | E13,F15,E 7, Eq8, Eq15, B4 17 V15,V19,V11, V13, V110, V16 a2 =27/3
Fi12 | E14,E16,FE9,F110, E116, E118 | V12, V14, V112, V17, V18, V411 | g0 = 7/3
F13 E117E12,E13,E14 ‘/117‘/12,‘/137‘/14 Q34 = T
4 | Ei7,F9, F111,E113 V15, V19, V111, V48 Qo3+ 34 =T
Fi5 | E18,FE110, F112, Eq114 V16, V17,V110, V112 Qo3 =T
Fi6 | Ei5,F16, F111, F112 V15, V16, V17, V418 gy =7/3
F17 Ell,Ellg,E115,E116 %1,%2,‘/19,‘/111 0423:71'/3
18 | E12,FE114, E117, F118 V13, V14, V110, V112 Qo3 + azq = 5m/3

The table below gives «;; coordinates

for each labeled vertex. By using
this information concatenated with the tables above, one can construct all the
appropriately labeled edges and faces and arrive at the same P; shown below.

Vertices | Coordinates

Vill

w/3,7/3,27/3)

V112

i1 (2 /3,7/3, )
Vi2 (r/3,7/3,m)
13 (27 /3,27 /3, )
V14 (w/3,27m/3, )
V15 (27 /3,27 /3,7/3)
V16 (2m/3,m,7/3)
v (r/3,m,7/3)
18 (r/3,2m/3,7/3)
19 (2m/3,7/3,27/3)
110 (2w /3,m,27/3)

(

(

/3,7, 27/3)
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23 B

P, has 6 faces, 12 edges, and 8 vertices. Below is a tabular description of the

cell,
Name Linkage Name Linkage
1 >4
F>2 55
I 2 3 F: 2 6

The table below gives equations for each face and associated edges and ver-

tices.

Face | Edges Vertices Equation
Fol | Esl, E52, Eb3, B4 Vol, Vo2, V53, Vod | oz =7/3
F22 E217E25,E26,E29 V21,%27‘/257‘/26 12 = 271'/3
F23 E227E27,E28,E211 V23,V24,‘/27,‘/28 a1 = 7T/3
F24 E24,E26,E28,E210 ‘/21,‘/247‘/267‘/28 34 = 271'/3
F25 E23,E25,E27, E212 V22,V23,V25,V27 Q34 — 7T/3
F26 E29,E210,E211,E212 ‘/25,‘/267‘/27,‘/28 Q23 — 271'/3

The table below gives «;; coordinates for each labeled vertex. By using
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this information concatenated with the tables above, one can construct all the
appropriately labeled edges and faces and arrive at the same P> shown below.

Vertices | Coordinates
Vol (27 /3,7/3,2m/3)

Vo2 (2n/3,m/3,m/3)
V23 (w/3,7/3,m/3)
Vod (w/3,7/3,2m/3)
Va5 (27 /3,27/3,7/3)
Vo6 (27 /3,27/3,27/3)
Va7 (7/3,2m/3,m/3)
Vo8 (w/3,27/3,2m/3)

Figure 2: (1,2,2,1) type cell in o;; coordinates

2.4 Fundamental Domain of F,

Due to the nature of the hyperelliptic symmetry within the (3,3,3,3) type link-
ages, the configuration space previously describes consists of some overcount.
The reason for overcount is because we would like to ignore differences which
arise from rotation (hence our reasoning for setting v; = (1,0)) and as can be
seen, faces F1-F4 are merely rotations and relabellings of each other and simi-
larly for F5-F8 and F9-F12. Therefore we arrive at a fundamental domain for
the Py which is the intersection of the equations given below.
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Face | Edges Vertices Equation
F1 | EL0, E14, E15, B19, B23, E27 | V2, V4, V13, V8, V12, V17 | a2 + aos + azs < 87/3
F5 | ES, 28, £26, E1, E14 V1, V16, V12, V8, V18 cos(aa3) — cos(aas + agg) —
cos(azq) — cos(age) —
cos(a12 + aa3) — cos(aga +
Qo3 + agq) > —3/2
F9 | Bl, E18, E5, B19 V12, V16, V5, V17 Q12 I ags < 21
| B31, B32 V8, V13, V21 Gorta + s + ass > 67
12 E32, E33 V8, V18, V21 3a1o + 293 — aizg > 3w
13 | B33, B34 V18, V1, V2l Tas + Bags > O
4 | E34, 35 V1, V16, V21 Soigs + Ty > O
5 | E35, E36 V16, V5, V21 5oz + Bogg 1 bags > 127
16 E36, E37 V5, V17, V21 a0 + 4aisg + 3aizg > 6
17 E37, E38 V2, V17, V21 2019 + Taos + Tagy > 127
18 E38, E39 VQ, V4, V21 a1 + 2003 + gy > 3
9 | E39, E32 V4, V13, V21 Tars + Tass + 2031 > 127
Vertices | Coordinates
V1 (r/3,47/3,7/3)
V2 (4 /3,7/3, )
V4 (w,7/3,4m/3)
V5 (m,m,m/3)
V8 (27w /3,7, )
Vi2 (m,7,2m/3)
V13 (2m/3,27/3,47/3)
V16 (27 /3,4w/3,7/3)
V17 (47 /3,27 /3,27 /3)
V18 (w/3,4m /3,27 /3)
V21 (3m/4,37/4,3m/4)
V22 (7w /6,7/3,7m/3)
3 Moduli Space

We would now like to examine the moduli space of well-rounded translation
surfaces of genus 2 with a conical singularity of 6. Since we are now considering
these linkages as surfaces, we will need to identify linkages which are currently
considered separate but which represent the same surface. In order to see which
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linkages are equivalent as surfaces, we will make all possible identifications of
sides by between any vertices with distance and pasting parallel vector pairs
together. By performing this cutting and pasting identification process on all
the faces, edges, and vertices, we end up with a space with 3 3-cells, 10 faces, 8
edges, and 3 vertices. We will name this space P.

Face | Equivalences

C1 F5

C2 F1

C3 F9, F13, F14, F15

C4 52 Fy3, Fo3, Fod, F55, 16
Ch 51, F56, F17, F18

Cc6 | IL,15
C7 | I3,1I7
C8 | 19,14
c9 | 12,16
C10 | I8

Edges | Equivalences

B1 E1-E8,E11-E14,E23-E30, F13, F14, E7 7, E78, Eq19, E110

B2 E9,E10,F1 5, E16, F5, E56, Es7, Fo8

B3 E15-E18, E12, F111, Eq 14, E115, Eq16, Es1, E52, E512, Es10
B4 E19-E22,F411, E112, F113, E4 18, F717, E53, Esd, 59, 511
B5 E31,E35

B6 E32,E36

B7 E33,E37

B8 E34,E38,E39

Vertices | Equivalences

Al V1-V20, 11 — V112, Vo1 — Va8
A2 V22

A3 V21
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This picture is the 1-skeleton of the moduli space.

3.1 Euler Characteristic

We will now compute the euler characteristic for our cell complex.

Definition 3.1 [Euler Characteristic| For a finite CW complex X, the Euler
characteristic x(X) is defined to be the alternating sum ), (—1)"c, where ¢,
is the number of n-cells of X. [1]

3
X(P)=> (-1)"c, =3-8+10-3=2.

n=0

3.2 Homology Groups

We would now like to compute the dimensions of the homology groups dim Hy (P) =
dim ker(941) — dim I'm(9y) where 0, is a homomorphism from the group of k-
chains (finite linear combinations of oriented k-cells) to the group of (k-1)-chains
which represents a boundary operation.

Let C,,(P)={group of n-chains over R}. Then 9, : C), — Cp,_1.
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For example, lets look at the 3-cell C2. C2 is just a new name for F1
which was bounded by edges E10,E14,E15 E19,E23,E27. These edges however
correspond to the 2-cells B2,B1,B3,B4,B1,B1. They are arranged and oriented
as shown in the picture.

B2 B2

B1

Therefore 0,C2 = Bl — B3— Bl — B2+ B2—- Bl —B4=—-B3— Bl — B4

The choice of orientation is arbitrary but once a choice is made it must be
held consistently throughout the process. Therefore, once I have decided the
orientation of B1, it is fixed for all other Bls.

Once we have painstakingly oriented all of our n-cells correctly we arrive at
the following matrices representations for di, 02, and 0s.

0o 1 00 -1 1 1 -1
o=10 -1 00 0 0 0 0
0O 0 00 1 -1 -1 1

5 —1 0 0 0 1 1 1 0
0O 0 0 0 0 0 0 0 0 0
0 -1 -1 1.0 -1 0 0 0 0
g,— |0 -1 1 10 0 0 0 0 0
2o o o 0o 0o 1 0 0 1 0
0O 0 0 0 0 1 1 0 0 0
0O 0 0 0 0 0 —-11 0 0
0O 0 0 0 0 0 0 1 -1 0

-1 0 0

1 0 0

1 -1 0

0 -1 0

0 0 -2

83_—200

2 0 0

2 0 0

2 0 0

1 0 0
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Then we have the dimensions of the homology groups over R Hy(P) are:

dim Hy(P) = 1
dim H,(P) =0
dim Hy(P) = 1

We can use this to check our Euler Characteristic calculation because for a
finite CW-complex, x(X) = dim Hy(X) —dim H; (X)+dim Hy(x) — ... Therefore
we have

X(P)=1-0+1=2

which reaffirms our previous calculation.
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Constructing a Dynamical Boundary at
Infinity for Hyperbolic Toral
Automorphisms

Aleksandra Niepla*
Advisor: Bryce Weaver'

Abstract

We construct a dynamical boundary at infinity for hyperbolic toral au-
tomorphisms. Our construction consists of a backward boundary, (97),
and a forward boundary, (97). With some limitations, we develop a cor-
respondence between (9~ x 81) x Z* and the behavior of orbits in the
system. This is a generalization of the boundary at infinity naturally ob-
tained for geodesic flows defined on the unit tangent bundle of hyperbolic
surfaces.

1 Introduction

We are interested in classifying the orbits of a dynamical system based on their
asymptotic behavior. The general question inspiring this projects is: for which
dynamical systems can we develop a notion of a “dynamical boundary at infin-
ity"? This boundary is given by a set whose elements distinguish the asymptotic
behaviors of the orbits up to a time shift. In particular, it is desirable to create
a boundary with certain topological or measure theoretical properties. Before
discussing the problem in question, we recall the basic components of a dynam-
ical system. Below, is a short summary of the more detailed introductions to
dynamical systems found in the first chapter of [BS| and in p.1 —12 of [HK].

In the general setting, a dynamical system is composed of the following three
components:

(i) A non-empty set X called the phase space. The elements of X correspond to
the allowed states of the system. In most cases, X has a specific structure. For
example, X may be a measure space, a topological space, or a smooth manifold.

(ii) A notion of “time™ T = Z, Zd, R, R§. It can be discrete or continuous and
reversible or irreversible. In the case of a discrete-reversible dynamical system,

*Rutgers University, aleksandra.niepla@rutgers.edu. Research conducted during the math
REU program at Indiana University Bloomington.
fIndiana University Bloomington, weavbryc@indiana.edu.
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time can be represented by the integers. For a discrete-irreversible dynamical
system time is not extended into the past and can be represented by the non-
negative integers. Similarly, for continuous-reversible dynamical systems and
continuous-irreversible dynamical systems, time is represented by the real num-
bers and the non-negative real numbers, respectively.

(iii) Lastly, a law governing the evolution of states as time progresses is required.
Generally, this law is given in the form of a function F': X x T — X

F(z,s+1t) = F(F(x,t),s)

Given an initial state z, the future of the system after a time ¢ can determine
by F(z,t). In the discrete-time case, this requirement can also be satisfied by
defining a map f : X — X and considering its iterations (i.e. F(z,n) = f"(x)
for n € Z). The orbit of a point x € X by O(x) =, F(z,1).

In most of the interesting examples of dynamical systems, this law preserves
the structure of X. For instance, it may be measure preserving if X is a measure
space, a continuous map or a homeomorphism if X is a topological space, or
a differential map if X is a smooth manifold. To gain more insight into these
various cases see p. 2 — 7 of [HK] where a brief discussion and history of
ergodic theory, topological dynamics, differentiable dynamics, and Hamiltonian
dynamics can be found.

1.1 The dynamical boundary at infinity

The asymptotic behaviors of a dynamical system are described in terms of stable
and unstable manifolds. Let (X, d) be a metric space and F': X x T — X be
reversible. Given an x € X, define the stable manifold of = as the set

We(x) = {y €eX: 75_l)iinOO d(F(z,t), F(y,t)) = 0} (1)

and define the unstable manifold of x as the set

W) ={y€ X+ tm_d(F(o.0). Fy.0) = 0. @)

For z € X, W*(z) can be understood as the set of elements in X that have the
same future as x and W*(z) can be understood as the set of elements in X with
the same past as x.

We refer to the set distinguishing the past behavior of orbits as the backward
boundary and denote it (07). Similarly, we call the set distinguishing future
behaviors of orbits the forward boundary and denote it (07). We would like
to find a backward boundary, a forward boundary, and an addition set Y such
that elements of (9~ x 87) x Y distinguish a unique orbit in X and location on
that orbit.
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Note that a naive approach to constructing such a boundary is to let (97) =
X/ ~ where: for z,y € X x ~ y if there exists a t,, € T such that

Jim d(F(z,1), Pyt + 1)) = 0. (3)
Unfortunately, there are often technical problems with this approach. This is
related to properties of systems such as ergodicity and mixing that rely on Hopf-
type arguments (see for example p.17 of [HK| and Appendices A,C of [CM]).

2 DMotivating example

As an example for the desired construction, we study the geodesic flow on hyper-
bolic surfaces. Sections 2.1 — 2.2 introduce the hyperbolic plane and discuss its
connection with hyperbolic surfaces. Sections 2.3 - 2.5 discuss the geodesic flow
of hyperbolic surfaces and its relation to the orientation-preserving isometries of
the hyperbolic plane. Unless otherwise specified, all constructions, lemmas, and
theorems are taken directly from [Ka, Li] where a more detailed development
of these ideas can be found. Lastly, the boundary at infinity is explained in
Section 2.6.

2.1 The hyperbolic plane

Denote the upper-half plane by H = {z € C : Im(z) > 0}. For z € H, the
tangent space of H at z is the set of all vectors tangent to H at the point z and
it is denoted T.H. The identity map z € R x Ryyg — z € H is a parametrization
covering H. It follows that T,H = R2 = C. For v = v, +iv;, w = w, +iw; € T,H
define an inner product < -,- >, by

VpWy + V;W;
Im(z)*

The inner product < -,- >, induces a Riemannian metric on H called the hy-
perbolic metric. The Riemannian manifold arising from H and < -, - >, is called
the hyperbolic plane.

The angle between v, w € T, H is given by:

<v,Ww >,=

(4)

< >
=nwee (5)
[[v]]zw]]

By direct computation, it can be seem that this definition of angle agrees with
the Euclidean angle measure. Hence, the hyperbolic metric is conformal to the
Euclidean metric. For the remainder of this paper, we denote the standard
Euclidean inner product by (-, ).

cos ¢ =
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2.2 Hyperbolic surfaces

Definition 2.2.1 A hyperbolic surface is a complete, orientable, smooth sur-
face with constant curvature equal to —1 (see [Li]).

The focus of this section is to present two main theorems, which demonstrate
the connection between the hyperbolic plane and all other hyperbolic surfaces.
The next two definitions are required for the understanding of Theorem 2.2.4.

Let X be a locally compact metric space, and let G be a group of isometries
of X.

Definition 2.2.2 A family {M,|a € A} of subsets of H is called locally finite
if, for any compact subset K C H, M, (K # () for only finitely many o € A
(see [Kal).

Definition 2.2.3 We say a group G acts properly discontinuously on H if the
G-orbit of any point z € H is locally finite (see [Ka]).

Denote the group of isometries of H by Isom(H).

Theorem 2.2.4 Let M be a complete Riemannian surface with constant curva-
ture K = —1. Then, M is isometric to T\H, where T is a subgroup of Isom(H)
acting in a properly discontinuous manner on H. The metric on T\H is induced
from the covering m: H — I'\H.

See p. 165 — 166 of [HK] for an extended version of this theorem along with a
proof. As a direct application of Theorem 2.2.4, we see that any complete hy-
perbolic surface, X, can be written X = I'\H. Therefore, it is helpful to classify
the possible subgroups I' C Isom(H) satisfying the conditions of the theorem.

Definition 2.2.5 A subgroup I' of Isom(H) is called discrete if the induced
topology on I is a discrete topology, i.e. if I' is a discrete set in the topological
space Isom(H) (see [Kal).

Theorem 2.2.6 Let T be a subgroup of Isom(H). Then, T acts properly discon-
tinuously on H if and only if I' is a discrete subgroup of orientation preserving
isometries of H.

This results is obtained by combining Definition 8.1 and Theorem 8.6 of [Ka).

2.3 Geodesic flow

The geodesics of H are smooth, constant speed, and length minimizing curves
between any two points in H. For any z, w € H, there is a unique geodesic joining
them. By the standard theory for Riemannian manifolds, for (z,v) € TH, there
exists a unique geodesic v such that v(0) = z and 4/(0) = v. For an in depth
discussion on geodesics and the geodesic flow see Chapter 3 of [DC].
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Theorem 2.3.1 The geodesics in H are the semicircles and the rays orthogonal
to the real axis R (see Figure 2.3.1).

£

Figure 2.3.1: Geodesics in the hyperbolic plane

Now, we look at H from a dynamical perspective by studying its geodesic
flow. Since geodesics are constant speed, it makes sense to re-parameterize them
by arc-length. Let T'H = {(p,v) : p € H,v € T,H, ||v|| = 1} denote the unit
tangent bundle of H. The geodesic flow is an R-action on T'H defined as follows:
for v € TIH let v be the unique geodesic such that (y(0),~'(0)) = (z,v). The
geodesic flow g = {gt}+er of (z,v) is given by g+(z,v) = 7'(t) (see p. 10 of [Li]).

Note that g¢(z,v) = (y(t),~'(t)) € TH. Since «y is parametrized by arc-
length, ||7/(0)|| = ||v|| = 1. Therefore, g;(z,v) € T*H. So, g; maps T H into
itself. It can be shown that g; is invertible and hence a homeomorphism. The
geodesic flow defined on T'H gives a dynamical system (T'H,g;), where the
unit tangent bundle, T'H, is the phase space.

Let (2o = Ty + Yo, Vo = i/Yyo) € T H. Then, v, is a vertical unit vector
pointing upward and based at z,. In this case, W*(2,,v,) = {(2,v) € T'H :
Yy = Yo and v = v,}. The stable manifold of (z,,v,) consists of the elements
in T'H with base point on the horizontal line passing through ¥, and vertical
vectors pointing upward. Figures 2.3.2 shows the stable and unstable manifolds
for (zo,v,).
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LT TALZT T T v

WY (z0,v,)

Figure 2.3.2: The stable and unstable manifolds of (z,, v).

In the case when (z, v) is not a vertical unit vector pointing upward, W*(z,v)
and W%(z,v) can be visualized as shown in Figure 2.3.3.

W(z,v)

Figure 2.3.3: Stable and unstable manifolds for a generic (z,v) (see [Li]).

In the context of hyperbolic surfaces, the stable manifolds and unstable
manifolds are often referred to as stable and unstable horospheres, respectively.
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2.4 Mobius transformations

Let Isom(H) denote the set of isometries of the hyperbolic plane H and consider

the group SL(2,R) of real 2 x 2 matrices with determinant one. Define an
action of SL(2,R) on H as follows: for g = ( Z Z ) € SL(2,R), a Mobius

transformation is given by

az+b
cz+d

Ty(2) = (6)

Theorem 2.4.1 Let g € SL(2,R). Then, the Mdbius transformaion T, is an
orientation-preserving isometry of H. Therefore, the set of Mobius transfor-
maion is a subgroup of Isom(H) (see [Lif).

Proof . Fix z = x + iy € H. Then,

az+b  (az+b)(cz+d)  ac(z® +y?) + (ad + be)z + bd Y
cz+d lez + d|? N lez + d|? lcz +dJ]?”

Ty(z) =

AS ﬁ > 07 Tg(z) S H AAISO7

_a(cz+d) —(az+b)c  det(g) 1
dT5(2) = (cz+d)? C(ez+d)? (2 +d)? "

Therefore, given v, w € T,H,

_ (dTyv,dTqw) lez + d|* (v, w) ~ (v,w)
TE T Im(T(2)? yPlez+dt g2

(dTyv, dTyw) =< v, w >, .
In the above calculation, we use Equation 7 together with the property that
(vz,wz) = |z|*(v,w). Hence, Ty is an isometry of H. O

In addition, note that the two matrices g,—g € SL(2,R) give the same
Mobius transformations; so it is enough to consider the action of the quotient
group SL(2,R)/+I, = PSL(2,R) on H. In fact, PSL(2,R) gives all orientation
preserving isometries of H (see [Li]).

The group PSL(2,R) is also a topological space with a norm induced from
R* (see p. 27 of |[Kal). Therefore, by Theorem 2.2.4, we have that X = I'\H,
where T is a discrete subgroup of PSL(2,R).
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2.5 Geodesic flow in terms of PSL(2, R)

The geodesic flow of H can be understood in terms of PSL(2,R). The group
PSL(2,R) acts on T'H in the following way: For g € PSL(2,R) and (z,w) €
TH,

Tg(z7w) = (Tg(z)’ DTg(w)>7

where T is the M&bius transformation corresponding to g.

Proposition 2.5.1 The action of PSL(2,R) on T H is transitive. Therefore,
given (z1,w1), (22, w2) € TYH, there is a g € PSL(2,R) such that Ty(z1) = 22
and Dg(wy) = wy. In addition, such g is unique. (see Section 1.2.4 of [Li] for
proof).

Theorem 2.5.2 There is a homeomorphism between PSL(2,R) and T H such
that the action of PSL(2,R) on itself by left multiplication corresponds to the
action of PSL(2,R) on T'H described above (see [Ka]).

As done in [Ka, Li], the homeomorphism can be constructed directly by fix-
ing the element (i,4) € T'H. By Proposition 2.4.1, for any (z,w) € T*H, there
is a unique Ty such that Ty(7,i) = (2, w). Remarkably, the map (z,w) — T, is
a homeomorphism. See p. 26 of [Ka| for more details.

Next, we express the geodesic flow in terms of PSL(2,R). To start, the
geodesic passing through (i,7) is the positive imaginary axis. After parame-
terizing by arc length it can be calculated that g;(i,i) = (ie!,iet),t € R. The
Mbobius transformation taking (i,7) to g.(i,1) is ( 602 69%

For a given (z,w) € T'H, take the g € PSL(2,R) such that (T,(i), DT,(i)) =
(z,w). Since T, is an isometry, we have that T, sends g.(4,7) to g:(z,w) (see
Figure 2.5.1). By composition, the element of PSL(2,R) that sends (¢,4) to

gt(z,w) is the product g( ez 0 ) Therefore, in terms of PSL(2,R),
gt : PSL(2,R) — PSL(2,R) is right multiplication:

0 e 2
. e 0
g g 0 o=t .

|+
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gt(Z,Z) gt(z,w)

z
N
g

il

N

Figure 2.5.1: The geodesic flow of (i,7) can be mapped to the geodesic flow of
any (z,w) € T'H via right multiplication in PSL(2,R).

Similarly, since for a general hyperbolic surface X, we have TX = I'\TH,
the geodesic flow of X is given by the projection T H — I'\T'H (see [Li]). The
geodesic flow of X can be represented by right multiplication, g; : T\PSL(2,R) —
I"\PSL(2,R), as follows:

g —»Tyg ( 605 e(_)% ) (see [Li]).

2.6 Constructing the boundary at infinity

From Section 2.3, we see that the future and past behaviors of the orbits in
the system can be identified with R U {co} (see Figure 2.3.2 and 2.3.3). In this
section, we show that the forward boundary, (8%), and backward boundary,
(07), can be given the topology of S'. First, we start by considering the unit
disk centered at i. For any non-vertical unit vector (z,v) € T1H the flow moves
in a fixed direction along a semicircle orthogonal to the real axis. The asymptotic
behavior is identified with the point on the real line intersecting the semicircle
in the direction of the flow. In what follows, we consider R as the subset of C
corresponding to the real axis.

Lemma 2.6.1 There is a unique semicircle orthogonal to the real azis passing
2
through © and p € R\{0}. It has center h = p2;1 and radius v = |p — hl.

Proof . Let h denote the center of the semicircle. Since we require the semicircle
to be orthogonal to the real axis, h € R. Therefore, any such semicircle satisfies
the equation:

(= h)* +y* =72 (8)
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Also, i and p are points on the circle. Plugging into Equation 8, we have:
R+ 1 =72 9)
and
(p—h)? =r2 (10)
Setting Equations 9 and 10 equal to one another, gives
h%+1=(p—h)®=p?—2ph+ h%

Solving for h yields:

p*—1

2p
Therefore, the semicircle orthogonal to the real axis, and passing through ¢ and
p, is unique and has h, r as given. O

Proposition 2.6.2 The forward boundary, (07), and by symmetry the back-
ward boundary, (07), can be identified with S*.

Proof . Let © € R\{0} correspond to a future behavior of an orbit. By Lemma
2.6.1., there is a unique semicircle passing through ¢ and z. This semicircle will
intersect the unit disk at two points, one point having positive real coordinate
and the other having negative real coordinate. Identify x with the point of
intersection, z, having the same sign as x.
For a point z in the unit disk, consider the semicircle passing through i and
z orthogonal to the real axis. It must hit a unique point, x € R\{0}. So, this
identification is one-to-one and onto. Finally, we identify 2¢ with co and 0 € R
with 0. By symmetry, for a given geodesic , g¢(v,w), in T*H the backward
boundary can also be identified with the unit disk by considering g;(v, —w) and
repeating the identification process above. Therefore, both the forward and
backward boundaries, corresponding to the possible pasts and futures of the
orbits in the system, can be given the topology of S!.
O
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iR

z

x

Figure 2.6.1: The correspondence between the geodesic flow of H and the unit
disk is z «+— x.

Note that these geodesics intersect the unit disk twice. This is expected since
one geodesic gives rise to two distinct asymptotic behaviors depending on the
direction of the flow. This corresponds to past and future behaviors of orbits.

2.7 Properties of the boundary

Let A = {(2,2) : 2 € S'}. Note that given (21,22) € (S x S1)\A, a unique
orbit is identified with past corresponding the z; and future corresponding to zs.
This is because a past and a distinct future corresponds to a unique geodesic.
This can be seen by noting the correspondence of S* and R U {co} (see Figure
2.6.1). There are no semicircles, hence no geodesics, connecting the same point
in R. This implies that no geodesic can have he same past and future behavior.
This is why we eliminate points in A. For the remainder of the section, we fix
the notation (97) = St and (91) = S*.

Next, we see that the set (07 x 1)\ A x R gives a bijective correspondence
between the orbits of the system and the possible locations on the orbits. Given
(z,y,t) € (0~ x OT)\A x R, the geodesic flow is first uniquely identified by
its past, x, and its future, y. Next, fix the geodesic, v, passing through the
element (i,v) € T'H with the same future y. Traverse a length of time ¢ from
i obtaining (y(t),'(¢t)). Take the stable horosphere containing (v(t),~'(t)) and
corresponding to the future y. This horosphere has a unique intersection, (z,v),
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with the geodesic flow identified with z and y. This intersection point gives the
location on the orbit corresponding to (z,y,t).

past' (x) future (y)

Figure 2.7.1: In this correspondence (z,w) +— (z,y,t) € (07 x 07)\A x R.

2.8

Summarizing the dynamical boundary of (T'H, g;)

For a given hyperbolic surface X, the geodesic flow gives a dynamical
system with phase space T'X.

We studied the flow defined on T*H, since H is the universal cover of any
hyperbolic surface.

A forward boundary (01) and backward boundary (0~) were naturally
constructed and both are topologically equivalent to S*.

The boundary (9~ x d7) distinguishes orbits of the system.

The set (01 x 07)\A x R distinguishes orbits and locations on orbits
allowing the full T'H to be recovered.

3 The torus

We give a brief introduction to hyperbolic automorphisms of the two-dimensional
torus, T2. In particular, their link with linear maps on R2. Lastly, we construct
a “dynamical boundary at infinity" for this system.

3.1

Hyperbolic toral automorphisms

A n-dimensional torus is defined to be T® = St x ... x S' = R"/Z", where S!
is the unit circle ([HK]). For the purposes of our discussion, we consider the
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two-dimensional torus: T? = S x S = R?/ ~. Here we define the equivalence
relation ~ as follows: for (z1,y1), (z2,y2) € R?, (z1,y1) ~ (22,y2) if and only
if (1 — 2,91 — y2) € Z2. This is induced from the natural action of Z2 on R?,
making T? = R?/Z2. The relation is illustrated in Figure 3.1.1.

y
e(x+1,yH1)
(0,1) (1,1)
o (7,y) o(r+1,y)
(0,0) (1,0) x

Figure 3.1.1: The green edges are identified and so are the purple edges. The
red points represent the same point in T2.

Consider a map f : R? — R2. If f respects the equivalence relation given
above, i.e., if (z1,y1) ~ (2,y2) implies f(x1,y1) ~ f(z2,y2) then f induces a
map on T2. This map is denoted f : T?> — T? and defined by f(z,y) = [f(z,y)].

Proposition 3.1.1 A linear map A : R? — R?, given by A = ( CCL Z ) with
a,b,c,d € Z, induces a map on T2.

Proof . Let (x1,y1) ~ (2,y2). Since (z1 — x2,y1 — y2) € Z7,

Az, 1) — A2, 92) = (a2 — 22) +b(y1 — y2), e — x2) + d(y1 — yo)) € Z2.
Therefore, (z1,y1) ~ (22, y2) implies A(x1,y1) ~ A(z2,y2). So, A respects

the equivalence relation ~ and hence induces a map on T2.
O

Definition 3.1.2 We say that a map T : T2 — T? is a linear toral automor-
phism if it is induced by a linear map A with integer entries and determinant
equal to £1. In addition, T is hyperbolic if the eigenvalues of A are not of norm
1 (see [BS)).
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It can be checked directly that linear toral automorphisms are invertible
and continuous. Let A be a matrix representation of a linear hyperbolic toral
automorphism. Note that [], A\; = Det(A), where \; are the eigenvalues of
A, Det(A)= 1, and |A;| # 1 imply that A has two distinct eigenvalues with
Ao = %1 Also, note that Det(A™) = (Det(A4))™ = +1 and the eigenvalues of A™
are |\'| # 1. So, the n" iteration of a linear hyperbolic toral automorphism is
itself a linear hyperbolic toral automorphism.

Figure 3.1.2: The image of T2 under a hyperbolic toral automorphism with the
same identification as shown in Figure 3.1.1.

We abuse notation and refer to a linear automorphism, 7', by the matrix
that induces it. By fixing a linear hyperbolic toral automorphism, A, we can
consider the discrete reversible dynamical system (T2, A). The T? is the phase
space and the law specifying the evolution of states is given by the iterations of
A and A~!. We continue by studying the dynamics in R?, the universal cover
of T2.

Let E), denote the eigenspace of \; (i.e. the set of all eigenvectors corre-
sponding to ;). It is clear that applying A™ to a vector in F), returns another
vector in Fy, Therefore, Ey, is A-invariant for a fixed A;.

In this case, the two eigenspaces of A are E) and E/y, where ) is the eigen-
value of A that is greater than one. The orbit of points contained in Ey or Ey
is easily understood. A expands by a factor of A when applied to vectors in E),
and contracts by a factor of 1/A when applied to vectors in Ej /5 (see [BS]).
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El/)\y /

By

Figure 3.1.3: Eigendirections giving stable and unstable manifolds in (TZ, A).

The eigenspaces of A can be used to understand the behavior of the system.
As explained in [BS], for (z,y) € R?, the line passing through (z,y) and paral-
lel to vectors in Ey is W*(x,y). Similarly, the line passing through (x,y) and
parallel to vectors in Ey,y is W*(x,y).

3.2 Dynamical boundary at infinity on the torus

We constructed the dynamical boundary of T? in its universal cover, R?. The
hyperbolic toral automorphism, A, can be expressed in terms of the basis cor-

responding to its eigenvectors by Ay = A0 > With respect to these

0 1/X
coordinates, the stable and unstable manifolds are given by:

W*(2o,40) = {(x0,y) : y € R}

and

Wu(xo,yo) = {(:E,yo) HENS R}'

We begin by constructing a forward boundary. First, consider the following
intervals partitioning Rq x {0}:
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(1/2%, 1/:/\2} x {0}
(1/2%,1/A] x {0}
(1/A 1] x {0}
(LA} x {0}

(A, A%] x {0}

Lemma 3.2.1 There is a bijective correspondence between points in an interval
of type (N1 A™] x {0}, for m € Z, and the orbits of points in Rsg x {0}.

Proof . Fix an m € Z. For any (x,0) € (A™~1,\™], identify it with its own
orbit, O(z,0). Since A,(x,0) = (\x,0) € AF™=L AF™] for all | € Z, (x,0) is
the only point in (A1, \™] x {0}NO(x,0). So, this identification is one-to-one.

Next, for an arbitrary (x,0) € R~ x {0}, we have (z,0) € (A*=1 A\F] for
some k € Z. Therefore, AT *(2,0) € (A1, \™] and O(z,0) is identified with
AT (2,0) € (A1, \™]. Hence, this identification is onto. O

Fix the interval (1, \] x {0}. In fact, Lemma 3.2.1 can be used to identify
the future behaviors of all points in Ry x R with (1,\] x {0}. For (x,y) €
(AF=1AF) x R, make the identification: (z,y) ~p A'7F(z,0) € (1, x {0}.
This can also be understood as identifying (z,y) with (z,0) and then applying
the identification in the proof of 3.2.1. This can be extended to R.g X R giving
the next Corollary.

Corollary 3.2.2 There is a bijective correspondence between points in an in-
terval of type (A™~1 AU [=A™, —=A™71)) x {0} and the orbits of points in
R;ﬁo X {0}

The interval ((1,A] U [—A, —1)) x {0} is the forward dynamical boundary,
(01). The future behaviors of all points in R x R can be identified with (97)
by naturally extending the identification ~ to include points in R<¢ x {0}.

Similarly, the interval {0} x ((1, A] U x[—A, —1)) is the backward dynamical
boundary, (07). The past behaviors of any points in R x Ry can be identified
with points in (07) as follows: for (z,y) € R x (AF=1 AF] U [=AF, —AF—1)),
(@,y) ~ A7F(0,y) € {0} x ((L,AJU[=A, =1).
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Figure 3.2.1: Forward and backward dynamical boundaries. The two green lines
are stable manifolds that are identified by the forward boundary.

We define the dynamical boundary at infinity of this system by (8~ x 9%).
This boundary identifies points in Ro xR based on past and future behaviors
as follows: for (z1,y1), (2,y2) € Rzo X Ryo, (21,y1) ~ (22,y2) if and only if
(x1,91) ~7 (z2,92) and (z1,91) ~p (T2,%2). It can be checked directly from the
definition that (x,y) ~ (A™xz, \™"y) for any m,n € Z. All points in the same
orbit are identified.

The dynamical boundary, (0~ x d%) is a structure on points in Ro x R,
but not on R x R. The origin is not included in (0~ x 8%). Hence, all points
with the same past as (0,0) (the z—axis) and the same future as (0,0) (the
y—axis) are excluded from the identification. Therefore, {0} x R and R x {0}
are not included in this dynamical boundary construction.

Note that in what follows, we abuse notation by also expressing the coordi-
nates of the boundary as (z,y). The dynamical boundary (9~ x %) does not
uniquely distinguish orbits (see Figure 3.2.2.).
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L2
L2

~
T~

Figure 3.2.2: The two black points are identified with each other, but are not
in the same orbit.

Lemma 3.2.3 Any (z,y) € (0~ x d%) corresponds to a countable number of
orbits characterized by (x, \~™y), for m € Z.

Proof . Take (x,y) € (0~ x 9T),

(2,y) ~ (A2, A\7"y) ~ (2, A" y),

since A7"(A"z, Aly) = (z, \=(H™)y). So, (z,y) corresponds to at most Z dis-
tinct orbits. Also,

(z, A"™'y) € Oz, \=™"y) if and only if
Ak (2, A7 y) = (e, ARy = (2, A=) for some k € Z if and only if

k =0 and m’ = m”. So, there are exactly Z distinct orbits identified by m =
l+neZ. O
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Figure 3.2.3: Each color distinguishes a family of orbits corresponding to all
possible past and futures.

Therefore, we see that (9~ x 07) x Z gives us a bijective correspondence
between the distinct orbits of points in R.g x Rxo based and their pasts and
futures.

Proposition 3.2.4 There is a one-to-one correspondence with (0~ x 07) x
72 and the orbits and location on the orbits of points in R x Ry given by
(z,y,m,n) < A%(z, \""y).

Proof . By Lemma 3.2.1, for any point in Ry x R, its orbit is uniquely
identified with (0~ x 8T) x Z by (x, \™™y). Any location on this orbit can be
obtained by A% (x, A™"), for some n € Z.

O

3.3 Summarizing the dynamical boundary of (T?, A,)

e The dynamical system studied was iterations of a hyperbolic toral auto-
morphism on T2.

e We studied the dynamics on R?, the universal cover of T2.

e A forward boundary (07) and a backward boundary (9~) were constructed,
distinguishing families of orbits of points in R X Rg.

e The set (9~ x 1) x Z? distinguishes orbits and locations on the orbits of
points in R x R.
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4 Further questions

The boundary (9~ x 9T) is constructed in R?. A question for further studies is
to understand this boundary under the identification of the torus: T? = R?/Z2.
In addition, it would be interesting to see whether this boundary can be used
to retrieve information about the original dynamical system on T?. One might
also ask whether the existence of such a boundary at infinity can be generalized
to any “reasonable" dynamical system.
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Ends of algebraic surfaces

Eamon Quinlan Gallego*

Abstract

The main goal of this REU project was to investigate the curvature
of algebraic surfaces in R3. In particular we show that the curvature of
an algebraic surface goes to zero as one goes to infinity. However, in the
process of doing so interesting results regarding points at infinity were
derived which are also included in this report.

1 Points at infinity of algebraic surfaces

Here we consider algebraic surfaces, which are defined as subsets ¥ of R? given
as solutions to polynomials, i.e.

Y= {(z,y,2) € R®: f(x,y,2) = 0}

for some f € R[z,y, z]. Moreover, some issues regarding the fact that R is not
algebraically closed imposes that we must restrict to irreducible polynomials in
this section.

Here we investigate points at infinity of algebraic surfaces. There are two
different notions of points at infinity for an algebraic surface, which here we call
algebraic and topological.

1.1 Algebraic points at infinity

We begin with a general discussion of the projective space RP3.

The space RP? can be seen as the union of R? and a RP?, the later being
usually denoted as RPZ - RP? at infinity. This notion can be made formal as
follows:

By definition, RP3 = (R*\0)/ ~, where ~ represents the equivalence relation
T~y < x=\y for some A € R, \ # 0.

Then the elements of RP3 can be denoted by choosing a representative
(z,y,z,w) € R*\ 0 and writing [z : y : 2 : w] for its equivalence class.

Now, if [z :y : 2 : w] € RP3 is such that w # 0 then

x oy =z

[Zry:ziw=[—:=:

:1}
woow  w

This shows that any such equivalence class [« : y : z : w] has a representative
with w = 1, which is easily seen to be unique.

*University of Glasgow
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We can therefore write RP? = {[x : y : 2z : 1]} U{[z : y : z : 0]}. But
{[# : y : 2z : 1]} can be clearly identified with R3 by [z : y : 2 : 1] — (z,, 2)
- the uniqueness of the representative with w = 1 is important here - and
{[z :y:2:0]} can be identified with RP? by [z :y:2:0] — [z : y : z]. In this
context, the RP? is denoted as RP2..

Although the space RP? is can be defined in a completely algebraic way
there are various ways of realizing this space topologically. As it will be seen
shortly, in order to compare the algebraic and topological points at infinity we
want to realize RP? as a quotient space of the sphere. For that we will use the
map

6: 2 — RP?
(T, y,2) = [r:y:7]

of the unit sphere onto RP?, which is a double covering.

Now let ¥ = {(x,y,2) € R®: f(x,y,z) = 0} for some irreducible polynomial
f € Rlz,y,z]. We can then consider the homogenization of f. The process of
homogenizing a polynomial consists in adding a new variable w to f so that the
resultant polynomial f is a homogeneous polynomial in four variables such that
f(:z:, y,2,1) = f(x,y,z). This last condition implies that the two polynomials
coincide in the R? part of RP3.

The process of homogenization is best illustrated by example. Say:
flz,y,2) =a* +3y°22 =522 42— 4

then we add w"™ to each monomial choosing n so that we get a homogeneous
polynomial of degree 4, obtaining:

f(z,y,z,w) = z* + 3y2? — 522w? + zw® — 4w*

A formal definition is given by f(z,y, z,w) = ws() f(x/w, y/w, z/w), where
cancellations in the numerator and denominator by w are allowed.

Because f is homogeneous it satisfies f(x) =0 = f(Ax) =0forall A e R
and hence we can consider the set of solutions in RP3, given by

S={[z:y:z:w] e RP?: f(z,y,z,w) =0}

Definition 1.1 Let ¥ = {(z,y,2) € R® : f(z,y,2) = 0} for some irreducible
polynomial f € Rz,y,2]. Let f(z,y,z w) = wdeg(f)f(gc/w,y/w,z/w) be the
homogenization of f andlet ¥ = {[z :y : z : w] € RP?: f(z,y,z,w) = 0}. Then
the algebraic points at infinity of ¥ are defined as Gy = ¢~ (S NRPZ) C S2.

Remark 1.2 Tt is not clear from the definition that we may freely speak of
algebraic points at infinity of ¥, since the construction relies on the polynomial
f defining ¥. In fact, if we take f(z,y,2) = 22 +y* — 22 — 1 and g(z,y,2) =
(2% +y? — 22 — 1)(2® + 1) it can easily be checked that although f and g give
the same surface they give different algebraic points at infinity. However, it is
enough to restrict to irreducible polynomials to solve this issue.
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1.2 Topological points at infinity

Now we go on to define the topological points at infinity. As opposed to the
algebraic points at infinity, these can be defined for general surfaces - and in fact,
for general subsets of R3 - and we will do so here, although we are ultimately
interested in algebraic surfaces.

As it is well known, the map r — r/(r+1) gives a homeomorphism of [0, cc)
onto [0,1). Using this, a homeomorphism of R onto Bj, where Bj is the unit
ball, can be given by

v: RS — B
r = z

lll[+1

Under this homeomorphism we see that the unit sphere S? can be identified
as a "sphere at infinity". We would like to consider the image of our surface X
under this map, and the set of points of the closure of the image that lie on this
"sphere at infinity".

Definition 1.1 Let X C R3. The set of topological points at infinity of ¥ is
given by Ly = (X)NS? C S%

Remark 1.2 The closure in the above definition is taken by considering (%)
as a subset of R®. Also, when X refers to an algebraic surface {(x,y,2) € R?:
f(z,y,2) = 0} we will write ; for Ly.

The following lemma gives an equivalent definition.

Lemma 1.3 Let X C R3. Then p € Ly, if and only if there exists a sequence
(zn) C X such that ||x,|| — oo and &, = 7222 — p

flznll

Proof If p € Ly = (X) N S? then there exists a sequence (y,,) C 1 (X) such
that y, — p. Then the sequence x,, = ¥~ 1(y,) = % clearly satisfies the
required conditions.

Conversely, if there exists such a sequence (z,,) then by considering y, = ¢ (zy)
we immediately see that p € 1)(X) N S? = Ly. O

1.3 Results

Now that we have defined the two kinds of points at infinity we are ready to
give a few results.

Lemma 1.1 Let H € Rz, y, z] be a homogeneous polynomial in three variables.
Then LH = GH.

Proof Let ¥ = {(z,y,2z) € R®: H(x,y,z) = 0}. First, notice that because H
is homogeneous H(x,y, z,0) = H(z,y, z) and hence:

Gu=9¢"'(X)=2n$s?
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The fact that H is homogeneous also implies that
Hx)=0 = H(\x)=0

for all A € R, and hence ¥(X) = ¥ N By.

Next, we claim that XN B; NS? = ¥ N'S?. To see this first let
(x,9,2) € ¥ N By N S?. Then there exists a sequence (Z,,, Yn, 2n) € XN By such
that (2, Yn, 2n) = (2,9, z). Since, for all n we get H(z,, yYn, zn) =0, and H is
a polynomial - and therefore continuous - we obtain H(z,y, z) = 0. This shows
YNBNS?Cx¥ns2

For the other inclusion, suppose (x,y,z) € ¥ N S2. Let

(xnaywuzn) = (xvyaz)

n
n+1
Then (2, Yn, 2n) € By and because H is homogeneous

H(l'n,ynvzn) = (7)degHH(x,y,z) =0

n+1
for all n. Hence (2, Yn,2n) € XN By and (zp, Yn, 2n) — (2,7, 2). This shows
Y N B; NS? D X NS2 This proves the claim.
Now we get

Ly=9()=YNB; NS*=%xnN§?
and hence Gy = ¥ NS? = Ly as required. O

Because of this last result, when we speak about a homogeneous polynomial
H we may say points at infinity without a risk of confusion. From now on, we
denote by Iy the set of points at infinity of H when H is homogeneous.

Lemma 1.2 Let f € Rlz,y,z] be a polynomial. Then f can be uniquely de-
composed as f = H + 1 where H is homogeneous, deg(f) = deg(H) and
deg(f) > deg(l). Then Gy = Ip.

Proof With regards to the decomposition, just take H to be made up of the
terms of highest order of f, and then choose l = f — H. This decomposition is
immediately seen to be unique.

It’s now easy to see that f(;z:,y,z,()) = H(z,y,z). It then follows that
Gf:¢71({$€RP2:H(.’I}):O}):GH:IH. O

Lemma 1.3 Let f € R[z,y, 2] be a polynomial and f = H 41 be the decompo-
sition described in the above lemma. Then Ly C I .

Proof Let ¥ = {(z,y,2) € R3 : f(x,y,2) = 0} and (x,9,2) € S? be an

topological point at infinity of 3. Then there exists a sequence (n,Yn, 2n) C
P(X) N'S? such that (2, Yn, 2n) — (T,y, 2).
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We obtain that for all n ﬁ(mn,yn,zn) € Y where 7, = /22 + 92 + 22
and hence

f(
= (

=H(zp,Yn,2n) + (1 — rn)deg(f)l(

1—ry 1—r, 1—71,

1 e
ﬁ)d g(f)H(fn,ymZn) + l(

) =0

l—r, 1—7, 1 =71,
b b :0
1—r, 1—r, 1—7"n)

) =0

Since r, — 1 and deg(f) > deg(l) we conclude H(xy, Yn, zn) — 0. This shows,
again by continuity, that H(z,y,2) = 0, i.e.
(r,y,2) e{x e R®: H(x)=0}NS? =Ly = Iy. O

2 Ends of algebraic surfaces

Before we analyse the curvature at infinity of algebraic surfaces, which was the
ultimate goal of this project, we first want to define the notion of an end.
Even though this concept is highly intuitive describing it in abstract terms
takes some work.
In this section we rigorously define an end and then show that an algebraic
surface has a finite number.
Let ¥ C R? be an unbounded path connected component of an algebraic
surface. We denote:
B ={x e R®: ||| < i}
S ={x cR?: || =1}
Because Y is unbounded and path connected we get that ¥ N S; # () for
all ¢ € N. Moreover, for all ¢ € N, ¥ N S; is a curve on the sphere, possibly
including isolated points - if ¥ intersected the surface on a whole disk then

> = §; since X is defined by a polynomial. We now use the following theorem
from [5] (Theorem 4.1).

Theorem 2.1 Let R be a real closed field. For any variety X over R the set
mo(X (R)) of path connected components is finite.

From the proof given in [5] it is also seen that the number of path connected
components is bounded in terms of the degree of X. Applied to our problem,
this has the following corollary.

Corollary 2.2 As a subset of S;, the curve ¥ N .S; has a finite number of path
connected components. Moreover, this number is bounded for a given X..

Now, for every i € N, let the path connected components of ¥ N S; be
{ay)}?;l and, as discussed above, the k; are bounded above by some integer R.

Let A denote the set of all such intersections, i.e.

A=3n(J ) ={a{"}= by

ieN
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We now need to introduce some notation: for any surface Q2 with a path
connected subset S we denote by p.c.c.(S, Q) the path connected component of
Q on which S lies.

We may now introduce a relation < on A given by
(i2)

(i1) aal

a]l J2

<> iy >4 and ag.?) € p.c.c.(aé-jl), ¥\ B;)

and

ie. ol qal® (81)
J2 1

i if and only if a;ff) belongs to a bigger sphere than a;
there exists a path on ¥ strictly outside B;, that joins aﬁl) and aé-?).

Under this relation we now may consider the set of increasing chains:
C :{aﬁ) <1a§-§) 40‘5‘? <. g eq1,2,--- ,kz}}
and the set of path connected components of 3 described by such chains:
E={{pcc(a, T\ B;):ieN}: (a\”)ien € O}

This set can be provided with the equivalence relation ~ described as follows:
let e1,e2 € E be given by

er = {p.cc(al’, T\ B;) i €N}

ey = {p.c.c.(al(j), Y\ B;):ieN}

for two chains (a§i))¢€N, (al(f))ieN eC
Then:

eg~ey < INeNVn>N p.c.c.(a§:), Y\ B,) = p.c.c.(ozl(:), ¥\ B)

Definition 2.3 With the notation described above, an equivalence class of F
under ~ is called an end of X.

Lemma 2.4 An unbounded path connected component ¥ of an algebraic surface
has finitely many ends.

Proof As stated in Corollary 2.2, ¥ N S; has a number of path connected
components k; < R for all i € N. Let K; be the number of path connected
components of ¥\ B;. It follows from the above that K; < R.

Note that K; is a (weakly)-increasing bounded sequence of positive integers,
and is therefore ultimately stationary, i.e. 3N € N VYn > N K,, = K for some
integer K.

Now suppose for a contradiction that there were K + 1 or more ends. Let
these ends be represented by the chains (ozt(fl) ien € C withl € {1,2,..., K+1}.

(@)

Recall that, by the definition of the relation <, for any chain (a;)ien € C we
get

VM eN Vn>M Ozg:) € p.c.c.(agif), ¥\ Bu)
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In our case, ¥ \ By has only K path connected components and hence by
the pigeon-hole principle we must have two sequences that eventually belong to

the same path-connected component. Without loss of generality let these two

sequences be (a&?i)ieN and (ag?i)iew and let e; and ey be the representatives

of the ends they induce.
From the above discussion we deduce that

Yn > N p.c.c(a,(]l‘i 2\ Bp) = pec(al”) S\ By)

az, )

and hence e; = es, giving a contradiction. O

3 Curvature of algebraic surfaces of revolution

We now start investigating the problem of showing that the curvature of an
unbounded algebraic surface goes to zero as one goes to infinity along any end.
But before we tackle the general case we would first like to consider a simpler
case: surfaces of revolution.

Lemma 3.1 Let F € R[z,y, 2] be a polynomial in three variables that defines
the algebraic surface

S ={(z,y,2) €R’: F(z,y,2) = 0}
Then ¥ has rotational symmetry about the X -axis if and only if
Y= {(z,y,2) e R®: f(z,Vy? +2?) = 0}

for some polynomial f : R — R in two variables.

Proof Let 3 be such that it has rotational symmetry about the X-axis. Then

the curve of intersection C' of ¥ with the XY -plane is given by F(z,y,0) = 0.
Let & = (x,7 cos ), 7 sin §) be an arbitrary point in R? expressed in cylindrical

coordinates. Then the symmetry of ¥ about the X-axis implies that

zeY < (z,1,0)eC
and by letting f(x,y) = F(x,y,0) we see that

Y= {(z,y,2) € R®: f(z, /92 + 22) = 0}

as required.
Conversely, if

2 ={(z,y.2) €R: f(z, Vy? +22) = 0}
for some polynomial f then

(x,rcosf,rsinf) € ¥ < (z,r,0)€ S
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for all 8 and hence ¥ has rotational symmetry about the X-axis. O

Let ¥ = {x € R3: f(z) = 0} be an unbounded algebraic surface of revolution
which has the x-axis as its axis of symmetry and e be an end of 3.

As seen above, the intersection of ¥ with the x,y-plane is given by
f(z,y,0) = 0. This curve has finitely many connected components by Theorem
2.1.

Lemma 3.2 Let , = (z,,y,) C R? be a sequence of points in the curve C
given by f(x,y,0) = 0 where x,, — co. Assume further that x,, is in the same
path connected component P of C. Then if y, - 0 we get that X must have
infinite area.

Proof We show this by proving that revolving P gives a surface of infinite area.
Since y,, - 0 we get that for some ey > 0 there are infinitely points (z,, y,)
in the sequence such that |y,| > €.
We now have two cases:

(i) The lines y = =ep intersects P in an interval. Then, since both are
defined by polynomials, we get that P must be one of the lines y = +¢y3. By
revolving this about the z-axis we clearly get infinite area.

(ii) The line y = ¢ intersects P in points, or not at all. Then by Bezout’s
Theorem the number of points of intersection is finite. Therefore, eventually P
must be either inside the region —eg < y < €y or outside. But since there are
infinitely many points outside we get that the former is impossible.

Now we parametrize P by arc-length as (x(s),y(s)). Then the area Ag
obtained when revolving P about the z-axis between s = 0 and s = R is given
by

R
Ag = 27r/ y(s)ds > 2megR
0
which clearly diverges as R — oo. O

Proposition 3.3 Let F € R[z,y, 2] be a polynomial that defines an algebraic
surface X. Suppose that X has rotational symmetry along some axis and that
its generating curve is unbounded. Let (sp,) C ¥ be a sequence of points in %
such that ||s,|| diverges. Then K(s,) — 0 as n — oo, where K is the Gaussian
curvature.

Remark 3.4 Note that in general algebraic surfaces are not regular surfaces
and hence the curvature may not be well defined. However, this is fixed by
considering ¥\ Sing(F), where Sing(F) = {x € R? : V(F) = 0}. But because
¥ N Sing(F) is at most of dimension 1 this is a rather technical detail. For
now, we assume that s, € Sing(F') for all n.

Proof Without loss of generality assume the axis of symmetry is the X-axis. By
Proposition 1.1 we know that S = {(z,y,2) € R® : f(z, /3% + 22) = 0} where
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f(z,v) = F(z,v,0). Because of symmetry K only depends on x and /y? + 22.
By letting v = y/y2 + 22 we obtain:

fv(fvvfg? _ wafvf:vv + fgf:vw)
o(fZ+ f2)? (z,v)

K(z,v) =

It remains to show that K(z,v) — 0 as z — oo.

Without loss of generality we may assume that s,, = (z,,, v,,0) where
T — oo and that the whole of s, is contained in the same path-connected
component P of C, where C' is, as before, the curve of intersection of ¥ with
the x,y-plane. We divide the proof into two cases:

(i) If v, - 0 then S has infinite area by Lemma 3.2 and by [4] (Proposition
1) we get that K — 0 as z — oc.

(i))If v, — 0 then consider the map

d: R2\Y — R2\Y
(zy) = (1/2,y)

where Y denotes the y-axis. In particular, consider the image P’ of P\ {(0,v) :
v € R}. It’s easy to see that the image C’ of C is given by f(%, v) = 0.

C’ can be made algebraic by multiplying the equation f(,v) = 0by xdeg.(f)
(in this process the origin is be added to the solution).

By looking at the image under ¢ of the sequence s, we see that P’ contains
a branch through the origin. This branch may be locally expressed as a Puiseux
series in x:

v(z) = biaw + by + -

The inverse image under ¢ of the interval on which the above series converges
is an interval of the form (—oo, M) U (R, 00) for some M, R. We conclude that
in this interval P may be expressed as a series of the form:

—_

0(x) = by (=) + bo(=)" + -

T

8=

for some n € N.
For f(z,v) = v — v(z) the curvature formula reduces to

—Uzx
K = ——
($7U) U(’Ug—i—l) (o)

To show that K — 0 as x — oo we track the smallest order terms in 1/x.
Let I = min{¢ € N : b; # 0}. Then the smallest non-zero term in the
numerator is £ (£ +1)b;(2)/"*2) where as in the denominator it is by (1)/™).

We conclude that K — 0 as x — oo as required. O

88



4 Curvature at infinity

4.1 Curvature of analytic points at infinity

As it will be seen later, eventually a proof was found for the fact that algebraic
surfaces have curvature going to zero as one goes off to infinity. The proof relies
on showing that the surface may be expressed as union of graphs of a certain
form and, potentially, this property may not be unique to algebraic surfaces.

Therefore we would like to introduce the kind of surfaces that this property
holds - which we call analytic at infinity - in this section and show that indeed
the curvature goes to zero at infinity. In the next section, we show that any
algebraic surface is analytic at infinity.

We begin by recalling the equivalent definition of a topological point at
infinity given in Lemma 1.5.

Definition 4.1 Let ¥ be an unbounded surface. A point p € S? is called a
topological point at infinity of ¥ if there exists a sequence (x,) C X such that
|zn|| — oo and &, = H;C—”H — p. The sequence (z,,) is called a characteristic
sequence of p.

In this section, we will refer to these points as points at infinity.

Suppose that 3 is an unbounded surface and p € S? is a point at infinity of
> with characteristic sequence x,,. Let II, be the plane perpendicular to p and
let w, v be an orthonormal basis for II, such that {p, u,v} forms a right handed
orthonormal basis for R3.

We may now consider the map

o, : R3\ 1L, — R3\ 1L,
Ap+pu+no = ip+ Bu+ o
Note that ®, is a homeomorphism and it is its own inverse, i.e. ®,0®, = Id.
Moreover, ®,, is a PG L, transformation given by the matrix

0 0 01
01 00
0 010
10 00

in the {p, u, v, w} basis.
Lemma 4.2 With the notation described above, ®,(x,) — (0,0,0)

Remark 4.3 Potentially, some points of (z,,) could lie in II,, and then ®(x,,)
would not be defined. However, this number has to be finite and hence we can
ignore this situation.

Proof First of all, we express (z,,) in the (u,v,p) coordinates as x,, = \,p +
tnt + nyv. Now, from the definition, we have that ||z,| — oo and %2 — p.

[E]
By denoting 1, = /A2 + u2 + n2 these imply that

Tp — OO
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and therefore

1
(I)P(‘Tn) = 7(1) + pnu + nnv)

An
1
_n <p+ P an>
An \Tn Tn Tn

— 1(0p + Ou + Ov+) = (0,0,0)
as required. O
Corollary 4.4 (0,0,0) € (X \1I,)

From now on, we assume that the vector (A, u,n) € R? is given with respect to
the basis {p, u, v}, i.e (A, 1, 1) = Ap + pu + nu. Let’s also denote

F.o={\pn) eR*:0<A<e, —e<pu<e, —e<n<e}

Definition 4.5 Let ¥ be an unbounded surface and let p be a point at infinity of
Y. Then p is called analytic if, using the notation described above, ®,(X \ II,)
can be written, in a neighbourhood F¢, as a union of finitely many graphs

ni(A, 1) of the form
n(k) = Z al(-?))\i/"k Mj/"k (1)
5

where az(f) € R, n; € N and the exponents (i/ng, j/ng) lie in a strictly convex

cone of %Zio, and the summation is taken in this cone.
For the definition of strictly convex cone, see [1].

Definition 4.6 Let X be an unbounded surface. If all points at infinity of X
are analytic then ¥ is said to be analytic at infinity.

Theorem 4.7 Let ¥ be an unbounded surface and p a point at infinity of X
which is analytic. Then for every characteristic sequence (x,) of p we get that
K(xz,) — 0 as n — oo, where K is the Gaussian curvature.

Proof We may assume that z,, ¢ II, for all n. Then (®(z,)) C ®(X \ IL,).
This implies that (®(z,)) lies in the finitely many graphs of the form 1. By
applying the transformation ®, to the neighbourhood F. we conclude that X
can be expressed as a union of finitely many graphs of the form

(i/np)—1 J/nk
(k) _ m (1 Iz
=2 (3) 0 (5)
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in a region {(\,p,n) ER3: R< A< o0, —R<pu< R, —R <n< R}. We now
prove the claim by showing that the curvature goes to zero along each of these
graphs as + — 0 and § — 0.

For a graph of this form, the curvature reduces to

2
TN — 77>\p,
K\ p) = 2 = e
(1+n3 + n)? (A1)

where we have dropped the index k for clarity. The exponents of (1/A) in the
series expansion are all greater than (2/n) — 1 so after one differentiation by A
we get only positive exponents.

We therefore immediately recognize that the numerator has no constant
term whereas the denominator has constant term 1. This implies that K — 0
as required. O

Corollary 4.8 Let X be analytic at infinity. Let (z,) C X be a sequence such
that ||z,|| — o0 and &, = ety converges. Then K(xz,) — 0.

4.2 Algebraic surfaces are analytic at infinity

As mentioned in the previous section, our main motivation when looking at
surfaces analytic at infinity is studying algebraic surfaces. Here we show that
they are analytic at infinity and hence have curvature going to zero at every
point at infinity. We begin by using a well-known fact that allows us to speak
of curvature for algebraic surfaces

Proposition 4.1 Let S = {x € R3: f(z) = 0} be an algebraic surface. Then
Y = S\ Sing(f) is a regular surface, where Sing(f) = {x € R3 : Vf(z) = 0}.

For a proof, see [3] (Section 2-2 Proposition 2). Notice that the set Sing(f)NXZ

is at most of dimension 1. From now on, we will call ¥ an algebraic surface and

assume that the singular set has been removed to make the surface regular.
We start with the following

Definition 4.2 Let F' € Clz,y,z]. Then a formal power series ¢ € C[[z,y]] is
called a solution of F' if F(x,y, ¢(x,y)) = 0.

Lemma 4.3 Let F € Clx,y,z]. Then there exists some N such that for every
two power series solutions ¢y, p2 of F' we get

p1=¢2 mod (z,y)N = ¢1 = oo

Proof Express F as F(z,y,z) = Z?{:O 2 fi(x,y) where f; € C[z,y]. Then
consider the map

@ (Cllz, gDV = Cllz, )]
(0, ON) Zij\io@fz‘(%y)
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This is a C-linear map and notice that ¢ € C[[z,y]] is a power series solution
if and only if (1, ¢, 2, ..., ") € ker(®).
Since (C[[x,y]])¥*! is a Noetherian C-module, it’s kernel is finitely generated

over C. Let (( (0),. . J(\(,)))7 e ( (()T), ceny J(\T))) be a basis for the kernel. We can
choose this bas1s so that ( (1), 52), ey ?)) are linearly independent for some

t<Tand1/J —Oforalls>t
From now on, denote w as ;. Now let ¢1 = ZZ 1 a 1/}1 and

Py = Zle ai2)1/)1. Then
¢1=¢2 mod ( = Z ) (Wi)n =

and hence it is enough to show that there exists some N &€ N such that
{(¥i)n}i = 1* are linearly independent.

To prove this claim let b, = dim{(¢;),); = 1. Then b, is a (weakly)-
increasing sequence of positive integers which is bounded above by ¢. Hence it
must converge to some value, say s < t. This would mean that 3N € N such
that Vn > N we get dim((;)); = 1* = s. Now we want to show that s = ¢.

For a contradiction, suppose s < t. Then Vn € N Ja(® e C*, a(™ # 0 such
that !, al™ (), = 0.

We now let A,, = {a € C': 3!, i(1i), = 0}. Then the A,, are non-trivial
subspaces of C! and they form a descending chain. We conclude the chain must
terminate in a non-trivial subspace. This implies that for some non-zero e € C*
we get Vn € N Z§=1 a;(¥;)n, = 0, meaning Z§=1 a;tp; = 0, giving the required
contradiction. (]

Corollary 4.4 Let F € Clz,y, 2] and ¢ € C[[z,y]] be such that
F(z,y,¢(x,y)) =0. Then ¢ is convergent in some neighbourhood of the origin.

Proof By Artin’s Approximation Theorem [2] there exist convergent power
series solutions ¢,, such that

on=0¢ mod (z,y)"

However, because of the lemma we get that, for big enough n, (an = ¢. O

We now take the following result from [1]

Theorem 4.5 Let F € Clx,y, z] be a polynomial such that z1 F and

F(0,0,0) = 0. Then there exist power series ¢ of the form ¢ =3, ; a;;x RARTAAL
where a;; € C, n € N and the exponents (i/n,j/n) lie in a stmctly convex cone
of the lattice %ZQ such that F(z,y,d(z,y)) = 0.

Lemma 4.6 The series ¢ obtained above are convergent on a neighbourhood of
the origin.
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Proof First we note that since F'(0,0,0) = 0 there are no negative exponents.
Let ¢ = 3, aijzt/myi/m. Then ¢'(z,y) = ¢(a",y") is a formal power series
that solves F'(z,y,2) = F(x™,y"™, z) and hence, because of Corollary 4.12, it
converges on a neighbourhood of the origin. Let E be its domain of convergence
and denote D, = {z € C: |z| < €}.

Because the domain of convergence of a complex power series is complete
circular [6] (Proposition 2.3.15) we can find €;, €2 > 0 such that D, x D., C E.

Then, because for all z € C and k,m € N, [2|F/™ = |2F|'/™ _ we get that if
we let € = €] for 1 = 1,2 then ¢ converges on Dg X De,. O

Moreover, because of Remark 4.2 in [1] we obtain d series - counting multiplicity -
where d = deg, (F'). These results also hold when restricting to real polynomials:
in this case, the coefficients a;; obtained must be real so that, when = and y are
real, so is z. We are now ready to give a proof of the theorem.

Theorem 4.7 Let ¥ be an algebraic surface. Then % is analytic at infinity.

Proof Let p be a point at infinity of X, let w,v be an orthonormal basis of
II, - the plane perpendicular to p - so that {p,u,v} forms a right-handed,
orthonormal basis for R3.

We now use this basis to refer to vectors as (A, u,n) = Ap + pu + nv. The
surface ¥ is then the zero-locus of some polynomial f € R\ u,7n], ie. ¥ =
{(Avﬂa n) : f(Ap,m) = 0} \ Sing(f).
®,(X) is then given by f(%7 £, %) = 0 which, for points (A, u,n) ¢ II,, is the
same as A\9°&(/) f(1 & 1) =0 which is now the zero locus of a real polynomial.

By [1] we can then find series of the form

,J

Since the polynomial is real, the a;; are real and since the origin is included
in the zero-locus we conclude that the exponents (i/n,j/n) lie in the lattice

172
27%,.
n >0
Finally, by Lemma 4.14 this series converges in a neighbourhood of the origin,
and therefore in F, for some ¢, as required. O

Corollary 4.8 Let X be an algebraic surface, p a point at infinity of ¥ and
(xn) its characteristic sequence. Then K(z,) — 0.
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Geometric Properties of Conformal
Transformations on R

Surya Raghavendran®

Abstract

In the present article, we show that conformal transformations on the
generalized Minkowski space R”*? map hyperboloids and hyperplanes into
hyperboloids and hyperplanes. We show that this action is transitive
when p or ¢ = 0, and that this action has exactly 3 orbits otherwise.
These properties are a generalization of well-known properties of Mobius
(or fractional linear) transformations on C which map circles and lines to
circles and lines.

1 Introduction

In the present article, we investigate geometric properties of conformal transfor-
mations on the generalized Minkowski space RP>?. Recall that RP? is the scalar
product space consisting of RPT9 together with the indefinite quadratic form
given by

Q) = (1) o (@) = (@) = (@2,

Conformal transformations on RP*¢ can be described by an action of the indefi-
nite orthogonal group O(p + 1,¢ + 1) on a suitable conformal compactification.
In the case of R*? =2 C and R*Y = H], the action of O(p+ 1, ¢+ 1) by conformal
transformations is transitive on the moduli space of spheres and hyperplanes in
the ambient space (c.f. |1, 5]). A similar result for the case of R! is also known
(c.f. [8]). In this paper, we investigate this action in higher dimensions.

References

[1] C.Bisi, G.Gentili, Mobius transformations and the Poincare distance in
the quaternionic setting. Indiana Univ. Math. Journal, 58, 2009, also
arXiv:0805.0357.

[2] S.Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces. Aca-
demic Press, 1978

*University of Texas at Austin

95



[3] T.Y.Lam, Introduction to Quadratic Forms over Fields. American Mathe-
matical Soc.

[4] M.Arayapoor, The Penrose Transform in the Split Signature. Differential
Geometry and its Applications, 30, 2008, also arXiv:0812.3692

[5] E.Gwynne, M.Libine, On a quaternionic analogue of the cross-ratio.
Advances in Applied Clifford Algebras, 22, 1041-1053, 2012, also
arXiv:1112.0612.

[6] M.Schottenloher, A mathematical introduction to conformal field theory.
Springer-Verlag, 759, Lecture Notes in Physics, 2nd, 2008.

[7] R.S.Ward, R.O.Wells, Twistor Geometry and Field Theory. Cambridge Uni-
versity Press, Cambridge Monographs on Mathematical Physics, 1991.

[8] IL.M.Yaglom, A simple non-FEuclidean geometry and its physical basis.
Springer, 1979.

96



Reaction Time in General Recognition
Theory

Aleina Wachtel *

Abstract

General Recognition Theory (GRT), developed by Townsend Laboratory
for Mathematical Psychology, is used to examine multiple dimensions of
stimuli in Signal Detection Theory (SDT). SDT mathematically models
perceptual and decisional processes within cognitive psychology. We are
interested in incorporating reaction time in addition to accuracy within
GRT, and we hope to diminish the inability to distinguish failures of de-
cisional orthogonality and perceptual separability. Through the use of
separable and integral dimensional stimuli to manipulate perceptual sep-
arability, as well as experimentally induced failures of decisional orthogo-
nality via positive and negative biases in response, we show that RT-GRT
correctly models failures of the varieties of perceptual independence.

1 Mathematical Psychology

By modeling cognitive processes, the field of mathematical psychology seeks to
make psychological concepts more rigorous. Using mathematics to model per-
ceptual and decisional processes as separate mechanisms, we can begin to have
a deeper understanding of what occurs within the brain between the moment
a stimulus is shown to a participant to the moment the participant makes a
decision about the stimulus.

1.1 Stimuli

For the sake of clarity, we define terminology associated with cognitive psychol-
ogy experiments. Dimensions are the characteristics of stimuli that are varied
purposefully within an experiment, e.g., color and shape. Features, on the other
hand, are the characteristics of a specific stimulus, e.g., red and circle [1].

The dimensions of a stimulus can be classified into one of two categories:
separable or integral. Although experimentally the dimensions of varying stim-
uli are always separate, meaning the values associated with each dimension must
be numerically different or the stimuli would otherwise be considered identical,
we use separable and integral to describe perceptual effects. Separable dimen-
sions of stimuli do not interfere with each other perceptually, whereas integral
dimensions demonstrate a failure of selective attention between the dimensions

*Harvey Mudd College, awachtel@g.hmc.edu
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of the stimulus. For example, in previous psychological literature, it has been
shown that color and shape are separable dimensions; saturation and brightness,
however, are two integral dimensions [2]. Thus, a participant may believe that
stimuli varying in brightness values are changing in saturation or vice versa.

The salience of a stimulus is the level of “perceptual difficulty" associated
with that stimulus, meaning that a stimulus with high salience is easy for a par-
ticipant to perceive, understand, and use in an identification or categorization
task.

1.2 Signal Detection Theory

Signal Detection Theory (SDT) is a model used to separate perceptual effects
from decisional effects. SDT specifically works within one dimensional stimuli,
where most often participants identify the presence or absence of a particular
signal alongside a constant, unidentifiable noise. We consider only accuracy, not
reaction time, when using SDT to model perceptual and decisional processes [1].

Stimulus fdh Decision Rasponse
(X,Y) — s s 1{X,y)
; Processes Processes

1
a
u (]
1
®

Perceptual

g o S

Figure 1.2.1: Seen above, the items within the dotted box represent what is
occurring cognitively. We can empirically observe anything outside of this box,
meaning the stimulus as well as the response are experimentally observable,
where the response is merely a function of the stimulus shown. SDT furthers
our understanding by mathematically modeling the intermediate stages of an
identification task [1].

We assume that there exists a non-observable “perceptual space" that we can
model using a simple Gaussian distribution. This is beneficial to help under-
stand how, within our perceptual space, we can account for varying degrees of
perceptual salience. For example, when shown a particular stimulus, at any
given time the participant may identify the stimulus in a slightly different way.
By representing what is perceptually occurring as a normal Gaussian distri-
bution, we account for the variance in perception caused by cognitive noise.
However, SDT is limited in its ability to model these effects when there exists
more than one dimension to a stimulus.
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Figure 1.2.2: A visual representation of Signal Detection Theory in one dimen-
sion. In this task, participants are asked to identify the presence or absence of
an auditory signal [4].
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Figure 1.2.3: Matrix of possible stimulus-response combinations associated with
the curves shown in Figure 2. The “Hit" and “Correct Rejection" boxes corre-
spond to the large areas within the two curves where there is no overlap. The
overlapping area in the “no region" is a miss, and the overlapping area in the
“yes region" is a false alarm [3].

1.3 General Recognition Theory

In order to examine various stimuli with multiple dimensions, General Recogni-
tion Theory (GRT) was created [1]. Instead of being limited to solely classifying
the presence or absence of a stimulus, GRT allows for the use of multidimensional
stimuli within categorization and identification tasks, such as correctly locating
a stimulus with several particular dimensions (e.g., red circle). In addition to
permitting the use of multidimensional stimuli, GRT is instruction-independent,
i.e., a wide variety of response instructions may be used within any given exper-
iment. It is important to note that GRT only accounts for accuracy and does
not consider reaction time [1].
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Figure 1.3.1: f; and f, are bivariate Gaussian distributions of perceptual effects
corresponding to two stimuli, each composed of two dimensions, z and y. f(z,y)
is the probability value for each function at a specific point. Again, we assume
there exists a Euclidean perceptual space in which these curves represent the
perceptual processes occurring during an experiment [1].

fQ(x,y)

| O](x'”

X

Figure 1.3.2: Contours of equal probability associated with Figure 4. These
circles represent a perceptual space in which the participant recognizes certain
stimuli to convey certain characteristics [1].

1.4 Varieties of Perceptual Independence

The components A and B of the two-dimensional stimulus AB are said to be
independently perceived if the perception of each is in no way contingent on or
interacts with the perception of the other [1].

P(AB) = P(A)P(B)
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Figure 1.4.1: Represented here are the contours of equal probability and decision
bounds from a complete identification experiment with stimuli A By, A1Bs,
AsBq, and AsBs, where A; denotes a stimulus value on the x dimension and
B; denotes a stimulus value on the y dimension. FEach circle represents the
perception of each stimulus, and the dotted lines represent the decision bounds
separating each possible response. In this figure, all varieties of perceptual
independence hold [1].

What we seek to visually represent are the occurrences in which indepen-
dence does not occur, i.e., failures of the varieties of perceptual independence:
perceptual separability, perceptual independence (correlation), and decisional or-
thogonality. This summer, we focused solely on failure of perceptual separability
and failures of decisional orthogonality. We define these terms below.

Definition 1.1 [Statistical Independence| Two arbitrary random variables W
and Z are said to be statistically independent if the probability distribution of
W does not depend on the value of Z (and vice versa) or, more formally, if and
only if

FW[Z) = F(W) and f(ZIW) = (2)

Definition 1.2 [Perceptual Independence| Perceptual independence of compo-
nents A and B holds in stimulus A;B; if and only if the perceptual effects of A
and B are statistically independent, that is, if and only if

fAiBj (1’7 y) = JA;B; (:E)gAiBj (y)

for all z and y and where ga,p; is the marginal distribution on dimension x
when the stimulus is A;B;.
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Figure 1.4.2: Contours of equal probability from a complete identification ex-
periment in which perceptual separability and decisional orthogonality hold but
perceptual independence fails. Depending on the slope associated with each
ellipse, we can see a correlation between the dimensions of our stimuli [1].

Definition 1.3 [Perceptual Separability| Consider the complete identification
experiment with stimuli A By, A1 B2, A3 By, and A Bs. The components A and
B are perceptually separable if the perceptual effect of one component does not
depend on the level of the other, that is, if

9A; By (-17) = JA; B, (ZE) fori= 1’ 2 and
9A,B;(Y) = 94,8, (Y) forj =1, 2

LL HL

Figure 1.4.3: Contours of equal probability from a complete identification ex-
periment in which decisional orthogonality holds but perceptual separability
and independence fails. We see there exists a failure perceptual separability by
examining the space between the stimuli in the LH and HH stimuli versus the
LL and HL stimuli [5].
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Definition 1.4 [Decisional Orthogonality| Consider the complete identification
experiment with stimuli A1 By, A1 By, A3B1, and A3 Bs. The components A and
B are decisionally separable, also referred to as decisionally orthogonal, if the
decision about one component does not depend on the level of the other, that
is, if the decision bounds in the general recognition theory are parallel to the
coordinate axes [1]. In other words, we visually know when there exists a failure
of decisional orthogonality when the dotted decisional bounds are no longer
perpendicular.

1.5 Silbert & Thomas

In a paper published in 2013, Silbert and Thomas demonstrated failure of deci-
sional orthogonality is not identifiable in the Gaussian GRT model with either of
two response selection models. In this study, it was shown that “GRT relies on
two basic assumptions to account for factorial identification data: (1) random
perceptual effects [which we account for with a Gaussian distribution and circu-
lar perceptual contours] and (2) deterministic decision bounds that exhaustively
partition perceptual space" [5]. Thus, we see the largest issues arise within our
models when we assume there is initially no failure of decisional orthogonality.

Cx

LH HH

LL HL

Figure 1.5.1: Seen on the left, we have perceptual separability with a linear
failure of decisional orthogonality. On the right, however, after a rotated and
sheared model configuration, we have a mathematically identical perceptual
representation (up to area preserving linear transformations) in which decisional
orthogonality holds, but there is a failure of perceptual separability. These two
images are related by transformations in the special linear group of 2x2 matrices
of determinant 1, a.k.a. SL(2,R) [5].

103



2 RT-GRT Project

2.1 Motivations

Considering these findings, we designed the Reaction Time in General Reconi-
tion Theory (RT-GRT) Project with two motivations in mind: (1) to try and
incorporate reaction time into GRT, given that accuracy is normally the only
aspect considered when analyzing response data, and (2) to address the concerns
exhibited in the publication of Silbert and Thomas.

Within cognitive psychology, there are two aspects to data collected within
an experiment: accuracy and reaction time. Accuracy is the percentage of cor-
rect responses in a categorization or identification task out of all given responses,
and reaction time is the time (milliseconds) it takes for a participant to elicit a
single response. It is important to consider both of these aspects, since it is only
the consideration of both that allows for comparisons between data points of
varying participants. For example, participant A with accuracy of 80 percent is
not inherently “better" at a task than participant B with accuracy of 70 percent
if the participant A had a much larger (slower) reaction time than participant
B. Thus, we hope that by incorporating reaction time into GRT, it is possible
that the shear model transform from a failure of decisional orthogonality to a
failure of perceptual separability exhibited in Silbert and Thomas is no longer
valid.

We hope to address these concerns over the course of two experiments. In
these experiments, we induce failures of either one or both decisional orthogo-
nality and perceptual separability. By generating these failures from the onset
of each experiment, and thus knowing what the intended distributions should
look like, we hope to demonstrate that there are necessary differences between
the two representations of the failures of perceptual independence.

Decisional Orthogonality?

1a) no bias 1a) bias +/-

Perceptual Separability? -

1b) no bias 1b) bias +/-

Figure 2.1.1: Graphic representation of the two intended experiments.

2.2 Experiment Design

This summer, Townsend Lab designed what we call Experiment (1a). In this full
identification experiment, we maintain perceptual separability through the use
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of separable dimensional stimuli and experimentally induce failures of decisional
orthogonality through a series of biases. The task is to categorize four stimuli
in accordance with the number pad on a keyboard, using the keys ‘1’ ‘3’, ‘7",
and ‘9’ (see Figure 14).

2.2.1 Creation of Stimuli

Previous psychological literature has demonstrated horizontal offset of a vertical
line in a block stimulus and the saturation of a block stimulus are two separable
dimensions [2]. Thus, there is no failure of selective attention between line
placement and saturation, and we can vary each dimension without worry of a
failure of perceptual separability.

Initially, we created four stimuli as seen in Figure 11. Each stimulus is
100x100 pixels in size, presented so as to subtend 2.5° visual angle. A visual
angle denotes the size of a stimulus in relation to how far away a participant
is seated from the stimulus (in this case, presented on a computer screen).
However, after many trials of pilot testing, we found the categorization task to
be too easy, i.e., participants’ accuracy levels were too high to model efficiently

with GRT.

H10 - S60 H20 - S60
H10 - 540 H20 - 540

Figure 2.2.1: Original four stimuli created for Experiment (1a). The numerical
value with “H" is the number of pixels of the displacement of the vertical line
from the far left side of the stimulus. The numerical value with “S" is the
saturation (chroma) value obtained from the Munsell color space.

Thus, through the Method of Constant Stimuli, we found the “perceptual
thresholds" for each dimension and created the stimuli seen in Figure 12. To
do so, we created stimuli with horizontal offset values of H10, H11, H12, ...,
H20 with constant saturation and stimuli with saturation values S40, S42, S44,
..., 560 with constant horizontal offset values. We then implemented a focused
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attention task, i.e., with one varying dimension, in which participants attempted
to identify which stimulus was the lowest extreme (in this case H10 and S40)
among the rest of the stimuli varying in one dimension. From the response
data, we were able to determine where in the spectrum of line placement and
saturation we could obtain the desirable 70 percent accuracy needed for GRT. In
doing so, we found that using stimuli with a 4 pixel difference in line placement
and 12 value difference in saturation in a full categorization task approximately
generated the accuracy percentages we needed.

For the most intuitive response mapping, we arranged the stimuli such that
from left to right the line placement shifts from left to right, and from bottom
to top the block becomes more saturated. Thus, the lowest saturated stimulus
with the line furthest to the left corresponds to the response ‘1’, and the most
saturated stimulus with the line furthest to the right corresponds to the response
‘9’ (see Figure 14).

H10 - S60 H14- 560
H10 — 548 H14 - 548

Figure 2.2.2: Final four stimuli created for Experiment (1a).

2.2.2 Data Collection Plan

Having established that our stimuli would sufficiently demonstrate perceptual
separability, we embarked on the process of experimentally inducing failures of
decisional orthogonality. We sought to do this through a series of biases. As
shown in Figure 13, the experiment is designed to take five days. The first day,
labeled as ‘practice’, is used to familiarize the participant with the categorization
task. First, the participant completes focused attention tasks, where only one
dimension of the stimulus varies. Then, the participant goes through six blocks
of divided attention tasks, categorizing the stimuli according to both dimensions.
All data from the first day is thrown out to account for practice effects, and only
the data from the remaining four days of the experiment is analyzed.
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0ay . bias | Duy i

2 blocks - focused 8 blocks - divided 8 blocks - divided 8 blocks - divided 8 blocks - divided
attention attention attention attention attention

6 blocks - divided
attention

Figure 2.2.3: Day-by-day breakdown of the various experimental conditions.

The second day, the participant completes a normal GRT categorization task
with no bias; the participant will also end the experiment with this condition.
However, on the third and fourth days, the participant is randomly assigned
either a positive bias on the third day and a negative bias on the fourth, or
vice versa. It is within these two days we experimentally induce a failure of
decisional orthogonality.

2.3 Decisional Orthogonality Biases

In order to manipulate decision bounds, we must alter the way in which a
participant responds to a stimulus. It is important to note that we are not
altering the stimuli themselves; rather, we are changing the number of points
(and therefore dollars) awarded for particular stimulus-response combinations.

2.3.1 No Bias Condition

As stated previously, there are no biases on the focused attention tasks, as well
as the divided attention tasks on day 1, 2, or 5. Figure 14 shows the instructions
shown in the no bias condition.

On the screen, the participant is briefly shown one of the four possible stim-
uli. As fast and as accurately as possible, the participant must classify which of
the four stimuli they believe they have just seen, and in response, presses one of
the four appropriate keys. We incentivize this task by awarding positive points
for each correct response and giving negative points for each incorrect response.
The payoff matrix associated with the no bias condition can be seen in Figure
15A. Thus, along the diagonal, a participant receives 6 points for correctly cat-
egorizing the stimulus and loses 2 points for incorrectly doing so. GRT models
this process, and theoretically we obtain Figure 15B. To ensure that the points
create enough of an incentive to perform with high accuracy and fast reaction
time, we randomly select 48 of the hundreds of trials the participant completes
in one session. For each point earned in those trials, the participant is awarded
1 cent per point for a possible $1 to $3 bonus. This is in addition to the $9
payment the participants receive each day upon successful completion of the
experiment.
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Figure 2.3.1: Instructions associated with the no bias condition.

 stimuii [0 - o
_ 8 ] = 2 o
n 2 8 2 2 0
ba 2 2 8 2 0 aa ab
) 2 2 8 o
0 a 0 0

(A) (B)

Figure 2.3.2: a) Payoff matrix associated with the no bias condition. b) Contours
of equal probability associated with no bias condition.

2.3.2 Positive Bias Condition

The positive bias condition randomly occurs on either the third of fourth day
of experimentation. This condition solely biases divided attention tasks. Figure
16 shows the instructions for the positive bias condition.

Like the no bias condition, the participant is briefly shown one of the four
possible stimuli and the participant must classify each stimulus as quickly and
accurately as possible. However, in order to experimentally induce a positive
linear failure of decisional orthogonality, we must emphasize the responses as-
sociated with stimuli aa and bb. We do this by modifying the point-system
incentive.
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We still incentivize this task by awarding positive points for each correct
response and giving negative points for each incorrect response, however, as
seen in the payoff matrix associated with the positive bias condition in Figure
17A, the point values are no longer consistent.

Instead, when the emphasized responses are correct, the participant earns 7
points (see emphasized columns) rather than the 5 points a participant can earn
for correctly categorizing the other two stimuli. Additionally, if a participant
responds one of the two emphasized responses incorrectly, i.e., the participant
presses ‘17 or ‘9’ when the stimulus shown corresponds to the response of ‘7’ or
‘3’, the participant only loses 1 point. The larger penalty of 3 points is given
when the participant responds with an unemphasized response incorrectly. This
point system promotes a strategy in which the participant responds with the ‘1’
or ‘9’ keystroke more often since responding in this way is the most advantageous
way to earn the most points.

Like the no bias condition, we randomly select 48 of the trials the participant
completes and award 1 cent per point. Since the participant does not know
which 48 trials will be selected, this ensures that the participant continues to
perform as well as possible throughout the entire session.

If we can successfully induce this type of failure of decisional orthogonality,
GRT will model the contours of equal probability for this condition as seen in
Figure 17B.

Figure 2.3.3: Instructions associated with the positive bias condition.
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“ = 1 3 7 0

- 2 + -+ 18

(A) (B)

Figure 2.3.4: a) Payoff matrix associated with the positive bias condition. Note
the columns associated with stimuli aa and bb are favored in response with a
value of positive (+) 4. b) Contours of equal probability associated with positive
bias condition. The regions associated with stimuli aa and bb are larger than
the regions associated with the other two stimuli.

2.3.3 Negative Bias Condition

The negative bias condition is completely analogous to the positive bias con-
dition. The participant completes the negative bias condition experiment on
whichever day was not allotted for the positive bias condition. Figure 18 shows
the instructions for this condition.

We modify the point system such that the other two responses are empha-
sized in exactly the same way. The payoff matrix associated with negative bias
condition can be seen in Figure 19A. With the same monetary bonuses for 48 of
the trials, we hope that GRT models the contours of equal probability for this
condition as seen in Figure 19B.
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Figure 2.3.5: Instructions associated with the negative bias condition.

-
cmar PRI

bb

ba / bb
M.'J;_I =iy 5 0 AR
RN = o e o
LS SR -3 a aa ...'r ab
3 0
|l|'
i /

() (B)

Figure 2.3.6: a) Payoff matrix associated with the negative bias condition. Note
the columns associated with stimuli ab and ba are favored in response with a
value of positive (+) 4. b) Contours of equal probability associated with negative
bias condition. The regions associated with stimuli ab and ba are larger than
the regions associated with the other two stimuli.

3 Discussion

By collecting data from all three conditions outlined above, we hope to show that
RT-GRT, by including reaction time, successfully distinguishes between failures
of perceptual separability and failures of decisional orthogonality. Currently we
have completed the experimentation design for Experiment (1la), dealing with
separable dimensions, but upon completion of the collection of our data, we
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wish to begin designing Experiment (1b) with the use of integral dimensional
stimuli. As shown in Figure 20, we will once again use the method of constant
stimuli to create appropriate stimuli of varying brightness and saturation for a

nearly identical categorization task.
JloRoN - N -

| (€]
Saturauon I..evel Saturation Level

| (€
(a) (b)

Brightness Level

Horizontal Offset Level

|
]

Figure 3.0.7: a) Experiment (la) with separable dimensions of horizontal offset
of vertical line and saturation. b) Experiment (1b) with integral dimensions of
brightness and saturation

Thus far we have collected data points from three participants over the
course of two weeks’ worth of pilot testing. If RT-GRT models the failures of
decisional orthogonality as expected, we plan to pursue with finalized participant
experimentation.
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The CW-Complex of Translation Surfaces
of Genus 2 with One Singularity

Elizabeth Winkelman *

Abstract

A well-rounded translation surface X of genus 2 with one singularity of
67 can be described as a set of closed planar eight-bar linkages. A linkage
L in this set can be regarded as a collection of eight vectors {vi,...,v3}
in the plane whose sum equals zero. This paper will focus on the subset
of unit-length linkages with an interior distance of one between distinct
vertices. Each such linkage arises as the minimal vector decomposition of
X. The configuration space of linkages satisfying these conditions is a CW
complex whose geometrical and topological properties will be presented.

1 Introduction

A translation surface X is a topological surface whose transition functions are
translations. Associated to a translation surface is a natural notion of arclength.
From this notion of length we can develop the concept of a minimal vector
decomposition for a translation surface. Given a set « of arcs on a translation
surface X, one defines ¢(a) = inf{¢(v)|y € £}. Each homology class a € Hy(X)
may be regarded as a collection of loops in the surface that pass through the
singularity xg. A nonzero homology class « is said to be minimal if for all
other nonzero homology classes 8 we have ¢(3) > ¢(«). If  is minimal then it
contains a unique arc that realizes the infimum. X is said to be well-rounded if
the set of & € Hy(X) which are minimal spans H; (X).

If X is a well-rounded surface of genus 2, then there will be at least four
minimal homology classes and hence at least four shortest arcs representing these
homology classes. Note that each of these arcs has the same length. These arcs
will create closed loops in X, so the surface can be cut apart along these arcs
to yield polygonal regions in R? with equal length sides [2].

If there are exactly four minimal homology classes then there is only one
polygon K. K can be rescaled so that it has unit-length sides. The edges of K
correspond to the arcs along which we cut the surface; two edges for each arc.
To rebuild the surface X from K we paste together the two sides that came
from cutting the same arc.

A linkage L is the minimal vector decomposition of X if the vectors which
form L define the edges of K. The vectors of L form the set {#;} € R? for

*University of Rochester
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i € (1,8) connected tip to tail counter-clockwise. Since K is one piece, the
linkage is closed and so Y, #; = 0. The edge identification of K used to form
X via pasting is represented in L by U; = —U;i4(moas) Where the edges of K
described by ¥; and ¥4 4(mods) are pasted together.

This paper will focus on the set of closed planar unit-length eight-bar linkages
which arise as the minimal vector decomposition of a well-rounded translation
surface of genus 2 with a singularity of 6.

Due to the minimality of the classes in Hy(X), the interior distance between
distinct vertices is at least one (the minimal length). The set of all such linkages
has a configuration space which is a subset of R'® and as a result our subset has
a natural subspace topology which we will explore.

To better understand these linkages and their configuration space, we next
explore the implications of the above conditions on the structure of a linkage.

1.1 Interior Distance

The requirement that the interior distances between distinct vertices is no less
than one determines the conditions on the angles between vectors. There are
two simple cases and one slightly complicated case of how to form linkages in
the configuration space.

Consider a subset of the vectors describing a linkage. Require that the
vectors be connected, so that they form a chain. Let a;; denote the angle
between ¥; and ¥; where ; is encountered first. (When determining whether o;
comes before or after ¥}, linkages are labeled in a counter-clockwise manner.) If
Jj =1+ 4(mod8) then a;; = 0.

Define g and p to be vertices at the start and end of the vector chain with the
line segment connecting them denoted ¢p. Then the requirement that linkages
have an interior distance no less than one means that for all sets of vector chains,

lap| > 1.

Proposition 1.1 If |gp| > 1, then
i) for a wvector chain of two vectors {U,, Uy},
Qgp > %

ap = 37
i) for a vector chain of three vectors {Uy, U, Ue},
Qgp + Qpe > T.

Proof

i) Let ¥, and ¥}, meet at the vertex a. Then the vertices ¢, a,p form the
triangle qap.

If |gp| = 1, then the triangle gap is an equilateral triangle with unit length
sides. Thus all interior angles are %, so aqp = 3.

If |gp| > 1, then the triangle gap is an isosceles triangle. Since |U,] = || = 1,
qp is the longest side of triangle gqap and so the angle opposite will be the largest
interior angle of the triangle. This is agp.

Suppose agp 2< 5. Then the sum of the angles at vertex ¢ and vertex p will

s

be greater than =* since the sum of all the angles must be 7. This requires at
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least one of those two angles to be greater than %; contradicting that ay is the
largest interior angle. Thus it must be that g, > %.

Therefore a,p, > % if the vector chain has just two vectors.

i1) Let ¥, connect to ¥} which connects tot, at vertices a and b. Then the
vertices ¢, a, b, p form a quadrilateral.

If |gp| = 1, then quadrilateral gabp is a rhombus with unit-length sides.
Opposite angles will be equivalent, yielding the relation: 2a,p + 2ap. = 27, so
Qgp + Qpe = T.

If |gp| > 1, then for all possible values v = aap + ape there exists trapezoid
qabp (which will never be a rhombus) such that ag.p = ape = 5+ d. Since lines
through vertices a and b, perpendicular to line ¢gp will intersect gp at a’ and b’
respectively, the triangle gaa’ and the triangle pbb’ will be right triangles and
so 6 > 0. Thus agp + ape > 7 if |gp| > 1.

Therefore aqp + ape > 7 if the vector chain has just three vectors.

O

Since each linkage in the configuration space will have four pairs of parallel
vectors, Proposition 1.1 provides some insight into the structure of a linkage L
in the space. If L is in case (i), then ¢, and ¥, will not be one of the vector
pairs. If L is in case (ii) with |gp| = 1, then ¢, and U, will be parallel and could
be one of the vector pairs describing L, but not necessarily, and 7, as in case
(7) will not be paired with either ¥, or .

The third case is when there are four vectors (¥, Uy, U, Uq) in the vector
chain. To solve this case we will use a different notation for describing the
relationship between the vectors in the chain. A unit vector ¥, is described by
e~ in the complex plane. The ay; used in Proposition 1.1 can be recovered
from the theta notion by the relation:

aij:w—\ﬂj—0i|.
Since vectors are taken in a counter-clockwise manner, this can be written as
Oél‘j =T — (GJ — 91>

Proposition 1.2 If |gp| > 1, then
iii) for a wector chain of four wectors
{17&717b,17¢717d},

cos(aqp) +cos(ape) +cos(age) —cos(aqp + pe)
—cos(ape + eq) +cos(ap + pe + eq) < %

Proof
Let ¥, describe the vector from point ¢ to point p. Then |gp| = |Tgp| > 1.
The sum of the four vectors is e« + e + i + ¢ = 3, so

e e 0 4 et =[5, 2 > 1.

eifa 4 iy 4 gife | ei0d|2 = (€0 4% 4% 4 i) (e~ 4 o100 4 o=i0c 4 o=i0a),
The inequality simplifies as follows:
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cos(0p — 0,) + cos(0. — 0,) + cos(f. — 6y) + cos(0q — 0,) + cos(0q — 0p) +
cos(Bq — 0:) < 5

cos(m — Qap) +c08(2T — Qpe — igp) +c08(T — pe) +c08(3T — Qeq — Qpe — Aap)
+cos(2T — Qeq — Qpe) + cos(m — age) < %3

—cos(Qap) +cos(ape +ap) —cos(ape) —cos(aeq + Qe + tap) +0s(Qeq + tpe)
—cos(ag.) < 52

cos(aap) +cos(ape) +cos(age) —cos(aap + ape) —cos(pe + @eq) +cos(ap +
Qpe + acd) < %

O

These three cases are all of the cases since if there were a chain of five vectors,
then since a linkage is closed, on one side of the line gp would be five vectors
(g, Up, Ve, Vg, Ue) and so three connected vectors would be on the other side and
fall within case (i7). Similarly, case (¢) implies that a chain of six vectors lies on

the other side of the line gp.

1.2 Genus 2 Surface

If a linkage L is in the configuration space, it is the minimal vector decomposition
of a well-rounded translation surface of genus 2 with a singularity of 67. L is
closed and formed by eight vectors, so L is an octagon with an interior angle
sum of 67r. In order for L to correspond to a genus 2 surface with a singularity
of 67, each vertex of L is identified with every other vertex of L.

As previously mentioned, L consists of four vectors and their additive in-
verses. Each vector and its inverse describes two edges in the polygonal re-
gion K which are pasted together to form the translation surface X. Since
U; = —Ujt4(mods), €ach linkage in the configuration space can be described by
the set {01, Ua, U3, U4} of four vectors and a matching.

L be represented by the word formed by the indicies of the four vectors
which describe it, {1,2,3,4}, with every element appearing exactly twice. For
example, if L is hypereliptic (that is has 180° rotational symmetry), then the
word 12341234 describes L, up to a relabeling of the vector pairs.

The way the vertices of a linkage L are identified is by looking at how the
corresponding translation surface folds up. Each vector of L has an orientation
and so the vertex that would be at the tip of v is the same as the vertex at
the tail of v5 since by the matchings, the two vectors represent the same edge
on the polygonal region described by L. This same vertex is at the tail of the
vector following v7, say ¥z, and can be identified to another vertex on L which
is at the tip of ¥i5. This is done for all the vertices of L. All of the vertices must
be identified together if L is in the configuration space. Figure 1.2.1 shows some
examples of eight-bar linkages with their vertices identified.

It turns out that if a linkage L is in the configuration space then, when two
adjacent vectors of different labels appear in a certain order, if they happen
to be next to each other at a different point in L, then they cannot appear in
the reverse order. For example, L cannot be represented by the word 12342134
because this means that in the structure of L, ¢ is followed by ¥ but later on
U is followed by ¥7. Checking the vertex identifications, the linkage with word
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Figure 1.2.1: These octagons represent a linkage where the edge numbers cor-
respond to vectors of that same label. The property that vectors of the same
label are parallel is being ignored so as to focus on how to determine if a linkage
is the decomposition of translation surface of genus 2 with a singularity of 6.
The arrow on an edge indicates the edge’s orientation with respect to pasting,
so some edges may be oriented in a different direction than the vector which
describes it.

9

12342134 corresponds to a translation surface with three singularities of %ﬂ, 1

and 27 (as shown in Figure 1.2.1).

1.3 Allowable Linkages

Combining together all of the requirements for a linkage to be in the configu-
ration space, there are only three types of linkages, up to a relabeling, which
are allowed. These linkages have word representations 12341234, 12341423, and
12132434. Note, as seen in Figure 1.2.1, a linkage with word 12123434 satisfies
the genus 2 requirement but not all interior distances between distinct vertices
will be greater than or equal to one since 1212 corresponds to a closed four-bar
linkage.

As a notational simplification, each of the allowed three linkage types can be
written as being of type (3,3,3,3),(3,2,2,1) and (1,2,2,1). A linkage being of
type (a, b, ¢,d) means that there are a edges in the linkage between the first edge
and its second appearance and similarly for the other edges. When determining
the separation between edges of the same label, the minimum separation is
the one chosen. For example, a linkage of type 12341423 is of type (3,2,2,1)
but there are five edges between the third edge (3) and its second appearance,
however starting at its second appearance yields a separation of two.

2 Constructing the Configuration Space

Let linkage L be in the configuration space. L is constructed from the vectors:
U1, Ua, U3, 4. Bach linkage type can be described by a set of the a;;, in a similar
way as how only four of the eight vectors were needed to describe a linkage.

Proposition 2.1 For each linkage type, only three angles are needed to know
the entire structure of a linkage in the configuration space.

Proof
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A linkage in the configuration space is closed with eight unit-length sides,
so it follows that only the angles between the vectors are needed to construct a
linkage if its type is known, since that will provide information on the order of
the vectors. Consider each linkage type separately:

(3,3,3,3): If L is a linkage of type (3,3,3,3), then L can be written as the
word 12341234. The set of interior angles of L is {12, a3, g4, a1 }. Since the
sum of the interior angles in L is 6, it follows that a2 + a3 + @34 + 41 = 3.
Furthermore, aq; = 37 — (12 + @23 + @34), S0 only aq2, a3, ag4 are needed to
describe L.

(3,2,2,1): If L is a linkage of type (3,2,2,1), then L can be written as the
word 12341423. The set of interior angles of L is {12, a3, arzq, 41, 14, Qg2, 31}
The 414 part of L is in case (i7) of Proposition 1.1 and so ay; + ayq = 7. It
follows that only one of the two angles is needed to describe the 414 portion of
L. Furthermore, if the vertex at a4 is labeled a and the vertex at ays is labeled
b, then let the vector from a to b be #5. Since the 414 part of L is in case (ii) of
Proposition 1.1, U5 is parallel to ¥;. The word 4145 corresponds to a rhombus
and the word 123523 corresponds to a hyperelliptic hexagon with equal-length
sides. Therefore a1o = ass and az; = ass, SO iz, o3, and ags are the only
angles needed to describe 123523. Additionally, ar;4 = as4 and knowing oy
means knowing the entirety of 4145. Then «q9, o3, 35 and a4 will describe
L. Since agq = a5 + a5y = azs + a4, only aqa, aos, a4 are needed to describe
L.

(1,2,2,1): If L is a linkage of type (1,2,2,1), then L can be written as the
word 12132434. The interior angles of L are all of unique label and form the set
{a12, @21, a13, a32, oy, A3, 34, g1 }. However, the structure of L is such that
if v5 goes from the vertex at a3 to the one at ay; and vg is defined similarly,
only between asy and ayi, then the words 1215, 3265, and 4346 all correspond
to a rhombus and are thus in case (i) of Proposition 1.1. As seen with linkages
of type (3,2,2,1), only one interior angle is needed to describe a rhombus. Thus,
only a2, 30, 34 are needed to describe L.

O

These sets of three angles can be used as coordinates in R3. Figure 2.0.1
shows which o;; is used for each axis. Since each linkage type has a different
construction, they cannot be plotted together using this method since the three
coordinates provide no information about the structure of a linkage.

The boundary of the configuration space will be when one of the inequalities
in Propositions 1.1 and 1.2 is an equality. This occurs when there exists a
distance of length one between at least two nonadjacent vertices within a linkage.

2.1 The Boundary

Each L in the configuration space must satisfy certain requirements (previously
mentioned). From these requirements a certain number of degrees of freedom
can be assigned to L. If there exists an interior distance of length one between
at least two nonadjacent vertices of L, then those vertices become locked at that
position such that if any interior angle of L were to be changed to form linkage
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H (3737333) ‘ (372a2a1) ‘ (132a271)

T a2 a2 e5P)
Yy Q23 Q23 32
z (i34 Q34 Q34

Figure 2.0.1: The table shows which o;; was chosen to be used in the coordinate
system for describing linkages of each type and which coordinate in R? that o
corresponds to. An example of each linkage type is given with the three angles
needed to describe it highlighted.

L', then L’ will have a distance of one between the same vertices for which this
is the case on L. The degrees of freedom of L are the number of angles which
can be changed without breaking any locked distances that L may have. Since
changing one angle will require at least one other angle to change, a linkage in
the configuration space can have a maximum of three degrees of freedom.

The interior is the set of angles that satisfy the strict inequalities. It is the
set of linkages which are described by the strict inequalities in Propositions 1.1
and 1.2. This set will be an open set bounded by the set of linkages in the
configuration space with less than three degrees of freedom. An easy visualiza-
tion is to picture where a point p is able to move. If p is on the interior of the
configuration space then from p there is a point p’ in the direction of a linear
combination of the vectors €;, €;, €, which is still on the interior, where €;, €}, €
will always denote linearly independent unit vectors.

It then follows that a linkage with two degrees of freedom will be correspond
to point p on a face of the configuration space. From p, only traveling in the
direction of some linear combination of €;,¢€; will go from p to p’ still on the
face. The face does not have to be planar for this fact to be true. For instance:
If a person is walking on a hill, they can only choose a linear combination of
going forward or turning to the right to change their location and maintain
being on the hill regardless of whether they are traveling upward or downward
with respect to some reference position.

Using the same logic, it can be seen that a linkage on an edge of the config-
uration space will have one degree of freedom and if on a vertex it will have no
degrees of freedom.

The next three subsections describe in detail the structure of the configu-
ration space for each linkage type. This will be three separate configuration
spaces for which their union is the configuration space which has been referred
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to up until now.

2.2 Linkage Type: (3,3,3,3)

Let the linkages of type (3,3,3,3) be linkages with a word representation of
12341234, so the configuration space Py is plotted via a (a2, a3, arzq)-coordinate
system. Table 1 shows what the faces, edges, and vertices of Py will be. It can
be seen that there will be 12 faces, 30 edges, and 20 vertices.

The relations between the faces, edges, and vertices mentioned in Table 1
can be used to determine that the faces Fy, through Fy, will be hexagonal, F5,
through Fg, will be pentagonal, and the remaining faces Fy, through Fjs, will
be quadrilateral.

Since the vertices have no degrees of freedom, all of their interior angles are
known with certainty and so their c;; can be determined. Doing this for all of
the vertices will yield a plot like that in Figure 2.2.1.

Vertex ‘ Coordinates H Vertex ‘ Coordinates

Vlo (%’%T’%) Vllo (%aﬂ-’%)

V20 (4%7%771-) V120 (77771-’ 2?‘”)

V3, (%’ﬂ—’%) Vi3, (23”72?77743?)
V4o (777%74?”) V140 (%72?”72%)
V5o (W,W,%) V15o (%7%72%)
V60 (777%72%) VlGo (2%74%7%)
V7o (%’2?#’71-) V170 (4?#’2%’2?”)
V80 (2?7"’77’71-) V180 (%a 4?#72%)
Voo | (mZ5) [ Vie, | (5.5 %)
VlOo (2?‘”7§’7T) V200 (2?#72?#7§)

Figure 2.2.1: Coordinates for the vertices of Py and a plot of the vertices and
edges.

To understand the properties of Py, further investigation of the faces is
needed. Knowing the curvature of each face will provide a better explanation
as to the appearance of the configuration space in R3. The equations for each
face are as follows:

F10:012+i23+a34:8% Fy, a1 + o3 =21
Foy i onp = 3 Fio, o3 + g = 27
E3, taog = g Fii, :aia+ag =1
F40 :a34:§ F120 :a23+a34:7r

Fs, : —cos(a12) + cos(asgs) — cos(asq) — cos(ara + aaz) — cos(aaz + agg) —
608(0412 + o3 + 0434) = %3
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Fs, : cos(aqa) + cos(aaz) — cos(asq) — cos(ara + aaz) + cos(aas + asq) +
008(0512 —+ o3 + 0534) =
Fr, : —cos(ai2) — co
COS(OZlg —+ Q23 + Oé34) =
Fg, : —cos(ai2) + cos

COS(OQQ + ooz + OZ34) =3

—~

» NIwW

(a23) — cos(azq) + cos(aia + aa3) + cos(aas + asq) +

wol!
1%

—~

ao3) + cos(agg) + cos(ara + ans) — cos(aas + asq) +

w

This indicates that all of the faces are planar, except for faces Fx,, Fs,, F7,, F3,-
(Fs, is graphed in Figure 2.2.2). Due to the curvature of these faces with re-
spect to the rest of Py, Py is not convex. Knowing the exterior of Py, does not
guarantee that the interior is well-behaved.

Figure 2.2.2: This is a plot of the equation describing the linkages on F5, with
bounds determined by the vertices of the face. Faces Fg,, F7,, Fg, will have
similar plots.

Proposition 2.1 All the points p € R> satisfying the succeeding inequalities
will correspond to a linkage L of type (3,3,3,3) which satisfies the requirements
outlined in Section 1. These inequalities describe the subset of R which is bound
by the faces of Py.

(1) 12 + a3 + auzq < %ﬂ (3) m < g + agz < 2w

(2) agj > 5 foralli,j (4) 7 < agg + ass <27

(5) —cos(aq2) + cos(ans) — cos(asy) — cos(ara + aag) — cos(aas + aszq) —
cos(onz + g + azg) > 52

(6) cos(a12)+cos(aas) —cos(azs) —cos(ara+aag)+cos(aes+ass)+cos(ara+
o3+ asq) < 3

(7) —cos(aqz) — cos(aas) — cos(asy) + cos(ara + aaz) + cos(aas + azq) +
cos(a1z + aos + azs) > 5

(8) —cos(anz) + cos(aas) + cos(asy) + cos(ana + aaz) — cos(aas + asq) +
cos(ona + g + azy) < 3

Proof
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A linkage L of type (3,3,3,3) will be closed and have an interior angle sum
of 6 with a12 + o3 +azs +aq1 = 3. By Proposition 1.1 we know that a;; > %
for all i, j, so (2) is satisfied. This also means that

™
a12+a23+a34=37r—a41§37r—§:—

so (1) is satisfied.
Additionally, Proposition 1.1 states that a;; + o, > 7 for all ¢, 4, k. So

;i + o = 3T — ag — ap; < 3T — T = 2m,

so (3) and (4) are satisfied.

Proposition 1.2 states that cos(a;;) + cos(ayr) + cos(ar;) — cos(ouj + o) —
cos( ok + k) + cos(aij + ok + ag) < % By following the process used to
prove Proposition 1.2, it can be determined that (5), (6), (7), (8) are satisfied.
The difference in signs arises from the vector orientations in L. That is (5),
(6), (7), (8) will be of the form given in Proposition 1.2 if close attention was
paid to whether a;; was between @; and @; or if it was between U 4(mods) and
Uj4+4(mods) When determining the equation for the face each inequality comes
from.

d

2.2.1 Fundamental Domain

Despite being the plot of all linkages of type (3,3, 3,3) which satisfy all of the
requirements outlined in Section 1, Py is not the proper configuration space
for such linkages. Due to the symmetry of linkages of type (3,3,3,3), Py con-
tains sets of points which correspond to the same linkage. This is because
if a linkage L € Py is represented by the word 12341234 and plots as the
point (a2, aiag, az4), then there exists linkage L’ € Py which plots as the point
(23, 34, aq1) and thus is represented by the word 23412341, a cyclic permu-
tation of the labeling of L. Every linkage L € P, will plot as the set of points
{(0412, 923, 0434), (0423, 34, 0441), (0434, 41, 0512)7 (0441, a2, 0523)}, with not all the
points necessarily unique. An affine transformation can be applied to an ele-
ment of this set to get another element in the set. Define this transformation
as:
T(@) = Ad+b=a.

Where
Ckl'j 0 1 0 a” 0 ajk
T Qjk = 0 0 1 Qjk + 0 = (675
(7% -1 -1 -1 [e7%] 3 oy

Then T%(&) = id. The set of fixed points of T is {(2F, 2&, 2T)} which is the set
containing the point corresponding to a linkage which makes a regular octagon.

This point is the midpoint of Py. The transformation S can be applied to the
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coordinates of Py so as to make the point for the regular octagon be at the
origin.

Qg 1 0 O Q44 %r Bij
S Qjk = 01 0 Qjk — ‘% = ﬂjk
oy 00 1 o 3 Bri

The transformation S can be used to change from the a-coordinate system
of Py to a B-coordinate system for the linkages of type (3,3,3,3) and create
the space Pp,. The linear transformation & = SoT o S~1 can be applied
to the S-coordinates of Py to generate the set of points {(B12, B23, B34), (Pas,
B34, Ba1), (Bsa, Bar, P12), (Bar, Bra, Pa3)} for each linkage. As with T, R* = id.

Proposition 2.2 Py can be split into four quadrants where each quadrant will
contain at least one of the coordinate representatives from the set of points rep-
resenting a linkage L € Py. One of these quadrants will form the fundamental
domain, Py, of Py.

Proof Begin by dividing the boundary of Py into four pieces. Looking at the
faces of Py, it can be seen that:

T(Flo) = FQovTQ(Flo) = F30’T3(F10) = Fu,;

T(Fs,) = Fg,, T*(F5,) = Fry, T*(Fs,) = F,;
T(Fo,) = Fio,, T?(Fy,) = Fi14, T?(Fy,) = Fia,.

The boundary of Py can then be divided into the four sets given by {F;, Fj,, Fk, },
for i € (1,4),5 € (5,8),k € (9,12), based on which faces are connected to one
another.

Consider the set {Fy,, F5,, Fy, }. Connect the vertices Vi,, Va,, Viy, Vae, Vaos
Vise, Vs Viz, Vis, of this set to the midpoint of Fy. This will define the bound-
ary of the space P, € P.

For coordinate simplicity, apply R to the linkages in P to get the space P .
Then the edges connecting the vertices (Vi,, Vogs Vags Vigy Vags Visgs Viess Vit
Vig,) to the origin can be described by the vertex. That is, every linkage on the
edge between the origin and a vertex V' € Py, is of the form ¢tV where ¢ € (0,1).
Since R is linear, R(tV) = tR(V'). Thus tV is represented by a set of four points
in Py, and those four points will appear on the edges connecting the origin to
the image of V under R".

Every point in P, is equivalent to tp where p is a point on the boundary
of P1, and so p is on one of the faces F1,, F5,, Fy,. Since the faces are sent
to other faces not in Py, under the transformations R, R2,R3; for all tp € P, 5
there exists a point in R(Py,), R*(Py,), R*(Py,).

Applying R~! to Py, shows that for all p € P; there exists a point in
T(Py), T?(P),T3(P;) and so Pj is the fundamental domain of Py and the de-
sired configuration space for linkages of type (3,3, 3, 3).

O
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Figure 2.2.3: P;.

2.3 Linkage Type: (3,2,2,1)

Let linkages of type (3,2,2,1) with a word representation of 12341423, with the
configuration space Py, be plotted using a (12, aas, az4)-coordinate system.
Table 2 shows what the faces, edges, and vertices of P, will be. It can be seen

that there will be 8 faces, 18 edges, and 12 vertices.

The relations between the faces, edges, and vertices mentioned in Table 2
can be used to determine that the faces Fy, and F5, will be hexagonal, and the

remaining faces Fy, through Fg, will be quadrilateral.

Linkages of type (3,2,2,1) do not have the same amount of symmetry as
those of type (3,3,3,3) do, so every point in P, corresponds to a unique linkage

and there is no fundamental domain for the space which needs to be found.

Vertex \ Coordinates H Vertex \ Coordinates

Vi,

—~
A
ol

1§

~—

Vs,

N
3

Vo,

“\lz\lac:vm 2

RelSpelS]

Vio,

g
3

nJ

3

Vit,

P P e PN
cj\a 31 ol L,
ke[St

~— |~ — [ —
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V122

el

B

N ke

~—

Figure 2.3.1: Coordinates for the vertices of P, and a plot of the vertices and

edges.

As with Py, the equations for the faces of P, can be determined to be:
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Fi, r o012+ a3+ aza = 5 Fs,iopa=1
) g
Fy, t 012 + an3 +azq = Fs,:ap=1%
Fs, a3 =m F72:(112:%
Fy, :a Qo3 =T : _5
45 Q2 + Qo3 Fy, :aqp + g3 = 3

This indicates that all of the faces are planar and P, will be convex if the
interior is well-behaved.

Proposition 2.1 All the points p € R3 satisfying the succeeding inequalities
will correspond to a linkage L of type (3,2,2,1) which satisfies the requirements
outlined in Section 1. These inequalities describe the subset of R which is bound
by the faces of Ps.

(1) T <oqp+ass+ayu < () g <<
(2)7‘1’§O¢12—|—0¢23§5?7T (4)%SO‘23§7T
Proof

A linkage L of type (3,2,2,1) will be closed and have an interior sum of 67
with aqo + a3 + azq + @4l = 37. Due to its structure, an additional vector, U,
can be added to the linkage which will be parallel to ¥; and create the six-bar
linkage represented 123523 and the four-bar linkage represented by 4145. Then
by symmetry, ais + qa3 + a35 = 27 and as4 + a4l = 7, where azq = aszs + sy

By Proposition 1.1, ay; > % for all 4,5. Then ayy =7 —azqs < 7™ — % = 2?”
Subtracting a4 from a12+a23+a34+a41 =3n ylelds ™ < a12+a23+a34 < %”,
so (1) is satisfied. Similarly, @19 + g = 27 — ags < 27r — § = 5—”.

Proposition 1.1 also gives that o;; + oy, > 7 for all 4, j, k. Comblnlng this
with aqg + aos < 5“ yields (2). We know that ais + aszs > 7, s0 ag3 =
21 — (a2 +ass) < 7r. This satisfies (4) since a;; > % for all 4, j. Switching a2
and g3 gives (3). O

2.4 Linkage Type: (1,2,2,1)

Let linkages of type (1,2,2,1) with a word representation of 12132434, with the
configuration space Ps, be plotted using a (12, ase, ass)-coordinate system.
Table 3 shows what the faces, edges, and vertices of P; will be. It can be seen
that there will be 6 faces, 12 edges, and 8 vertices.

The relations between the faces, edges, and vertices mentioned in Table 3
can be used to determine that all of the faces will be quadrilateral.

Linkages of type (1,2,2,1) do not have the same amount of symmetry as
those of type (3,3, 3,3) do, so every point in P5 corresponds to a unique linkage
and there is no fundamental domain for the space which needs to be found.

As with the previous spaces, the equations for the faces of P> can be deter-
mined to be:
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Vertex ‘ Coordinates H Vertex ‘ Coordinates e
V13 (217 2*Tr) V53 (2?7772%7%) 7
V23 ( ) V63 (271' 27T 27r)

s
L L
3°3°3 3737 3
V33 (%7%a%) V73 (1,2%7%)
Vi, <%7%’2§) Vs, (g’%7%ﬂ)

Figure 2.4.1: Coordinates for the vertices of P and a plot of the vertices and
edges.

. _ T 2
F13.O(32—§ F43:a34:?7r
. _ 27 . _ 7
F23~0¢12—§ F53-Oé34—§
F33:a12:§ F632a32:%

This indicates that all of the faces are planar and P, will be convex if the
interior is well-behaved.

Proposition 2.1 All the points p € R? satisfying the succeeding inequalities
will correspond to a linkage L of type (1,2,2,1) which satisfies the requirements
outlined in Section 1. These inequalities describe the subset of R which is bound
by the faces of Ps.

(1) g S 12 S 2% (2) S Q32 S 2% (3) S Q34 S 2?77

w2
@l

Proof

A linkage L of type (1,2,21) will be closed with a symmetric structure that
causes aqz + a1 = 7 and a3 + aszq = m. By Proposition 1.1, a;; > % for all
i,j. Combining this fact with the above properties yields § < ajs < %” (1) and
7 <as < %ﬂ (3).

The structure of L allows for an additional vector U5 to be added which will
be parallel to v5. A vector v parallel to ¥3 can also be added to L. This will
form three quadrilaterals represented by 1215, 3265, and 4346. This means that
a3z + a6 = T, s0 (2) is satisfied by subtracting aos > %.

O
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3 Equivalence Relation on the Linkages

Each linkage which is in either P;, P», or Ps corresponds to the minimal vec-
tor decomposition of a well-rounded translation surface of genus 2. Let K
be the polygonal region that has edges defined by the linkage L € Ui:1 P,.
Then the well-rounded translation surface corresponding to L is obtained by
pasting the edges of K together. The word (12341234,12341423,12132434)
used to describe L can be replaced by a labeling scheme (klmnk=1="tm~tn=1,
Klmnk=*n=Y=tm=1 kik~'ml~'nm~'n~1) for K. The exponent of each edge
indicates the orientation of the edge. When pasting, edges k and k~! may be
pasted together, but not edges k and k. Figure 3.0.2 shows the pasting process
for a polygonal region with labeling scheme klk~'mi~'nm~'n~! corresponding
to a linkage of type (1,2,2,1).

n-

Figure 3.0.2: This diagram shows how pasting a polygonal region correspond-
ing to a linkage of type (1,2,2,1) will result in a genus 2 surface. (Image by
Christopher Judge.)

Before all of the edges of K are pasted together, any interior line connecting
two vertices can be cut along to create two polygonal regions K7 and Ks. These
two regions can then be pasted together along any pair of edges with the same
label, as in Figure 3.0.3, to make the polygonal region K'. Such a cutting and
pasting will change the geometry of K but will not change the translation surface
obtained by pasting together all of the edges of K [7]. That is, the topological
space obtained from pasting together all of the edges of K will be the same as
that obtained from K’ and so the two regions are said to be equivalent.

Proposition 3.1 Given a linkage L € Ui:l P,,, there exists a polygonal region
K with edges defined by L. K can be cut along any interior line segment joining
two vertices £ and pasted together to form the polygonal region K' with a different
labeling scheme than that of K. The edges of K' can be described by a linkage
L'. Then L' € Ui:l P, if and only if |¢| = 1.

Proof
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Figure 3.0.3: This diagram shows how a polygonal region K with a label-
ing scheme of abcda='b~'c'd~! can be cut and then pasted back together
at a different pair of edges to form the region K’ with the labeling scheme
actdteda=lce 1.

Let L' € Ui:l P,,. The edges of L’ will all be of length one since L’ is created
by eight unit vectors. L’ is the linkage describing the edges of the polygonal
region K’ which was obtained by cutting-and-pasting the region K, described
by L. Since K was cut along the line £ and has a different labeling scheme than
K’, ¢ must appear in the labeling scheme of K’. So K’ has an edge labeled ¢
which corresponds to a vector in L’ and so ¢ must be of length one.

Suppose that ¢ is the line segment in K which was cut along such that K’
is obtained. Thus when K was cut apart along ¢, the resulting two polyg-
onal regions had unit length sides since the edges of K can be described by
L € Uizl P,. When these two regions are pasted together to form K’, the
edges which comprise K’ will be of unit length since cutting-and-pasting has
no effect on the length of existing edges and so L’ will consist of unit vectors.
Furthermore, the two regions obtained from cutting K can be described by link-
ages with an interior distance between distinct vertices greater than or equal to
one since L € Uizl P,. Pasting these two regions together will preserve this
property, so L' will have interior distances between distinct vertices which are
no less than one. The action of cutting-and-pasting is geometrical and will not
affect the topological space, so K’ will also paste together to be a genus 2 sur-
face. This means that L’ is the minimal vector decomposition of a well-rounded
translation surface of genus 2, so L' € Uizl P,. -

By Proposition 3.1, there exists a mapping via cutting-and-pasting which
sends any linkage L € Ui:l P, to a linkage L' # L also in Ui:l P, shown in
Figure 3.0.4. The same notion of equivalence between two polygonal regions K
and K’ which paste together to be the same topological space, can be extended
to the linkages which describe K and K’.

Proposition 3.2 Given the linkages L, L' € Uizl P,, describing the polygonal
regions K, K'. The cutting-and-pasting techniques described above can be re-
garded as an equivalence relation, where L ~ L' if K and K' are equivalent.

Proof Let the polygonal regions K, K’, K described by the linkages L, L', L”
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Figure 3.0.4: This is an example of how to get a linkage on Fi, € P, from a
linkage on F, € P;.

be equivalent.

Reflexive: L~ LY Le|J_, P,.
K is equivalent to K since K can be cut along some line and then pasted together
upon that same line. It follows that L will describe K, so L ~ L. Symmetric:
L~ I implies L' ~ L for all L, L' € |J>_, P,.
L ~ L/ implies K is equivalent K’. Then K’ is equivalent to K, so L' ~ L

Transitive: L ~ L' and L' ~ L" implies L ~ L"” for all L, L', L" € Ui:l P,.
L ~ L’ implies K is equivalent K’ and L' ~ L” implies K’ is equivalent to K".
Then there exists a cutting-and-pasting of K to K’ and then to K", so K is
equivalent to K. Thus L ~ L”.

O

3.1 Structure of the CW-Complex

Figure 3.1.1: This figure shows the number of n-cells the CW-complex P has
for each n. The 1-skeleton for P is also given.

To understand the space that is P = Uizl P,, with the equivalence relation

given in Proposition 3.2, consider the equivalence classes for the linkages on the
boundary of P. These are given in Figure 3.1.2. By the equivalence relation of
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Proposition 3.2, it appears that P consists of 2 verticies, 8 edges, and 10 faces
coming from 3 polyhedron. However, the linkages which form edges in P in the
equivalence class E», are equivalent to themselves except for the linkage which
is the midpoint of the edge. That is if L is a linkage on some edge F in the
equivalence class Fs,, then there exists a linkage L’ also on E with L ~ L'
There is one linkage W on E such that if W ~ W’ for W’ on E, then W’ is a
relabeling of W and so W and W' are the same linkage, up to a relabeling. It
turns out that W will be the midpoint of E in the configuration space and can
be regarded as a third vertex of P.

It follows that P is a CW-complex with the n-cell breakdown as given in
Figure 3.1.1. An n-cell is defined as being homeomorphic to a n-dimensional
ball. The n-skeleton is the union of all of the m-cells for m < n. The 1-skeleton
of P is given in Figure 3.1.1.

Equiv. Class \ Memebers
Flp F50
s, P, FL, P,
I3y Foy, I3y, Py, Iy,
Fy, Fo,, Fs,, F,, Fu,, s,
F5P F‘727 F‘827 F137 Fﬁa
Fs, faces in Py formed by: {Vz,, Vis,, Vsp }s {Vs0, Vi7es Vap
F;, faces in Py formed by: {Vi,, Vie,, V3, }s {Vio, Vise, Vap t
Fs, faces in Py formed by: {Vi,,Vis,, Vs, }s {Vao, Vize, Vap
Fy, faces in Py formed by: {Vs,, Vis,, V3, }s {Vsos Viees Vap
Fio, faces in P, formed by: {Va,,V4,, V3, }
b, By, — Egy, F11, — By, a3, — E3o,, E3,, E4,, E7, — Eig,
Es, Eo,, Er0,, Es,, E6,, Es, — Es,
Esp Ei5, — Eisys B2y, 11y, Erays Ens,, Eleys 1y, Eogy Erog, Bz,
E4p Evg, — Ea2y, F1,, E12,, E13,, Err,, Fis,, E3,, Ea,, Eo,, E11,
Es. edges in P; between: {Vi,, Vs, }, {Va,, Va, }, {Vay, Vap }
Es, edges in P; between: {Vis,, Vs, }, {Vieo, Vap }
E;, edges in Py between: {Vir,,Va,}, {Visy, V3, }
Es,, edges in Py between: {Vs,, Vs, }, {Vs,, Va, }
Vip Vip = Vaog, Vi, — Vig,, Vi — Vs,
Vap midpoint of edges in the equivalence class s,
Vs, point (%’T, ?ﬂf, ?jf) € P;= regular octagon

Figure 3.1.2: These are the equivalence classes for the linkages on the boundary
of P given for each n-cell (n = 0,1,2) and the linkages which belong to them.
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4 Properties of the CW-Complex

To understand P beyond how it is constructed, some of its topological properties
are calculated. The next three subsections explore the Euler characteristic,
homology groups, and fundamental group of P.

4.1 Euler Characteristic

For a finite CW complex X, the Euler characteristic x(X) is defined to be the
alternating sum ) (—1)"c, where ¢, is the number of n-cells of X [4]. For a
surface S, this is the familiar formula: x(S) = F — E+V = 2 — 2¢g, where F
is the number of faces, F the number of edges, V' the number of vertices, and g
the genus of S. For the space P,

3
X(P)=> (-1)"c, =3-8+10-3=2.
n=0
A motivation for calculating the Euler characteristic is that it is a topological
invariant, meaning that it is preserved under homeomorphism and thus can be
used to show that other spaces are not related to P.

4.2 Homology Groups

The homology groups of a space are also topological invariants. The n'" (integer)
homology group of X is defined to be the abelian group

H,(X) = ker(0n)/Im(0n+1),

where 9, : Cp,(X) = C,,—1(X) is a homomorphism on the n-chains of X. The

n-chains are the abelian groups whose elements are integer linear combinations

of oriented n-cells. It follows that the set of n-cells will generate the n-chains

and so rank(Cy,) = ¢,. O, is the boundary operator acting on the n-chains.
The chain complex for P is defined as:

(0) 25 O5(X) 2 Co(X) 25 0y (X) 25 Co(X) 2 (0)

The matrix representation of 9, for each n, can be found by determining
the map of each unique n-cell onto the (n—1)-cells which comprise its boundary.
The boundary of each n-cell of P was found using the following process:

0Jp: The boundary of a 0-cell is trivial.

01: The boundary of an oriented 1-cell, E; ., is V;, — Vi, € Co(P), where
E;, is oriented toward V;, and away from Vj,. The orientation of each 1-
cell with respect to P was determined by the cutting-and-pasting mapping
discussed in Section 3. For example, for P, Es, = V2, — Vi,.

0o: The boundary of an oriented 2-cell, F;,, is a;E;, + axEr, + ... +
am B, € C1(P), where F;, is oriented in either the clockwise or counter-
clockwise direction and the sign of the coefficient of each 1-cell is determined
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by whether it is oriented to go with the orientation of F;, (+) or if it goes
against the orientation of F;, (—). For example, for P, Fy, = E1, + E,,, —
Eip —E3p + E1p + Eyp — Eop = Erp — B3, + By

0s: The boundary of an oriented 3-cell, P;, is b; Fj, +bp Fpp+... 40 Fipp €
C5(P), where the sign of the coeflicient of each 2-cell is determined by the
2-cells orientation. The orientation of each 2-cell can be described by the set
{€1, €5, €5} of the canonical basis, where €3 is the outward facing normal vec-
tor of the 2-cell and so (€1, €2, €3) denotes a 2-cell oriented counter-clockwise
while (&3, €1, €3) denotes a 2-cell oriented clockwise. Taking the determinant
of the matrix representation of (€;, €}, €3) results in 2-cells oriented counter-
clockwise having a positive sign and those oriented clockwise have a negative
sign. For example, for P, Ps = F5, — F5, — Fy, + Fy, — Fy, — F5, = —2F5,.
Notice that a 2-cell is not required to always have the same orientation with
respect to the 3-cell since its orientation is determined by how the 1-cells
around it are placed.

For the boundary operators of P, let M (3,,) denote the matrix representation
of 0,,. Then:

1 0 0
1 0 0
-1 1 0
8_01_02 0 -1 00 1 1 1 1
M@)=1| 5 o o |M@)={0 1 00 0 0 0 0
5 0 0 0 0 00 -1 -1 -1 -1
-2 0 0
2 0 0
1 0 0
5 1. 000 1 -1 1 0 0
00 00O 0O O 0 0 0
0 -1 110 0 0 0 1 0
01 110 0 0 0 0 0
M(32) = 0O 0 000 0 1 1 0 0 M(@)=(0 0 0)
00 000 0 -1 0 1 0
00 00O 1 0 -1 0 0
00 000 -1 0 0 —-10

Since H,(P) is an abelian group, we can apply the Fundamental Theorem
for Finitely Generated Abelian Groups.

Theorem 4.1 [6] Let G be a finitely generated abelian group. Let T be its
torsion subgroup.
(a) There is a free abelian subgroup H of G having finite rank 8 such that
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G=HoT.

(b) There are finite cyclic groups Th, ..., Ty where T; has order t; > 1, such
that ti|t2|...|tk andT =T & ... »T}.

(¢) The numbers 8 and ty,...,ty are uniquely determined by G.

In particular, for each n,
H,(P)=ZPr0Z/t, ®..OL/t,.

The number 3, is called the n*"* Betti number of P. The Smith Normal form
of the matrix representation of the boundary operators of P gives all of these
numbers. The torsion coefficients of H,(P) are given by the entries which are
greater than one in M(0,1). Furthermore, rank(ker(0,4+1)) is the number
of zero columns of M(0,4+1). Additionally, the number of non-zero rows of
M (0p+1) is equal to rank(Im(0n41)). It follows that

Brn = rank(ker(d,)) — rank(Im(0n41)) = rank(H,).

Let SNF(0,) denote the Smith Normal form of M (0,,), then:

SNF(d3) = SNF(8;) =

O O =
o = O
o O O
o O O
o O O
o O O
o O O
o O O

SO DD DD OO O
=leloBololNoBaoNel
SO OD OO O OO O

SNF(8,) = SNF(@)=(0 0 0)

OO DD OO OO
OO OO OO+ O
o oo oo~ OOo
[N eNeNel =N ola]
[ NeNe e NN Nl
SO UTOoO OO oo
OO OO OO OO
OO DD OO O OO
OO DD DO OO
OO OO OO OO

Figure 4.2.1 shows the homology groups of P found from the Smith Normal
Form of the M (9,).

The homology groups of a space keep track of the number of n-dimensional
holes in the space. For example, rank(Hy(P)) =1, so P has one 0-dimensional
hole (an open point) and so P is path-connected since it will have a single path.
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01]32=1] - Z
1/66=0| 5 7./5Z

2 43=1| 2 |zZ&z/2Z
3100=0]| - {o}

Figure 4.2.1: This table shows the homology groups and their rank for P.

Similarly, P has no 1-dimensional holes (a circle, S') nor 3-dimensional holes
(S3), but P does have a 2-dimensional hole (5?).

The homology groups are related to the Euler characteristic in that for a
finite CW-complex X, x(X) = >, (—1)"rank(H,(X)) [4]. This is just the
alternating sum of the Betti numbers for each homology group; so

X(P)=1-0+1-0=2.

This agrees with the calculation of x(P) given in Section 4.1.

4.3 The Fundamental Group

The group of loops in a space X starting and ending at a basepoint zg € X
is the fundamental group of X, denoted m(X). Two loops are considered to
be the same if one can be deformed into the other within X [4]. The space P
is path-connected; allowing for the use of Van Kampen’s Theorem to calculate
1 (P) .

Theorem 4.1 (Van Kampen) [4] If X is the union of path-connected open
sets Ay, Ag each containing the basepoint xo € X and if the intersection A,NAg
is path-connected, then the homomorphism ¢ : m (Aq) * m1(Ag) — m(X) is
surjective. If in addition the intersection Ao N Ag is path-connected, then the
kernel of ¢ is the normal subgroup N generated by all elements of the form
G0 (W)iga(w)™t for w € w(Aa N Ag), and hence ¢ induces an isomorphism
m(X) = (m1(Aa) * 11(A5)) /N.

For calculating 71 (P), let

10
P=R2U (U Uk>
k=1

where Uy, is an open set around the 1-skeleton for each face of P. w1 (R™) = {0}
for all n, so m (P) = *,m (Ug)/ker(¢). (Note: It is sufficient to consider only
the 2-skeletons of P. Taking into account the n-skeletons of P for n > 2 will
add no new information to 71 (P) [4].) Let py denote the basepoint for finding
71(P) where pg is the vertex in P which corresponds to the vertex that was used
to plot the configuration space for each linkage type. The loops around each F},
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will generate ker(¢) since each will start and end at py and are distinct from
one another since the Uy, are distinct (due to the faces of P being distinct). The
generators of xpm1 (Uy) are the distinct paths taken along the edges of P from
po to po. Figure 4.3.1 shows each face of of P with their corresponding edges
and vertices.

aﬂ
d
....... 1
a Po
pm H e ;' \‘f1
A
i . i 0 a
b b_‘I po
le
5

Figure 4.3.1: The labels and orientations used for each edge in P are shown with
respect to the faces which they lie on. The orientation of each face is implied
by the power of each edge. The interior line indicates the boundary of the open
set around the 1-skeleton, Uy, defining each face. For example, the 2-cell which
has five edges (F1,) is generated by edge a and aaaaa € ker(¢$). The basepoint
po is also indicated.

Calculating 71 (P) yields:
m(P) = (a,bb™" c,d,h g, f~le,g e, A1 f)/

(a®,a=tc tabb~ad, aca=td, cbb=tdbb~1, cdc=td= L ah~tg,a7 1 f e, ag te,ch ™1 f, bb~le Le).

For notation simplicity, a, b, ¢, d, e, f, g, h was used to replace E1,., Es,, Fs,,
Ey,., Es,, Es,., E7,, Es,, respectively.

This can be reduced slightly since the loop bb™ e is trivial, as well as bb~!.
Additionally, the generator h~! f can be generated by three other generators of
x71(F)) and thus is unnecessary. Then:

m(P) = {a,c,d,h g, fe,g7e)/

16_1

136



<a5, a terald, acatd, ed, cde td "t ah T g, a7 f e, ag e, ch_1f>.

To simplify the notation of the generators, let h™'g = w, f~'e = u, and
g le = v, yielding:

7T1(P) - <a,c,d,w,u,v>/

(a®,a ¢ Ya?d, aca™d, cd, cdc™ d ™ aw, o u, av, cwvu™t).

The fundamental group is related to the first homology group by the follow-
ing theorem.

Theorem 4.2 [/] By regarding loops as singular 1 cycles, we obtain a homo-
morphism h : w1 (X, x9) — H1(X). If X is path-connected, then h is surjective
and has kernel the commutator subgroup of 71(X), so h induces an isomorphism
from the abelianization of 71(X) onto Hy(X).

Calculating the abelianization of m(P) does indeed yield an outcome iso-
morphic to Hy(P).

Abel(my (P)) = 1 (P)/[m(P), m1(P)]

5 1

= {a,c,d,w,u,v)/{a’, ac” d, cd, aw,a™ u, av, cwvu™t).

Since ker(¢) = {a% ac™td, cd,aw,a " u, av, cwvu1}, it follows that each
element of the set is equal to the identity element and so a = w™! = u = v~!
and ¢ = d~'. This leads to ¢ = wv " 'w™' =a® and ¢ = ad = ac™! so ¢ = a.

Then ¢® = id. Abel(m1(P)) can then be reduced to:

Abel(my(P)) = (a)/(a®) = Z/5Z = H,(P).
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Tables

The following are the linkages of type (3,3,3,3),(3,2,2,1),(1,2,2,1) which can
be found on the boundaries of Py, P>, and Pj, respectively. The dashed lines
within the linkages indicate an interior distance of one between vertices.

(3,3,3,3)
Linkage Name \ Formation/Properties
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Vectors v7 and vy are
brought together such
that a4 = g

F, (i = 2,3,4) can
be obtained by doing
a cyclic permutation of
the labels of F}, which
sends 1 to 1.

~..

~~~~~
..

0

The vertex between vec-
tors v5 and w©3 are
brought together.

F, (i = 6,7,8) can
be obtained by doing
a cyclic permutation of
the labels of Fy, which
sends 1 to 2, 3, or 4.

-

T E Ty

Fy

0

Vector v is brought
close to its parallel pair.
F;, (i = 10,11,12) can
be obtained by doing
a cyclic permutation of
the labels of Fy, which
sends 1 to 2, 3, or 4.

o]

The edge between faces
F50 and Fgo.

E, (i = 2,3,4) can
be obtained by doing
a cyclic permutation of
the labels of E;, which
sends 1 to 2, 3, or 4.

Es

0

The edge between faces
Fgo and Fgo.

E, (i = 6,7,8) can
be obtained by doing
a cyclic permutation of
the labels of Es, which
sends 1 to 2, 3, or 4.
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0

The edge between faces
F20 and F40.

E10, can be obtained by
doing a cyclic permuta-
tion of the labels of Ey,
which sends 1 to 2.

Eiq,

The edge between faces
Fy, and Fyg,.

E;, (i = 12,13,14) can
be obtained by doing
a cyclic permutation of
the labels of Ey;, which
sends 1 to 2, 3, or 4.

Es,

The edge between faces
Flo and FlOU-

E;, (i =16,17,18) can
be obtained by doing
a cyclic permutation of
the labels of Ey5, which
sends 1 to 2, 3, or 4.

Eqg,

The edge between faces
Flo and Fgo.

E;, (i = 20,21,22) can
be obtained by doing
a cyclic permutation of
the labels of E9, which
sends 1 to 2, 3, or 4.

The edge between faces
Flo and Fﬁo.

E;, (i = 24,25,26) can
be obtained by doing
a cyclic permutation of
the labels of Ea3, which
sends 1 to 2, 3, or 4.

Ea7,

The edge between faces
Flo and Fgo.

E;, (i = 28,29,30) can
be obtained by doing
a cyclic permutation of
the labels of Ey7, which
sends 1 to 2, 3, or 4.

Verticies

|
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Vi, Vertex between edges
Ego, EQGO, and EQSO.

Vi, i = 2,3,4) can
be obtained by doing
a cyclic permutation of
the labels of V;, which
sends 1 to 2, 3, or 4.

Vso Vertex between edges

< 3 2 1 ™ E50, Ello; and EISO-

N ' Vi, (i = 6,7,8) can
i be obtained by doing

a cyclic permutation of

the labels of V5, which

sends 1 to 2, 3, or 4.

Vo, Vertex between edges
7 Es,, E11,, and Eay,.

3/ K ‘/2 (Z — 107 117 12) can

i v be obtained by doing

a cyclic permutation of

the labels of Vg, which
sends 1 to 2, 3, or 4.

Vis, Vertex between edges
E407 E150, and E230.

Vi, (i = 14,15,16) can
be obtained by doing
a cyclic permutation of
the labels of Vi3, which
sends 1 to 2, 3, or 4.

Viz, Vertex between edges
E50, E1907 and E270.

Vi, (i = 18,19,20) can
be obtained by doing
a cyclic permutation of
the labels of V17, which
sends 1 to 2, 3, or 4.

Table 1: This table shows the structure of the linkages of type
(3,3,3,3) on the boundary of Py.

(3,2,2,1)

Linkage Name/ Linkage Name/
Connec- Connec-
tions tions
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edges

Ey, Eg,

Eo,  Eno,

E6, Ehs,

Fy,

edges

Er, Ey,

Er1, Ers,

F62

edges

EI52 E62

Eq1, Ero,

Fy,

edges

By,  Eig,

Ev7, Eis,
E12 E22
vertices: vertices:
V1, Va, Vs, Vi,
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E32 E42
vertices: vertices:
Vi, V3, Va, Vi,
E‘52 E62
vertices: vertices:
V52 V62 V72 V82
EI72 E82
vertices: vertices:
Vs, Vo, Ve, V1o,
Ey, Eo,
vertices: vertices:
Vs, Vit Vz, Vio,
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By, Ly,
vertices: vertices:
Vs, Vs, Ve, Vi,
Ey3, B4,
vertices: vertices:
Vo, Vi, Vio, Via,
Ess, Eg,
vertices: vertices:
V1, Vo, Va, Vi1,
By, Eys,
vertices: vertices:
‘/32 V102 ‘/42 Vl?g

‘ Verticies
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Table 2: This table shows the structure of the linkages of type

(3,2,2,1) on the boundary of Ps.

Marsh.)

(1,2,2,1)

(Image help from Kathryn

Linkage

Name/
Connec-
tions

Linkage

Name/
Connec-
tions

U3 V3 '

V3 gy
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E 13 E 23
vertices: vertices:
‘/13 V23 ‘/33 V43
E33 E43
vertices: vertices:
‘/23 v33 ‘/13 v43
E53 E63
vertices: vertices:
Vég V53 Vig V63
E73 E83
vertices: vertices:
Vs, Vo, Vi, Vs,
Ey, Lo,
vertices: vertices:
V53 V63 V63 V83
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(1,2,2,1)

By,
vertices:

Vi, Vi,

By,
vertices:
V53 V73

Verticies

32
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| (1,2,2,1)

Table 3: This table shows the structure of the linkages of type
(1,2,2,1) on the boundary of P;. (Image help from Kathryn

Marsh.)
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Homotopy Type Theory and m(S?)

Richard Wong

Abstract

Homotopy Type Theory is a new branch of mathematics that unifies
ideas from various fields in mathematics, such as Algebra, Topology, and
Logic, in a foundational way. It emphasizes the importance of constructive
mathematics, and allows for computer-checked proofs using programming
languages such as Agda. This makes HoTT a powerful tool. For exam-
ple, it is difficult to calculate higher homotopy groups of spheres in the
conventional setting, but HoTT makes such computations accessible. We
are particularly interested in computing 7r4(S3). It has been calculated to
be Z/2Z. Guillaume Brunerie has proven in HoTT that there is some n
such that 74(S%) is Z/nZ. We seek to compute this n by formalizing the
proof through an implementation in Agda.

1 Introduction

Homotopy Type Theory (HoTT) is an extremely new and interesting field of
mathematics that interprets the ideas of type theory, a field of logic and theo-
retical computer science, through the lens of homotopy theory, a concept that
comes from algebraic topology. The combination of the two yields deep connec-
tions and offers new insight into various topics, such as higher homotopy groups
of spheres, and there is still much to explore.

One central idea of HoTT as an approach to mathematics is the emphasis
on constructive mathematics. For example, if one were to give a proof of an
existence theorem in HoT'T, one would need to give an explicit example or con-
struction. Similarly, a proof that two structures are isomorphic should construct
an isomorphism between the two structures.

The other central idea of HoT'T is the ability to formalize mathematical argu-
ments type-theoretically. This formalization can then be implemented through
proof assistants such as Agda or Coq. This allows for computer-assisted and
computer-verified proofs. In fact, many of the arguments and proofs given in
the HoTT book were first proven formally through a proof assistant, and then
translated back into an informal argument.

These two ideas make HoTT a powerful tool, and offers a new and useful
approach to mathematics. For example, in algebraic topology, one area of in-
terest is the study of homotopy groups of spaces. The first homotopy group is
the fundamental group, which captures information about loops in the space,
and provides global information about the structure of the space. Similarly,
higher homotopy groups yield further information about the structure of the
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space. The study of the k** homotopy group of S™, 74(S™), is a central ques-
tion in algebraic topology, and has led to the development of many techniques
and powerful theorems. However, it is surprisingly difficult to calculate higher
homotopy groups in the conventional setting, even for simple spaces such as S™.
However, because HoTT is constructive and is well-suited for using of com-
puter proof assistants, such computations can be made more accessible. Various
conventional results about 7;(S™) have already been proven in HoTT, and it
has been used to compute specific homotopy groups, as well as prove theorems
about special cases, such as m,(S™). We are particularly interested in comput-
ing m4(S%), as it is the first stable homotopy group of the form m,1(S™). In
the conventional setting, it has been computed to be Z/27Z. It has been proven
informally in HoTT that there is some n such that m4(S?) is Z/nZ. We seek to
compute this n by formalizing the proof through an implementation in Agda.

2 Background
2.1 Type Theory and Agda

Type theory is a formal system in theoretical computer science and logic. It is
an alternative to set theory as a foundational language for mathematics. The
advantages of using type theory include the ability to formalize arguments and
run them through a proof assistant such as Agda, which can pattern match and
type-check arguments to verify a proof.

In set theory, there are two major components. There is the deductive
system of first-order logic, and within the deductive system are the axioms of a
particular theory, such as ZFC. As a result, in set theory, there are the two basic
notions of propositions and sets, and they exist on different levels. However,
type theory is its own deductive system, and has only the one basic notion of
types.

In type theory, propositions and sets are on the same level. So it is possible
to interpret the type A : U as either a set or as a proposition, or both. If A is
inhabited by a : A, then if A is viewed as a set, one can roughly think of a as an
element of A. Note, however, that while a € A is a proposition, a : A is not. It is
instead an atomic statement, and cannot be proved or disproved. If A is viewed
as a proposition, then one considers a : A to be a proof of the proposition, or a
witness to the truth of A. In this way, the proof of a proposition in type theory
can be thought of as constructing an inhabitant of a type.

Because of this fact, in type theory, one needs to consider two types of equal-
ity: propositional equality and definitional equality. The former, propositional
equality, is the traditional set-theoretic notion of equality as a proposition. It
exists as a type, and can be inhabited or uninhabited. For example, if a,b : A,
then the type of the equality proposition is a =4 b, which may or may not be
inhabited. However, there is also the notion of definitional equality, which is
not a type, but an atomic statement at the same level as a : A. For example, if
we have a function f: N — N by f(z) = 2 + 1, then f(2) is definitionally equal
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to 2 + 1. Definitional equality is written as a = b : A. Unlike propositional
equality, it does not make sense to prove or disprove definitional equality. It is
instead a matter of checking the definitions, which is typically decidable.

Remark 2.1 When we say that A is a type, we write A : U. Here, U is called a
universe, a type whose elements are types. There are many subtleties in the
precise definition of a universe to avoid paradoxes, but we are not concerned
with this issue here.

Using basic type theory, one can construct familiar types such as the Boolean
data type or the type of natural numbers. To define the Booleans as a type Bool
: U, one simply needs to define the inhabitants true and false : Bool, and the
boolean negation function not : Bool — Bool that takes true to false, and false
to true.

One can also define the natural numbers as a type Nat : U recursively using
rules that are similar to the Peano Axioms. One defines the inhabitant zero :
Nat, and a function suc : Nat — Nat. Note that this is enough to define the
natural numbers. It is not necessary to require the suc zero # zero, as there are
no constructors. In other words, there is no means to construct an inhabitant of
the type suc zero = zero. The only tool to prove propositional equality that is
available for this type is reflexivity - refl, : @ =4 a, which says that an inhabitant
is equal to itself.

The following is code in Agda that formalizes this construction of the Booleans
and the natural numbers, as well as a recursive definition of addition on the nat-
ural numbers.

module examplel where
-Definition of a Boolean set and its operatiomns.

data Bool : Set where
true : Bool
false : Bool

not : Bool — Bool
not true = false
not false = true

-Definition of the natural numbers and addition.
data Nat : Set where

zero : Nat

suc : Nat — Nat
_+_: Nat — Nat — Nat

zero+m =m
sucn+ m =suc (n+ m)
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The following code is an example of a formalized proof in Agda. Using the
definition of natural numbers in examplel, we first define the ordering “leq” (<)
on the natural numbers, and then prove that it is transitive.

module example2 where
open examplel
-A proof that leq is transitive

data _leq_ : Nat — Nat — Set where
leg-zero : {n: Nat} — zero leq n
leg-suc : {m n: Nat} — nleq m — (suc n) leq (suc m)

leg-trans : {I mleq: Nat} — lleq m — mleqn — lleq n
leg-trans leg-zero = leg-zero
leg-trans (leg-suc p) (leg-suc ¢q) = leg-suc (leg-trans p ¢)

Our definition of “leq” is done inductively. The first case says that zero is
less than or equal to any n : Nat. The second case says that if n is less than or
equal to m, then the successor function preserves the ordering.

Our proof of the transitivity can be thought of as a function in the following
way: If it is given [,m,n : Nat, and two proofs that [ leq m and m leq n, then
it will return a proof that [ leq n. In the first case, if the first proof is from the
first case of our definition, leg-zero, then [ must be zero, and so we need a proof
that zero leq n. However, we can prove that using leg-zero.

In the second case, if we have a proof leg-suc p that (suc I) leq (suc n) and a
proof leg-suc ¢ that (suc n) leq (suc m), we can unwind the definition to obtain
the proof p that [ leq m, and the proof ¢ that m leq n. We can then reduce the
size of [, m, and n, and so we can iterate this process until we reduce to the
first case.

2.2 Homotopy and Homotopy Type Theory

First, let us first recall the notions of paths and homotopies in a topological
space.

Definition 2.1 Let X be a topological space. A path between x and y in X
is a continuous map p : [0,1] x X — X such that p(0) = z and p(1) = y.

We would like to know when two paths p, ¢ are the same. We note that pointwise
equality of paths is too strict of a notion, since p~! op is not pointwise equivalent
to the identity path. There is, however, a homotopy between p~! o p and the
identity path. So we consider two paths to be the same if there is a homotopy
between them.

152



Definition 2.2 Let X be a topological space. Let p,q be paths in X from
z to y. A homotopy of paths between p and ¢ in X is a continuous map
H(s,t) :[0,1] x [0,1] — X such that H(z,0) = p(z) and H(z,1) = q(z). We say
that H(s,t) is endpoint-preserving if H(0,z) =z and H(1,2z) =y

Theorem 2.3 Homotopy of paths is an equivalence relation, and is preserved
by operations such as inverses and concatenation.

HoTT applies the lens of homotopy to type theory in the following way. Recall
that the type A : U can be viewed as either a type or a set. Through the lens
of homotopy theory, one can also view A as a topological space. In this way,
one should consider an inhabitant of the equality type, p: x =4 y, as a path p
from z to y in A. Then, if one wanted to show that z is equal to y in the type
A, one should construct a path p between them.

Furthermore, if there were two proofs p,q : A, one would want to know
whether these proofs are, in some sense, the same. To do so, one can consider
A : U from the homotopy perspective and determine if p and ¢ are homotopic.
For example, if p,q : © =4 y are considered as paths from x to y in A, if they
are homotopic as paths, then they are in some sense the same proof.

Applying the lens of homotopy to type theory makes HoTT both concrete
and abstract. It is concrete in the sense that the mathematics is constructive,
and arguments and proofs refer to concrete points, paths, inhabitants, and types.
However, HoT'T is also abstract in the sense that it sees these specific objects
only up to homotopy. So it is not necessary to painstakingly construct an explicit
homotopy between paths, for instance.

It turns out that this notion is extremely useful for dealing with higher
inductive types and higher homotopy groups.

We will need the following notions and definitions to discuss and prove the-
orems about higher homotopy groups.

Definition 2.4 A pointed type (A,a) is a type A : U, along with a point
a : A, the base point.

Definition 2.5 A type A : U is contractible if there is a : A such that a =4 x
for all z: A Then A = 1, where 1 is the unit type.

Definition 2.6 The loop space of a pointed type (A4, a) is defined to be the
pointed type Q(A,a) := (a =4 a,refl,). An element of Q(A4,a) is called a loop

at a.

Definition 2.7 Let n : N. The n-fold iterated loop space of a pointed type
(A, a) is a pointed type defined recursively:

(A, a) = (A, a)
Q" A, a) .= Q"(Q(A, a))

The elements of Q™(A,a) are called the n-dimensional loops at a.
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The loop space is an example of a higher inductive type. A higher inductive type
is a type that is generated by “constructors”, which generate not just points, but
may also generate paths and higher paths. For example, one can construct S™
as a higher inductive type generated by a point base : S™, and the n-dimensional
loop loop,, : Q™(S™, base).

Definition 2.8 Let A : U be a type. The suspension of A, XA, is defined by
the following generators:

e A point N: XA
e A point S: XA
e A function merid: A — N =54 S

The suspension is another higher inductive type that can be created from A. For
each point in A, there is a path from N to S. The naming scheme is suggestive
of a globe, and in fact, one can define S™ as the suspension of S"~!.

Remark 2.9 1t is possible to show that the two definitions of S™ as a loop space
and of S™ as a suspension are, in fact, equivalent.

Definition 2.10 Given a type A : U, and n such that n > —1, we define the
n-truncation of A, |Al|,, as a higher inductive type generated by:

e A function | — |, : A = ||A]l»
e For each t : S"t1 — || A, a point A(t) : [|Al|,.

e For each ¢ : S"! — || Al|,, and for each z : S"*1 a path s;(z) : t(x) = h(?)

In homotopy theory, an n-truncated space has no interesting information above
dimension n. In other words, with an n-truncated type, one forgets about paths
of dimension n and higher. The O-truncation of a type A : U can be thought
of as simply a set with no non-trivial paths between its inhabitants. The (—1)-
truncation of a type is a mere proposition - the interesting information is whether
the type is inhabited or not. Though it is not covered in this definition, we define
the (—2)-truncation of a type to be a contractible type.

The idea of forgetting about higher dimensions serves as the intuition for
the following remarks:

Remark 2.11 Let n,k > —2, with £ < n. Then for a type A : U,
Al e = 11Allx
Remark 2.12 For alln > -2, kK > 0,
195(5™) 1 = Q515" ln-+x)

In fact, this is true for all pointed types (A, a).
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Definition 2.13 A type A : U is n-connected if ||A]],, is contractible.

The notion of n-connectedness is the opposite of n-truncation. An n-connected
type can be thought of as having no interesting information below dimension n.

Remark 2.14 For all n : N, the n-sphere is (n — 1)-connected.
Definition 2.15 Given a span of types and functions:

c—25B

ﬁf

The pushout A LI° B is the higher inductive type generated by:
e A function inl: A - AU® B
e A function inr: B — AU® B
e for each c¢: C a path glue(c) : (inl(f(c)) = inr(g(c)))
So we have the following diagram:

c—% 4B

bl

_inl, AR

The pushout of ALI® B can be thought of as the disjoint union of A and B,
with the condition that for every ¢ : C' there is a witness that f(c) and g(c) are
equal.

2.3 Higher Homotopy Groups

The study of higher homotopy groups is a central question in algebraic topology,
and has led to the development of many modern techniques in algebraic topol-
ogy. There are many results known about higher homotopy groups of spheres,
and while many have been calculated, they have not yet been fully classified.
In addition, such calculations are difficult in the conventional setting, though
HoTT offers ways to make such calculations more accessible.

The k' homotopy group of a pointed type (A, a), mx(A, a), can be thought
of as the set of mappings up to homotopy of the pointed k-sphere (S*,b) into
the space A such that base points are preserved. However, it is equivalent and
more convenient to use the following definition using n-fold loop spaces and
truncations:

Definition 2.1 Given k > 1, the kth homotopy group of a pointed type
(A, a), mx(A, a), is defined to be ||Q*(A,a)lo.
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Recall that the O-truncation makes Q" (A, a) a set, and the concatenation and
inverse operations of paths in Q"(A, a) make ||2"(A,a)|lo & group. When con-
sidering higher homotopy groups of spheres, we will be a bit lazy in our notation
and assume the base point to be implicit.

Remark 2.2 If k > 2, then m,(S™) is abelian. This is a result of Eckmann-Hilton
argument.

Theorem 2.3 If k < n, then m,(S™) is trivial.

In homotopy theory, one can intuitively see that for k& < n, a k-dimensional
sphere mapped onto an n-dimensional sphere can be contracted down to a point.
Proof

m(S™) = 12°(S™) o

= Q" (|1S™Ix) (by Remark 2.12)
= Qk(” 1S™ln=1 %) (by Remark 2.13)
= Qk(”l”k) (by Remark 2.14)
=QM1)

=1

Recall that by remark 2.14, S™ is (n—1)-connected, so the (n—1)-truncation
is contractible, so ||S™||,—1 = 1. O

Before we can prove our next result about higher homotopy groups of spheres,
we will need to state a key theorem in algebraic topology, the Freudenthal sus-
pension theorem, which we will state here in the language of HoTT:

Theorem 2.4 (Freudenthal Suspension Theorem) Suppose X is a pointed,
n-connected type, with n > 0. Then || X |l2n = [|Q2(Z(X))]l2n

The following theorem is extremely useful in classifying and computing
higher homotopy groups. As a consequence of the theorem, we are particu-
larly interested in m;(S®) because it is the first stable homotopy group of the
form 41 (S™).

Theorem 2.5 (Stability of Homotopy Groups of Spheres) If k < 2n —
2, then 7Tk+1(5n+1) = Wk(Sn).

156



Proof

T (™) = Q5 (S o
= [25(Q(5™)llo
= Q5 (I(S™ ) Ix)
= Q*(II2(S(S™))Ix)
= Q" ([ 12(=(S™))l2n [Ix)
=" 15™ l2n |I&) (by Freudenthal Suspension Theorem)
= Q8 (|[S™||x)
= [12%(5™)llo
=Tk (Sn)
O
Note that the key step is the use of the Freudenthal Suspension theorem,
while the rest of the steps are the unfolding of definitions and the use of remarks
2.12 and 2.13.
The following table can be found in the Homotopy Type Theory book, and
lists some of the computed higher homotopy groups of spheres. One impor-

tant computation that has already been done in HoTT is the computation that
71(SY) = Z. This result leads to a proof in HoTT that 7, (S™) = Z.

c__LJ 5] 51 53 S-l 55 st 5? Sﬁ
M 0 Z 0 0 0 0 0 0 0
s 0 0 Z 0 0 0 0 0 ]
3 0 0 Z Z 0 0 0 0 0
my 0 0 7 Zs Z 0 0 0 0
s 0 0 72 e Za Z 0 0 0
e 0 0 Zia Z Z, Zy y A 0 0
7 0 0 Za Zy  ZxZy o Zs z 0
g 0 0 7 7 73 Zoy Za Z y A
o 0 0 Za 7 73 Za ran Zs Z
o 0 0 Z1s Zis  ZuxZy 72 0 Zoy Z
T 0 0 Z Zs Zys Zy z 0 Zos
2 0 0 73 z3 Z; Zy 7 0 0
M 0 0 ZyuxZy ZpxZ, 73 7 Zao 7 0

Figure 2.3.1: The higher homotopy groups of spheres. The colored diagonals
indicate the stable homotopy groups.
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3 Guillaume Brunerie’s Proof that 74(S?) = Z/nZ

While 74(S?) has been computed to be Z/2Z, it is not possible to simply import
the argument into HoT'T, as the conventional proof makes use of arguments that
are not homotopy invariant. Brunerie instead uses the approach of the James
Construction, which is useful because the James Construction of a space A,
denoted J(A), has the same type as the loop space of the suspension of the
space A, Q(XA).

Let us first obtain some intuition about the James Construction. Let A be a
pointed type that is k-connected. Then we will define types Ja(A), J3(A) such
that we have the following sequence of types and maps, with certain conditions
on the connectedness of the maps:

1= A= Jo(A) = J3(A4) = J4(4) — ...
Then we define the James Construction of A, J(A) to be the following col-

imit:

lim J,,(A) := J(A)

m—r

Theorem 3.1 Given a pointed type A, J(A) = Q(ZA)

One can intuitively think of J,,(A) as successive approximations of Q(3XA).
We will now inductively define J,,(A).

Definition 3.2 Let (4, ag) be a pointed type. Then there is a map ag : 1 — A
sending 1 — ag. Then we define J,, (A) recursively:
Let Jy(A) :=1. Then J,;1(A) is a type with:

e An inclusion map iy, : J,(A) = Jpt1(4)
e A constructor map o, : Jo(A4) x Jp(A) = Jni1(A4)

Given z : J,(A), these maps satisfy the condition a,(ag,z) = i, (x). Fur-
thermore, they must satisfy the following relation:

nt1(a,in(2)) = int1(an(a, ) = iny1(an)

So we can see J,42 as the pushout of the following diagram:

Jng1(A) LA (A x T (A)) —2= A x Jui1(A)

lf lam

In+1(A) n In+2(A)
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Now let us consider the case A = S2. Note that by Theorem 3.1, J;(S?) =
52, and so we have the following sequence:
1 — 8% = J5(58%) = J3(S?) — ...
And we have that

lim J,,(S?) = Q(25?) = Q(S?)

m—r

By a condition on the connectedness of the map from Jo(S%) — Q(S®) (it
is 4-connected), we have that m3(J2(S?)) = m3(Q(S%)). However, we see that
73(Q(S?)) = m4(S?) from the definition of the 4th homotopy group of S3. So
now, rather than computing 74(S®), we are instead interested in computing
7T3(J2(52)).

When we consider the diagram associated to J,42(A), with A = S2, and
n = 0, we have the following:

S2 X (82 x 1) —— §? x 2

| lam

§2 L 7,(82)
We see that we can view J3(S?) as the following pushout:
J(S%) = 82 LTS (52 x 52)
Note that (S? v §?) is shorthand for the pushout S? /! S2.

1—2 5 52

b

g2 inl S2 11 §2

We would like to simplify our definition of J5(S?) as a pushout. To do so,

we claim that §2 x §2 = ($2 Vv §2)US° 1, and omit the proof. This allows us to
make the following simplifications:

J2(52) — g2 (s?vs?) (52 % 52)
= §2 VS (82 v %) LS 1)
_ (52 L)(5?vis?) (52 v 52)) Ust 1
=525 1

We can now view J3(S?) as the following pushout for some f : S% — S2.
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53— 41
lf lan-u
§2 ML 1,(82)

Again, by a condition on the connectedness of the maps, we have a map
m3(f) : m3(S?) — m3(S?). However, the higher homotopy groups 73(S%) and
73(S5?) have already been computed to be Z both in the conventional setting
and in HoTT. Then the map m3(f) : Z — Z is just multiplication by some
number n. It can be shown using a few more tools and high-powered arguments

from homotopy theory, such as the Blakers-Massey Theorem, that 73(.Jo(S52)) =
Z/nZ, where this n is exactly the n from the map w5(f).

4 Proof in Agda

module jamesconstructpi4s3 where

open import Function
open import Data.Nat

- Identity types, from Amr’s circle code
- Our own version of propositional equality that makes ’a’ explicit

data = {£}{A:Setl}: (ab: A) — Set £ where
refl : (a: A) — (a = a)

pathind : V {¢ £} — {A : Set {} —

(C:{zy: A} - (z=19y) — Set £’) —
(c: (z: A) — C(refl 2)) —
{zy: Ay (p:2=y) = Cp)

pathind C ¢ (refl ) = c z
- Transport
- Lemma 2.3.1

transport : V {¢ {7} — {A:Set (} {zy: A} —
(P:A—Setl)—=(p:z=y) - Pxz— Py

transport {¢} {¢7} {A} {z} {y} Pp=
pathind

Mzt {ytp = (Pz— Py)
N\ _ —id)

{z} {y} p
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-let’s define S~3. we need to define S~1 and then loops.

module circle where

private
data S* : Set where
base* : S1*
S!: Set
Sl — Sl*
base : St

base = base*

postulate
loop : base = base

recS' : {C: Set} — (cbase : C) — (cloop : cbase = cbase) — S* — C
recS! chase cloop base = chase

indS' : {P:S! — Set} —
(pbase : P base) — (ploop : transport P loop pbase = pbase) —
(point : S') — P point

indS* pbase ploop base* = pbase

open circle public

5 Further Steps

While we were not able to finish the formalization of Brunerie’s proof, we have
made progress in understanding his proof and have taken steps to determine
what the n is. From here, we should do finish formalizing the definition of
J,(A), and then formalize Brunerie’s argument that Jo(S?) = 52 us® 1.

Furthermore, once the calculation of this n has been completed, further
steps to take include computing other stable and unstable homotopy groups
of spheres. Currently HoTT has not yet computed any previously-unknown
homotopy groups of spheres, though it is expected that HoTT will be able to do
so. Omne hopes that through the tools of HoTT, one will be able to completely
classify higher homotopy groups of spheres, and/or provide a general method
to calculate higher homotopy groups of spheres.

Another possible direction for future research would be to expand HoTT as
a general framework for mathematics. In addition to homotopy theory, cate-
gory theory, set theory, and the real numbers have all been constructed and/or
formalized through HoTT. It would be interesting to develop further areas of
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mathematics in HoTT.
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