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Preface

During the summer of 2013 thirteen students participated in the Research Expe-
riences for Undergraduates program in Mathematics at Indiana University. The
program ran for eight weeks, from June 3 through July 26, 2013. Six faculty
served as research advisers:

• Richard Bradley worked with Ariana Coppess (IU) and Emily Walther
(Westminster)

• Marlies Gerber worked with Tom Dauer (IU)

• Evie Malaia (U. Texas at Arlington), assisted by IU grad student Jonathan
Poelhuis, worked with Erik Bates (Michigan State), Katherine Coppess
(U. Michigan), and Ben Seitzman (IU) on our first joint mathematics-
neuroscience project

• William Orrick worked with Yancy Liao (Penn State) and Wade Bloomquist
(U. Iowa) on two separate projects

• Kevin Pilgrim worked with Nicholas Neuctherlein (U. Michigan) and Saman-
tha Pinella (Edinburgh) on one project, and with Nicholas Miller (U.
Missouri-Columbia) and Max Zhou (IUB) on another

• Sidney Shaw (biology) worked with Allison Brumfield (St. Olaf College).

The program opened with an introductory pizza party. On the following
morning, students began meeting with their faculty mentors; these meetings
continued regularly throughout the first few weeks. During week one, there
were short presentations by faculty mentors briefly introducing the problem to
be investigated. Several other IU faculty gave talks on their favorite topics
during the first half of the program. Students also received an orientation to
the mathematics library. Week two featured individualized workshops in LaTex,
run by graduate student Anne Carter. In week three, students attended a
workshop regarding ethics in the profession, and students gave short, informal
presentations to each other on the status of work on the project. They also
attended a tour of the functional MRI brain imaging facility and EEG lab in
the Department of Psychological and Brain Sciences, led by REU participant,
Goldwater scholar, math and neuroscience major Ben Seitzman. Week four
featured a tour of the puzzle collection at the Lilly Library, a campuswide
reception for REU programs at the IMU faculty club, and a self-guided tour
of the Morton Bradley sculptures in the nearby Mauer School of Law Library
and IU Art Museum. In week five, they received a tour of the Center for the
Exploration of Energy and Matter (cyclotron) facility led by Prof. Baxter, and
attended a lecture on materials science there. During week six, they attended
a pool party at local Bryan Park, hosted by Professor Elizabeth Housworth.
During week eight, we hosted the Indiana Mathematics Undergraduate Research
conference, which featured 21 lectures by 40 students from Goshen College, IU,
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IUPUI, U. Notre Dame, Purdue University, and Valparaiso University. This
concluded with a plenary lecture by Professor Rodrigo Perez of IUPUI on the
theory of Siegel disks. The program concluded with a dinner at local eatery
Max’s Place and the submission of final reports, contained in this volume.

It took the help and support of many different groups and individuals to
make the program a success.

We thank the National Science Foundation for major financial support through
the REU program through NSF grant DMS-1156515. Arianna Cappon was par-
tially supported by the Women in Science program, led by Indiana University’s
Division of Student Affairs. Additional financial support for mentors was pro-
vided by the Department of Mathematics and fpr graduate students by Elizabeth
Housworth’s NSF grant DMS-1206405. We thank the staff of the Department
of Mathematics for support, especially Mandie McCarty for coordinating the
complex logistical arrangments (housing, paychecks, information packets, meal
plans, frequent shopping for snacks). We thank Indiana graduate student Anne
Carter for serving as LATEXconsultant and for compiling this volume.

Thanks to mathematics faculty Richard Bradley, Marlies Gerber, William
Orrick, and Kevin Pilgrim for serving as mentors and giving lectures, to biology
faculty member Sidney Shaw for serving as mentor and giving lectures, and
to U Texas at Arlington faculty member Evie Malaia for serving as mentor
and giving a lecture. We also thank IU mathematics faculty members Jiri
Dadok, Elizabeth Housworth, Chris Judge, Bruce Solomon, Matthias Strauch,
and Dylan Thurston for giving lectures to our group. Thanks to David Baxter of
the Center for Exploration of Energy and Matter (nee IU cyclotron facility) for
his personal tour of the cyclotron facility and lecture on the physics of materials.
Thanks to Rebecca Bauman for her tour of the Slocum puzzle collection, and
for gathering together for display and examination copies of Euler, Cauchy, and
other authors in the original.
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From left to right, rear: Max Zhou, Nicholas Miller, Katherine Coppess, Wade
Bloomquist, Tom Dauer; front: Benjamin Seitzman, Arianna Cappon, Allison
Brumfield, Emily Walther, Samantha Pinella, Erik Bates, Nicholas Neuchter-
line, Yancy Liao.
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EEG Time Series Analysis and

Functional Connectivity Network

Measures of TD and ASD Youths∗

Erik Bates† Katherine Coppess‡ Benjamin Seitzman§

Abstract

Graph theory allows for investigation of the arrangement and dynam-
ics of connections between objects in a complex system. A prominent
application of graph theory is featured in the study of neural networks
of the human brain. Time series representations of brain activity are ac-
quired from neuroimaging methodologies, such as electroencephalography
(EEG). EEG records electric potential changes in global brain activity
across the scalp as a function of time. Previously recorded 32-channel
EEG data of typically developing (TD) youths and youths with Autism
Spectrum Disorder (ASD) during both wakeful rest and a visual task were
analyzed. A cross-correlation analysis of the EEG time series was used
to produce weighted, undirected graphs corresponding to functional brain
networks. The stability of these networks was assessed by novel use of
the `-1 norm for matrix entries, here called the edit distance. Upon ex-
amination of stable networks identified, there was a significantly larger
number of stable networks observed in the resting condition compared to
the task condition. Furthermore, stable networks were found to endure
a significantly longer time during the resting condition in children with
ASD than in TD children.

1 Introduction

Recently, neuroscientists have applied network science to the study of the brain
using graph theory. Graph theory, at its most basic level, investigates the ar-
rangement and the nature of connections between objects. When graph theory
is applied to the brain, the objects are neurons (or groups of neurons), and the
connections are the anatomical or functional links between them. Regarding
the brain as a network has revolutionized researchers’ attempts to understand
both normal and abnormal brain function [2, 6, 13, 16, 18]. One dysfunction
widely studied is Autism Spectrum Disorder (ASD), which is commonly charac-
terized by atypical communication abilities, social understanding, and executive

∗This research is supported in part by NSF grant DMS-1156515.
†Michigan State University, bateser2@msu.edu
‡University of Michigan, kcoppess@umich.edu
§Indiana University, beaseitz@indiana.edu
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processing. Only recently has research of the functional differences in brain net-
work activity between typically developing (TD) children and children with ASD
progressed [1, 5, 7, 12, 19]. The functional dynamics of these networks may be
captured via several neuroimaging modalities, including electroencephalography
(EEG). EEG is a non-invasive method of recording the brain’s electrical activ-
ity from the surface of the human scalp [11]. The high temporal resolution of
EEG recordings allows for the examination of brain dynamics on the millisec-
ond timescale. Brain activity is recorded as potential changes in time, thereby
generating a number of time series that each correspond to one measurement
site. The collected time series may be used to understand functional networks
of the brain and, in particular, how those networks evolve over time. One topic
of interest in the neuroscience community is if and when such networks remain
quasi-stable [3, 8, 9].

The question of how to detect these networks from time series has not been
examined rigorously from a mathematical perspective. As such, a primary goal
of this project was to determine a mathematically motivated procedure to iden-
tify functional networks using time series analysis. This type of analysis is useful
in determining correlations between events with respect to time [15]. The mea-
sures employed in this study incorporate the effects of time delays on correlative
relationships in EEG time series.

2 Methods

2.1 Participants

14 individuals (age range 10–16) with diagnoses of Asperger Syndrome or high-
functioning autism spectrum disorder (ASD), and 14 healthy, typically develop-
ing (TD) age and gender-matched subjects (age range 10–17) recruited by flyer
advertisements among the schools of Arlington School District, TX, partici-
pated in the study. Participants’ parents were asked to evaluate their children’s
communicative abilities using the Pragmatic Language Observation Scale [10].
Participants scoring at or above average (90 and above) on the Pragmatic Lan-
guage Observation Scale were assigned to the control (TD) group; participants
with scores lower than one standard deviation below average (84 and below)
were assigned to the ASD group.

The study was approved and conducted in accordance with the ethical stan-
dards of the University of Texas at Arlington Institutional Review Board, and
the ethical standards prescribed in the 1964 Declaration of Helsinki and its later
amendments. All parents provided their written, informed consent, and children
provided written, informed assent prior to their inclusion in the study.

2.2 Electroencephalogram

Scalp EEG was recorded from 32 Ag/AgCl electrodes mounted in an electrode
cap (Wavegard, ANT Inc.) with an average mastoid reference. Electrodes
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were positioned according to the standard 10-20 system. A pair of bipolar
electrodes were used to record vertical eye movements. Electrode impedances
were maintained below 10 kΩ during recording. The EEG analog signal was
digitized at a 512-Hz sample rate.

2.3 Procedures

During the EEG session, the participants were seated comfortably in a sound-
attenuating booth with their eyes approximately 80 cm from a computer screen.
The participants were asked to keep their eyes on the screen and to decide as ac-
curately and as quickly as possible whether the stimulus photograph expressed
fear or anger. When the face-body compound stimuli were presented, partic-
ipants were told to judge the expression of the face. Stimuli were presented
for 1000 ms, followed by a black screen for 2000 ms. The hand assigned to
Fear/Anger response was balanced among participants. The testing started
with a short training session to acquaint participants with procedures and task
expectations of the experiment. Examples from all four stimulus categories were
included in the training.

The study consisted of 4 blocks: 2 separate blocks when participants viewed
isolated faces and bodies and 2 blocks with compound stimuli. Each block/
category consisted of 40 stimulus trials, for a total of 160 trials. The order of
block presentation varied, such that half of the participants viewed a face or
body-only block first, and half viewed a block with composite stimuli first. Of
those who first saw a control block, half started with the isolated faces block,
and half started with the isolated bodies block. For the purposes of this study,
the EEG data from only one event type (anger in the body, no face shown) were
used. Hereafter, this data will be referred to as “event-related” data.

2.4 Signal Processing

EEG data were analyzed using ASA 4.6 (ANT, Inc.). The continuous resting
EEG data were shortened to one 500 ms long epoch and no other processing
was performed. The continuous event-related EEG data were segmented into
epochs of 500 ms consisting of data from 100 ms pre-stimulus onset and from 400
ms post-stimulus offset. Time points in the filtered data at which the absolute
amplitude of the EEG exceeded ±150 V were marked as EEG artifacts or blink
artifacts. Trials containing EEG artifacts were rejected from further analyses,
as were trials containing incorrect behavioral responses. Averages were baseline
corrected using the 100 ms pre-stimulus portion of the epoch. Ten TD children
and ten children with ASD had EEG data in both conditions satisfying the
rejection criteria. Consequently, only the data from these 20 subjects were
included in the analysis.
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2.5 Time Series Analysis

MATLAB R© (Version 2009b, The Mathworks, Natick, MA) was used for all
computations described in the sections below.

Sample cross-correlation was used to reveal correlations between signals from
two electrode sites at different time lags. First, for jointly stationary time series
x and y with n entries, the cross-covariance γxy(h) (see [15]) at lag h is
estimated by the sample cross-covariance

γ̂xy(h) = n−1
n−h∑
t=1

(xt+h − x̄)(yt − ȳ), (1)

for 0 ≤ h ≤ n − 1. The use of the relationship γ̂xy(h) = γ̂yx(−h) allows for
the computation of cross-covariance for −(n − 1) ≤ h < 0. The sample cross-
correlation ρ̂xy(h), given by

ρ̂xy(h) =
γ̂xy(h)√

γ̂xx(0)γ̂yy(0)
, (2)

normalizes the cross-covariance so that −1 ≤ ρ̂xy(h) ≤ 1. The sign of h indicates
the nature of the relationships (i.e. leading versus lagging) in the EEG data, and
the magnitude of ρ̂xy(h) indicates the strength of the correlation. The derivation
of (1) assumes that the time series x and y are weakly stationary, meaning the
probability distributions of any collection of their vector components with the
same length is independent of time. This assumption may be reasonable for the
resting condition because resting EEG time series do not exhibit trending means.
While the assumption is less reasonable for the task condition, a detrending
correction was implemented on the event-related time series. Even then, a
violation of this assumption does not prohibit the use of this time series tool, but
it may weaken its conclusions. In any case, the hypothesis of weak stationarity
cannot be proved without assuming a model of the brain, and a universal model
has not been agreed upon in the neuroscience community.

Each subject’s event-related and resting data were divided into individual
epochs of 16 data points (corresponding to 31.25 ms). Cross-correlations were
computed for all pairs of nodes and all time lags h within each individual epoch.

2.6 Network Identification

Define hmax as the h yielding the greatest |ρ̂xixj (h)| for a given pair (i, j) of
nodes. Thus, each pair of nodes and its corresponding hmax has an associated
maximal cross-correlation |ρ̂xixj (hmax)|. This value is stored in a matrix, S, as
the entry Sij in the ith row and jth column. Note that Sij = Sji, meaning
S can be thought of as a weighted, undirected graph. Every vertex of this
graph is connected with every other vertex, and the strength of each edge is the
strength of the cross-correlation between the nodes it connects (i.e., the value
of |ρ̂xixj (hmax)|).
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Since the cross-correlation defined in (2) is a function of the lag h, large
entries in S need not indicate that the corresponding time series are highly
similar at each point in time. In fact, supposing one time series frequently lags
another (that is, the first time series looks very similar to the second after the
first has been translated forward in time), the two could appear quite different at
all points in time. The fact that cross-correlation allows strong but lagged linear
correlations to be detected is crucial in identifying these functional connections.
Nevertheless, no matter how strong these connections may be, if they only
occur for large lags, one should question their significance to functional behavior
because regions of the brain communicate with each other quickly [16, 17]. Thus,
a correlation measure giving preference to smaller lags is desired. Fortunately,
the one given by (2) has exactly this feature, since the sum in (1) includes fewer
summands for larger values of h, yet the sum is always divided by n instead of
n− h. The result is to detect functional connections over larger lags only if the
relationship is particularly strong during the epoch.

2.7 Network Analysis

Once a network is established for each epoch, the relative stability of the network
with respect to time was computed via edit distance. Edit distance between
m× n matrices A and B is defined as

dist(A,B) =

m∑
i=1

n∑
j=1

|Aij −Bij |. (3)

This computation was performed for each pair of consecutive epochs. The
change from one connectivity matrix to the next matrix is called a network
transition. Network transitions with an edit distance more than two standard
deviations below the mean of the null model were considered stable. The null
model was generated by randomizing every matrix (i.e. graph) for every subject.
This randomization was executed by use of the null model und sign function
(with the default settings) in the Brain Connectivity Toolbox [14], which reas-
signs edge weights while preserving the weight, degree, and strength distribu-
tions of each graph. Two mean edit distances of the null model were calculated,
one for each task condition. The mean for resting state network transitions was
computed using both populations’ randomized resting matrices, and that for
event-related transitions using both populations’ randomized event-related ma-
trices. For each null model, the stability threshold was established as described
above for the corresponding condition.

An alternative construction of the null models randomizes only one sub-
ject’s functional connectivity matrices, creating a null model specific to each
subject for each condition. This approach, however, does not accurately cap-
ture variability between subjects because individualized null models are entirely
determined by the randomization of only one subject’s functional connectivity
matrices. Instead, the method described above offers a global perspective of typ-
ical edit distances between independent and pseudorandom networks, thereby
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lending a constant threshold with which to compare the network transitions of
all subjects in a given condition.

Figure 1 provides a visualization of the methods described in 2.5 through
2.7.

Figure 1: Each subject’s processed EEG signal leads to 16 functional matrices,
one for each epoch, when (2) is computed for each pair of nodes and all possible
lags. For instance, the red cells seen in the top matrix indicate pairs of nodes
for which there existed a lag producing a high cross-correlation value. All such
matrices are randomized, and the edit distances (3) between them establishes the
null model. Finally, the null model is used to detect stable network transitions
between the original matrices by thresholding edit distance vectors against the
two standard deviation cutoff. Stable transitions are denoted by black cells.
The example shown here had stable transitions between epochs 1 and 2 and
between epochs 3 and 4, as suggested by their dark blue coloring in the edit
distance vector.

The use of edit distance (the `-1 norm for matrix entries) is a first approach
to the determination of distances between matrices (i.e., the determination of
stable networks). An alternative metric, the `-2 norm for matrix entries, was
used in place of edit distance for an additional analysis. The `-2 norm for
matrix entries is

dist2(A,B) =

√√√√ m∑
i=1

n∑
j=1

(Aij −Bij)2 (4)
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for m× n matrices A and B.

2.8 Network Measures

Define an averaged stable network as

1

n

(
Si + Si+1 + · · ·+ Si+(n−1)

)
, (5)

where Si is a functional matrix, n is the number of epochs in the period of quasi-
stability, and i is the first epoch in that period. A period of quasi-stability
is a series of consecutive epochs separated by stable network transitions. For
example, the binarized vector shown in Figure 2 yields the following four periods
of quasi-stability, each identified as a black “block”:

1. The first period of quasi-stability consists of epochs 1 and 2.

2. The second includes epochs 3 through 6.

3. The third includes epochs 7 and 8.

4. The fourth includes epochs 13 through 16.

2

4

6

8

10

12

14

Figure 2: Binarized edit distance vector for ASD subject 110 in resting condition

For every subject, an averaged stable network was computed for each period
of quasi-stability. Several network measures were calculated for all averaged
stable networks by use of the Brain Connectivity Toolbox, including diameter,
radius, characteristic path length, transitivity, maximum modularity, and global
efficiency [14].

3 Results

A repeated measures analysis of variance (rmANOVA) was performed for both
the mean number of stable network transitions and the mean duration of stable
network transitions with a between-subjects factor of population (TD versus
ASD). There was an interaction effect between mean duration and population
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(a) The mean durations of stable network transitions for TD children were 65.6 ms (standard
deviation 29.5 ms) in the task condition and 54.3 ms (standard deviation 27.8 ms) in the
resting condition and, for children with ASD, were 55.2 ms (standard deviation 38.1 ms) in
the task condition and 104.2 ms (standard deviation 71.0 ms) in the resting condition.
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(b) The mean numbers of stable network transitions for TD children were 1.6 (standard
deviation 1.1) in the task condition and 2.5 (standard deviation 1.7) in the resting condition
and, for children with ASD, were 1.4 (standard deviation 1.0) in the task condition and 2.3
(standard deviation 1.0) in the resting condition.

Figure 3: Results of null model thresholding (Note that the standard deviation
values reported are not the threshold values for the null models.)

on the two conditions (p = 0.034) (see Figure subfig:dur). Additionally, there
was a main effect of mean number on the two conditions (p = 0.046) (see Figure
??). Thus, there were significant differences in the mean number of stable
network transitions between the two conditions (the resting condition had a
larger mean) and in the mean duration of stable network transitions between
the two populations (children with ASD had longer stable networks in the resting
condition).

Another rmANOVA was performed for all of the network measures for the
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Figure 4: Result of diameter measurement of averaged stable networks. The
mean network diameters of averaged stable networks for TD children were 2.26
(standard deviation 0.86) in the task condition and 1.80 (standard deviation
0.94) in the resting condition and, for children with ASD, were 1.73 (standard
deviation 1.16) in the task condition and 2.61 (standard deviation 0.40) in the
resting condition.

event-related and resting data with the same between-subjects factor as before.
There were no main effects observed. There was an interaction effect between
diameter and population on the two conditions (p = 0.032). Thus, there was a
significant difference in the mean network diameter between the two populations
(children with ASD had a larger mean network diameter in the resting condition)
(see Figure 4). Additionally, there were trending interaction effects between
characteristic path length and population (p = 0.083), as well as between radius
and population (p = 0.076), on the two conditions.

All of the above significant results were obtained by use of the edit distance
metric (3). When the `-2 metric (4) was used, there were no significant results.

4 Discussion

In the neuroscience literature, there is evidence to suggest that there exists a
core group of quasi-stable functional brain networks that are continually revis-
ited while the brain is at rest [3, 8, 9]. The results from this study support
the existence of quasi-stable functional brain networks, but nothing can be con-
cluded about the number of such networks or any periodic cycling of these
networks without further investigation. Future studies should attempt to clas-
sify the stable networks uncovered in this project and to assess whether or not
they occur in a repetitive pattern or sequence. Moreover, further work in this
area should examine the number of such networks that explain a large amount of
variance of resting brain activity. Previous research suggests that four such net-
works explain nearly 80 percent of all resting brain activity (as can be measured
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via EEG) [9].
The observation that more stable network transitions were observed during

the resting condition may be explained simply. It is possible that a brain at rest
cycles through the aforementioned core group of quasi-stable functional brain
networks more quickly than a brain responding to a stimulus. This is because a
certain functional network of the brain is activated by a response to a stimulus.
Such an activation may temporarily disrupt the resting network cycle, and,
consequently, it may take some time for the brain to resume its cycling after
responding to a stimulus. This perturbation in the resting network cycle could
explain some of the results observed in this study, specifically those concerning
the number of stable network transitions.

The observation that stable networks endure for a longer period of time
in children with ASD at rest is more difficult to explain. Perhaps the resting
network cycle takes longer to complete in children with ASD, resulting in an
increase in stable network duration. An alternative explanation is that certain
networks are stable for longer periods of time due to brain abnormalities caused
by ASD; however, further research is required in order to make more meaningful
conclusions.

The observation that children with ASD have a higher mean network di-
ameter may not be the best indication of functional connectivity differences.
Diameter is defined as the maximum shortest path length between any two ver-
tices where, in the context of weighted graphs, the shortest path is the smallest
sum of edge weights for paths connecting the two vertices. Thus, a large mean
diameter indicates an overall higher level of correlation between nodes, but this
does not imply all nodes in the network are well-connected.

The nature of network transitions can be better understood upon considering
the differing results of using the `-1 and `-2 metrics. The `-2 norm is influenced
more by larger entries, whereas all entries linearly contribute to the `-1 norm.
The fact that significances are detected in the latter but not the former suggests
that the difference between stable and unstable network transitions is more
related to small changes in correlation between consecutive epochs, as opposed
to large changes. That is, the frequency of large changes in correlation between
given pairs of nodes is more uniform across subjects and across task conditions.
In contrast, from this study’s results, smaller changes in cross-correlation are
inferred to be more variable across the two populations and across the two
conditions. Future studies should probe the effects of alternative metrics, such
as the elastic net regularization, which is the sum of the `-1 and `-2 metrics.
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Appendices

A Full Results of Null Model Thresholding

This appendix contains the results of null model thresholding for each subject
in each condition. The binarized vectors in Figure 5 display which network
transitions were stable; the ith entry of the vector corresponds to the transition
between epoch i and epoch i+ 1.

B Selected MATLAB Code

B.1 Cross-Correlation

function C = cross_correlation(A)

% C = cross_correlation(A)

% Computes the cross-correlation of columns of A at all possible lags

%

% input: A: m by n matrix

% output: C: m by n by n array

% C(h,j,k) is the cross_correlation of columns j and k of A

% with lag h-1.

m = size(A,1);

n = size(A,2);

avg = mean(A,1);

AVG = repmat(avg,m,1);

auto_covariance = sum((A - AVG).^2,1)/m;

C = zeros(m,n,n);

for h = 0:m-1

for j = 1:n

for k = 1:n

x = A(1+h:m,j);

y = A(1:m-h,k);

C(h+1,j,k) = 1/m*sum((x - avg(j)).*(y - avg(k)))/...

sqrt(auto_covariance(j)*auto_covariance(k));

end

end

end

B.2 Network Identification

function [S,T] = strongest_lag(C)

% S = strongest_lag(C)

% Computes the strongest cross-correlation and associated lag from those

% stored in C

%
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Figure 5: Individual results of null model thresholding. Stable transitions are
denoted by black cells. Vectors in the first rows correspond to TD subjects, and
those in the second rows to ASD subjects. Subject numbers are shown below
the vectors.

% input: C: m by n by n array

% outputs: S: n by n symmetric matrix

% T: n by n skew-symmetric matrix

% S(i,j) is the largest entry value of

% {abs(C(:,i,j)),abs(C(:,j,i))}, and T(i,j) is the
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% associated lag. Positive means j lags i.

m = size(C,1);

n = size(C,2);

S = zeros(n,n);

T = zeros(n,n);

for i = 1:n

for j = i+1:n

[S(i,j),T(i,j)] = max(abs([flipud(squeeze(C(:,i,j)));...

squeeze(C(2:end,j,i))]));

end

end

T = T-m*triu(ones(n,n),1) - triu(T-m*triu(ones(n,n),1),1)’;

S = S + triu(S,1)’;

S = S + eye(n); % Comment if self-correlation of 1 should not be shown.

B.3 Edit Distance

function D = edit_distance(C)

% D = edit_distance(C)

% Computes the edit distances between matrices of C as separated along the

% third dimension

%

% input: C: h by n by m array

% output: D: h by h matrix

% D(i,j) is the "edit distance" between C(:,:,i) and C(:,:,j)

h = size(C,3);

D = zeros(h,h);

for i = 1:h

for j = i+1:h

D(i,j) = sum(sum(abs(C(:,:,i)-C(:,:,j))));

D(j,i) = D(i,j);

end

end

B.4 Null Model

function [avg,stdev] = random_edit_distance(S,bin_swaps,wei_freq)

% [avg,stdev] = random_edit_distance(S)

% Computes the average and standard deviation of edit distance separating

% randomized versions of the matrices contained in S along the third

% dimension
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%

% inputs: S, n by n by t matrix

% bin_swaps, average number of swaps of each edge in binary

% randomization.

% bin_swap=5 is the default (each edge rewired 5 times)

% bin_swap=0 implies no binary randomization

% wei_freq, frequency of weight sorting in weighted randomization

% wei_freq should range between 0 and 1

% wei_freq=1 implies that weights are resorted at each step

% (default in older [<2011] versions of MATLAB)

% wei_freq=0.1 implies that weights are sorted at each 10th

% step (faster, default in newer versions of Matlab)

% wei_freq=0 implies no sorting of weights

% (not recommended)

% outputs: avg, the mean edit distance between randomized graphs

% stdev, the standard deviation of those edit distances

%

% Disclaimer: part of this code is taken from null_model_und_sign.m,

% written by Mika Rubinov.

if ~exist(’bin_swaps’,’var’)

bin_swaps=5;

end

if ~exist(’wei_freq’,’var’)

if nargin(’randperm’)==1

wei_freq=1;

else

wei_freq=0.1;

end

end

S_random = zeros(size(S));

for j = 1:size(S,3)

S_rand = null_model_und_sign(S(:,:,j),bin_swaps,wei_freq);

S_rand(1:size(S,1)+1:size(S,1)^2) = 1; % set all diagonal entries to 1;

S_random(:,:,j) = S_rand;

end

D = edit_distance(S_random);

D = triu(D,1);

D = D(D~=0);

avg = mean(D);

stdev = std(D);
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B.5 Thresholding

function M = stable_transitions(S,avg,stdev,tol)

% M = stable_transitions(S,avg,stdev,tol)

% Identifies intervals of S along the third dimension that do not change

% (in edit_distance) consecutively by more than avg - tol*stdev

%

% inputs: S, n by n by t matrix

% avg, positive number

% stdev, positive number

% tol, positive or negative number

% output: M, w by 1 vector

% The stable transitions are the entries of M.

D = edit_distance(S);

D = diag(D,1); % only consider consecutive edit distances

tol = avg - tol*stdev;

M = find(D<tol);
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Classifying the Structure of 8 Column

Sets in Hadamard Matrices of Size 24

Wade Bloomquist

Abstract

It is known that there exist 60 equivalence classes of matrices of size
24. One can relate 59 of these equivalence classes through an operation
known as switching. This switching can be thought of as being based
on weight 4 codewords in the code generated by the matrix. The Golay
code is generated by two of of these equivalence classes, one of which is
the equivalence class not represented before. This code does not admit
weight 4 codewords so we hope to extend this idea to weight 8 codewords.

1 Introduction

The Golay code is one which has come up in many contexts throughout mathe-
matics. In geometry the Golay code can be used to construct the Leech lattice
which is used to find a current record holding sphere packing. In algebra the
Golay code was used to build the Conway group which is instrumental in the
construction of the monster group to finish the classification of finite simple
groups. These examples provide a strong motivation in trying to look at the
code to help in other problems.

Specifically, it is not known how all 60 equivalence classes of Hadamard
matrices of size 24 can be related. In fact 59 have already been related but there
is one that is left out. However, this final matrix and one already understood
both generate the Golay code. We see that the relationships already known
are based on 4 column structures, but the Golay code does not allow this as a
possibility for matrices that generate it. Instead we try to use 8 column sets
to find similar structure. We use three methods. The first involves defining an
invariant on 4 column sets and taking this invariant on all 4 column sets taken
from the 8 column sets. Next a canonical form was defined on 8 column sets.
Finally we look at the automorphism group and how its action on 8 column sets
is structured.

This project was done with help of the GAP software [4]. We also made use
of the GUAVA and GRAPE packages. This has allowed for observations that
will be included in the paper without proof.
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2 Background

2.1 Coding Theory

Algebraic coding theory will provide the setting in which this project is framed.
We will thus need to introduce some vocabulary primarily based on that pre-
sented in [5].

Definition 2.1 A code is a set of strings, called codewords, that are built from
elements of a set, called a library, say K.

A code can be thought of as a way of sending information across a channel
that may contain noise which will alter the intended message.

Definition 2.2 A k-error correcting code is one in which k errors can occur,
and the original message will still be recovered.

If we allow K to be a field then we can define a code over K to be a subset
of Kn, namely all of the n-tuples over the field K. In this situation K provides
a library for possible entries in a message to be sent. Most commonly this field
K is taken to be Fq, the finite field over q elements. This project deals with
linear binary codes.

Definition 2.3 Let C be a code. We define C to be binary if the library that
the code is built from only has two elements.

The most commonly used example of this will be taking K = F2. Then we
see that our code is a subset of Fn2 .

Definition 2.4 Let C be a code. We define C to be linear if the sum of any two
codewords in C is another codeword of C.

We can then observe that a linear code over F2 is a vector subspace of Fn2 ,
for some positive integer n.

Definition 2.5 Let C be a linear code. Then define a generator matrix of C to
be a matrix whose rows are the basis of C.

Definition 2.6 Let C be a code over Fq. Then the dual code to C, denoted C⊥,
is defined by

C⊥ = {x ∈ Fnq |x · c = 0 for all c in C}.
We call C self dual if C = C⊥

Definition 2.7 Let C be a code and let c be a codeword of C. Then the weight
of c is defined to be the number of nonzero entries in c.

Definition 2.8 Let C be a code. We say that C is doubly even if every codeword
in C has a weight that is a multiple of 4.
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We now provide a list of terms about codewords that will be used throughout
the paper

1. A duad is a 2 entry structure.

2. A tetrad is a 4 entry structure.

3. A sextet is a 6 entry structure.

4. An octad is an 8 entry structure.

5. A dodecad is a 12 entry structure.

Definition 2.9 Let C be a code with generating matrix A and c a codeword.
Then we define a column set of c to be the set of columns that are indexed to
match the indexed nonzero entries of c.

As a technical detail, when a code is generated by a Hadamard matrix, as
will be discussed later, we actually change the matrix slightly before generating
the code. We however will take column sets to be from the original Hadamard
matrix.

2.2 The Golay Code

The Golay code, more technically the extended binary Golay code, is a code on
24 elements over F2. The structure of this code allows for the detection of any
7 errors or the correction of any 3 errors. We also note that the Golay code has
minimum weight 8, is self dual and is doubly even. The automorphism group
of the Golay Code is the Mathieu Group on 24 elements.

Definition 2.10 Let C be a binary linear code. Then an automorphism of C is
defined to be a permutation that leaves the codewords invariant.

Proposition 2.11 Any two distinct octads in the Golay code can only overlap
in 0, 2 or 4 ways.

Proof We begin by noting that the sum of two codewords is a codeword in the
Golay code. Thus we can take any overlapping octads and find a new codeword
that is of weight 16− 2l, where l is the number of positions that overlap. This
tells us that an odd number of overlapping positions gives a codeword of weight
not a multiple of 4. This cannot happen as the Golay code is doubly even.
We know the overlap cannot be all eight entries as we have chosen them to be
unique. Now we see that we cannot not have 6 overlapping entries because this
would imply a codeword of weight 4, but the minimum weight of the Golay code
is 8. Thus we are left with 0, 2 and 4 as possible amounts of overlap between
two octads. �

Proposition 2.12 A 5 column set determines a unique 8 column set.
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Proof Assume that the 5 column set is in two different 8 column sets. Thus
two weight 8 codewords overlap in 5 entries. As we are in a linear code the
difference between codewords is also a codeword. This would give a weight 6
codeword, which is a contradiction. Thus A 5 column set is determined to be
in a unique 8 column set. �
Now we step back and want to look at 4 column sets. These are of even more
interest to us due to our invariant being defined on them.

Proposition 2.13 We see that any 4 column set belongs to exactly five 8 col-
umn sets.

Proof We begin with a 4 columns set, say A. If we add another column to A
we have a 5 column set which uniquely determines an octad, say B. We will
also arrive at B if we take any column in B that was not in A to begin with.
We see that this allows us to associate 4 columns that can be added to A to give
an octad. This follows from the above proposition as we cannot have octads
intersect in more than the 4 entries in which they are forced to intersect in since
we began with A. As we have 24 total columns and 4 are used to make A, we
have 20 possible columns to add to A. This tells us that 5 octads can be made
as 20

4 = 5. �

2.3 The Mathieu Group

The definitions in this section are taken from [1]

Definition 2.14 Let G be a group and X a set. We then define a group action,
of G on X, to be a function by

G×X → X, (g, x) 7→ g · x

where (gh) ·x = g ·(h ·x) for all g,h in G and all x in X. We also require e ·x = x
for all x in X.

This can be described more intuitively by looking at G as the symmetries of
the set X where the action of an element of g is a way of permuting trough the
symmetries.

Definition 2.15 Let G be a group and X a set. We call the action of G on X
transitive if any element in the set X can be sent to any other element in the
set through an action of an element in G.

Viewing this concept from the viewpoint of the orbit structure of the action
is more enlightening.

Definition 2.16 Let G be a group, X a set, and x and element of X. Then we
define the orbit of x, Ox, to be the set of all points x can be mapped to through
the action of an element of G.

This allows us to use an alternate, but equivalent, definition of a transitive
action.
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Definition 2.17 Let G be a group and X a set. We call the action of G on X
transitive if there is only one orbit.

Now we look to generalize the notion of transitivity to multiply transitive
actions.

Definition 2.18 Let G be a group and X a set. We say the action of G on X
is k-transitive, for k a positive integer, if any k-tuple of distinct elements of X
can be mapped to any other k-tuple of distinct elements of X.

Multiple transitivity is a very rare property outside of the symmetric and
alternating groups. Mathieu was very interested in exploring examples of these
groups at the end of the 1800’s. This led to the construction of the Mathieu
group, M24. We note that M24 acts 5-transitively on a set of 24 element and is
a simple sporadic group.

2.4 Hadamard Codes

We now begin to look at the specific codes that we will be using during our
project. These are codes that are generated by Hadamard matrices.

Definition 2.19 A Hadamard matrix of size n is a {+1,−1} square matrix that
has mutually orthogonal rows. Equivalently we see this implies that HHT = nI.

These matrices, when they exist, will be the maximal determinant matrices
of a given size.

Proposition 2.20 Hadamard matrices attain the Hadamard bound, det(H) ≤
n
n
2 .

Proof We can see that this is a bound by looking at the determinant as the
volume of the parallelepiped spanned by the rows. This gives us that the deter-
minant of a matrix will be less than the product of the magnitudes of the rows.
This then immediately tells us we reach this maximum when the product of the
magnitudes is maximized, namely when the we have only orthogonal rows. �

We see that size 1 is trivial and size two is simply a row of ones and a row
with a one and a negative one.

We observe that Hadamard matrices are not known to exist in all cases.
What is known is that there are Hadamard matrices of size 1, size 2, and any
other size must be a multiple of 4. This is discussed further in [3].

Definition 2.21 Let A and B be two matrices. We call them Hadamard equiv-
alent if a series of row permutation, row negations, column permutations, and
column negations, can map A to B.

It has been seen that there are precisely 60 different equivalence classes of
Hadamard matrices of size 24 [7, 6] An operation known as switching allows us
to relate 59 of these equivalence classes. We refer the reader to figures 1 and 2
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Figure 1: Diagram showing relations through switching

Figure 2: Diagram showing relations through switching
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where this mapping is shown explicitly, where the notation of how the graphs
are broken up per code is the same as [2].

It should be noted that while the 5 different separations of the graphs may
seem distinct, if we introduce the transpose operation we are able to fully com-
plete the mapping. This includes taking This includes mapping matrix 33 to
matrix 58 which will be discussed more later. The 60th, matrix found through
the Paley construction, is left out. Our central motivation that pushes us for-
ward will be to find some structure that allows us to relate these matrices. First
we will look at the switching operation in hopes of gaining some insight. Switch-
ing operations are important because although they will not necessarily keep a
matrix in its same equivalence class it will return another Hadamard matrix.
We look at an n×n Hadamard matrix that is normalized in a way that the first
four columns are as the transpose of the following

1 ... 1 − ... − − ... − 1 ... 1
1 ... 1 − ... − 1 ... 1 − ... −
1 ... 1 1 ... 1 − ... − − ... −
1 ... 1 1 ... 1 1 ... 1 1 ... 1


.

Where the remaining columns are being ignored for now. Then we call a
switching operation the process of replacing the 4× n

4 block of ones that start
this structure with negative ones. This the first 4 rows of our new matrix will
be the transpose of the following

− ... − − ... − − ... − 1 ... 1
− ... − − ... − 1 ... 1 − ... −
− ... − 1 ... 1 − ... − − ... −
− ... − 1 ... 1 1 ... 1 1 ... 1


.

Now we look at a specific case of Hadamard matrices of size 24 and how
switching is seen then. We will be looking at the Kronecker product matrix,
S in our diagram, H2 ⊗ H12 and a slight generalization of it. The Kronecker
product matrix can be written as a block matrix of the form

S =

(
H12 H12

H12 −H12

)
We now instead want to look at a slight generalization that will allow for a

better understanding of the switching operation. Suppose we have

H =

(
A B
A −B

)
Now we call a1 the first row of A, a2 the second row of A, b1 the first row of B,
and b2 the second row of B. Now if we permute b1 and b2 to make a new matrix
B∗ we see that for

H∗ =

(
A B∗

A −B∗
)
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we have that H is related to H∗ through the switching operation defined above.
Now we must discuss how to go from a Hadamard matrix to a code. This is

done through a simple algorithm

1. We start with a Hadamard matrix and begin by normalizing the first row
to entirely negative 1.

2. Next we replace every element, x, with log−1(x). Explicitly this involves
replacing 1 with 0 and −1 with 1.

3. Now we have a generating matrix for our code. So we are able to take the
span of the rows of this new matrix over F2 to build a code.

It is known that two matrices produce the Golay code discussed above. One
of them is matrix 58 mentioned previously. The other is the matrix that does
not fit with the other 59, the Paley matrix, which is matrix 60. This leads us
to believe that due to the special nature of the Golay code it will be possible to
find some structure in the matrices that will relate them.

3 Results

In a way this switching operation has just used 4 column sets to relate equiva-
lence classes of Hadamard matrices. This seems very logical as the codes that
are generated by these matrices all have minimum weight 4. The Golay code
has minimum weight 8, we can see if we do have a matrix that the 4× 4 block
can be made on this implies a weight 4 codeword. Thus we are unable to dis-
cuss matrix 58 and matrix 60 in terms of switching. This lead us to pursue an
understanding of these 8 column sets in hopes of finding structure that would
allow for relationships to be built.

3.1 Invariants

In order to begin our examination of the structure of these matrices we must
first find an invariant. This will be important for our discussion because it will
allow us to look at entire equivalence classes of matrices rather than a single
representative. This means we must find qualities of these matrices that will be
unaffected by the operations of Hadamard equivalence The invariant that we
will be using for our investigation is called the type.

Definition 3.1 Let m be the number of rows which contain an even number of
ones in an n× 4 matrix. Then we define type to be

type = min(
m

4
, |n−m

4
|)

.

In our case where the size of the matrix is 24 × 24 we see that the type must
be between 0 and 3. We also note that the switching operation is acting on 4
column sets where the type is 0.
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Proposition 3.2 The type of matrix is an invariant to equivalence classes of
matrices up to Hadamard equivalence.

Proof We first observe that permutations of rows and columns will not change
the type as by definition the order of these do not matter. Now we look at a row
negation. This will take a row with an even number of positives to a row with
an even number of negatives. The size of our row is even so this means we still
have an even number of positives. Similarly a row with an odd number of ones
is sent to a row with an odd number of ones. Now we look at column negations.
We see that an alternative way of describing the type would be as the minimum
of the number of rows with an even number of positives divided by 4 and the
number of rows with an odd number of positives divided by 4. What a column
negation does is send rows that had an even number of positives to a row that
has an odd number of positives. As this minimum is taken at the end we really
are not changing the value. �

Definition 3.3 Let A be a n × k matrix. Define the 4-profile of A to be the
break down of the

(
k
4

)
ways of taking a 4 column set from the k column set as

vector, v, with components corresponding to the number of combinations with
each type. Specifically we see that vi is the number of combinations with type
of i.

Proposition 3.4 If an 8 column set is partitioned into two 4-sets, then the 4
sets will have the same type.

Proof We take an 8 column set then we see that it is Hadamard equivalent to
an set of 8 columns when an even number of positive ones in each row. This
follows immediately form the Golay code being a self dual code. Thus if we take
two 4 column sets they will be forced to divide the even number of positive ones
columns. Thus we have that the 4 columns will have the same type. �

In our case this will provide a 4-vector such that the first entry is the number
of combinations that have type 0, the second is the number of combinations of
type 1, and so on. We have three results concerning the 4-profile breakdown of
8 column sets of Hadamard matrices.

Theorem 3.5 First we see that for the Paley matrix all 759 support column
sets have the 4-profile (0, 0, 30, 40).

Theorem 3.6 Matrix 58 has two distinct 4-profiles, namely (0, 0, 30, 40) and
(0, 4, 14, 52). Where 264 support column sets have the first 4-profile and 495
have the second.

This is less of a full proof and more of current observations that have helped us
toward an answer so far

We begin by observing through the construction of G above we can view it
as

G =

(
A B
A −B

)
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where A and B are Hadamard matrices. We first observe that we can normalize
G to have a first row that is entirely -1. This makes the first row of A entirely
-1 and the first row of B entirely -1. Then from the structure of G in terms of
A and B we see that the thirteenth row of G has -1 for the first 12 entries and
positive 1 for the last 12. Thus we can conclude that in the code generated by
G we have the codeword whose first 12 entries are one and last 12 entries are 0
and the compliment whose first 12 entries are zero and last 12 entries are 1.

Now we look to the different ways in which an octad can intersect a dodecad.
We base our discussion on the observation that if an octad, A, overlaps with a
dodecad, B, in n places, then a codeword of weight 20 − 2n will be produced.
This can be seen as we are taking 20 entries and any overlap removes one nonzero
entry from both A and B when they are summed. This tells us that any odd
overlap is immediately ruled out as it would imply a codeword not divisible by
4 and the Golay code is doubly even. Next we see that if there are 8 overlapped
entries we find a weight 4 codeword, which is not possible as the Golay code
has minimum weight 8. Similarly, if there is no overlap then we would have a
weight 20 codeword, and using that the Golay code contains the codeword of
weight 24 the compliment of this codeword would be weight 4. Thus the only
possibilities are for the octad to intersect 2,4, or 6 times with the dodecad.

Now we observe that there are
(
12
5

)
= 792 ways in which we can take a 5

column set from the first 12 columns. We know from above that each of these
5 column sets will determine an octad that intersects these first 12 columns in
6 positions. Thus we see that there are 792

6 = 132 octads that intersect the first
12 columns in 6 positions. Following exactly we have 132 octads that intersect
the last 12 columns in 6 positions. Thus we have 264 octads which can be
characterized in a way in which they have 2 identified columns

We see that if we take our tetrad to have neither special column we will have(
6
2

)
= 15 type 2 tetrads. Similarly if we have both special columns we will have(

6
4

)
= 15 type 2 tetrads. Now if we take one special column but exclude the

other we will have 2∗
(
6
3

)
= 40 type 3 tetrads. Next we see that if we look to the

octads that split evenly among the first and last 12 columns we can choose the 4
columns that are overlapped in

(
12
4

)
= 495 ways. Now from our discussion above

we know that a tetrad can be used to uniquely determine a sextet. This means
if we take a tetrad then we can extend it to a sextet that either has overlap with
the first 12 columns are we are in the first case mentioned or does not in which
case either have overlap with the first 12 columns in our remaining 2 columns,
and we are in the first case, or we do not and we are in a 4-4 split situation.
Thus we only have the type 4-4 splits that have been determined already.

Theorem 3.7 The 8 matrices found through switching operations on H2⊗H12

all have 4-profiles of (6, 0, 8, 56). In each of these codes there are exactly 495
weight 8 codewords.
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Proof This observation is concerned primarily on why these 4-profiles contain
six type 0 tetrads. Take one of these matrices, say A. Then we know that

A =

(
H H
H ′ −H ′

)
for some H and H ′, which are Hadamard matrices. We then see that if a tetrad
is taken to be split evenly between the first 12 and last 12 columns we will have
a type 0 tetrad. This allows us to look instead for the number of ways in which
we can partition one of these tetrads. This is simply 1

2 ∗
(
4
2

)
= 3. Then we see

that each of these partitions corresponds to 2 type 0 tetrads. Thus we have 6
type 0 tetrads. We also see that we have a total of 495 octads by using the fact
that octads can be obtained by gluing tetrads. Then we simply need to take the
number of ways we can build a tetrad form the first 12 columns and glue them
to the necessary columns in the last 12. So we have

(
12
4

)
= 495 tetrads. �

4 Canonical Forms

We determine a canonical form that help us to determine how many truly unique
8 column sets we have.

Definition 4.1 Let A be an 8× n matrix. We define a canonical form of A to
be the lexicographically minimal matrix in the equivalence class that A belongs
to.

The use of a lexicographic ordering is arbitrary. Any system of ordering that
would allow for a minimal matrix to be chosen may be used.

Proposition 4.2 For the Paley matrix there was found to be a single canonical
form. Matrix 58 was found to have two canonical forms, one corresponding to
each 4-profile.

Also, it should be noted that the canonical form for the Paley matrix and the
canonical form matrix 58 that correspond to the (0, 0, 30, 40) 4-profile do not
match each other.

These propositions were found through an exhaustive computational search
using GAP. This process followed these steps

1. A list was made out of all possible permutations of the 8 column set.

2. Each permutation was normalized so that the first column is entirely neg-
ative.

3. Each normalized permutation was checked to see if it were minimal to the
current least element under each possibility for a row normalization that
gave an entirely negative row, which was sorted so the entirely negative
row was on top.

4. The overall minimal element was the canonical form.
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4.1 Automorphism Group

We now use the automorphism group of the Golay code, M24, to try and de-
termine more structure within the generating matrices. First we recall the
definition of the automorphism group of a matrix.

Definition 4.3 The automorphism group of a {+1,−1 matrix is the group of
pairs, (P,Q), of matrices such that P−1HQ = H and P and Q are signed
permutation matrices.

A problem arises as to how we can find these automorphism groups to help
study this action better. We use a solution suggested by B. McKay that allows
us to exploit existing graph-isomorphism software [8, 9].

Definition 4.4 A McKay graph is a bipartite graph that represents a plus
one-minus one matrix through the following correspondence: first each row is
given two vertices on the left and each column two vertices on the right. Each
pair of vertices corresponding to a row is connected by two edges to each pair
corresponding to a column Then when looking at a specific entry in the matrix
a positive number leads to uncrossed edges between the two row vertices and
the two column vertices.

As an example let M be a matrix. Then in the McKay graph of M if Mij=1,
then

RiA

RiB

CjA

CjB

.

We then look at say Mmn = −1, then

RmA

RmB

CnA

CnB

.

We note that we also color the rows and the columns to distinguish them as being
separate This is a manifestation of not allowing transposes in our definition of
Hadamard equivalence.

This allows to use the Nauty program, included in the GRAPE package,
within GAP. Hadamard equivalence would be a very difficult problem to check
due to the possibilities of any row or column permutation as well as negations.
Although graph isomorphism is a difficult problem, it has been well studied.
This allows us to instead check whether the McKay graphs are isomorphic as a
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test of equivalence. More significant to the discussion at hand is the ability to
find automorphism groups. The automorphism group of a graph is something
that can be found with relative ease.

We currently have not worked out all of the details on when it is possible
to make an isomorphism between the automorphism group of the McKay graph
and the automorphism group of a matrix. This is known not to work if rows
of the matrix are duplicated or are negations of other rows. We believe this
isomorphism to hold when these situations are avoided. Under this assumption
we move forward.

We look to see how the orbit of the automorphism group acting on these 8
column sets behaves. We begin with the Paley matrix.

Proposition 4.5 The automorphism group of the canonical matrix from the 8
column sets in the Paley matrix is of size 96 and can be represented as GL(2, 3) :
C2. We also see that the 8 column sets fall into a single orbit of size 759.

The other matrix has a structure that is not understood as well. We see that
there are two automorphism groups to be discussed. One for each canonical
matrix found.

Proposition 4.6 The automorphism group corresponding to the canonical form
which matches to the (0, 0, 30, 40) profile in matrix 58 is of size 960 and can be
represented as C2 × (A5 : C4)) : C2. There is a single orbit that corresponds to
this automorphism group.

Proposition 4.7 The automorphism group corresponding to the 4-profile
(0, 4, 14, 52) has an automorphism group of size 256 which can be represented as
C2 × (((C4 ×C2) : C2) : C2) : C2)) : C2. This is split into two orbits one of size
165 and the other of size 330.
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Determining Signal to Noise Ratios as

Precursor to Determining Order

Parameters in Light Microscopy Images

of Microtubule Arrays

Allison Brumfield

Abstract

The microtubule polymers inside plant cells form various 2-dimensional
patterns with functional implications for cell growth. The amount of noise
in microtubule images poses a challenge for any algorithm in determining
order parameters of polymer arrays from images by lowering the ability
to distinguish microtubules in live-cell microscopy images. We develop a
method by which to test a 2-Component Mixed Gaussian technique for
calculating the signal to noise ratio as a descriptor of image quality and
microtubule distinction. We develop a simulator in MATLAB to generate
images with known polymer array order and signal to noise ratio. We
define and determine the validity of this method for determining signal to
noise ratios to account for the camera noise and the low spatial frequency
noise associated with background fluorescence in live-cell microscopy im-
ages.

1 Biological Introduction

1.1 Microtubule Cytoskeletal Arrays in Plant Cells

Cellular morphogenesis or the biological process that results in a change in cell
shape is a mechanism of plants for growth. The process of morphogenesis is
accomplished by organizational changes in the microtubule cytoskeletal array
[4]. Microtubules are tubular polymers found in eukaryotic cells that are 24
nanometers in diameter and can be 10s of microns long. The microtubules exist
along the interior of the cell at the plasma membrane and form a scaffolding
for the cell wall. During processes such as cellular morphogenesis, plant cells
do not retain the same microtubule structure.The microtubules are not tied
to a fixed, central point and can move around the cell wall forming different
cytoskeletal arrays, or the patterns from microtubule arrangements. Some of
these arrangements have a high degree of order and others appear completely
random.
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1.2 Shaw Lab and Light Microscopy

Shaw Lab is interested in plant cell morphogenesis and the organization of cy-
toskeletal arrays. Using florescence microscopy, single frame and time-lapse
images can be collected. By altering the plant cells genes, the microtubules will
fluoresce under specific wavelengths of light. The photons emitted are captured
by the camera, which provides a visual of the cytoskeletal organization within
an individual cell. This series of time-lapse images allow biologists, including
Shaw Lab, to study the dynamics of cellular morphogenesis and microtubule
cytoskeletal array organization.

1.3 Current Research

Much has been determined about the nature of microtubules. For example,
the microtubules do not move in a traditional sense where the entire length of
a polymer moves as a unit. By using a laser to “ turn off “ the florescence
in a small strip of the polymers, it can be observed that the polymer lacking
florescence did not move but was stationary and eventually disappeared. This
series of imaging led to the conclusion that microtubules move by adding new
polymer to one end or polymerizing and subtracting polymer from the other or
depolymerizing.

Researchers have determined how the microtubules accomplish movement,
but they are currently seeking to understand why microtubules form specific
cytoskeletal arrangements with certain organizational properties and the tran-
sitions that occurs between the ordered and disordered stages. During morpho-
genesis, the microtubules originate in a seemingly disordered arrangement and
move to a more ordered state. A pattern has been determined that organiza-
tion occurs first in the center of the cell and then expands outwards towards the
poles. At certain stages not only is there a transition from disorder to order,
but also a non-uniform distribution of order within a single cell.

The source of one challenge from working with cytoskeletal array organiza-
tion is that individuals may have different definitions of the boundary between
ordered or disordered. Individual‘s opinions cannot be compared in such a way
as to conclude something rigorously. Currently cells must be described and clas-
sified by hand according to their order and organization. Differences of opinion
at this stage may lead to inconclusive results. Ultimately, there needs to be a
rigorous technique to extract the order parameters or quantify order.

2 Goals

First, in order to quantify order, it must be defined in the context of microtubule
arrays.

Second, the accuracy of the technique used to calculate the signal to noise
ratio must be determined. In order to define the order of a given cell based
only a single image, the properties of that image need to be determined which
will shape the confidence and trust placed in the resulting quantified order.
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Unfortunately, calculating signal to noise properties can be difficult with images
of microtubules and the validity of the calculation must first be established.

3 Method

3.1 Definition of Order in Microtubule Cytoskeletal Ar-
rays

3.1.1 Order Parameters in Physics

As a basis of framing the order and organization of microtubule cytoskeletal
arrays, we consider the comparison of microtubules to liquid crystal materials.
Liquid crystal materials are those that exist in a unique phase which is a hybrid
state that exhibits properties of both solids and liquids [1]. In many ways liq-
uid crystals are comparable to microtubules since both have rod-like structures
(long and narrow with one axis that is significantly longer than its orthogonal
axis) and change between phases having different order and organization. Such
phases include the crystalline or solid state, which has extensive order in all
three spatial dimensions, the mesogenic or liquid crystal state, which has orien-
tation tendencies in one dimension, and the isotropic or liquid phase that has
no order in any direction [5]. Similarly in cellular morphogenesis, the micro-
tubule array transitions through stages starting with no order or organization
to slight organization and finally arrives with an arrangement that is ordered in
all dimensions assuming that microtubule arrays are planar.

Of particular interest are the liquid crystal phases where there is only par-
tial order and the techniques of attempting to describe that order. There are
several classifications of liquid crystal phases which differ in their arrangement
and construction of order. The nematic phase has no positional order but has a
general directional orientation such that the arrangement is ordered in one di-
mension and disordered in the remaining two dimensions [5]. Focusing on only
the one ordered dimension, the degree of order is often described by the order
parameter

S =
1

2
< 3 cos θ2 − 1 >

where θ = is the angle by which the long axis of the liquid crystal is rotated
from the horizontal axis of an external reference axis, which describes how much
variance is in the distribution of orientation angles [1]. The result is a score of
alignment of the liquid crystals.

The other phase of interest is the smectic phase, which has positional order
in 1 or 2 dimensions such that the liquid crystals are organized into strips or
planes. The smectic phase order is a descriptor of how the material is grouped
and arranged [5].

While the description of order can be roughly translated to the microtubule
case, the comparison is not perfect. One biological property of microtubules
is that they often have curvature along the length of the polymer, but liquid
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crystals are perfectly straight. As a result the nematic order parameter S cannot
be directly applied to microtubule arrays.

3.1.2 Microtubule Definition of Order

We define order parameters for use in describing the organizational structure of
microtubule arrays.

Definition 3.1 The dominant angle of orientation, α, is the average angle from
the horizontal axis of the external reference axes imposed on the cell.

Definition 3.2 The vector through the origin with angle given by the angle or
orientation is the director vector, ~n.

Definition 3.3 The co-alignment spacing, s, is the average spacing between
microtubules orthogonal to ~n.

Definition 3.4 The alignment or overlap spacing, t, is the average spacing
between microtubules along ~n. It is reasonable for t < 0 if the microtubules
overlap each other.

The angle of orientation describes the rotational structure and is the descrip-
tion of the nematic order in the microtubule array. Together the co-alignment
and alignment spacing describe the positional arrangement and can be consid-
ered a method of describing the smectic order in microtubule arrays.

3.2 Image Simulation

In order to realistically simulate images of microtubules and microtubule ar-
rangements, create a tool capable of calculating the precise signal to noise ratio,
and generate images with known order parameters and organization, we devel-
oped a program in MATLAB that constructs images by simulating each major
factor that contributes to real florescence microscopy images. The aspects of the
imaging process considered were the biological distribution of microtubules and
several different aspects of noise including: shot noise, diffraction, and digital
noise. We designed a user interface, shown in Figure 1, that allowed the user
to vary over 20 parameters and parameter distributions and view the resulting
image enabling different parameter spaces to be examined.

3.2.1 Biological Distribution

The biological distribution can be divided into three aspects: density and related
parameters, curvature, and rotational and translational order. Using these pa-
rameters the majority of biological properties of microtubules can be observed.

Density, the amount of polymer per area, when considered as an area 1
pixel wide can be considered total length. The total length is divided among
the total number of microtubules with some mean length such that Density =
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Figure 1: Screenshot of the simulator user interface showing an example config-
uration and resulting image.

Mean Length * Total Number. The resulting hyperbolic relationship between
mean length and total number is incorporated into the simulator to preserve
density such that adjusting one parameter modifies the other. Various density
and length parameter combinations are shown in Figure 2. There is also the
option to choose different types of distributions to vary microtubule length away
from the mean including uniform, Gaussian, exponential, and no additional
distribution.

Microtubules are not perfectly straight and generally have a slight bend or
distortion. To add the ability to change the curvature a periodic function with
variable amplitude, amplitude variance, period, and period variance, is added
to a straight microtubule and the microtubule is truncated appropriately to
preserve its allocated length. Figure 3 compares various microtubule curvature.

To describe the rotational or nematic order, the angle of orientation is a
variable parameter in the interface with the ability to rotate the dominate angle
by α ∈ [0, π). There is an additional parameter for angular variance that adds
a Gaussian distribution with the given variance.

Two variables are required to describe translational or smectic order, one
for each dimension. The alignment spacing t or the mean spacing along the
director is controlled by the mean overlap parameter and an additional variance
can be added with a Gaussian distribution. When t > 0, overlap is allowed
between microtubule endpoints. When t < 0, the overlap parameter represents
the required space between microtubule endpoints. The co-alignment spacing
orthogonal to the director is described in a similar manner but must be non-
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(a) (b) (c)

Figure 2: Various combinations of density and mean length parameters in 25µm
by 25µm images. (a) and (b) have the same density but (a) has a shorter mean
microtubule length than (b). (a) and (c) have the same mean microtubule length
but (a) has a significantly higher density.

(a) (b) (c)

Figure 3: Various combinations of curvature amplitude and period in 25µm by
25µm images. (a) No curvature is added to the microtubules. (b) and (c) have
the same low amplitude but (c) has a smaller period than (b).
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negative. Several microtubule arrays with various order qualities are shown in
Figure 4.
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Figure 4: Several microtubule arrangements in 25µm by 25µm images created
by varying order parameters. (a) is a perfectly ordered organization with no
variance in any input order parameter. (b) varies the dominant angle of orien-
tation but retains smectic order vertically. (c) varies the co-alignment spacing,
s, but retains nematic order and smectic order into vertical columns. (d) varies
the overlap spacing, t, but retains nematic and horizontal smectic order.

The microtubules are defined using parametric equations, one per micro-
tubule, and modifies using the previously specified parameters. To create the
image, the x and y coordinates of the microtubule equations are mapped to the
indices i, j of a zero matrix M , respectively. The entry Mi,j = Mi,j + 1 such
that intersections of microtubules are cumulative.

3.2.2 Shot Noise

In order to use florescence microscopy to image microtubules, Green Fluorescent
Protein (GFP) is introduced into the system and binds to the microtubules.
Viewed under specific wavelengths of light, GFP fluoresces and emits photons.
By the nature of photon emission, the photons are emitted at random intervals
which can be described by a Poisson distribution [6].

To account for this property of microtubule intensity, after the molecular
distribution has been transcribed into an image matrix, the microtubule inten-
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sities are assigned to have a mean intensity defined by the user interface with a
Poisson distribution. The Poisson distribution can be approximated by a Gaus-
sian distributed random variable with µ = mean intensity and σ =

√
µ. The

resulting microtubule intensity distribution can be seen in Figure 5. Looking at
a cross section of the image in Figure 5, the microtubule intensity shown on the
vertical axis varies significantly around the mean of 150 photons per pixel.
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Figure 5: (left) The histogram of the image of microtubules after the addition
of shot noise showing the Poisson distribution of microtubule intensities. (right)
A cross section of the same image showing the wide distribution of microtubule
intensities.

3.2.3 Diffraction

The aperture in a camera is the component of the lens that controls the amount
of photons that enter the camera. When photons pass through the aperture, the
photons are diffracted resulting in an airy disk. An airy disk is a series of con-
centric rings of different widths caused by diffraction through a 2-dimensional,
circular aperture. The radius of the rings is proportional to the wavelength of
light, λ, and inversely proportional to the numerical aperture of the lens, NA,
such that the first ring, which contains 86% of the total photons, has a radius
rairy = 1.22 λ

NA [3].
To approximate the diffraction of photons into the airy disk, define a Gaus-

sian filter with radius = rairy where 5 standard deviations of the Gaussian filter
fit in the disk. Using matrix convolution, apply the filter to the microtubule
array image. The microtubule intensity distribution in Figure 7, has now been
flattened by the Gaussian and no longer appears Poisson. A close up view of
the microtubules at this stage in the process would show curves that are slightly
blurred.
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Figure 6: The airy disk pattern formed by the diffraction of photons through a
2-dimensional, circular aperture [2].
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Figure 7: Histogram of microtubule array image showing the distribution of
microtubule intensity after accounting for photon diffraction.

43



3.2.4 Digital Sampling

Cameras are restricted in resolution to the number of bin, or energy reservoirs,
it contains. Photons that pass into the camera are diffracted and then captured
in these bins. The amount of photons in the bin is recorded as intensity for
an individual pixel. It may not be desired to have the final image be at the
maximum resolution of the camera due to many considerations. To lower the
resolution, the high-resolution image can be digitally sampled such that blocks
of pixels are summed to create a smaller image matrix. The digitally sampled
image D is given by

Di,j =
n∑
j=1

m∑
i=1

s∑
k=1

Mk+s∗i,k+s∗j

where the resulting image I is m× n and the previous image M is sm× sm
such that s is the spatial scale multiplier and the size of block used in the digital
sampling.

This process only increases the range of intensities under the distribution but
does not alter the microtubule intensity distribution in any other way as seen
in Figure 8 since the shape of the distribution is preserved. For a more detailed
analysis of this observation see Section 5.3 Challenge in Measuring Signal.
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Figure 8: Microtubule intensities after digitally sampling the microtubule array
image.
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3.2.5 Camera Noise

To process the photons stored in the bins, the camera requires the use of elec-
tricity which influences the intensity readings adding a noise component. This
noise, often referred to as digital noise, is a low-frequency noise and can be
approximated with an appropriate offset and a Gaussian distribution defined
by a noise variance parameter in the user interface. The histogram of the noise
distribution is shown in Figure 9.
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Figure 9: Distribution of the camera noise intensity with a variance of 60 pho-
tons and offset of 300.

3.2.6 Low-frequency Background Noise

An additional component is observed in live-cell images of microtubules. The
concentration of GFP does not all bind with the microtubules; there is a propor-
tion of the concentration that remains unbound and floating in the cytoplasm.
This causes florescence not associated with any microtubule that appears as
shapes in the background brighter than the general background noise.

To approximate this effect, an additional noise layer is added to the image
where a set of circles are defined by parameters (density or number, radius, and
intensity in the interface), dispersed throughout the image, and filtered through
a similar process as the microtubule signal. One such possible combination is
shown in Figure 10.

This situation is specific to florescence microscopy and poses challenges when
analyzing microtubule images. Working with this noise component is difficult
because of the resemblance to signal. Figure 11 compares the cross section of
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Figure 10: Image of the approximation of background noise from the florescence
of unbound GFP that will be added to the final microtubule array image as noise.

microtubule signal, background noise, and digital noise images. Notice that
the cross section of the background noise is a low-frequency noise and resem-
bles signal more than the traditional high-frequency noise. This makes it more
challenging to identify.

3.2.7 Image Composition

To create the final image, the digitally sampled image, which is the final modi-
fication made to the microtubule intensity or signal, is summed with the noise
components. The resulting image and respective histogram are shown in Figure
12.

4 Signal to Noise Ratio

An accurate measure of the signal to noise is needed in order to determine if
the results of the algorithm are sufficiently confident to provide a measure of
order. Given a low quality image there may not be enough separation between
the measured microtubules and the rest of the image to make any sort of confi-
dent claim that the order measurements in fact measured microtubules and not
phantom objects due to noise.
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Figure 11: (left) Cross sections of (a) microtubule intensity or signal, (b) back-
ground noise, and (c) digital noise. (b) is a low-frequency noise and resembles
the low-frequency signal (a) more than high-frequency noise (c).
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Figure 12: The final image (left) and the respective histogram (right) of the
microtubule array with signal mean of 125, digital noise variance of 60, and no
background noise.
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4.1 The Signal to Noise Ratio as a Statical Measure

4.1.1 Z-Score

Expressing an observation as a z-score is a method of converting a distribution
to a standard normal distribution such that the mean is 0 and the area under the
distribution is 1. As a result a z-score is a statistical metric that is a standardized
measure of the distance between an observation of a given distribution and the
mean of that distribution where the units are in standard deviations of the
standard normal distribution.

Definition 4.1 Given a population distribution with known mean and stan-
dard deviation, the z-score z is defined as

z =
x− µ
σ

where µ, σ are the mean and standard deviation of the population, respectively.

Definition 4.2 When only sample distribution statistics are known,

z =
M − µ
σM

where σM = σ√
n

, the standard deviation of the mean, and σ and n are the

sample standard deviation and sample size, respectively.

In this way, the z-score is a measure of the number of standard deviations
the observed value falls from the mean.

Often the z-score is converted into a probability p of the observed value
occurring. Since the distribution has been converted into the standard normal
distribution which is a probability distribution function, the cumulative area
under the curve represents the total probability that the observed value belongs
to that region. A z-score can be written as the equivalent probability value
p which is the area under the standard normal distribution between the mean
and the observed value. For ease of use, it is common to look up the associated
z-score and p values in a table.

4.1.2 Signal to Noise Ratio as a Z-Score

When analyzing images it is necessary to have an idea of how strong the signal is
relative to the noise. Intuitively, the farther apart the signal and noise intensities
are the easier it should be to distinguish signal from noise. Given a distribution
of the intensities in an image with a known distribution of signal and noise, we
can calculate the signal to noise ratio (S/N).

Definition 4.3 The signal to noise ratio (S/N) is defined as

S/N =
µsignal − µnoise

σnoise
(1)

where µsignal = mean signal intensity, µnoise = mean noise intensity, and
σnoise = standard deviation of noise intensities.
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This is essentially a z-score calculation where µsigma is the observed value
and the noise distribution is the population. Then S/N is the distance, or
number of standard deviations, the signal mean is from the noise mean. The
larger S/N is, the larger the distinction between signal and noise in the image.

4.1.3 Interpreting the Signal to Noise Ratio with a Z-Test

When looking at a region in an image that appears to be signal, how confident
can we be that the observed pixel is in fact signal and not noise? What is
the probability that the pixel is not noise? Is that probability small enough to
accept potential for error? To determine a measure of confidence for the ability
to distinguish signal from noise in the image apply a statistical z-test.

Certain conclusions can be drawn from an observation with a given z-score
using a z-test, which is comparable to the students t-test except µ and σ of the
distribution are known and not estimated. The z-test can only be used when
the population distribution is known.

Given an image with known noise and signal distributions, the S/N value of
the image is used as the z-score in the z-test. The hypothesis being tested is that
the measured intensity is noise and not signal. Hence define H0 as the measured
mean signal intensity = the mean noise intensity. For the significance level, let
α = .01 to ensure 99% confidence in the determination. This yields critical
z-score values at z = ±2.58% at which the associated p = .01. If S/N > 2.58,
the null hypothesis is rejected and we can assume with 99% confidence that
the measured intensity is not noise. If S/N < 2.58, then the null hypothesis
is accepted and we cannot be confident enough to conclude that the measured
intensity is not noise.

4.1.4 Confidence Level and Margin of Randomness

In general when taking the S/N as a z-score and determining the associated
p value, the confidence of the measured intensity not being noise is given by
(1−p)∗100. This forces images where signal can be distinguished from noise with
95% and 99% accuracy to have a minimum S/N of 1.96 and 2.58 respectively.

Given an image that is 512 by 512 pixels in size with a 99% confidence in
signal detection, then the amount of uncertainty or random events still predicted
in the image is 1% of the number of pixels in the image which in this case is
2621 pixels. This implies that the larger the resolution of the image the more
error is allowed at the same confidence level and a higher confidence level and
S/N may be desired.

5 2-Component Mixed Gaussian as Method for
Calculating the Signal to Noise Ratio

Using the MATLAB simulator that constructs a representative image by adding
the individual signal and noise layers together, the exact S/N of the simulated
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image can be calculated. Because of this ability to access a pure signal and pure
noise image, the accuracy of different techniques in calculating the S/N can be
compared to the true S/N.

5.1 Determining the Predicted Signal-to-Noise Ratio

The final image displayed by the simulator is created by summing an image of
pure signal and pure noise. To calculate the true or predicted S/N, determine
the signal mean, noise mean, and noise variance and then apply Equation 1.

To calculate the predicted signal mean, compute the mean intensity of the
pure signal distribution given by the nonzero pixel intensities of the histogram of
the microtubule array image after the digital sampling. Computing the average
and standard deviation of this distribution yields the best fitting Gaussian to
the signal image histogram computed by other conventional measures.

For images with only one noise source from the digital imaging process, use
the non-zero pixels of the true noise intermediary image and compute the mean
and standard deviation of the noise distribution. For images with two noise
sources, calculate the mean and standard deviation of both noise components
independently. The combined noise mean and standard deviation are given by

µnoise =
µ1 + µ2

2

σnoise =
√
σ2
1 + σ2

2

where µ1, σ1 and µ2, σ2 are the mean and standard deviation of the digital
and low-frequency background noise components, respectively.

Applying Equation 1, the true S/N can be calculated and used as the pre-
dicted value in testing.

5.2 Determining Signal and Noise in Images

To be precise the S/N should be calculated from two images: one that is pure
signal and the other signal with noise added. This is not a possible situation
with florescence microscopy since the noise is from the imaging process itself and
pure signal cannot be captured. In this field, a widely used method is to select
a region in the image that represents purely background and thus the noise
and a separate region from the same image that is a good estimation of signal
and noise. We would like to instead determine the accuracy of an autonomous
method.

Given just a single image with both signal and noise components, the his-
togram can be used to approximate the signal and noise distributions and seg-
ment the image into two parts. Through the process of simulating images of
microtubule arrays, it is evident that the pure signal component and pure noise
component can be described approximately with Gaussian distributions. The
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signal and noise components are added together which implies that the final im-
age can be described using a weighted sum of two Gaussian distributions given
by

g(x) = p ∗ 1

σn
√

2π
e
− (x−µn)2

2σ2n + (1− p) ∗ 1

σs
√

2π
e
− (x−µs)2

2σ2s (2)

where p is the proportion of the first Gaussian in the total mixture, σn, µn
are the standard deviation and mean of the noise component and σs, µs are the
standard deviation and mean of the signal component.

Using MATLAB to fit Equation 2 to the histogram of image intensities using
the Maximum Likelihood Estimation technique, the two Gaussians can be fit to
the histogram where the first Gaussian approximates the pure noise distribution
and the seconds approximates the pure signal distribution.

5.3 Challenge in Measuring Signal

As seen in Figures 5, 7, and 8 the width of the signal distribution fluctuates
during the imaging process. Given parameter values such that the spatial scale
is 10 pixels for a 256 × 256 pixel image representing 25µm square and an input
microtubule intensity is 100 photons, after the filter simulating diffraction has
been applied the measured microtubule intensity or signal is reduced to 7.6293
photons which is only 7.5% of the initial input. After the image is created and
is digitally sampled, the measured signal has resumed more of the original value
and the predicted signal is determined to be 29.6099, only 29% of the original
value.

This compromising result is influenced by the spatial scale used which has
an effect on both the Gaussian filter size and the size blocks used in the digital
sampling.

Size Filter Size Input After Diffraction After Digital Sampling

2 9.0000 101.6445 7.6293 29.6099
4 19.0000 101.5297 3.6140 50.5958
6 28.0000 101.0212 2.3627 73.5824
8 37.0000 100.8082 1.8013 98.6161
10 46.0000 100.8611 1.4250 122.2494
12 56.0000 100.9799 1.1737 144.5578
14 65.0000 100.9743 1.0248 171.1403

Table 1: Signal compromise through the processes of diffraction and digital
sampling.

The effects of the spatial scale can be seen on the signal intensity in Table
1 and on the percent of original signal input in Table 2. The larger the spatial
scale the more drastic the diffraction filter compromises the signal and larger
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Size Filter Size Input % After Diffraction % After Digital Sampling

2 9.0000 101.6445 7.51 29.13
4 19.0000 101.5297 3.56 49.83
6 28.0000 101.0212 2.34 72.84
8 37.0000 100.8082 1.79 97.83
10 46.0000 100.8611 1.41 121.21
12 56.0000 100.9799 1.16 143.16
14 65.0000 100.9743 1.01 169.49

Table 2: Percent signal compromise through the processes of diffraction and
digital sampling

recovery by the digital sampling. Since the spatial scale is proportional to the
size of the filter, the increase scale increases the filter size and thus the area
over which the pixel intensity is dispersed. Similarly, the larger spatial scale
increases the pixel area which is summed during the digital sampling process.

The resulting effect is predicted signal intensity that is proportional to the
input microtubule intensity but is an underestimation of the true signal input
as shown in Figure 13. The line fit to the correlation of input and measured
signal is .815 of the input intensity. Accounting for this compromise in signal
when creating the image is challenging and is outside the scope of this project.
The signal in the image after digital sampling is the signal used to generate the
final image so the measured intensity of that image is assumed to be the ‘true‘
signal of the image. To ensure a specific signal intensity in an image, determine
the factor by which the signal is compromised and account for that factor in the
microtubule intensity parameter of the user interface.

5.4 Calculation Error

To test the error in calculating the S/N, limit the parameter space to two dimen-
sions. Let the signal or microtubule intensity range from 20 to 170 by intervals
of 30 and let the noise variance range from 10 to 90 by steps of 20. After mea-
suring 10 samples at the 24 different signal-noise parameter combinations, the
percent error is shown in Figure 14.

The calculation of S/N using a 2-Component Mixed Gaussian, Equation 2,
has a large systematic error shown by all errors residing in a band between 51%
and 84% error. In addition to the systematic error, there is also an additional
spread within the 33% error band. Figure 14 shows three distinct regions with
separate trends: S/N ≤ 1.5, 1.5 < S/N ≤ 5, and S/N > 5.

When the S/N ≤ 1.5, the calculation is inconsistent spanning the full height
of the error band. Interpreting a S/N = 1, there is only a 68% confidence
that the observed intensity is signal and it is not surprising that the calculation
results in large discrepancies when trying to measure signal given that it is
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Figure 13: Correlation between the input and measured signal intensity of the
image where the input intensity is specified in the user interface and the mea-
sured intensity is the mean of the microtubule intensities of the digitally sampled
image. The measured intensity is .815 of the input intensity.
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Figure 14: Mean error of the 2-Component Mixed Gaussian S/N Caluclation
with error bands at 51% and 84%.
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difficult to distinguish from noise at low S/N. This property is made clear in
the histogram of intensities in the image with a S/N = 1.30 shown in Figure 15
with microtubule intensity = 100 and noise variance = 100. It is very unclear
where the second Gaussian is since the noise or first Gaussian dominates the
image.
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Figure 15: Histogram of final image with S/N = 1.30, microtubule intensity =
100, and digital noise variance = 100. The signal intensity is no longer evident
in the histogram.

When 1.5 < S/N ≤ 5, this is the optimal range for the algorithm because
of the clustering of error within the band. After adjusting for the systematic
error, this range of S/N would consistently provide the most accurate measure-
ments. This range also comprises the realistic observed S/N noise in images and
accuracy is desired most in this range.

S/N ratios above 5 are uncommon and ratios above 10 are rare for normal
images that can be captured with light microscopy. The percent error is linearly
descending and would seem to be improving the accuracy. But when accounting
for the systematic error in the calculation, the decreasing percent error less than
0 is generating more error.

5.4.1 Signal Error as the Source of the Systematic Error

The largest contributor of error in the calculation of S/N is the error in calcu-
lating the mean signal intensity. The mean signal error is directly correlated
with the total calculation error. Visibly the mean signal error shown in Figure
16 follows the same general trend as the S/N error in Figure 14.
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Figure 16: Mean error of the 2-Component Mixed Gaussian calculation of signal
and maximum and minimum error shown by the error bands at 58% and 87%.

Generated from the same data set as Figure 14, there is a slightly larger
systematic error and spread, for the percent error resides in a band between 58%
and 87%. This suggests that the largest source of error is from the mean signal
calculation and only a small portion of the mean signal error is compensated
for by the remaining calculation.

The predicted mean signal intensity is highly correlated to the observed
mean signal intensity, as shown in Figure 17, and the observed signal intensity
is roughly proportional to the predicted signal intensity (approximately 1.8 times
larger shown by the trend line in Figure 17). An error trend that is proportional
to actual values is equivalent to a systematic error in relative error. As such,
this proportional error in the measurement of signal mean is the cause of the
large systematic error dominating the S/N calculation.

The error in measuring mean signal intensity is a specific fault of the 2-
Component Gaussian fitting technique. When adding the low-frequency digital
noise, the addition of the offset aligns the lowest signal intensities with the mean
of the noise component. But since the signal and noise are additive, the sig-
nal intensities that occur at the same intensities as the noise distribution are
consumed by the noise distribution adding a slight skew to the noise Gaussian
distribution that is not visible in a histogram given the magnitude of noise.
These low intensity signal values are then calculated as noise and not as signal
which forces the measured signal mean to be larger than the true mean. Figure
18 shows a plot of the histogram of an image with both the 2-Component Mixed
Gaussian fit determining the measured mean and the Gaussian fit to the pre-
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Figure 17: Correlation between the predicted and observed signal intensity
showing a 1.8 overestimation in the calculation of the signal mean.

dicted signal. Note the predicted Gaussian fit is justified below the measured
Gaussian representing signal by the technique such that the predicted signal in-
tensity is 154.3 and measured signal intensity is 345.9 after accounting for offset
with noise variance at 60 resulting in a systematic error.

A 60% systematic error is not an acceptable amount of error for the purpose
of the S/N calculation. Assuming a desired 99% confidence in distinguishing
signal from noise and the actual S/N = 2, the image should not be used since
a S/N = 2 as a z-score only guarantees 95% confidence. But, the 2-Component
Mixed Gaussian fit calculation with a 60% systematic error used on the same
image measures the S/N = 3.2 which corresponds to a confidence score of 99.9%.
As a result a Type II error occurs and the image is falsely considered to satisfy
the desired confidence level.

5.5 2-Component Gaussian Error of 2-Source Images

Florescense microscopy images of microtubule arrays have the additional low-
frequency noise which distorts the right half of the noise Gaussian shown in
Figure 19.

Using the same method of test from the 2-Component Mixed Gaussian on
1-source images, the technique was analyzed using 2-source images where the
mean background noise intensity was 50 in the first run and 100 in the second,
the mean error of calculating the S/N was determined. The resulting percent
error is shown in Figure 20.
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Figure 18: Histogram of microtubule array image with 2-Component Mixed
Gaussian Fit in light blue and actual signal Gaussian fit in dashed red. The
difference between the peaks is the error in signal mean measurement.
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Figure 19: Histogram of a microtubule array image that has two sources of noise,
both digital noise and low-frequency background noise, resulting in a slight skew
in the right of the large noise distribution.
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Figure 20: The percent error of the S/N calculation using the 2-Component
Mixed Gaussian technique on images with 2 sources of noise. Two trials are
shown at different intensities of the additional background noise source.

Notice that with the additional noise source even at a low level of intensity
the value of the S/N is significantly reduced. Looking at the region of interest of
valid S/N between [1.5, 2.5], the error of calculating the S/N has approximately
doubled. The same calculation error in determining signal error holds and is
only made worse by the additional noise component.

As a result of this simple analysis, it is clear that calculating the S/N of
microtubule images is more difficult than with other images. The additional
noise factor adds another layer of complexity and compounds the error inher-
ent to the 2-Component Mixed Gaussian technique. A more complex method
for determining the S/N autonomously is required for images of microtubule
cytoskeletal arrays.

5.6 Technique Modifications for Improved Accuracy

There are several modifications to the 2-Component Mixed Gaussian technique
that may show improved accuracy. With the addition of a second source of
noise which also has a Gaussian distribution of intensities, a mixed Gaussian
with three components could be fit to the histogram to try and fit a Gaussian
distribution to both sources of noise individually.

More ad hoc methods could be devised such as fitting the noise distribution
to only the right side of the noise distribution in the histogram which becomes
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skewed with the addition of low-frequency background noise. Additionally, since
the source of error is often the determination of signal mean, the signal mean
could be determined using another technique such as analyzing a cross section of
the image and only try and fit Gaussian distributions to the noise components.

6 Considerations for Methods of Determining
Order Parameters

When considering possible techniques for determining order parameters in mi-
crotubule array images, the affect noise in the image has on the calculation
should be a priority. For example, the Radon Transform which is a promising
technique for determining order parameters, is relatively not sensitive to low-
frequency noise. The Radon Transform is fundamentally a line integral which
causes the high-frequency noise to cancel with itself [7]. Additionally, steps
should be taken to consider the effects of low-frequency noise on the Radon
Transform and any other potential algorithms.

After a method has been defined, testing using images of known S/N will
be able to determine the range of S/N an input image must have in order to
produce a confident measure of order.
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Prime Factorization of Kászonyi

Numbers

Ariana Cappon and Emily Walther

Abstract

Snarks are a class of simple, cubic, non-planar graphs that cannot be
edge-3-colored. By a result of Kászonyi, if G is a snark, e is an edge of
G, and Ge is the cubic graph that one obtains by deleting the edge e and
“eliminating” its endpoint vertices, then the number of edge-3-colorings of
Ge with three given colors will be 18 ·ψ(G, e) for some nonnegative integer
ψ(G, e). It has been previously shown that there exists a cyclically 4-edge
connected snark G0 with and edge g0 such that ψ(G0, g0) = 2a · 3b · 5c · 7d
where a, b, c, and d are arbitrary non-negative integers. In this note, we
will show that for every positive integer n where prime factors of n are all
less than or equal to 149, there exists a snark G and an edge e of G such
that ψ(G, e) = n.

1 Introduction

In 1852, Francis Guthrie was coloring a map of England when he noticed that he
only needed four colors in order for two bordering countries to not be the same
color. This observation intrigued mathematicians and led to the Four Color
Problem and eventually the Four Color Theorem, which was proved in 1976. The
four color theorem states that given any separation of a plane into finitely many
contiguous regions, no more than four colors are required to color the regions
of the map so that no two adjacent regions have the same color. For a more
detailed history and explanation of the theorem, see the book by Wilson [Wi].
The four color problem (later the Four Color Theorem) led mathematicians
to study further colorings of graphs, including “edge-3-colorings”. A question
soon arose: do cubic, bridgeless, non-planar graphs exist that cannot be “edge-
3-colored”? The answer was soon found to be yes, and the term “snark” was
born (borrowed in [Ga] from The Hunting of the Snark by Lewis Carroll) to
name this new class of graphs. In this paper, we primarily will be exploring the
prime factorization of the Kászonyi numbers of snarks and their edges.

1.1 Some Preliminary Graph Definitions

In this section we will give a brief survey of the definitions and terminology rele-
vant to our research. For our purposes, the graphs we refer to will be undirected,
with no loops or multiple edges.
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Definition 1.1 Consider a graph G that has finitely many vertices, no loops,
and no multiple edges. We will denote the set of edges in G as E(G), and the
set of vertices in G as V (G).

Definition 1.2 In a graph G, a vertex is “n-valent” if it is connected to exactly
n edges. A vertex connected to exactly one edge is called “univalent.”

Definition 1.3 Given a graph G that is finite with no loops or multiple edges:
1. G is “cubic” if all of its vertices are 3-valent.
2. G is “quasi-cubic” if all of its vertices are either 3-valent or univalent.

Definition 1.4 Suppose G has finitely many vertices, no loops and no multiple
edges. Say there exists a subgraph of G with distinct vertices v1, v2, . . . , vn, and
edges (vi, vi + 1), i ε {1, 2, . . . , n − 1} and (vn, v1), for n≥1. This subgraph is
called a “cycle” in G. An “n-cycle” has exactly n vertices.

Definition 1.5 Suppose G is a finite graph with no loops or multiple edges.
The “girth” of G is the number of vertices in a cycle of G with the smallest
number of vertices.

Definition 1.6 A graph is “simple” if is has finitely many vertices, no loops,
no multiple edges, and is connected.

Definition 1.7 Two or more graphs are pairwise disjoint if they share no edges
or vertices.

Definition 1.8 If G is a simple graph, and e is an edge of G, then G−e denotes
the graph where e is removed, while the vertices connected to e are retained.
This process is called edge elimination.

Definition 1.9 If G is a simple graph, and v is a proper subset of V (G), then
G − v denotes the graph where all elements of v are removed, and all edges
connected to v are also removed. This process is called vertex elimination.

Definition 1.10 Consider the simple graph G with vertices u, v, u1, u2, v1, v2,
and edges (u, v), (u, u1), (u, u2), (v, v1), (v, v2). (For convenience, we will re-
name edge (u, v) as e). To subtract e, eliminate e and eliminate vertices u and
v. Then, create two new edges, (u1, u2) and (v1, v2). We call the resulting graph
Ge. This process is called edge subtraction.

Definition 1.11 A simple graph G is at least “cyclically n-edge connected” if
no two cycles of G can be separated from each other by the elimination of at
most n− 1 edges not in either cycle.
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1.2 Edge-3-Coloring of Graphs

Definition 1.12 Suppose G is a simple, cubic graph. Let a, b, and c be the non-
zero elements of Z2⊕Z2 and let E(G) be the collection of all of the edges of G.
G is colorable (edge-3-colorable) if there exists a function: γ : E(G)→ {a, b, c},
such that for any two adjacent adges e1 and e2 of G, γ(e1) 6= γ(e2).

Definition 1.13 Suppose G is a simple, cubic graph. Let E(G) be the collec-
tion of all of the edges of G. An “edge-3-decomposition” of G is a partition of
E(G) into 3 different classes such that if e1 and e2 are adjacent edges, they are
not in the same class.

Note that the cardinality of the set of all edge-3-colorings will always be 6
times the number of edge-3-decompositions due to the 6 permutations of the
colors a, b, and c.

Definition 1.14 Suppose G is a simple, cubic graph and γ is an edge-3-coloring
of G. A “Kempe chain” (in fact a “Kempe cycle”) for γ is a subgraph K of G
which is maximal with respect to having the following two properties:
(i) K is connected.
(ii) The edges of K have just two colors (under γ).

Remark: If the simple graph G contains a Kempe chain K, assigned the colors
x and y, then all edges connected to K but not in K must be assigned a third
color, z. Thus, the coloring of the edges within K can be interchanged, so that
all edges within K colored x are now colored y, and all originally colored y are
now colored x. This color change does not affect the rest of G, because all edges
connected to but not in K are still colored z.

Lemma 1.15 (Parity Lemma) Let G be a simple, quasi-cubic, colorable graph
containing at least one 3-valent vertex. Given any coloring of G, the number
of univalent vertices of G connected to an edge colored x is even if there are
an even number of univalent vertices in G. Similarly, the number of univalent
vertices of G connected to an edge colored x is odd if there is an odd number of
univalent vertices in G.

The above lemma is equivalent to the following statement:

Lemma 1.16 (Parity Lemma) Let G be a simple, quasi-cubic, colorable graph
containing at least one 3-valent vertex, and the set of edges connected to univa-
lent vertices {e1, e2, . . . , en}. Let γ be an edge-3-coloring of H. Then

n∑
i=1

γ(ei) = 0 (the zero element of Z2 ⊕ Z2).

From the second version of the parity lemma arises the idea that the edge-
colorings of a minimal cut set must add to 0 in Z2 ⊕ Z2.
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In 1880, Peter Tait was one of the first mathematicians to explore the“edge-
colorings” of graphs (for more details on Tait, see [Wi]). Tait soon noticed that
there was a connection between the “face-colorings” of a simple, planar, cubic,
bridgeless graph and the ways you could color the edges of that graph.

Theorem 1.17 A simple, cubic, planar, bridge-less graph can be:
i.) face-4-colored

ii.) edge-3-colored

Note that an “edge-3-coloring” of such a graph directly results from a “face-
4-coloring” of a graph in a non-trivial way (for details, see [Wi]).

2 Defining Snarks

We will now introduce a family of graphs that are almost exclusively examined
in the rest of this paper.

Definition 2.1 A snark is a simple, cubic, graph G such that:
1. G cannot be 3-edge-colored,
2. The girth of G is at least 5,
3. G is at least cyclically 4-edge-connected.

Remark on the conditions that a snark must satisfy:
i) The girth of G is at least 5.

A non-colorable cubic graph that contains a 3-cycle or a 4-cycle can be reduced
in a trivial way to a smaller non-colorable cubic graph.

ii) G is at least cyclically 4-edge-connected.
If G is non-colorable and only 1-edge connected, then G contains a bridge
and consequently G is non-colorable by an elementary argument. If G is non-
colorable and only 2 or 3-edge-connected, then at least one of the minimal cut
sets (resulting in disconnected, cubic graphs) must be non-colorable (after the
cut ends are tied up in an appropriate, simple manner).

One famous example of a snark is the Petersen Graph, constructed by Julius
Petersen in 1891. This graph is the smallest snark and is notable for its various
symmetries. We will examine the Petersen graph further throughout this paper.

2.1 Ways to construct larger snarks from smaller snarks

There are two relevant methods for constructing arbitrarily large snarks. Here
we will describe them briefly. The first is the dot product, a construction of
Isaacs [Is], and the second is superposition, developed by Kochol [Ko]. Isaacs’
dot product involves cutting and connecting the edges of two snarks to form a
bigger snark. A superposition involves replacing an edge of a snark with another
snark to form a bigger snark. (Note that the dot product can be represented as
a special case of a superposition.) This construction was particularly useful for
Scott McKinney’s research, and is fundamental to the results of this paper.

63



2.2 McKinney’s Coloring of a “Ripped” Petersen Graph

Definition 2.2 A star is a set of 5 vertices, denoted v1....v5, of a snark G such
that there is always an edge between vi and vi+2 and an edge between vi and
vi+3 where + is addition in Z5. Let ui denote the vertex in G that is connected
to vi but is not vi+2 or vi+3.[McK]

Theorem 2.3 (Star Coloring Theorem) Let G be a snark and e be an edge of G.
Let Ge be colorable. For some i ε Z5, the colors of the edges (vi, ui),...,(vi+4, ui+4)
are x, y, x, x, and z (respectively) for some choice of distinct colors x, y, and
z from {a, b, c}. [McK]

Note that each Petersen graph contains a star. Following the Star Coloring
Theorem, Scott McKinney gave an important lemma about coloring a specific
“ripped” Petersen Graph. The specific “ripped” Peterson graph is as follows:

Figure 1: A “Ripped” Petersen Graph.

Definition 2.4 Let x and r be two edges of a Petersen graph P such that x
and r share no adjacent edges (see Figure 1). Without loss of generality, let r′

be a vertex of r. Let edges q and s be the other two edges connected to r′. Let
P ∗ be the graph that results from “snipping” edge x (extending the two “loose
ends” into two new edges x and y) and removing vertex r′ (extending the “loose
ends” q, r, and s).

Lemma 2.5 (McKinney) Suppose that in the “Ripped” Petersen graph P ∗ in
Figure 1, the edges x, y, q, r, and s are each assigned a color in {a, b, c} such
that
(i) the five assigned colors add up to 0 (in Z2 ⊕ Z2) and
(ii) the colors assigned to the edges x and y are distinct.
Then these five colors extend to a unique coloring of the entire “Ripped” Pe-
tersen graph P ∗.

Note that in any possible coloring of P ∗, x and y will never be assigned the
same color:
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Proof For the sake of contradiction, assume a coloring of P ∗ exists where x and
y are assigned the same color. Then q, r, and s would all have to be assigned
different colors (Parity Lemma, applied to edges q, r, s, x, and y). This would
result directly in a coloring of the Petersen Graph which is a contradiction
because the Petersen Graph is a snark. �

3 Theorems of Kászonyi

Our research stems from results of László Kászonyi, presented in this section.
Definition 3.1 and Theorems 3.2, 3.3, and 3.5 below all came from the papers of
Kászonyi [Ka1, Ka2, Ka3]. For a convenient exposition (including proofs), see
[Br2, section 3].

Definition 3.1 SupposeH is a simple, cubic, edge-3-colorable graph with edges
d1 and d2. These edges are “orthogonal” if there does not exist γ ε EC(G) for
which d1 and d2 are edges in the same Kempe cycle.

Theorem 3.2 (Kászonyi) Suppose G is a snark and e is an edge of G. Let d1
and d2 be the edges of Ge that result from removing edge e (i.e. d1 = (u1, u2)
and d2 = (v1, v2) in Definition 1.10). If Ge is colorable, then d1 and d2 are
orthogonal edges.

Theorem 3.3 (Kászonyi) If G is a snark and e is an edge of G, then card
EC(Ge) = 18L for some nonnegative integer L.

Definition 3.4 For a given snark G and a given edge e, the Kaszonyi number
of G and e is the integer L in Theorem 3.3 and is denoted ψ(G, e).

Remark: The factor of 18 in Theorem 3.3 comes from two seperate, smaller
factors. A factor of 6 comes from the 6 permutations of the colors a, b, and c;
and the remaining factor of 3 is a direct result of the fact that the resulting
edges d1 and d2 referred to in Theorem 3.2 are orthogonal, i.e. cannot be in the
same two-color Kempe cycle.

Theorem 3.5 (Kászonyi) Given the Petersen graph P and any edge e of P ,
ψ(P, e) = 1.

4 Our Main Results

Definition 4.1 Let S be the following set of prime numbers, defined in three
steps:

S1 := {p ε N| p is prime and p ≤ 149}
S2 := {173, 179, 181, 197, 229, 257, 271, 359}
S := S1 ∪S2

Theorem 4.2 Suppose n is in the form:
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n =
∏
pεS

pm(p)

where for each p ε S , m(p) is a non-negative integer. Then a snark G and an
edge e of G exist such that ψ(G, e) = n.

This theorem will be based on the following lemma:

Lemma 4.3 Suppose p ε S and n is a positive integer such that for some snark
G0 and some edge e0 of G0, ψ(G0, e0) = n. Then there exists a snark G and
an edge e of G such that ψ(G, e) = p · n.

Theorem 4.2 follows from Lemma 4.3, Theorem 3.5, and induction. For
p = 2, 3, Lemma 4.3 was shown by applying the results of Dr. Richard Bradley
(see [Br1] Theorem 2.2 and let the two “smaller” snarks there be G0 and the
Petersen Graph). The cases where p = 5, 7 were shown by Scott McKinney (see
[McK] Theorem 5.1 and Theorem 5.3). Our task is to show the cases where
p ≥ 11.

To illustrate the main idea of the proof, we shall first give the argument
twice, in different ways, for p = 17.

4.1 Background information for both proofs

In order to do this, we add additional edges onto Scott McKinney’s superposi-
tion. Scott McKinney’s superposition results in “snipping” a snark G′ along the
dotted line and leaving all edges and vertices below the dotted line untouched.
Above the dotted line, the edges labeled 6 and 7 are respectively “replaced by
two Petersen graphs” as shown in the diagram. From [Ko], the resulting graph
H in the right hand side of Figure 2 is a snark.

Figure 2: Scott McKinney’s superposition.

The same edge e (somewhere below the dotted line) is indicated in both dia-
grams in Figure 2. Note that for any possible coloring of He, the edges 1 and 2
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will never be assigned the same color. If they were, edges x, y, and w would all
have to be assigned different colors (Parity Lemma, applied to edges 1, 2, x, y,
and w) and that would imply that there exists a coloring of the Petersen Graph.
This is impossible because the Petersen Graph is a snark. Edges 4 and 5 can
never be assigned the same color by similar reasoning. If they were, edges x,
y, and z would all have to be assigned different colors (Parity Lemma, applied
to edges 1, 2, x, y, and z) and that also would imply that there exists a coloring
of the Petersen Graph. Note then that for every possible coloring of He, either
edge 1 or edge 2 must be assigned the same color as either edge 4 or edge 5 by
the Pigeon Hole Principle. Let’s call this “shared” color r. It follows that for
any coloring of He, edge 3 must be colored r (Parity Lemma, applied to edges
1, 2, 3, 4, and 5). It also follows that for any possible coloring of He there will
be only two edges (out of edges 1, 2, 3, 4, and 5) not colored r and they will
not share the same color (Parity Lemma).

Note that for any possible coloring of G′e, the edges 1 and 2 will never be
assigned the same color because they are adjacent edges. Edges 4 and 5 can
never be assigned the same color by similar reasoning. Note then that for every
possible coloring of G′e either edge 1 or edge 2 must be assigned the same color
as either edge 4 or edge 5 by the Pigeon Hole Principle. Again, let’s call this
“shared” color r. It follows that for any coloring of G′e, edge 3 must be colored
r. It also follows that for any possible coloring of G′e there will be only 2 edges
(among edges 1, 2, 3, 4, and 5) not colored r and they will not share the same
color (Parity Lemma). Note once edges 1, 2, 3, 4, and 5 are assigned colors, there
is only one possible way to assign a color to edges 6 and 7. It follows that any
coloring of He induces exactly one coloring of G′e in which the colors of the
“edges below the dotted line” are left unchanged.

In Figure 3, the snark H from (the right hand side of) Figure 2 is augmented
to form a graph G which (from [Ko]) is also a snark. (In Figure 3, the portion
“below the dotted line” is exactly the same as in Figure 2.) By an argument
exactly analogous to the on eabove, any coloring of Ge induces exactly one col-
oring of G′e (from Figure 2) with the colors below the dotted line unchanged.
Our remaining task is to show that each possible coloring of G′e leads to 17
possible edge colorings of Ge (i.e. He with certain new edges between the edges
x,, y, and z, see Figure 3), again with no changes of colors to “edges below
the dotted line.” That would then imply that the number of colorings of Ge is
exactly 17 times the number of colorings of G′e; and hence by Definition 3.4 one
would have ψ(G, e) = 17 · ψ(G′, e).

4.2 First Proof of Lemma 4.3 for p = 17

Suppose the graph G′e (see Figure 2) is colored. Without loss of generality, let us
assume edge 3 is assigned the color c, edges 4 and 5 are colored b and c (in either
order), and edges 1 and 2 are colored a and c (in either order). Let {x′, y′, z′}
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be an example of notation showing x is assigned the color x′, y is assigned the
color y′, and z is assigned the color z′. Note the three colors assigned to x, y,
and z all have to add up to a (Parity Lemma, applied to edges 4, 5, x, y, and
z). Also note z cannot be assigned the color c because edge 3 is colored c and
is adjacent to edge z. Therefore, the 5 ways to complete the colorings of x, y,
and z are {a, a, a}, {a, b, b}, {b, a, b}, {b, b, a}, and {c, c, a}.

Refer to the three “horizontal” edges x, y, and z in the snark G in Figure
3. Consider what happens when you start assigning colors to the edges of Ge
where edge 3 joins the edge z and you “work to the right” along the “horizontal
edges”, as shown in Figure 4.

As previously noted, the only 5 ways to complete the colorings of x, y, and z
are {a, a, a}, {a, b, b}, {b, a, b}, {b, b, a}, and {c, c, a} (Parity Lemma). There are
only 17 possible ways to assign colors to x, y, z, x1, y1, z1, x2, y2, z2, x3, y3,
and z3 (see Figure 5). Of course, in each of these 17 color patterns, the colors of
the five “unlabeled new edges” between x, y, z, and x3, y3, z3 in Figures 3 and
4 will be uniquely determined. Note that the notations z and z1 refer to the
same edge, but it will be convenient to keep both notations. The same applies
to edges x2 and x3.

It is important to note, for each of these 17 color patterns:

(i) The colors assigned to x3, y3, and z3 all must add up to a (Parity Lemma,
applied to edges x, y, z, x3, y3, and z3).

(ii) Every possible coloring of the edges x, y, z, x1, y1, z1, x2, y2, z2, x3,
y3, and z3 leads to exactly one possible coloring of the remaining edges in the
“ripped” Petersen graph attached to edges x3, y3, and z3 (Lemma 2.5).

(iii) Every possible coloring of x, y, and z corresponds to exactly 1 way to
color w.

(iv) The colors assigned to x, y, and w in Figure 3 all add up to b (by simple
arithmetic in Z2 ⊕ Z2 for the colors of the edges 3, w, x, y, z).

(v) Every possible coloring of the edges x, y, and w leads to exactly one pos-
sible coloring of the remaining edges in the “ripped” Petersen graph attached
to edges x, y, and w (Lemma 2.5).

From all the comments so far, it follows that every coloring of G′e (for the
snark G′ and the edge e in the left side of Figure 2) induces exactly 17 colorings
of Ge (for the snark G in Figure 3). That completes the proof of Lemma 4.3 for
p = 17.
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Figure 3: Scott McKinney’s superposition with additional edges.

Figure 4: Close up of additional edges to produce 17 times as many colorings.
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Figure 5: Chart of the 17 different ways you can assign colors to new edges.
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4.3 Second Proof of Lemma 4.3 for p = 17

The construction shown in figures 3 and 4 can be modified to find Kászonyi
numbers with all of the prime values in set S . Described below is a method
of “charting” these snarks minus an edge, to determine the number of edge-
colorings of a graph with any array of added edges.

Consider the graph Ge where G and e are as in McKinney’s superposition in
Figure 2 (Note that the graph in figure 2 is called H, but to avoid ambiguities
later, we will call it G). Consider the edges x, y, z (ref. figure 2). Again, we
follow the stipulations in the first paragraph of Theorem 4.2, and thus again all
of the colorings of these edges are {a,a,a}, {a,b,b}, {b,a,b}, {b,b,a}, and {c,c,a}.
Thus these colorings of x, y, and z form four subsets:

i) The set containing the edge-colorings where x = y = z is denoted S. The
letter S stands for “same,” because all x, y, and z are the same color. (Although
x, y, and z are edges, for convenience we shall use equations such as x = y = z
to mean that these edges all have the same color. This “double use” of the
symbols x, y, and z should be clear from the context.)
ii) The set where x = y 6= z is denoted B. B stands for “bottom”, because the
bottom edge of the three-edge set has a different color from the top two edges.
iii) The set where x = z 6= y is denoted M . M stands for “middle,” because
the middle edge is colored differently from the bottom and top edges.
iv) The set where y = z 6= x is denoted T . T stands for top, because the top
edge is colored differently from the bottom two edges.
Thus, {a, a, a} ∈ S, {a, b, b} ∈ T, {b, a, b} ∈M , and {b, b, a}, {c, c, a} ∈ B.

Similarly, there are three edges that can be added to McKinney’s graph,
which are denoted B′,M ′, and T ′, and are shown in Figure 6. B′ denotes an
edge that lies between the top two edges, so that the bottom edge remains
unchanged. M ′ denotes an edge connecting the bottom and top edges, such
that the middle edge in unchanged. T ′ denotes an edge connecting the bottom
two edges, such that the top edge is unchanged.

In addition to these edges, there is a construction (also shown in figure 6)
that can be inserted which is denoted BA, standing for “banana” due to its
resemblance of the luscious tropical fruit. This construction places a vertex in
G, and connects each edge of the three-edge set to this vertex.

Note: The edge T ′ cannot be repeated consecutively, for that would create
a 4-cycle, or “square.” The same comment applies to each of the edges M ′ and
B′. The BA construction can be repeated consecutively, because that will not
create squares.

The number of colorings of a graph will change depending on the number
and order of added edges. We count the number of colorings by keeping track
of the sets S,B,M , and T mentioned above. Note the following patterns:

1) Suppose we insert into a graph G an edge T ′. For each color pattern
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Figure 6: Possible additions to McKinney’s graph

of {x0, y0, z0} in S, (i.e x0 = y0 = z0), there are two possible color patterns
of {x1, y1, z1} (arising, respectively, from the two possible choices of color to
assign to the inserted edge T ′.) They both satisfy x1 6= y1 = z1. So, for each
coloring of {x0, y0, z0} in S there are two new colorings of {x1, y1, z1} in T . An
equivalent comment applies for added edges M ′ and B′, with sets M and B
respectively.

Note: It should be kept in mind that the colors of the edges x0, y0, z0, x1, y1, z1
uniquely imply one particular color for the edge T ′ itself. Analogous comments
apply to edges B′ and M ′ and the three edges of BA.

2) When T ′ is inserted, for each coloring of {x0, y0, z0} in the set T there are
two resulting colorings of {x1, y1, x1}, (because there are two possible choices of
color to assign T ′). Observe that one resulting color pattern will be in set T ,
while the other color pattern will be in set S. An equivalent argument can be
made by replacing T and T ′ with either B and B′ or M and M ′ respectively.

3) When edge T ′ is inserted, the number of colorings in B ∪M does not
change, because the coloring of T ′ is forced. Note that when T ′ is added, each
coloring of {x0, y0, z0} in B will induce a color pattern of {x1, y1, z1} in M , while
each coloring of {x0, y0, z0} in M will induce a color pattern of {x1, y1, z1} in B.
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That is, with the addition of T ′, the numbers of colorings in M and B switches.
The same argument can be made for an edge B′ with sets M and T , or for an
edge M ′ with sets T and B respectively.

4) Finally, we can see the effects of the addition of a BA construction, as
seen in figure 6. Because the three edges of a banana are connected to one
vertex, they must each have a different color. Therefore, an edge coloring in set
S will share a color with one edge of the banana, but there lies a contradiction
in that two adjacent edges cannot have the same color. So (in figure 6) there
are no possible color patterns in set S for edges {x2, y2, z2} that can extend to
any color pattern for {x3, y3, z3}.

The remaining color patterns of {x2, y2, z2} have two edges with the same
color, and one edge with a different color. The edge of the BA with equal color
to the two same edges of {x2, y2, z2} must connect to the different edge (to
avoid contradiction). The two remaining edges of the BA can be colored with
the two remaining colors in any order order. This leads to two colorings of
the BA, meaning that there are two resulting colorings in {x3, y3, z3} for each
coloring of {x2, y2, z2} in B, M , or T . Note that for each coloring of {x2, y2, z2}
in B, one of the two resulting colorings of {x3, y3, z3} is in T , and the other
is in M . The same holds true for colorings M B and T , and for T M and B
respectively. Thus, we end up with Bnew = Told + Mold, Tnew = Bold + Mold,
Mnew = Bold + Told, where the initial colorings are on the right side of the
equations, and the new colorings are on the left.

Let us express the above observations in terms of an algorithm. Let the edges
x, y, z also be denoted x0, y0, z0. For each n ≥ 0, let Sn (resp. Tn, resp. Mn resp.
Bn) denote the number of colorings of the edges x0, y0, z0, x1, y1, z1, · · · , xn, yn, zn
and (if n ≥ 1) all edges T ′,M ′, B′, BA “between” x0, y0, z0 and xn, yn, zn such
that i) the color pattern of {x0, y0, z0} is one of {a, a, a}, {a, b, b}, {b, a, b},
{b, b, a} or {c, c, a} and ii) the color pattern of {xn, yn, zn} belongs to the set S
(resp. T , resp. M resp. B).

From the observations above, we can “count” colorings in the following man-
ner recursively: When we add an edge T ′,

Tn+1 = 2Sn + Tn
Sn+1 = Tn
Bn+1 = Mn

Mn+1 = Bn

By adding the values on the left side of the equation, we obtain the total
number of colorings assigned so far (starting with edges x, y, z and “working to
the right”, up to and including, say, the edges xn+1, yn+1, zn+1).

Below are the equations for “counting” the colorings for the other added
edges.
When B′ is added:

Bn+1 = 2Sn +Bn
Sn+1 = Bn

73



Tn+1 = Mn

Mn+1 = Tn

When M ′ is added:

Mn+1 = 2Sn +Mn

Sn+1 = Mn

Tn+1 = Bn
Bn+1 = Tn

When a BA construction is added:

Sn+1 = 0
Tn+1 = Bn +Mn

Bn+1 = Tn +Mn

Mn+1 = Bn + Tn

Now, we can use this algorithm to show (as in our previous proof) that any
coloring of Ge (where G′ and e are as in Figure 2) induces exactly 17 colorings
of Ge (where G is as in Figure 3).

Below is a chart that displays the algorithm listed above. The letters above
each column denote whether T ′, B′,M ′ or BA were added to G. The letters
before each row denote the number of colorings of the type S, T,B,M . The
final number in each column denotes the total number of colorings of G “so far”
(starting with edges x, y, z and “working to the right”).

Figure 7: Possible additions to McKinney’s graph

Observe that this chart gives the 17 possible color patterns for edges {x, y, z}
through edges {x3, y3, z3} in figures 3 and 4. Also, notice that the notes (i)−(v)
at the end of section 4.2 apply here as well. Thus, this chart in Figure 7 gives
in “coded form” (again) the proof of lemma 4.3 for p = 17.

4.4 Extension of 4.3: Proof of Lemma 4.3 for any p ∈ S .

In this section, we will use the same methods as used in section 4.3 to show that
Lemma 4.3 holds for any p ∈ S . (Recall from the comments after the statement
of Lemma 4.3 that the prime numbers p = 2, 3, 5, 7 were already covered.)

In the previous section, we proved Lemma 4.3 for p = 17 through the chart
in figure 7. Observe that the chart in figure 8 is an extension of the chart in
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figure 7. The figure illustrates that multiple primes can arise from one chart.
This particular chart yields in “coded form” a proof of the Lemma 4.3 for four
primes: 17, 31, 127, and 257. (For example, for p = 31 we use precisely the
sequence of operations B′, BA, T ′, BA, T ′, just as we used B′, BA, T ′ for p = 17
in section 4.3.)

Figure 8: Chart for p = 17, 31, 127, 257

Each prime p ∈ S such that p ≥ 11, exists in at least one chart on the next
four pages. To prove Lemma 4.3 for any given prime number p ∈ S such that
p ≥ 11, apply an analog of the proof given in section 4.3 for p = 17.

Figure 9: List of primes.
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5 Side Results

5.1 Extension to Pentagons

Definition 5.1 Let G be a snark. A pentagon P is any cycle contained in G
with exactly five edges.

Note that for any pentagon P of G, the numbers ψ(G, e), e ε P are equal (see
Theorem 4.5 in [Br2]). Let the common value of ψ(G, e), e ε P be denoted
ψ(G,P ).

Theorem 5.2 Suppose n is a positive integer of the form:

n =
∏
pεS

pm(p)

where for each p ε S (see Definition 4.1), m(p) is a nonnegative integer, and
m(3) 6= 1. Then there exists a snark G and a pentagon P of G such that
ψ(G,P ) = n.

The proof is like that of Theorem 4.2, starting with the Petersen graph and
using an induction argument via an analog of Lemma 4.3, (e.g. with the edge e
in Figures 2 and 3 replaced by a pentagon P that is “entirely below the dotted
line”). The prime factors 2 and 5 are implicitly handled by [Br1, Theorem 2.2]
and [McK, Theorem 5.3] respectively.

All prime numbers p ε S such that p ≥ 7 are handled by the collection of
charts at the end of Section 4. It is not yet known how to cover the prime factor
3 in the scheme (for pentagons). The numbers 9 = 32 and 27 = 33 are coverd
in the collection of charts; and by induction all higher powers of 3 are covered.
Hence (at least for now) the situation m(3) 6= 1 as in the statement of Theorem
5.2.

5.2 3 Petersen Graphs 11, 19

While in the last section we discussed snarks that contain two Petersen graphs,
here we can observe a snark that contains three Petersen graphs. Observe this
in the graphs displayed in Figures 10 and 11.

The snark (in Figure 11) is a superposition of three Petersen graphs and a
“base snark” G′ shown in Figure 10. The edges 7, 8, and 9 in Figure 10 are each
replaced by a Petersen graph, as shown in Figure 11, to get a new, bigger snark
G. The point to be made here is that ψ(G, e) = 11 · ψ(G′, e) for a given edge
e of the “base snark” G′ that is not involved in the Figure 11 replacement of
three edges by Petersen graphs.

To begin, subtract edge e from G to obtain the graph Ge. To find ψ(G, e),
we must find the number of possible colorings for Ge. Observe that the edges
u, v, w must each be a different color. Recall that edges 1 and 2 must be colored
differently, as must be edges 3 and 4, and 5 and 6. Because the edges 1, 2, 3, 4, 5, 6
form a minimal cut set, the sum of their colorings must equal zero (by the Parity
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Figure 10: The base snark G′.

Figure 11: One way to combine 3 Petersen Graphs.
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Lemma). Therefore, without loss of generality, edges 1 and 2 are colored a and
b in either order, edges 3 and 4 are colored b and c in either order, and edges 5
and 6 are colored a and c in either order. Assigning the “forced” colors c, a, and
b to edges 7, 8, and 9 respectively, one sees that a given coloring of Ge induces
a unique coloring of G′e (with no changes outside the dotted circle).

Now suppose one has a coloring of G′e. We would like to show that this will
induce exactly 11 colorings of Ge (with no changes in colors “outside the dotted
circle”). Note that the edges {1, 2, x, u, y} form a (minimal) cut set, as do the
edges {3, 4, y, v, z}, and {5, 6, x, w, z}. Thus in each of these sets, the colors of
the edges must add to 0. Therefore, the colors of {x, u, y} must add to c, the
colors of {y, v, z} must add to a, and the colors of {x,w, z} must add to b.

Now consider the edges {x, y, z}. Because each of these edges has three color
choices, the total number of permitted colorings is 27. These colorings are listed
below:

x y z
a a a
a a b
a a c
a b a
a b b
a b c
a c a
a c b
a c c
b a a
b a b
b a c
b b a
b b b
b b c
b c a
b c b
b c c
c a a
c a b
c a c
c b a
c b b
c b c
c c a
c c b
c c c

Recall that the colors of {x, u, y} must add to c, the colors of {y, v, z} must
add to a, and the colors of {x,w, z} must add to b. Therefore, each set of edges
can be assigned at most two distinct colors, and one of these colors must be
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equal to their sum. So, of the edges {x, u, y}, if u is colored c, then x and y
share a color. If u is not colored c, then one of x, y must be colored c. The
same holds for edges {y, v, z} and the coloring a, and the edges {x,w, z} with
the coloring b.

Following these facts, we conclude that x and y cannot be colored with b
and a in either order, y and z cannot be colored b and c in either order, and x
and z cannot be colored with a and c, again in either order. Therefore, we can
eliminate the colorings with these properties from our list of choices above.

Below is the new list of possible colorings for edges x, y, z:

x y z
a a a
b b b
c c c
a a b
a c a
b b a
b c c
c a c
c b b
b c a
c a b

Observe that there are 11 possible colorings listed above. Each of these col-
orings forces exactly one coloring of the edges u, v, w, and then, (by Lemma
2.5) also forces exactly one coloring of the remaining edges in the three “ripped
Petersen graphs.” Thus, any coloring of G′e induces exactly 11 colorings of Ge.
It now follows that the number of colorings of Ge is exactly 11 times the number
of colorings of G′e, and hence ψ(G, e) = 11 · ψ(G′, e).

A few additions to the graph G (in Figure 11) gives us a “new snark G” with
ψ(G, e) = 19 · ψ(G′, e). This graph is obtained by adding two new edges to G:
one that connects edges x and u, and to the right of that, one that connects x
and w. The edge we remove is still edge e.
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5.3 “Legalized” Squares

We also looked at what happens to the Kászonyi number when you add “squares”
into the edges x, y, and z. Even though squares are “illegal”, if you attach a
Petersen graph to a square (see Figure 12) the square is no longer illegal.

Figure 12: Example of making squares “legal”

Note that for any possible coloring of Ge with the attached Petersen graph
(see Figure 12), f1 and f2 will always have to have to have the same edge color
and g1 and g2 will also have to have the same edge color.

Proof Assume that an edge coloring of Ge exists where f1 and f2 do not have
the same edge color and g1 and g2 also do not have the same edge color. Note
the colors assigned to f1, f2, g1, and g2 all have to add to zero (Parity Lemma
applied to edges f1, f2, g1, and g2). The only two ways for four edge colors to
add up to 0 is to have all four edges colored the same color or have two sets of
two edges colored the same color (Parity Lemma). Therefore, because f1 and
f2 must have different colors, the two colors used to color f1 and f2 are also
used to color g1 and g2. That would induce a coloring of the Petersen graph (see
Figure 13), which is impossible. Therefore, any coloring of this new “snipped”
Petersen graph would have to assign f1 and f2 the same color and g1 and g2
the same color. �

84



Figure 13: Example of an induced coloring of the Petersen graph (contradiction).

Note that for any possible coloring of f1, f2, g1, and g2 there will always
be exactly two ways to fill in the remaining colors of the “snipped” Petersen
graph in Figure 12. Therefore, for every snipped Petersen graph that needs
to be “added” on to make squares legal, the total number of colorings of Ge
will increase by a factor of 2 (by Theorem 3.5 and [Br2, Theorem 3.3 (C)(3)]).
Therefore, unlike before, we can now apply T ′ repeatedly to the edges x, y,
and z (as long as we realize we will have factors of 2 added into our new total
multiple increase in the Kászonyi number of our original snark). When we do
this, we get out a family of new snarks that have Kászonyi numbers with prime
factors of the form 2m + 3 where m ε Z (see Figure 14).

Figure 14: Example of Multiple T’ edges in a row.

5.4 Adding T’ edges to both sides of Edge 3

Let w be a positive integer. Consider what happens when you add w T ′ edges
to both sides of edge 3 of snark H (see Figure 2). Note any squares that are
created can be “legalized” by attaching a certain snipped Petersen graph (see
above section). For now with temporary inaccuracy, we will ignore the ending
power of 2 that is caused by “legalizing” squares. Let’s call the resulting snark
Hw. McKinney previously proved that for every coloring of the original snark
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G′ (see Figure 2), there are only 5 ways to color the edges x, y, and z of snark
H. For the same reasons, for every coloring of the original snark G′ there are
only 5 ways to color the edges s, t, and v (see Figure 15) of Hw. Note that each
coloring of s, t, and v leads directly to a coloring of u.

Figure 15: Close up near edge 3 of “illegal snark” Hw

Suppose the graph G′e (see Figure 2) is colored. Without loss of generality,
let us assume edge 3 is assigned the color c, edges 4 and 5 are colored b and
c (in either order), and edges 1 and 2 are colored a and c (in either order).
Let {s′, t′, v′} be an example of notation showing s is assigned the color s′, t
is assigned the color t′, and v is assigned the color v′. Note the three colors
assigned to s, t, and v all have to add up to a (Parity Lemma, applied to edges
4, 5, s, t, and v). Also note v cannot be assigned the color c because edge 3
is colored c and is adjacent to edge v. Therefore, the 5 ways to complete the
colorings of s, t, and v are {a, a, a}, {a, b, b}, {b, a, b}, {b, b, a}, and {c, c, a}.

For the coloring {a, a, a}, there are 2w ways to finish coloring the T ′ edges
on the right side of edge 3 (there will be 2 ways to color each T ′ edge to the
right of edge 3 due to t and v having the same color). Note that when s, t,
and u are colored {a, a, a}, edge u (see Figure 15) must be colored b (remember,
edge 3 is colored c). Since edges t and u have different colors, there is only one
way to complete the coloring of the additional T ′ edges on the left side of edge
3. Therefore, the {a, a, a} coloring of G′e will result in 1 · 2w colorings of Hwe.

For the coloring {a, b, b}, there are 2w ways to finish coloring the T ′ edges
on the right side of edge 3 (there will be 2 ways to color each T ′ edge to the
right of edge 3 due to t and v having the same color). Note that when s, t,
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and u are colored {a, b, b}, edge u (see Figure 15) must be colored a (remember,
edge 3 is colored c). Since edges t and u have different colors, there is only
one way to complete the coloring of the additional T ′ edges on the left side of
edge 3. Therefore, the {a, b, b} coloring ofG′e will result in 1·2w colorings ofHwe.

For the coloring {b, a, b}, there is one way to finish coloring the T ′ edges
on the right side of edge 3 due to t and v having different colors. Note that
when s, t, and u are colored {b, a, b}, edge u (see Figure 15) must be colored a
(remember, edge 3 is colored c). Since edges t and u have the same color, there
are 2w ways to complete the coloring of the additional T ′ edges on the left side
of edge 3. Therefore, the {b, a, b} coloring of G′e will result in 1 · 2w colorings of
Hwe.

For the coloring {b, b, a}, there is one way to finish coloring the T ′ edges
on the right side of edge 3 due to t and v having different colors. Note that
when s, t, and u are colored {b, b, a}, edge u (see Figure 15) must be colored b
(remember, edge 3 is colored c). Since edges t and u have the same color, there
are 2w ways to complete the coloring of the additional T ′ edges on the left side
of edge 3. Therefore, the {b, b, a} coloring of G′e will result in 1 · 2w colorings of
Hwe.

For the coloring {c, c, a}, there is one way to finish coloring the T ′ edges
on the right side of edge 3 due to t and v having different colors. Note that
when s, t, and u are colored {c, c, a}, edge u (see Figure 15) must be colored b
(remember, edge 3 is colored c). Since edges t and u have different colors, there
is only one way to complete the coloring of the additional T ′ edges on the left
side of edge 3. Therefore, the {c, c, a} coloring of G′e will result in 1 coloring of
Hwe.

Therefore, for every one coloring of G′e there will be a total of 4 · 2w + 1
colorings of Hwe. Note that 4 · 2w + 1 = 2w+2 + 1. Therefore (if squares are not
“legalized”), ψ(Hw, e) = [2w+2 +1] ·ψ(G′, e). However, remember we intention-
ally forgot the power of 2 caused by “legalizing” squares, so ψ(Hw, e) = [some
power of 2] · [2w+2 + 1] · ψ(G′, e).

Following the fact that ψ(Hw, e) = [some power of 2]·[2w+2+1]·ψ(G′, e) (for
G′ in Figure 2) and Theorem 3.5, we have the following theorem from letting the
“base” snarks G′ (in Figure 2) be the Petersen graph and employing arguments
from Section 4:

Theorem 5.3 For a given integer m ≥ 3, there exist a snark G, an edge e of
G, and a positive integer k such that ψ(G, e) = 2k · [2m + 1].
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5.5 Proof of an infinite family of prime factors

The following result demonstrates that there are infinitely many prime divisors
of Kászonyi numbers.

Theorem 5.4 There exist infinitely many prime numbers p such that the fol-
lowing holds: There exist a snark G, an edge e of G, and a positive integer k
such that ψ(G, e) = k · p.

The proof below was pointed out by Richard Bradley; it is just a standard
argument in elementary number theory.
Proof Let S = {primes p: ∃ odd m such that 2m + 1 is a multiple of p}.
By Theorem 5.3, it suffices to show that the set S is infinite. For the sake of
contradiction, suppose the set S is finite. Let the elements of S be denoted
{p1, p2, ...., pn}. For each k ε {1, 2, 3, ...., n} let mk be an odd integer such that
2mk + 1 ≡ 0 mod pk. For each k ∈ {1, · · · , n}, the following holds:

i) 2mk ≡ −1 mod pk
ii) For any odd integer u, 2mk·u = (2mk)u ≡ (−1)u = −1 mod pk

Note that the integer m1 ·m2 · . . . ·mn is odd, as is the product of any sub-
collection of the mk’s. For each k ∈ {1, 2, . . . , n}, 2m1·m2·...·mn ≡ −1 mod pk.
Thus for each k ∈ {1, 2, . . . , n}, 2m1·m2·...·mn + 1 ≡ 0 mod pk.

Let p be any prime factor of the number 2m1·m2·...·mn+2+1. Now the integer
(m1 ·m2 ·. . .·mn)+2 is odd. Hence, p ∈ S. Hence there exist k ∈ {1, . . . , n} such
that p = pk. Thus, 2m1·...·mn + 1 is a multiple of p (by the last sentence of the
preceding paragraph). Hence 4·(2m1·...·mn+1) = 2(m1·...·mn)+2+4 is a multiple of
p. Therefore p divides the difference [2(m1·...·mn)+2 +4]− [2(m1·...·mn)+2 +1] = 3.
Hence p = 3. We have shown p is the only prime divisor of 2(m1·...·mn)+2 + 1.

Hence for some positive integer L, 2(m1·...·mn)+2 + 1 = 3L. By a result in
number thoery (see [McR]), the only solution of 2a+ 1 = 3b for integers a, b ≥ 2
is 23 + 1 = 32. Hence m1 · . . . ·mn + 2 = 3, and L = 2. Thus, m1 · . . . ·mn = 1,
and mk = 1 for each k ∈ {1, . . . , n}.

For each k ∈ {1, . . . , n}, 21 + 1 ≡ 0 mod pk, i.e. 21 + 1 is a multiple of pk, i.e.
3 is a multiple of pk. Hence each pk can only be 3. That is, S = {3}. However,
11, for example, is in S, since 25 + 1 = 33 ≡ 0 mod 11, (so 3 cannot be the only
element of S). Thus, the set S is infinite after all, and Theorem 5.4 follows. �
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Interior Points of Strictly Convex C2

Billiards are Generically Insecure

Tom Dauer

Abstract

A mathematical billiard is defined as a plane domain (“table”) and a
point mass that moves with constant speed inside the table in such a way
that when the point mass hits the boundary, its angle of incidence equals
its angle of reflection. Let x and y be points in a given table, possibly
with x = y, either in the interior of the table or on the boundary. A
blocking set for the pair (x, y) is a set of points in the table such that
every billiard path from x to y passes through a point in the set. If a
finite blocking set exists, the pair (x, y) is called secure; if not, it is called
insecure. We show that given x and y, there exists a dense Gδ set in the
space of strictly convex C2 billiard tables with x and y in the interior for
which the pair (x, y) is insecure. (A Gδ set is defined to be a countable
intersection of open sets). In this sense, the pair (x, y) is insecure for a
“generic” strictly convex C2 billiard table with x and y in the interior. In
2009, Tabachnikov showed that if x and y are on the boundary of such a
table, then the pair (x, y) is insecure; our result sheds light on the case in
which x and y are in the interior.

1 Introduction

Consider a plane region (“table”) bounded by a strictly convex C2 closed curve
σ : S1 → R2. A billiard is the dynamical system consisting of this table and a
point mass inside the table that moves with constant speed in such a way that
when it hits σ, its angle of incidence equals its angle of reflection (this is called
the billiard reflection law). Let x and y be points in a given table M , either in
the interior of the table or on the boundary. A blocking set for the pair (x, y)
is a set of points in M \ {A,B} such that every billiard path in M from x to y
passes through a point in the set. If a finite blocking set exists, the pair (x, y) is
called secure; if not, it is called insecure. A table is called secure if for each pair
of points in the table, a finite blocking set exists; if not, it is called insecure.
We call a point where a billiard path intersects the boundary a vertex.

In 2009, Tabachnikov showed that every compact plane billiard M bounded
by a smooth curve (also known as a Birkhoff billiard, after G.D. Birkhoff, one of
the founders of the study of dynamical systems) is insecure; see [5]. Tabachnikov
considers a strictly convex arc γ ⊂ ∂M , possibly with x = y, which must exist
since ∂M is smooth and closed. Let A,B ∈ γ. He considers the maximum
length polygonal path Ln from A to B with all n vertices in γ, which is a
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billiard path (see Lemma 3.1). He notes that if n is large, then Ln lies in a small
neighborhood of γ; so if a finite set of blocking points for the pair (A,B) were
to exist, it would only contain points on γ. Tabachnikov then uses the theory of
interpolating Hamiltonians and some results on rational approximation to show
that such a set cannot exist, which proves that the pair (A,B) is insecure.

Throughout the rest of this paper, let M be the closed region bounded by
a strictly convex C2 curve σ : S1 → R2. We consider points x and y in the
interior of M . To prove that the pair (x, y) is insecure, it suffices to show that
for any positive integer n, there exist n billiard paths from x to y that have
no triple intersections except at x at y. A triple intersection is a point at the
intersection of three of these paths. To see this, notice that if there were a finite
blocking set S for the pair (x, y), then each point in S could block at most two
billiard paths. Thus for n > 2|S|, the set S cannot block all billiard paths from
x to y, which is a contradiction.

Let x and y be points in R2, possibly with x = y. Let C(x, y) be the set of
strictly convex C2 curves σ : S1 → R2 such that x and y are in the interior of
the region enclosed by σ. We consider C(x, y) with the C2 topology. For each
n ∈ {1, 2, . . .}, we will obtain a dense open subset Gn(x, y) of C(x, y) such that
for any σ ∈ Gn(x, y), there exist n billiard paths from x to y with no triple
intersections (except at x and y) in the table bounded by σ. Then we apply a
corollary of the Baire category theorem to show that the intersection of these
Gn’s is dense. In this sense, the pair (x, y) is insecure for a table bounded by
a “generic” curve in C(x, y). While Tabachnikov’s result shows the insecurity
of a specified pair of boundary points, we do not get any specific examples of
insecure pairs of interior points from our argument here. We expect that our
techniques will also show that for a generic σ ∈ C and a generic set of pairs of
points (x, y) in the interior of the region enclosed by σ, the pair (x, y) is insecure
for the table bounded by σ. We also expect to get a similar result for polygonal
tables by using a reflection argument and the techniques used here.

While our methods do not allow us to draw a conclusion about security for
any particular pair of points in a the interior of particular table, our result is
in the spirit of results about ergodicity of billiard systems in polygons. It was
shown in [3] that the directional billiard flow of a rational polygon is ergodic
for almost every direction (but not all directions since the polygon is rational),
and that the set of ergodic n-gons is residual in the sense of Baire category (we
will define residual when we discuss the Baire category theorem in Section 3).
This means that in the sense of Baire category there is a generic set of irrational
ergodic polygons. However, no explicit examples of ergodic polygons were given
until eleven years later; see [7]. There are still no known examples of irrational
but non-ergodic polygons; see [2] for details.

Our results are analogous to insecurity results obtained for manifolds, where
there is a similar definition for a blocking set, but which uses geodesics instead
of billiard paths. Let M be a compact C∞ manifold without boundary, of
dimension at least two, and let (x, y) ∈M ×M . It was shown in [1] that there
exists a dense Gδ set of C∞ Riemannian metrics g on M such that the pair
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(x, y) is insecure. Moreover, according to [1], the set

G̃ = {(x, y, g) ∈M ×M ×G : (x, y) is insecure in g}

contains the intersection of a countable collection of sets that are C1-open and
C∞-dense in M ×M × G. This is analogous to a result we expect to obtain
for plane billiards: for a generic (x, y, σ) with σ : S1 → R2 a strictly convex
C2 curve and x, y in the interior of the region enclosed by σ, the pair (x, y) is
insecure. However, in [1], the Riemannian metric can be perturbed within the
manifold M , while in our case the allowable perturbations are restricted to the
boundary of the table M , which gives us less flexibility.

Work on security problems in polygonal billiard tables has been an active
area of research for the past fifteen years. Monteil showed in [4] that there exists
a rational polygonal billiard table (i.e. one for which all angles are rational
multiples of π) that is insecure, contradicting some previous work in the area.
It has also been shown (see [2] for extensive references) that the only secure
regular polygons are equilateral triangles, squares, and regular hexagons. There
are no known nontrivial examples of secure pairs of points in billiard tables with
strictly convex C2 boundary. A trivial example is the center of a circle and a
point on the circle; this pair is trivially secure since the midpoint of the segment
joining these two points blocks all billiard paths between them. One might
expect that there are no other examples of secure pairs of points in billiard
tables with strictly convex C2 boundary, but this appears to be a very hard
problem. Our contribution in this paper is showing that the set of insecure
pairs in such tables is “large” in a topological sense.

2 Outline of Our Approach

Let M be the closed region bounded by a strictly convex C2 curve σ : S1 → R2.
Saying σ is strictly convex means that its curvature is strictly positive. We
consider points x and y in the interior of M . As we explained above, to show
that the pair (x, y) is insecure, it suffices to show that for every positive integer
n, there exist n billiard paths from x to y that have no triple intersections except
at x and y.

We proceed by induction to show that there for every positive integer n,
there are n billiard paths from x to y that satisfy the following conditions:

1. There is no periodic path that uses only vertices from these n paths.

2. No two paths share a vertex.

3. These paths have no triple intersections except at x and y.

4. The points x and y are not conjugate along any of these paths. (See
Definition 3.6.)

To prove this, we proceed by induction. The base case (one path from x to
y) is trivial. Suppose that n > 1 is an integer and there are n paths satisfying

92



(1)− (4). We wish to show that there exists an (n+ 1)st path from x to y that
is distinct from the first n paths and satisfies conditions (1)− (4).

Consider P = {p1, . . . , pk}, the vertices of the first n paths. Since there
are (by condition (1) and the inductive hypothesis) no periodic paths using
only vertices in P, we can make a simple argument to show that by choosing a
sufficiently large N , there exists a billiard path with N segments with at least
one of its vertices, say p′, not in P. We call this our (n+ 1)st path, and we will
modify the table and this path slightly so that all n+ 1 paths satisfy conditions
(1) − (4). We can make small perturbations of the table so that the boundary
remains C2 and strictly convex. When we refer to perturbing the table, we
actually mean perturbing its boundary σ.

Consider families of rays from x to a small neighborhood of p′ and from y
to a small neighborhood of p′ (see Proposition 5.3). Call the first family F1 and
the second F2. (We think of rays as not only one directed line segment, but also
all the reflections of that line segment off the boundary according to the billiard
reflection law). We slightly change the curvature of σ in a small neighborhood
of p′ so that the families F1 and F2 do not focus at any vertex in P along the
(n + 1)st path (see the definition of focusing before Lemma 3.3), and so that
x is not conjugate to y along the (n + 1)st path. Therefore the (n + 1)st path
satisfies condition (4). We then show that there exists a ray in F1 and a ray
in F2, neither of which is perpendicular to the boundary at any point or hit
any of the vertices in P, that we can “match up” by perturbing σ in a small
neighborhood of p′. This gives us an (n + 1)st path with no vertices in P, so
the collection of n+ 1 paths satisfies condition (2).

Now we slightly perturb the table finitely many times in small neighborhoods
of the vertices of the (n+1)st path to avoid periodic paths that uses only vertices
from the n + 1 paths (see Corollary 5.7). Each of these perturbations changes
the angle a segment on the (n + 1)st path makes with the boundary at one of
the new vertices, and this change is taken to be small enough that the altered
vertices of the (n+ 1)st path still do not coincide with any of the vertices in P.
Now the (n+ 1) paths satisfy condition (1).

Next, we slightly perturb the table finitely many times in small neighbor-
hoods of the vertices of the (n+1)st path to eliminate triple intersections (except
at x and y) that may have arisen from intersections of segments of the (n+ 1)st
path with segments of the first n paths (see Corollary 5.8). There is sufficient
flexibility in the way we do this perturbation to ensure that we introduce no
new periodic paths (if our perturbation did introduce such a path, we could
make our perturbation slightly smaller so that it did not). Now there are no
triple intersections in the table except at x and y, so condition (3) is satisfied.
This completes the outline of our inductive argument.

Our final step is to show that if τ : S1 → R2 is a strictly convex C2 curve
bounding a table for which there exist n billiard paths from x to y satisfying
(1)− (4), then (2) and (3) remain true for sufficiently small C2 perturbations of
τ (see Lemma 5.11). We then have that for fixed n, there exists a dense open set
of strictly convex C2 boundary curves for which there exist n paths from x to
y with no triple intersections except at x and y. We can then use a corollary of
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the Baire category theorem to show that the Gδ set formed by the intersection
of these dense open sets over all n is a dense set of strictly convex C2 boundary
curves with x and y in the interior for which the pair (x, y) is insecure.

3 Preliminary Results

The goal of this section is to prove a number of basic results that will be needed
later. The results of this section are not new; we provide them here simply for
the convenience of the reader.

Let M be as above, with strictly convex C2 boundary σ, and let A,B ∈M .
Denote by Ln a polygonal line AP1 . . . PnB of maximum length, where Pi ∈ ∂M
for all i ∈ {1, . . . n}. Then (P1, . . . Pn) ∈ ∂M × · · · × ∂M , which is a compact
set, so such a maximum length line Ln exists. Note that all of the vertices of
Ln must be distinct in order for Ln to have maximal length. For example, if
A = P1 then the path L′n formed by moving P1 slightly away from A on σ has
length longer than Ln by the triangle inequality.

3.1 Some basic facts

Lemma 3.1 Ln is a billiard trajectory.

Proof We begin with the case n = 2. We assume σ parametrized at constant
speed, with L the total length of σ. Let f(s) = dist(A, σ(S1)) + dist(B, σ(S1)),
where s ∈ [0,L]. Any maximum of f must be a local maximum, and since
s ∈ S1 (a compact set), f must attain a maximum on this interval. Thus, the
maximum must occur at a critical point of f . We have

d

ds
dist(A, σ(s)) =

d

ds

(√
(σ1(s)− a1)2 + (σ2(s)− a2)2

)
=

(σ1(s)− a1)σ′1(s) + (σ2(s)− a2)σ′2(s)√
(σ1(s)− a1)2 + (σ2(s)− a2)2

=
~AP1 · σ′(s)
‖ ~AP1‖

=
‖ ~AP1‖ · ‖σ′(s)‖ cos θ1

‖ ~AP1‖
= cos θ1

And similarly d
dsdist(B, σ(s)) = − cos θ2. Thus if f ′(s) = 0 we have 0 = cos θ1−

cos θ2, and hence θ1 = θ2 since cosx is 1 − 1 for x ∈ [−1, 1]. Thus, AP1B is a
billiard path.

Now we consider Tn for n > 2. Suppose Tn is not a billiard path, so there
exists i ∈ {1, . . . , n− 1} such that θ 6= θ′, where θ and θ′ are the angles made
by Pi−1Pi and PiPi+1, respectively, with the tangent to γ at Pi. By the case
above, this means that the arc length coordinate of Pi is not a critical point of
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the function g(s) := dist(Pi−1, Pi(s)) + dist(Pi+1, Pi(s)). Thus the sum of the
lengths of segments Pi−1Pi(s) and Pi+1Pi(s) is not maximized, so Tn is not a
maximal trajectory, which is a contradiction to the definition of Tn (note that
Tn must exist since each Pi has arc length coordinate in [0,L], a compact set).
Hence Tn is a billiard path for all n ≥ 1. �

Assume σ : S1 → R2 is periodic, i.e. there exists an L such that σ(s) =
σ(s+ L) for all s ∈ S1.

Lemma 3.2 The following are equivalent:

1. σ is strictly convex, i.e. κ(s) > 0 for all s ∈ [0, L], where κ(s) denotes the
curvature of σ at s.

2. For each s0 ∈ [0, L], there exists c > 0 and a Cartesian coordinate system

(u, v) such that (u, v) = (0, 0) corresponds to σ(s0), σ′(s0) =

(
1
0

)
, and

there is a strictly convex function g : R → R such that v = g(u) and σ is
the graph of g for u ∈ (−c, c).

Proof We define the unit tangent and unit normal vectors to σ at s by
T(s) = σ′(s)/|σ′(s)| and N(s) = T′(s)/|T′(s)|. Assume that (T,N) is posi-
tively oriented. We have T(s) ⊥ N(s), and we define the curvature of γ at
s by T′(s) = κ(s)N(s). Write T(s) = (sin θ, cos θ) where θ ∈ [0, 2π); then
N(s) = (− sin θ, cos θ). We have

γ′′(s) = T′(s) =
dθ

ds
(− sin θ(s), cos θ(s)) =

dθ

ds
N(s)

so κ(s) = dθ
ds . Since dθ

ds = g′(u) = du
ds and du

ds > 0, we see that κ(s) > 0 =⇒
g′(u) > 0. �

3.2 Families of lines and focusing

We now give some definitions and state some results on focusing; see [9] for
details. An oriented line is a line in the plane along with a specified unit
vector v parallel to line, giving it an orientation. Such a line is parametrized by
t 7→ x + tv for some point x on l. A C1 family of oriented lines l(u), u ∈ I for
some open interval I, is parameterized by l(u, t) = γ(u) + tv(u), t ∈ R, where
γ : R → R2 and v : R → S1 ⊂ R2 are C1 functions. The point γ(u) and the
vector v(u) are known as the base point and direction vector, respectively, of
the line l(u).

If f(u) = −〈γ′(u),v′(u)〉 / 〈v′(u),v′(u)〉 (where v′ 6= 0), then l(u, f(u)) is
called the local envelope of the family l(u). Note that the line l(u0) is tangent
to the envelope f(u) at u = u0. The point F = l(u0, f(u0)) is said to be the
focusing point (in linear approximation) for the family l(u) at u = u0. The
envelope can be thought of as the curve determined by the focusing points of
l(u); see Figure 1.

We now show that the choice of the curve of base points for a family of lines
l(u) does not affect its focusing points.
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Figure 1: An envelope of lines

Lemma 3.3 Suppose l(u), |u| < δ, is a C1 family of oriented lines parameter-
ized by using two different C1 curves γ(u) and τ(u) as base points. Then the
focusing point F for l at u = u0 is the same for both these parameterizations.

Proof We may assume that u0 = 0. Let l(u, t) = γ(u) + tv(u) and j(u, t) =
τ(u) + tv(u) be parameterizations of l. The family l(u) focuses about u = 0 at
the point

l

(
0,−〈γ

′(0),v′(0)〉
〈v′(0),v′(0)〉

)
= γ(0)− 〈γ

′(0),v′(0)〉
〈v′(0),v′(0)〉v(0)

Since l(u) and j(u) are the same family of lines, we can write τ(u) = γ(u) +
a(u)v(u) for some C2 scalar valued function a(u). Using the definition of fo-
cusing, the linearity of the scalar product, and the fact that v(0) ⊥ v′(0) (since
v(0) is a unit vector) we find that j(u) focuses about j(0) at the point

j

(
0,−〈τ

′(0),v′(0)〉
〈v′(0),v′(0)〉

)
= τ(0)− 〈τ

′(0), v′(0)〉
〈v′(0),v′(0)〉v(0)

= γ(0) + a(0)v(0)− 〈γ
′(0) + a′(0)v(0) + a(0)v′(0), v′(0)〉

〈v′(0),v′(0)〉 v(0)

= γ(0) + a(0)v(0)− 〈γ
′(0),v′(0)〉
〈v′(0),v′(0)〉v(0)− a(0)v(0)

= γ(0)− 〈γ
′(0),v′(0)〉
〈v′(0),v′(0)〉v(0)

= l

(
0,
〈γ′(0),v′(0)〉
〈v′(0),v′(0)〉

)
as desired. �

Hence, we can take γ(0) = Z. The family l(u) focuses at u = 0 at tf =

−〈γ
′(0),v′(0)〉
〈v′(0),v′(0)〉 . If tf = 0, we must have γ′(0) = 0.
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Remark: The point of this diversion was to show that we can choose our
parameterizations γi so that γ(0) = Z and γ′(0) = 0.

We now show that changing the “speed” of the parametrization of our family
of lines does not affect its focusing points.

Lemma 3.4 Let β(u) ∈ C2(I). Given a smooth family of lines l(u, t), let
j(u, t) = γ(β(u)) + tv(β(u)). Then the focusing point of obtained along l(0)
is the same as the focusing point obtained along j(0).

Proof At u = 0, the family l(u) focuses at tf = −〈γ
′(t),v′(t)〉
〈v′(t),v′(t)〉 |t=0. At u = 0, the

family j(u) focuses at

−〈[γ(β(t))]′, [v(β(t))]′〉
〈[v(β(t))]′, [v(β(t))]′〉 |β(t)=0 = −‖β

′(t)‖2 〈γ′(β(t)), v′(β(t))〉
‖β′(t)‖2 〈v′(β(t), v′(β(t))〉 |β(t)=0

= −〈γ
′(s), v′(s)〉
〈v′(s), v′(s)〉 |s=0

as desired. �
The following lemma shows that C1 families of oriented lines remain C1 after

reflection.

Lemma 3.5 Let l(u), u ∈ I, be a C1 family of oriented lines parameterized by
l(u, t) = γ(u) + tv(u), where γ(u) ∈ M for all u ∈ I. Assume that v(u) points
inside the table if γ(U) intersects the boundary. Let l1(u) be the oriented line
obtained from l(u) after one reflection. (Define this earlier–the billiard map T
will be helpful). Then l1(u) is a C1 family of lines that can be parameterized by
l1(u, t) = γ1(u)+tv1(u) where γ1(u) = σ(β(u)) for some C1 function β : I → S1

and v1(u) points inside the table at σ(β(u)).

Proof Take u to be fixed, so v := v(u) and a := γ(u) are fixed. Consider the
sequence of maps t 7→ a + tv 7→ w coordinate of a + tv. We call the first map
f and the second g. We want to find a C1 function t = t(u) such that this
function gives a value of 0. The implicit function theorem guarantees that such
a function exists if d

dt (g(f(t))) 6= 0. We have d
dt (g(f(t))) = ∇g(f(t)) · f ′(t) =

∇g(f(t)) · v = −w · v 6= 0, since w ⊥ σ′ and v is not parallel to σ. �
Given a vertex p of a billiard path in M , we consider a family of oriented

lines l(u), |u| < δ with base point p, along a segment that has p as an endpoint.
Each time the family l(u) hits ∂M , each line in the family obeys the billiard
reflection law. Let lk(u) be the resulting family after k reflections.

Definition 3.6 Let p and p′ be points in M , and let τ be a billiard path from
p to p′. Let l1, l2, . . . lk be the oriented lines determined by the segments of τ .
Then p and p′ are said to be conjugate along τ if the following holds: there exists
a family of lines l(u), |u| < ε, such that the successive reflections (from ∂M)
l1(u), . . . lk(u) with l(u) = l, l1(0) = l1, . . . , lk(0) = lk such that l(u) focuses at
p at u = 0 and lk(u) focuses at p′ at u = 0.
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Lemma 3.7 Suppose we have a C1 family of oriented lines l(u) parameterized
by l(u, t) = γ(u) + tv(u). If l(u0, t0) is not the focusing point of the family at
u = u0, then Dl(u0, t0) is invertible.

Proof We have Dl(0, t0) =
(
∂l
∂u ,

∂l
∂t

)
= (γ′(u0) + t0v

′(u0),v(u0)). Since v ⊥
v′, the columns of this matrix are linearly independent if and only if 0 =

prv′Dl(0, t0) :=
〈γ′(u0),v

′(u0)〉
〈v′(u0),v′(u0)〉 + t0. But this happens if and only if l(u0, t0)

is the focusing point of the family l(u) at u = u0. Thus Dl(u0, t0) is invertible.
�

Later we will show that under certain conditions (namely (4) in 4.1) if we
have a billiard path from x to y for a given table, and we make a small C2

perturbation of the table, then there is a billiard path from x to y in the new
table that is close to the one in the old table. The following lemma is needed.

Lemma 3.8 Suppose U ∈ R2 is open, f : U → R2 is C1, and dfx0 is invertible
at some x0 ∈ U . Let y = f(x0). Let K be a compact set that is the closure of an
open set and is such that x ∈ intK ⊂ K ⊂ U . Let ε > 0. Then there exists δ > 0
such that distC1(K,R2)(f, g) < δ implies there exists x1 with dist(x1, x0) < ε such
that g(x1) = y.

Proof By decreasing the size of K if necessary, we may assume that the restric-
tion of f to the interior of K is a diffeomorphism onto its image. By decreasing
ε if necessary, we may assume that Bε(x0) ⊂ intK. We can choose δ sufficiently
small (where δ is defined in the statement of this lemma), we may assume that
Dgx is invertible for all x ∈ K ⊃ Bε(x0). Let C = ∂Bε(x0). Since f is a
diffeomorphism, we have dist(f(C), y0) := ρ > 0. If δ < ρ/2, then

distC0(f, g) < δ =⇒ dist(g(C), y) > ρ/2 (1)

and
distC0(f, g) < δ =⇒ dist(g(x0), y) < ρ/2 (2)

Let x1 ∈ Bε(x0) be such that

dist(g(x1), y) = min
{

dist(g(x1), y) : x ∈ Bε(x0)
}

(3)

Note that (1) and (2) imply x /∈ ∂Bε(x0). But we cannot have dist(g(x1), y) > 0,
because g(Bε(x0)) is open and therefore contains an open ball around g(x1),
which would contradict (3). Thus g(x1) = y. �

3.3 Baire category theorem and some corollaries

We now give some definitions, state and prove the Baire category theorem, and
prove some of its corollaries. Throughout this discussion, let X be a complete
metric space with metric d. Up until Corollary 3.16, all sets mentioned are
subsets of X.

Definition 3.9 A set S is called nowhere dense if for every open ball U , there
exists an open ball V ⊂ U such that V ∩ S = ∅.
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Definition 3.10 A set T is called residual if it is a countable union of nowhere
dense sets.

We now prove the Baire category theorem.

Proposition 3.11 X is not residual.

Proof Suppose that X =
⋃∞
i=1 Si, where the Si are nowhere dense sets. Let B

be a non-empty open ball; since S1 is nowhere dense, there exists a non-empty
open ball B1 ⊂ B such that B1 ∩ S1 = ∅. We need the following lemma:

Lemma 3.12 Let r > 0. Then Br (x0) ⊆ {x ∈ X : d(x, x0) ≤ r}.

Proof Let x ∈ Br(x0) and suppose that r′ := d(x, x0) > r; by the definition

of closure, for every ε > 0 we have Bε(x) ∩ Br(x0) 6= ∅. Let ε = r′−r
2 and let

y ∈ Br(x); then by the triangle inequality d(y, x0) ≥ d(x, x0)−d(y, x) > r′−ε =

r′ − r′−r
2 = r+r′

2 > r. This means that Bε(x) ∩ Br(x0) = ∅, a contradiction.
Thus, we must have d(x, x0) ≤ r. �

Let B1 = Br1(x1), where r1 < 1 is sufficiently small that there exists an
ε > 0 such that Br1+ε(x1) ∩ S1 = ∅; by Lemma 3.12, Br1(x1) ⊂ Br1+ε(x1),
so B1 ∩ S1 = ∅. Now construct B2, B3, etc. in this way, so we get non-empty
open balls (Bi)

∞
i=1 such that Bn+1 ⊂ Bn, Bn = Brn(xn) where rn < 1/n, and

Bn∩Sn = ∅ for all n ∈ {1, 2, . . .}. Let ε > 0 and take n > 2/ε; then for all l,m >
n we get Bl ⊂ Bn and Bm ⊂ Bn, so xl, xm ∈ Bn, i.e. d(xl, xn) < 1/n < ε/2.
Thus d(xl, xm) < d(xl, xn) + d(xm, xm) < ε, so (xi)

∞
i=1 is a Cauchy sequence.

Since X is complete, there exists x ∈ X such that limi→∞ xi = x. Since Bn is
non-empty for all n ∈ {1, 2, . . .} , for each n there exists ε > 0 such that rn > ε.
There exists N such that d(x, xm) < ε/2 for all m > N , and if we also take
m > 2/ε we get d(x, xm) < ε/2; thus d(x, xn) < ε, so x ∈ ⋂∞i=1Bi. Since x ∈ Bi
and Bi ∩ Si = ∅ for all positive integers i, we have x /∈ ∪∞i=1Si, i.e. x ∩X = ∅,
which is impossible since x ∈ X. �

Corollary 3.13 Consider the sequence (Ai)
∞
i=1, where the Ai are dense open

sets. Let A =
⋂∞
i=1Ai. Then A is dense.

Proof Suppose that A is not dense in X, i.e. there exists a non-empty open ball
B such that B ∩A = ∅. Then X = (B ∩A)c = Bc ∪Ac = Bc ∪Ac1 ∪Ac2 ∪ · · · , so
we must have B ⊂ ⋃∞i=1A

c
i . The complement of a nowhere dense set is dense,

and a subset of a countable union of nowhere dense sets is itself a countable
union of nowhere dense sets. Thus, we can write B as a countable union of
nowhere dense sets.

We now prove two lemmas. Let B′ = Br(x0) ⊂ X be an open ball.

Lemma 3.14 (B′, d) is a complete metric space.

Proof Let (bi)
∞
i=1 be a Cauchy sequence in B′. Since bi ∈ X for all posi-

tive integers i, and X is complete, we find that there exists x ∈ X such that
limi→∞ bi = x. Suppose that x /∈ B′. Since B′ is closed, there exists ε > 0
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such that Bε(x) ⊂
(
B′
)c

. Since (bi)
∞
i=1, there exists N sufficiently large that

bi ∈ Bε(x). But bi ∈ B′, so we have a contradiction. Thus x ∈ B′, so B′ is
complete. �

Lemma 3.15 B′ is not residual.

Proof By Lemma 3.12, we have Br/2(x0) ⊂ Br(x0). By Lemma 3.14, we

find that Br/2(x0) is not a countable union of nowhere dense sets, so neither is
Br(x0) = B′. �

B was assumed to be an open ball, and we have found that if A is not
dense then we can express B as a countable union of nowhere dense sets. This
contradicts Lemma 3.15. �

Let (Y, d′) be a metric space that is not necessarily complete. For n ∈
{1, 2, . . .}, let Yn ⊂ Y be a complete metric space (with metric d′) that is the
closure of an open set, and such that Y =

⋃∞
n=1 Yn. Suppose that for each

i ∈ {1, 2, . . .}, Ai is a dense open subset of Y .

Corollary 3.16
⋂∞
i=1Ai is dense in Y .

Proof Since Ai is dense in Y , it is dense in each Yn. By the same argument as
in the proof of Corollary 3.13, we find that Yn ∩A1 ∩A2 ∩ · · · is dense in Yn for
all positive integers n. Hence

⋂∞
i=1Ai is dense in Y . �

In this paper, we are interested in metric spaces of the form C2(U, V ), where
U is a compact set and V is either R or R2. The metric space C2(U, V ) consists
of functions with continuous second derivatives, and the metric is defined as
d(f, g) = supx∈U [|f(x)− g(x)|+ |f ′(x)− g′(x)|+ |f ′′(x)− g′′(x)|].

4 The Main Result

Our goal is to prove the following.

Theorem 4.1 Given any positive integer n and any ε > 0, there exists a C2

perturbation of σ, of size less than ε in the C2 topology, such that in the perturbed
billiard table, there are n billiard paths from x to y with no triple intersections
except at x and y.

To prove Theorem 4.1, we proceed by induction. It is convenient to assume
some additional conditions as part of the inductive hypothesis. The complete
inductive hypothesis consists of the following conditions:

1. There is no periodic path that uses only vertices from these n paths.

2. No two paths share a vertex.

3. These paths have no triple intersections except at x and y.

4. The points x and y are not conjugate along any of these paths. (See
Definition 3.6.)
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The base case (one path from x to y) is trivial. Suppose that n > 1 is an integer
and there are n paths satisfying (1) − (4). We want to show that there exists
an (n+ 1)st path from x to y that is distinct from the first n paths and satisfies
conditions (1)− (4).

5 Proof of Theorem 4.1

We proceed in steps toward a proof of Theorem 4.1, as outlined in Section 2.
Let P = {p1, p2, . . . pk} be the vertices of the first n paths. Let N be an

integer greater than 2p2k; clearly N is greater than the number of pairs of vertices
in P. We take our (n + 1)st path to be the maximum length path having N
vertices, which is a billiard path by Lemma 3.1. Since there are no periodic
paths using vertices in P, our (n+ 1)st path must have at least one vertex not
in P; if it did not, then by the pigeonhole principle the (n + 1)st path would
contain some pair of vertices twice, forcing it to be periodic and contradicting
condition (1).

Consider the portion γ of the curve σ in a small neighborhood of the vertex
p. Let the family of oriented lines l(u) be reflected off γ to give the family l1(u).
Parametrize these families as l(u, t) = γ(u)+tv(u) and l1(u, t) = γ1(u)+tv1(u),
where |u| < δ. Let α(u) ∈ (0, π) be the angle made by v1(u) with respect to the
tangent line at γ(u), and let κ(u) be the signed curvature of γ at u (the curvature
has a sign after we choose the direction of the normal vector N(u)). Lemma 1 in
[9] states that if t = f(s) is the local envelope of l(u) and t = f1(u) is the local
envelope of the reflected family l1(u), then −1/f(u) + 1/f1(u) = 2κ(u)/ sinα.
Thus if p and p′ are conjugate vertices along a segment of some billiard path,
then by changing the curvature of σ at p, we are changing κ(u) while leaving f(u)
fixed, which ensures that f1(u) changes. Even if many reflections are required
to get from p to p′ on the billiard path, it is evident from the equation in [9]
that by changing the curvature of σ at p, we ensure that p and p′ are no longer
conjugate.

Now we state a proposition that allows us to avoid unwanted focusing of
families of oriented lines along some billiard path. Suppose that p is a vertex of
a billiard path such that the when the family of rays around this path reflects
off the boundary in a small neighborhood of p, it focuses at some point in the
table. See Figures 2 and 3.

Proposition 5.1 Given ε > 0, we can perturb σ in an ε-neighborhood of p in
such a way that the position of p and the tangent line to σ at p are unchanged,
and the new table σ1 is still C2 and strictly convex, the curvature of σ1 at p is
different from the curvature of σ at p.

Now we state and prove the calculus version of Proposition 5.1.

Lemma 5.2 Let f : [−ν, ν]→ R (where ν > 0) be a C2 strictly convex function
describing part of the boundary of the strictly convex C2 billiard table σ : S1 →
R, with Cartesian coordinates imposed so that f(0) = f ′(0) = 0. Let b ∈ (0, ν).
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Figure 2: A problem with focusing at P

Figure 3: Rays no longer focus at P

102



There exists a smooth strictly convex C2 function g : R → R such that f(x) =
g(x) for all x ∈ [−ν,−b] ∪ [b, ν], g(0) = g′(0) = 0, and g′′(0) 6= f ′′(0).

Proof We construct g by adding a C∞ strictly convex “bump function” ψ :
R→ R that satisfies |ψ(x)| < a for all x ∈ R. We write

g(x) = f(−c) +

∫ t

−c

[
f ′(−c) +

∫ s

−c
(f ′′(s) + ψ(s))ds

]
dt

Then g(0) =
∫ 0

−c
∫ t
−c ψ(x)dxdt and g′(0) =

∫ 0

−c ψ(x)dx. Let Ψ : R→ R be such
that Ψ′(x) = ψ(x) for all x ∈ R. By Fubini’s theorem and integration by parts
we get

g(0) =

∫ 0

−c

∫ t

−c
ψ(x)dxdt =

∫ 0

−c

∫ 0

x

ψ(x)dtdx =

∫ 0

−c
(−xψ(x))dx

= (−xΨ(x)|0−c +

∫ 0

−c
Ψ(x)dx

= cΨ(−c) +

∫ 0

−c
Ψ(x)dx

And thus we want to have Ψ(−c) = 0,
∫ 0

−2c Ψ(x) = 0, and Ψ(0) = 0 (since we
need g′(0) = 0, i.e. Ψ(0) − Ψ(−c) = 0). We also need |ψ(x)| < a, which we
ensure by taking |Ψ′(x)| < a for all x ∈ R, i.e. Ψ should not increase too quickly.
We can construct Ψ to have the desired properties by defining it piecewise in
terms of several bump functions, and then we take ψ := Ψ′. �

Using Lemma 1 in [9] (sometimes known as the “mirror equation”) and
Proposition 5.1, we change the table slightly a finite number of times to ensure
that no two vertices of the (n+ 1)st path are conjugate along that path, and x
and y are not conjugate along that path.

We now state the proposition that is the “workhorse” in the proof of 4.1.
Consider a strictly convex C2 billiard table with boundary σ : S1 → R2. Con-
sider a billiard path APB, where P is a vertex, A and B are interior points
close to P , and the path is not perpendicular to the table. See Figure 4.

Proposition 5.3 If P ′ is sufficiently close to P and the line l is nearly parallel
to the tangent line to σ at P , then we can perturb σ in a small neighborhood of
P to get a new boundary σ1 in such a way that the tangent line to σ1 at P ′ is
l, and σ1 is C2 and strictly convex.

Now we state and prove the calculus version of Proposition 5.3 and some
corollaries. Let the billiard path APB be on a section of the table described by
the C2 strictly convex function f : [−ν, ν] → R (where ν > 0) with coordinate
system taken so that f(0) = f ′(0) = 0. Let b ∈ (0, ν).

Lemma 5.4 Given ε > 0, there exists δ (depending on ε, b, and ν) such that if
|P ′−P | < δ and |m| < δ, then there exists g ∈ C2[−ν, ν] such that the graph of
g passes through P ′ with slope m, f(x) = g(x) for all x ∈ [−ν,−b] ∪ [b, ν], and
‖f − g‖2 < ε (so g is strictly convex).

103



Figure 4: Lemma 5.4

Proof We write g(x) = f(−b) +
∫ x
−b[f

′(−b) +
∫ t
−b(f

′′(s) + ψ(s))ds]dt, where
ψ : [−ν, ν] → R is a C∞ function such that |ψ(x)| < a for all x ∈ [−b, b],
ψ(x) = 0 for all x ∈ [−ν,−b] ∪ [b, ν], and

∫ b
−b ψ(x)dx = 0. Let P ′ = (c, d). We

wish to have g(c) = d and g′(c) = m. Using Fubini’s theorem and integration
by parts, we get

g(c) = f(c) +

∫ c

−b

∫ t

−b
ψ(s)dsdt = f(c) +

∫ c

−b

∫ c

s

ψ(s)dtds

= f(c) +

∫ c

−b
(cψ(s)− sψ(s))ds = f(c) + c(Ψ(c)−Ψ(−b))−

∫ c

−b
sψ(s)ds

= f(c) + cΨ(c)−
∫ c

−b
sψ(s)ds

= f(c) + cΨ(c)− (sΨ(s)|c−b +

∫ c

−b
Ψ(s)ds

= f(c) +

∫ c

−b
Ψ(x)dx

and

g′(c) = f ′(c) +

∫ c

−b
ψ(s)ds = f ′(c) + Ψ(c)

We require Ψ′(x) = ψ(x) for all x ∈ [−ν, ν], Ψ(−b) = Ψ(b) = 0, and |Ψ′(x)| < a
for all x ∈ [−ν, ν]. Thus we need

|m− f ′(c)| = |Ψ(c)| =
∣∣∣∣∫ c

−b

∫ x

−b
Ψ′(t)dt

∣∣∣∣ < a(b+ c)

and

|d− f(c)| =
∣∣∣∣∫ c

−b
Ψ(x)dx

∣∣∣∣ =

∣∣∣∣∫ c

−b

∫ x

−b
Ψ′(t)dtdx

∣∣∣∣
<

∣∣∣∣∫ c

−b
a(b+ x)dx

∣∣∣∣ = |ab(b+ c) +
1

2
a(c2 − b2)|
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so we need |m−f
′(c)|

b+c < a and 2|d−f(c)|
(b+c)2 < a. As m → 0, c → 0, and d → 0, we

have f(c) → 0, and it is clear that the above quotients approach 0. Thus for
sufficiently small values of m, c, and d, they are bounded above by a, as desired.
�

Consider a billiard path PAP1, where A is a vertex, P and P1 are interior
points, and the path is not perpendicular to ∂M .

Corollary 5.5 For any A′ on the line AP1 sufficiently close to but not the same
as A, we can perturb σ in a small neighborhood of A to get σ1 in such a way
that σ1 is a strictly convex C2 curve and PA′P1 is a billiard path.

Figure 5: Eliminating a periodic path

Figure 6: A perpendicular path creates a problem

Now we state and prove the calculus version of Corollary 5.5. Let σ, f , and
b be as in Lemma 5.4. Consider the billiard path PAP1 shown in Figure 5, with
angles of incidence and reflection θ ∈ (0, π/2). If θ = π/2, then since A′ is on
AP in this case, we cannot change the table to simultaneously alter θ and keep
the billiard path going through P and P ′. See Figure 6.
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Corollary 5.6 For any A′ on the line AP1 that is sufficiently close, but not
equal, to A, there exists a strictly convex C2 function g : [−ν, ν]→ R such that
the angles made by PA′ and A′P1 with respect to the tangent line to g at A′ are
equal (i.e. PA′P1 is a billiard path), and g(x) = f(x) for all x ∈ [−ν,−b]∪ [b, ν].

Proof It is clear that the required slope of the tangent line to g at A′ approaches
0 as |A−A′| → 0. Now we can apply Proposition 5.3 to get the desired result.
�

Now we state another corollary. Let σ be as before, and let P1APBP2 be
a billiard path, where A and B are vertices, P1, P , and P2 are interior points,
and none of the segments of this path are perpendicular to the boundary.

Corollary 5.7 For any A′ sufficiently close (but not equal) to A, we can perturb
σ in small neighborhoods of A and B to get σ1 in such a way that σ1 is a strictly
convex C2 curve, and P1A

′B′P2 is a billiard path, where B′ is the point where
the line through A′ parallel to AP intersects σ1.

Figure 7: Eliminating a triple intersection through P

Now we state and prove the calculus version of Corollary 5.7. Let σ and b
be as in 5.4, and suppose that f1 : [−ν, ν] → R and f2 : [−ν, ν] → R (where
ν > 0) are functions that are locally graphs of σ in neighborhoods of A and B,
respectively. We introduce two Cartesian coordinate systems so that in the first,
f1(0) = f ′1(0) = 0, and in the second, f2(0) = f ′2(0) = 0. Consider the billiard
path P1APBP2 shown in Figure 7, and suppose that AB is not perpendicular
to the tangent line to the boundary at A or B.
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Corollary 5.8 Then for any A′ on P1A sufficiently close but not identical to
A, and for any B′ on P2B sufficiently close but not identical to B, with A′B′

parallel to AB, there exist strictly convex C2 functions g1 : [−ν, ν] → R and
g2 : [−ν, ν]→ R such that P1A

′B′P2 is a billiard path.

Proof It is clear from Figure 7 that the required slope of the tangent line to
g1 at A′ approaches 0 as |A − A′| → 0, and similarly the required slope of the
tangent line to B′ approaches 0 as |B − B′| → 0. The corollary now follows
from Proposition 5.3. �

Consider families of rays from x to y along the (n + 1)st path. Since there
are uncountably many such rays and x and y are not conjugate to any of the
(finite number of) vertices, we can find uncountably many paths that hit none
of the old vertices, which have no segments perpendicular to the boundary, and
do not pass through x of y except at the beginning and end (i.e. x and y are
not interior points of any of these paths). However, we still need to show that
there exist pairs of rays (one ray from x and the other from y) such that one of
their angle bisectors has slope arbitrarily close to the slope of the tangent line
at the new vertex, and the intersection point of these rays is arbitrarily close to
the new vertex.

Definition 5.9 Let l1 and l2 be oriented lines with direction vectors v1 and
v2, respectively, where v1 and v2 are unit vectors and v1 6= v2. Then the angle
bisector of l1 and l2 is the oriented line with direction vector v1 + v2.

Lemma 5.10 Let l be an oriented line with direction vector v, and let Z1, Z2,
and P be distinct points on l. Suppose l1(u) and l2(u), where −δ < u < δ,
are smooth families of oriented lines with direction vectors vi(u) such that l =
l1(0) = l2(0) for i = 1, 2. Assume that at u = 0, li focuses at Zi for i ∈ {1, 2}.
Then for every ε > 0, there exist oriented lines Li = Li(ε) ∈ {li(u),−δ < u < δ}
(i ∈ {1, 2}) such that L1 and L2 intersect at a unique point P ′, and P ′ satisfies
|P ′ − P | < ε. Moreover, the direction vectors Vi of Li satisfy |Vi − v| < ε.

Proof Without loss of generality, we may assume that v = (1, 0), P = (0, 0),
and Zi = (zi, 0). We parameterize li by li(u) = γi(u) + tvi(u). According to
the definition before Lemma 3.3, if f(u) = −〈γ′i, v′i〉 / 〈v′i, v′i〉 (where v′i 6= 0),
then li(u, f(u)) is the point on li(u) where the family li(u) is focused in linear
approximation at u = 0. We will show that for every ε > 0 there exist u1, u2
such that l1(u1) = l2(u2) = (0, d) where |d| < ε, and the slope m of v satisfies
|m| < ε.

By re-parameterizing (and possibly reversing the direction of the parameter-
ization), we may assume vi(u) has slope u. Thus, we write γi(u) = Zi + o(u) =
(z, 0) + (o(u), o(u)) = (z + o(u), o(u)). Here we define h(u) = o(u) if h : R→ R
is a function such that h(u)/u→ 0 as h→ 0.

We write γi(t) in coordinates as (γ1i (t), γ2i (t)). The line γi(u) + tvi(u) hits
the y-axis at y = γ2i (u)− uγ1i (u) = u(−z+ o(u)). As u→ 0, this expression lies
between −2zu and − z2u. Depending on the sign of u, it is on the positive or
negative side of the y-axis. Since the y-intercept is a continuous function of u,
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by the intermediate value theorem there exists u for which the line γi(u)+tvi(u)
hits the y-axis for all y ∈ ( z2u,− z2u).

We have found that the y-intercept of the line depends on u, the line’s slope,
through the function u 7→ u(−z + o(u)) = −zu + o(u). Thus the derivative of
the y-intercept as a function of u is −z, so the derivative of the inverse function
is − 1

z . Call this function m; then m maps y to slope. Since m′(t) = −1/z, we
have m(y) = (− 1

z )y + o(y).
From the argument earlier, we know that there exist u1 and u2 such that

γ1(u1) and γ2(u2) both intersect the y-axis at (0, y0). Let the slopes of these lines
be m1 and m2 respectively; then by the formula above we have m1 = − 1

z1
+o(u)

and m2 = − 1
z2
y0 + o(y0). For sufficiently small values of y0, these slopes are

not equal. Hence limu→0m(u) = 0. Observe that if V has slope less than ε in
absolute value, then |V− (1, 0)| < ε, as desired. �

Figure 8: Matching up paths

Now we can use Proposition 5.3 to “match up” two of the paths we showed
exist in Lemma 5.10 by changing the table in a neighborhood of the new vertex.
This gives us a new (n+ 1)st billiard path with no vertices in P. See Figure 8.

Now we use Corollary 5.5 to eliminate periodic paths that use vertices from
any of the (n+ 1) paths. We then use Corollary 5.7 to eliminate triple intersec-
tions (except those at x and y) that have arisen from constructing the (n+ 1)st
path. Now we have constructed (n + 1) billiard paths from x to y that satisfy
conditions (1)− (4), and have made only small changes to the boundary of the
table. This completes the proof of 4.1.

Suppose that ξ and ξ̃ are polygonal paths from x to y with the same number
of vertices. Let the vertices of ξ be p1, . . . pk and the vertices of ξ̃ be p̃1, . . . p̃k.
We define d(ξ, ξ̃) = max {d(pi, p̃i) : i ∈ {1, . . . k}}.

Lemma 5.11 Consider a strictly convex C2 curve τ : S1 → R2 and points x
and y in the interior of the region bounded by τ . Suppose there exist n billiard
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paths ξ1, . . . ξn for τ from x to y with no triple intersections except at x and
y and no common vertices, and x and y are not conjugate along any of these
paths. Then there exists an open neighborhood N of τ in C2(S1,R2) such that
for every α ∈ N , x and y are still in the interior of the region bounded by α, and
there exist n billiard paths ξ̃1, . . . ξ̃n for α from x to y with no triple intersections
except at x and y and no common vertices.

Proof Let ξ1, . . . , ξn be billiard paths for τ as above, and let ξ̂1, . . . ξ̂n be polyg-
onal paths from x to y such that each ξ̂i has the same number of vertices as ξi,
and d(ξi, ξ̂i) < ε for all i ∈ {1, . . . n}. We claim that if ε > 0 is sufficiently small,

then ξ̂1, . . . ξ̂n also have no triple intersections (except at x and y) and no com-
mon vertices. Assume that i, j, k are distinct. For ε > 0 sufficiently small, the
sets ξi ∩ ξj and ξ̂i ∩ ξ̂j are close, and likewise ξj ∩ ξk and ξ̂j ∩ ξ̂k are close. Since

ξi ∩ ξj ∩ ξk = ∅, it follows that for ε sufficiently small we have ξ̂i ∩ ξ̂j ∩ ξ̂k = ∅.
Similarly, if i 6= j and ε > 0 is sufficiently small, then ξ̂i and ξ̂j have no common
vertices.

Next we show that given ε > 0, there exists an open neighborhood N of τ
sufficiently small that for all α ∈ N , there exist billiard paths ξ̃1, . . . ξ̃n for α
from x to y such that d(ξ̃i, ξi) < ε. Let ξ = ξi for some i ∈ {1, . . . , n}. Let l(u),
|u| < η, be a family of oriented lines parameterized by l(u, t) = γ(u) + tv(u),
where γ(u) ≡ x and the initial segment of ξ is contained in l(0). Suppose ξ makes
k reflections on the table bounded by τ and goes from x to y. Let l1(u), . . . lk(u),
|u| < η, be the families of oriented lines obtained by k reflections of l(u) on the
table bounded by τ . Now consider the families l̃1(u), . . . , l̃k(u), |u| < η, obtained
by reflecting l(u) on the table bounded by α, where α : S1 → R2 is C2 close to
τ .

Let f(u, t) = lk(u, t) and g(u, t) = l̃k(u, t). The final segment of ξ is con-
tained in lk(0), and there exists t0 such that f(0, t0) = y. We can make g as C1

close to f as desired by taking α sufficiently C2 close to τ (a bit of additional
argument is required here). By condition (4) in Theorem 4.1, y is not the fo-
cusing point for lk(u) at u = 0. Then by Lemma 3.7, Df(0, t0) is invertible.
It follows from Lemma 3.8 that there exists (u1, t1) close to (0, t0) such that
g(u1, t1) = y. The point (u1, t1) can be taken as close to (0, t0) as desired by
taking α sufficiently C2 close to τ . We let ξ̃ be the billiard path determined by
l̃(u1), l̃1(u1), . . . l̃k(u1) that goes from x to y for the table bounded by α. By
choosing α ∈ Ni, where Ni is a sufficiently small neighborhood of τ in the C2

topology, we can make dist(ξ, ξ̃) < ε. We do this for each i ∈ {1, . . . , n}, and
take N =

⋂n
i=1Ni, which is the desired neighborhood of τ in C2(S1,R2). �

We have shown that for every ε-neighborhood of our given table’s boundary
σ, there is a strictly convex C2 closed curve τ and a δn > 0 such that for any
strictly convex C2 closed curve α in the δ-neighborhood of τ , (2) and (3) hold
for n and the table with boundary α. This shows that for fixed n, there is a C2

dense open set Gn of boundary curves α such that (2) and (3) hold.
Let C(x, y) ⊂ C2(S1) consist of strictly convex curves with x and y in the

interior. The set C(x, y) is not quite complete (due to strict convexity and the
fact that x and y are in the interior). We can, however, write C(x, y) as a union
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of complete metric spaces: C(x, y) =
⋃∞
i=1 Ci, where

Ci =

{
σ ∈ C(x, y) : inf

s∈S1
σ′′(s) ≥ 1

i
, dist(x, σ(S1)) ≥ 1

i
, dist(y, σ(S1)) ≥ 1

i

}
By Corollary 3.16, we see that G :=

⋂∞
n=1Gn is a dense Gδ set of strictly convex

C2 boundary curves with x and y in the interior for which there exist n billiard
paths from x to y that satisfy (2) and (3). This is the “generic” set of billiard
tables that we wanted to find.
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Generalized cyclotomy for finding

supplementary difference sets in the 2p

case

Yancy Liao

Abstract

Supplementary difference sets in the ring of residue classes modulo n
have a special relationship with compatible binary sequences. Finding
suppplementary difference sets of certain parameters can give us compati-
ble binary sequences that have application in the construction of maximal
determinant binary matrices. We are interested in finding these pairs of
supplementary difference sets using the theory of cyclotomy. Regular cy-
clotomy has long been used to find supplementary difference sets either
by computer search or by explicit construction, but only applies when n
is prime. We considered a generalized version of cyclotomy in the n = 2p
(twice a prime) case. This paper gives an overview of the relationship be-
tween supplementary difference sets and compatible sequences, and their
respective equivalence operations. Then we analyze the structure of the
generalized cosets with regard the n = 2p case. This analysis reveals
how the regular and generalized cosets react to the various equivalence
operations, and explicit formulas are given so that we can generate all
equivalent SDS pairs starting from an initial SDS pair using the formulas
alone. If we are given a collection of SDS pairs, these formulas allow us
to classify them up to equivalence. Finally, we analyze the relationships
between the parameters of an SDS in the n = 2p case and derive 1). a new
constraint on the parameters of an SDS pair, and 2). a new constraint on
the coset combinations of an SDS pair. These constraints should improve
the speed and efficiency of computer searches, which has been a limiting
factor in the discovery of supplementary difference sets of large sizes.

1 Difference sets

Definition 1.1 [Gy1] Let S1, S2, . . . , Se be subsets of a finite abelian group (G,
+) with |G| = n and |Si| = ki. Let ∆Si = {a−b : a, b ∈ Si , a 6= b} be the multi-
set of differences for Si. If there exists λ such that, for each x ∈ G\{0}, x occurs
in (

⋃e
i=1 ∆Si) exactly λ times, then S1, S2, . . . , Se are called supplementary

difference sets (SDS) with parameters e− {n ; k1, k2, . . . , ke ; λ}.

If e = 1, then S1 is called an ordinary difference set. Letting S1 = G, we
can always get a trivial ordinary difference set with parameters 1−{n ; n ; n−1}.
On the other hand, we can let S1 be a singleton set and then we get a trivial
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ordinary difference set with λ = 0. Frequently we have that k1 = k2 = . . . =
ke = k, and if so then the parameters can be abbreviated as e− {n ; k ; λ}.
Proposition 1.2 Suppose e−{n ; k1, k2, . . . , ke ; λ} are the parameters of sup-
plementary difference sets S1, S2, . . . , Se for some group G. Then

λ(n− 1) =
e∑
i=1

ki(ki − 1) (1)

Proof On the left-hand side, each of the n−1 non-zero elements occurs λ times
by assumption. On the right-hand side, if |Si| = ki, then there are ki(ki − 1)
ordered pairs from which to form differences. Then sum over i = 1, 2, . . . , e. �

Corollary 1.3 If |Si| = k for all i, then (1) becomes λ(n− 1) = ek(k − 1).

1.1 Equivalences

We can perform some operations on SDS that preserve the fact that they are
SDS, while leaving their parameters fixed.

Definition 1.4 For subset S and l ∈ G, addition is S + l = {x+ l : x ∈ S}.
Lemma 1.5 ∆(Si + l) = ∆Si.

Proof Given x, y ∈ Si, ∆Si 3 x− y = (x+ l)− (y + l) ∈ ∆(Si + l) �

Theorem 1.6 Given supplementary difference sets S1, S2, . . . , Se, adding an
element to any of the sets will preserve the fact that they are SDS.

Proof By Lemma 1.5, addition does not change any ∆Si. �

Addition clearly preserves the parameters of SDS, so adding an element l to
any of the sets is considered to be an additive equivalence of SDS.

There are additional equivalences if G is a ring (has multiplicative structure).

Definition 1.7 For subset S and d ∈ G, multiplication is dS = {dx : x ∈ S}.
Theorem 1.8 Assume S1, S2, . . . , Se are SDS. If G is a ring and d ∈ G is an
invertible element, then dS1, dS2 . . . , dSe are SDS.

Proof Fix non-zero x ∈ G. For y, z ∈ Si such that y−z = x, dy−dz = dx. So if
x occurs λi times in ∆Si, then dx occurs at least λi times in ∆dSi. Conversely,
since ∃d−1, if dx = dx′ for some non-zero x′, then x = x′. Therefore dx occurs
no more than λi times in ∆dSi. Iterating over i, if λ is the repetition number
of x in (

⋃e
i=1 ∆Si), then λ is also the repetition number of x in (

⋃e
i=1 ∆dSi). �

Multiplication by invertible d clearly preserves the parameters of SDS, so
multiplying d to every set is considered a multiplicative equivalence.

Multiplication by -1 is special because we can multiply any number of the
sets (not necessarily all of them) by -1 while preserving SDS (and parameters).
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Definition 1.9 Given supplementary difference sets S1, S2, . . . , Se, multiplying
some sub-collection by −1 is called half-multiplication.

Theorem 1.10 Half-multiplication preserves SDS and is an equivalence.

Proof If x, y ∈ Si, then −x,−y ∈−Si. So if x−y, y−x ∈ ∆Si, then −x−(−y) =
y − x ∈ ∆(−Si) and −y − (−x) = x− y ∈ ∆(−Si). Hence ∆Si = ∆(−Si). �

1.2 Ring of residue classes

Henceforth, assume that G = Z/nZ = Zn, the ring of residue classes modulo
n. To distinguish residue classes from integers, specific residue classes will be
referred to in boldface, e.g., 0, but their variables, e.g., x ∈ Z×p , are not bolded.

Proposition 1.11 For SDS in Zn, there are φ(n) multiplicative equivalences
where φ is Euler’s totient function.

Proof By definition there are φ(n) invertible elements (residue classes d with
gcd(n, d) = 1) so by Theorem 1.8 there are φ(n) multiplicative equivalences. �

For p a prime, Zp is a field. (Zp)× includes all p−1 non-zero elements and is
a cyclic group generated by a primitive root, i.e., (Zp)× = {ρi : 0 ≤ x ≤ p−2}
for some ρ whose order is p− 1. There are φ(p− 1) primitive roots in Zp.

The following is a well-known fact about finite fields Zp.

Theorem 1.12 [Pa1] For p ≡ 3 (mod 4), the set of p−1
2 quadratic residues

that are perfect squares is an ordinary difference set in Zp.

1.3 Cyclotomy

Difference sets exist in many forms, but one way of finding difference sets is
through the use of cyclotomial cosets.

Definition 1.13 Let ρ be a primitive root of (Zp)× where p = ef + 1 is prime.
Choosing particular e and f , the e-th power cyclotomial cosets of Zp are:

Ci = {ρes+i : 0 ≤ s ≤ f − 1}, 0 ≤ i ≤ e− 1

Since (Zp)× is cyclic, C0 is the unique subgroup of order f . Hence, the cy-
clotomial cosets of Zp are regular cosets of its multiplicative group, (Zp)×, and
as such they partition the non-zero elements of Zp into e subsets of f elements.

Cyclotomy has been used to construct difference sets for certain families of
prime numbers [Le1]. Two examples are given below of explicit constructions.

Theorem 1.14 [St1] If p = 2f + 1 ≡ 3 (mod 4), then S1 = C0 is an ordinary
difference set in Zp, in which case the parameters are 1− {p ; p−1

2 ; p−3
4 }.
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Theorem 1.14 is a reformulation of Theorem 1.12 using the language of
cyclotomy.

Theorem 1.15 [Sz2] If p = 2m+ 1 where m ≡ 2 (mod 4), then S1 = C0 ∪ C1

and S2 = C0 ∪ C3 are 2− {p ; p−1
2 ; 2p−6

4 } supplementary difference sets in Zp.

While Zp is additively cyclic, Theorem 1.13 by G. Szekeres also generalizes
to additively non-cyclic finite fields, i.e., finite fields of order pα where α > 1.

The problem with these explicit constructions is that only a small number
have been found to date, and then they force the parameters to be a certain way.
Supplementary difference sets are useful in a number of areas of mathematics,
but only with certain restrictions on the parameters that are not met by many
known constructions. (These restrictions will be explained in the next section of
this paper.) A more ad hoc approach to finding difference sets is via computer
search: take a prime and generate the cyclotomial cosets for possible e, then try
all combinations of cosets that satisfy given parameter restrictions to see which
ones yield supplementary difference sets. This approach is widely employed and
various mathematical tools have been developed to facilitate the process.

1.4 Generalized cyclotomy

If n is composite, Zn is not a field, and its multiplicative group is not necessarily
cyclic. The units of Zn are those elements relatively prime to n.

Note that this definition begins with a cyclic subgroup, but there are even
more general definitions that allow one to proceed from a non-cyclic subgroup:

Definition 1.16 Take a unit x ∈ Z×n . Let 〈xi〉 be the cyclic group generated
by a power of x. Then y〈xi〉 is a generalized coset for y ∈ Zn.

y〈xi〉 = {yxij : j = 0, 1, . . .}

When y is a unit, y〈xi〉 is also a regular coset, in which case it has the same
size as y〈xi〉. However, when y is not a unit, then y〈xi〉 can “collapse” into
fewer distinct elements. This is because when y is not invertible, it is possible
for ya = yb even when a 6= b. Ultimately the generalized cosets will partition
the elements of Zn, but into subsets that are not necessarily of the same size.

This definition captures the idea of regular cyclotomy, in which case y is al-
ways a unit and all generalized cosets are regular cosets. One minor discrepancy
is that in regular cyclotomy the {0} singleton is not considered a coset in the
way regular cosets are defined, but here it is considered a generalized coset.

Theorem 1.17 Multiplication by an invertible element permutes the cosets.
Each invertible element can be identified with a bijection of cosets.
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Proof Take invertible d. It is clear that dy〈xi〉 is a coset. Suppose that
dy〈xi〉 = dz〈xi〉 for y〈xi〉 6= z〈xi〉. Since ∃d−1, multiplying every element by
d−1 yields y〈xi〉 = z〈xi〉, a contradiction. So distinct cosets get permuted. �

Theorem 1.18 In regular cyclotomy, if there are e cosets generated from a
primitive root x, multiplication induces e cyclic permutations.

Proof Take xes+i ∈ Ci, then xes+iCj = Ci+j for all j, so once we know i then
we know where all the cosets go, and of course there are e choices of i. �

2 Binary sequences

Definition 2.1 Suppose a = (a0, a1, . . . , an−1) is a complex-valued sequence of
length n. Then we define the periodic autocorrelation function as:

Pa(k) =

n−1∑
i=0

aiai+k

where i+ k is taken modulo n for every k = 0, 1, . . . , n− 1.

Autocorrelation generalizes to a collection of sequences of the same length.
If X = A1, A2, . . . , Am is a collection of sequences of length n, then the periodic
autocorrelation function of X is PX(k) =

∑m
i=1 PAi(k). We will be dealing

exclusively with pairs of binary-valued sequences, a and b, where ai, bi ∈ {±1}.
For a pair of sequences a and b of length n, Pa,b(k) =

∑n−1
i=0 aiai+k + bibi+k.

Definition 2.2 For a collection of binary sequences X, if there exists a c ∈ Z
such that PX(k) = c for every k 6= 0, then X is said to be compatible.

We are interested in pairs a and b that are compatible with certain values for
c. When c = 0 and n is even, a and b are called a periodic Golay pair. When
c = 2 and n is odd, a and b are called an Ehlich pair. Both are important in
the construction of binary matrices of maximal determinant [Dj1] [Gy2].

2.1 Equivalences

There are some operations that preserve the constant autocorrelation function
of compatible binary sequences. If pairs of binary sequences are related by shifts
or decimations or half-reversal or negation, then they are said to be equivalent.

Definition 2.3 Let a = (ai)
n−1
i=0 be a sequence. Then al = (al, al+1, . . . , al+n−1)

is the l-th shift of the sequence a, where the indices are taken modulo n.

Theorem 2.4 A shift of sequence a preserves Pa(k), so shifting any sequence
in a compatible collection preserves the compatibility of the whole collection.

Proof ∀l, Pal(k) =
∑l+n−1
i=l aiai+k =

∑n−1
i=l aiai+k +

∑l−1
i=0 aiai+k = Pa(k). �
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Definition 2.5 Let a = (ai)
n−1
i=0 be a sequence. Taking a0 and then every d-th

entry for some d relatively prime to n is called decimating a by d. That is,

a(d) = (a0, ad, . . . , a(d∗(n−1)) (2)

is the d-th decimation of a if gcd(n, d) = 1.

It is clear that gcd(n, d) = 1 iff id 6≡ jd (mod n) for all i 6≡ j (mod n), so a
legitimate decimation rearranges the entries but does not exclude any ai.

There are φ(n) decimations of a. Decimation by −1 (mod n) is called rever-
sal. If gcd(n, d) = 1, then gcd(n,−d (mod n)) = 1. Decimating by d and then
performing a reversal is the same as decimating by −d (mod n). If we identify

each decimation with its reversal, there are φ(n)
2 decimation classes [Fl1].

Definition 2.6 For a sequence a, if we let pa = (pai)
n−1
i=0 where pai = Pa(i),

then pa is the autocorrelation sequence of a.

Lemma 2.7 If a sequence is decimated by d, then its autocorrelation sequence
is also decimated by d.

Proof Pa(d)(i) = Pa(i ∗ d) from (2), and the result follows. �
Theorem 2.8 If a and b are compatible sequences (they have constant auto-
correlation values for k 6= 0), then they remain compatible if decimated by the
same amount. That is, a(d) and b(d) are compatible for d relatively prime to n.

The following is a symmetry that exists in the autocorrelation function.

Lemma 2.9 For any sequence, Pa(k) = Pa(−k).

Proof Pa(−k) =
∑n−1
i=0 aiai−k =

∑n−k−1
i=−k aiai+k =

∑n−1
i=0 aiai+k �

Theorem 2.10 For any sequence, pa(d) = pa(−d) . In particular, pa = pa(−1)
.

Proof A reversal exchanges Pa(k) and Pa(−k), ∀k. Then apply Lemma 2.9. �
If a and b are compatible then a(−1) and b(−1) are compatible by Theorem

2.8, but also a and b(−1) are compatible, as well as a(−1) and b, by Theorem
2.10. This leads us to the definition of a separate equivalence based on reversal.

Definition 2.11 For a collection of sequences, taking the reversal of a sub-
collection is called half-reversal.

Now the following is an equivalence for binary sequences that, as we shall
later see, is special for not having a corresponding equivalence for SDS.

Definition 2.12 Given a sequence, negation takes the negative of each entry.

Theorem 2.13 Negation preserves Pa(k) for any a that is negated, so negating
any sequence in a compatible collection preserves compatibility.

Proof Pairs of 1s that occur k entries apart are swapped for −1s, and vice
versa. Similarly, (1,−1) pairs that occur k entries apart are swapped for (−1, 1)
pairs. The result is no change to the autocorrelation function for all k. �
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2.2 Sequences and difference sets

Binary sequences of length n and subsets of Zn are in bijection.

Definition 2.14 Given S a subset of Zn. If we let a = (ai)
n−1
i=0 where

ai =

{
1 if i ∈ S
−1 if i 6∈ S

then a is the incidence sequence of S. Conversely, we can take the incidence
set of any binary sequence of length n.

Furthermore, supplementary difference sets and compatible binary sequences
are in bijection. First consider the simplest case, that of ordinary difference sets.

Lemma 2.15 If S is a 1−{n ; k ; λ} ordinary difference set, then its incidence
sequence is compatible and

c = n+ 4(λ− k)

Proof Fix 0 < i < n. Suppose we have a sequence of all −1s, then Pa(i) =
n. Insert k many 1s into the sequence. Supposing that none of the 1s are i
entries apart, each 1 contributes −2 to Pa(i) rather than contributing +2 had it
remained a −1, so the net change to Pa(i) for each 1 is −4. For each time that
a 1 is i entries apart from another 1, this contributes +2 to Pa(i) rather than
contributing −2 had they not been i entries apart. The incidence sequence of
S will have k many 1s and there will be λ many pairs of 1s that are i entries
apart, so Pa(i) = n− 4k + 4λ. Since this holds for all i, the result follows. �

Lemma 2.16 If a is a compatible sequence, then its incidence set is an ordinary
difference set.

Proof Letting α =
∑n−1
i=0 ai, there are n+α

2 1s in this sequence of length n.
With reference to the proof of Lemma 2.15, the only way that Pa(i) is the same
for all i, is that the 1s occur i entries apart the same number of times for each
i. But then this means that the incidence set for a is an ordinary difference set,
with k = n+α

2 . Now we can apply 2.15 and solve for λ to get λ = k + c−n
4 . �

Lemmas 2.15 and 2.16 can be generalized from ordinary difference sets to
all supplementary difference sets with essentially the same proofs, adapted for
multiple sequences and sets instead of just one. There is a bijection between
SDS and compatible sequences and they are related by the following theorems.

Theorem 2.17 Let S1, S2, . . . , Se be e − {n ; k1, k2, . . . , ke ; λ} be SDS in Zn.
Then their incidence sequences are compatible with

c = en+ 4

(
λ−

e∑
i=1

ki

)
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Theorem 2.18 Let A1, A2, . . . , Ae be compatible sequences of length n. Let
α1, α2, . . . , αe be the entry sums. Then their incidence sets, S1, S2, . . . , Se, are
e− {n ; k1, k2, . . . , ke ; λ} SDS with

ki =
n+ αi

2
, λ =

e∑
i=1

ki +
c− en

4

In the case we are interested in, SDS pairs, we have the following statements.

Proposition 2.19 [Gy2] Let a and b be compatible sequences. Let α and β be
the entry sums. Their incidence sets, Sa and Sb, are 2 − {n ; ka, kb ; λ} SDS
with

ka =
n+ α

2
, kb =

n+ β

2
, λ = ka + kb +

c− 2n

4

Proposition 2.20 Let Sa and Sb be SDS with parameters 2 − {n ; ka, kb ; λ}.
Then their incidence sequences, a and b, are compatible and

α = 2ka − n, β = 2kb − n, c = 2n+ 4(λ− ka − kb)

The upshot is that finding compatible sequence pairs with specific c is equiva-
lent to finding supplementary difference sets with the requisite parameters.

Now we can relate the equivalences of sequences (shifts, decimations, half-
reversal) with those for difference sets (addition, multplication, half-multiplication).

Theorem 2.21 Taking the l-th shift of a sequence corresponds to subtracting l
from its incidence set.

Proof Take al = (al, al+1, . . . , al+n−1). Since i ∈ Sa ⇒ ai = 1, and this ai is
shifted to the i− l-th position of al, this means that i ∈ Sa ⇒ i− l ∈ Sal . �

Theorem 2.22 Taking the d-th decimation of a sequence (which implies that d
is invertible) corresponds to multiplying its incidence set by d−1.

Proof Take a(d) = (a0, ad, . . . , a(d∗(n−1)). Decimation by d moves ai to the
position x where i = dx, and so ai is moved to the d−1i-th position of a(d). This
means that i ∈ Sa ⇒ ai = 1⇒ d−1i-th position of a(d) is 1⇒ d−1i ∈ Sa(d) . �

By our discussion on decimations, half-reversal of a collection of sequences
corresponds to multiplying incidence sets by -1−1 = -1, or half-multiplication.
This is an equivalence of supplementary difference sets by Theorem 1.10.

We see that some operations on sequences that preserve compatibility have
analogous operations that preserve both SDS and parameters of their incidence
sets. And those operations on sets that preserve SDS and parameters have anal-
ogous operations that preserve the compatibility of their incidence sequences.
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Negation of sequences preserves compatibility by Theorem 2.13, and so by
the discussion above it must also preserve the SDS of the incidence sets. But
taking the negation of some sequences corresponds to taking the complement
of their incidence sets, which although preserving SDS, does not preserve the
parameters ki and λ. So even though negation qualifies as an equivalence for
sequences, its corresponding action is not an equivalence for difference sets.

2.3 Sequences and cyclotomy

The following is a sum-of-squares condition for compatible binary sequence
pairs. It is one way to narrow down the possibilities of coset combinations
when searching for difference sets using cyclotomy.

Theorem 2.23 [Gy2] Suppose a and b are compatible binary sequences of length
n so that Pa(k) + Pb(k) = c for all k 6= 0. Let α be the entry sum of a and β

the entry sum of b. That is, α =
∑n−1
i=0 ai and β =

∑n−1
i=0 bi. Then

α2 + β2 = 2n+ cn− c (3)

Proof

α2 + β2 =

(
n−1∑
i=0

ai

)2

+

(
n−1∑
i=0

bi

)2

=

n−1∑
k=0

(Pa(k) + Pb(k)) ,

n−1∑
k=0

(Pa(k) + Pb(k)) = 2n+
n−1∑
k=1

(Pa(k) + Pb(k)) = 2n+ (n− 1)c

�
Finding an Ehlich pair (c = 2) of length n requires that 4n− 2 be a sum of

two squares. Let n = 19. Then 4n−2 = 72+52 In some cases there are multiple
representations as a sum of two squares. Here there is only one, so α = ±7 and
β = ±5. Suppose α = 7 and β = 5; then there are 13 1s in sequence a and
12 1s in sequence b. Looking at Z19, if we let e = 3 and f = 6, then we need
two cosets and {0} for Sa, and two cosets for Sb. This does not guarantee that
an SDS exists, but a computer search would try coset combinations of this form.

In the periodic Golay case (c = 0), α2 + β2 = 2n, which implies that n is
also a sum of two squares. Already this narrows down the possibilities for n.
From number theory, we know that n ∈ Z+ is a sum of two squares if and only
if all of its prime divisors that are congruent to 3 (mod 4) have an even power.

In 2008, Adam Vollrath proved the following about periodic Golay pairs.

Theorem 2.24 [Vo1] Assume a and b form a periodic Golay pair of length
n = 2m for some odd m, and assume that there is a unique representation of n
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as a sum of two squares. Let Ea be the sum of the even entries of a and Da be
the sum of the odd entries of a, and similarly for Eb and Db. Then

n = E2
a +D2

a = E2
b +D2

b

Regular cyclotomy cannot be used to find periodic Golay pairs because of
the condition that n is even. The next two sections of this paper will be focused
on finding periodic Golay pairs for n = 2p using generalized cyclotomy.

3 Generalized cyclotomy for 2p

First we make some remarks on notation. Brackets around an integer ξ signifies
taking its residue class, so [ξ]2p is the residue class of ξ modulo 2p. In this
section, order always means multiplicative order.

Definition 3.1 Take x ∈ Zn. If, for every integer ξ ∈ x, ξ ≡ k (mod n) for
k < n implies that k is an even integer, then x is called an even residue class.

Definition 3.2 Take x ∈ Zn. If, for every integer ξ ∈ x, ξ ≡ k (mod n) for
k < n implies that k is an odd integer, then x is called an odd residue class.

Note that an integer ξ can belong to an even residue class of Zn without
being an even integer, or to an odd residue class without being an odd integer.

3.1 Coset structure

In this section we consider n = 2p for p a prime. Z×2p is cyclic by the Chinese
Remainder Theorem, and consists of the p− 1 odd residue classes besides p.

If p = ef + 1, we let C0 be the unique cyclic subgroup of order f . That is,
C0 = {ρes : 0 ≤ s ≤ f − 1} for primitive ρ ∈ Z×2p. If we let Ci = ρiC0, i ≤ e− 1,
we have e regular cosets of size f which partition the non-p odd residue classes.

Now we examine the generalized cosets, which consist of the even residues.

Lemma 3.3 If 2[ξ]2p = 0 ∈ Z2p, then [ξ]2p = 0 or p.

Proof By assumption, (2pk + 2)(ξ) = 2pl for some k, l, which requires that
2ξ = 2pm for some m, and this implies that ξ ≡ p (mod 2p) or 0 (mod 2p). �

Lemma 3.4 If x, y ∈ Z×2p and 2x = 2y, then x = y.

Proof Since 2(x− y) = 0, by Lemma 3.3 (x− y) = 0 or p. If (x− y) = p, then
either x or y is even, which contradicts that both elements belong in Z×2p. �

Residues modulo 2p follow the usual even/odd multiplication rules. If x is
an even and y an odd residue, then xy is an even residue. As a result, if x ∈ Z2p

is even while y ∈ Z×2p is odd, then xy 6∈ Z×2p while xy + z ∈ Z×2p for odd z.
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Theorem 3.5 Assume p = ef+1. If the regular cosets partition the non-p odd
residues into e sets of size f , then some generalized cosets partition the non-0
even residues into e sets of size f . They are of the form 2C0,2C1, . . . ,2Ce−1.

Proof Multiply each Ci by 2 and apply Lemma 3.4 to get p − 1 distinct even
residues. They are non-zero since elements of Z×2p cannot be zero divisors. �

Finally, it is easy to see see that pC0 = {p} and 0C0 = {0}, so in total we
have 2e (regular or generalized) cosets of size f plus these two singletons.

From here on we will refer to 2Ci as 2Ci.

3.2 Relation to Z×p
Definition 3.6 Let f be the match function f : Z×2p → Z×p

f([ξ]2p) = [ξ]p

Proposition 3.7 f is bijective.

Proof Each [ξ]2p < [p]2p goes to a distinct odd residue of Z×p and each [ξ]2p >
[p]2p goes to a distinct even residue, accounting for all p− 1 residues in Z×p . �

The inverse is

f−1([ξ]p) =

{
[ξ]2p if ξ (mod p) is an odd residue

[ξ + p]2p if ξ (mod p) is an even residue

Proposition 3.8 If ξ (mod 2p) is an odd residue, then ξ is an odd integer.

Proof If ξ = 2pk + η for some k and some odd η, then clearly ξ is odd. �

Theorem 3.9 If [ξ]2p ∈ Z×2p has order d, then [ξ]p has order d.

Proof By assumption, ξd = 2pk+1 for some k. Then certainly ξd ≡ 1 (mod p).
Suppose, for some e < d, ξe = pf+1 for some f . Because ξ is odd by Prop. 3.8,
ξe is odd, so f must be even, so ξe = 2p(f/2) + 1 and ξe ≡ 1 (mod 2p), which
contradicts d being the order of ξ (mod 2p). Thus d is the order of ξ (mod p).
�

In particular, ρ ∈ Z×2p is a primitive root iff f(ρ) is primitive in Z×p .

Proposition 3.10 For x, y ∈ Z×2p, f(xy) = f(x)f(y).

Proof f([ξ]2p[γ]2p) = f([ξγ]2p) = [ξγ]p = [ξ]p[γ]p = f(ξ)f(γ) �

If f(ρi) = f(ρ)i for all i, then it follows that the cyclotomial cosets are
related in the same manner. Denote {f(x) : x ∈ Ci} by f(Ci). If (Ci)

e−1
i=0 are

the regular cosets in Z×2p generated by ρ, then (f(Ci))
e−1
i=0 are the cosets in Z×p

generated by f(ρ). Conversely, if (Ci)
e−1
i=0 are the cosets generated by primitive

ρ ∈ Z×p , then (f−1(Ci))
e−1
i=0 are the regular cosets in Z×2p generated by f−1(ρ).
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3.3 Equivalences and coset structure

In order to develop a classification of SDS constructed from cyclotomial cosets,
we need to understand the equivalences that preserve coset structure.

Theorem 3.11 Multiplication by invertible x induces a cyclic permutation of
the regular cosets, which permutes the generalized cosets in the same way.

Proof If x ∈ Ci, then x = ρes+i for some s. For any y ∈ Cj , y = ρet+j for some
t, so xy = ρe(s+t)+(j+i), so xCi = Ci+j where the index i+ j is taken modulo
e. If xCi = Ci+j , then 2xCi = 2Ci+j . Finally, x{p} = {p} and x{0} = {0}. �

Theorem 3.12 If xCi = Ci+j in Z×2p, then f(x)f(Ci) = f(Ci+j) in Z×p .

Proof Assuming that the cosets in Z×2p are generated by ρ and the cosets in
Z×p are generated by f(ρ), recall from the discussion above that f(Ci) are the
cosets of Z×p . If we have xCi = Ci+j , then f(Ci+j) = f(xCi) = f(x)f(Ci). �

If we know what happens to the cosets under multiplication in Z×p , then we

can formulate explicitly what happens to the cosets of Z×2p, and vice versa.

Theorem 3.13 Addition by p preserves coset structure by swapping regular
and generalized cosets.

Proof Let [2ξ]2p ∈ 2Ci, so [2ξ]2p is even. We have [2ξ+p]2p ∈ 2Ci+p and then
[2ξ + p]2p ∈ Z×2p so we can take f([2ξ + p]2p) = [2ξ + p]p = [2ξ]p = [2]pf([ξ]2p).

Since [ξ]2p ∈ Ci, what this means is that 2Ci + p = f−1([2]p)Ci. Multiplying
both sides, we have (f−1([2]p))

−1(2Ci+p) = Ci, and (f−1([2]p))
−12Ci+p = Ci,

so Ci + p = (f−1([2]p))
−12Ci. Finally, {p}+ p = {0} and {0}+ p = {p}. �

Corollary 3.14 If [2]p ∈ f(Cj), then Ci + p = 2Ci−j and 2Ci + p = Ci+j.

Proof If [2]p ∈ f(Cj), then f−1([2]p) ∈ Cj and (f−1([2]p))
−1 ∈ C−j . Referring

to the proof of Theorem 3.13, Ci + p = (f−1([2]p))
−12Ci, which implies that

Ci+p = 2Ci−j , and 2Ci+p = f−1([2]p)Ci, which implies that 2Ci+p = Ci+j .
�

If we know to which coset 2 belongs in Zp, then we can write out the coset
permutation when adding by p in Z2p. We do so in the next sub-section.

Suppose we added a non-zero element other than p, say x = [γ]2p. If x is
even, then Ci + x remains in Z×2p, so we can take f(Ci + x). Given [ξ]2p + x ∈
Ci + x, we have f([ξ]2p + x) = [ξ + γ]p, but there is no reason to believe that
the union of all such [ξ + γ]p equals a coset in Zp. The same argument applies
to f(2Ci + x) if x were odd. In fact, there are no more elements that preserve
coset structure additively because the p-addition is the only one that swaps the
singletons, {p} and {0}. So while all the invertible elements respect cosets by
multiplication, only the element p does for addition. From the perspective of
sequences, all decimations respect cosets but only the p-th shift does.
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3.4 Cyclotomy formulas for equivalent SDS

Fix e and f where p = ef +1. If we have a pair of supplementary difference sets
in Z2p that are constructed from cyclotomial cosets, they will be of the form:

Sa =
⋃
i∈I

Ci
⋃
j∈J

2Cj Sb =
⋃
m∈M

Cm
⋃
n∈N

2Cn (4)

without taking into account the singletons, {0} and {p}.

We are interested in finding formulas for equivalent SDS that also respect
coset structure. By Theorem 3.11, multiplication by x ∈ Ck is an equivalence
that cyclically permutes the cosets by k. There are e choices for k, including
k = 0. So multiplication gives us e equivalent SDS pairs that respect coset struc-
ture. From the perspective of cyclotomy, it does not matter which xk ∈ Ck we
choose since each representative will permute the cosets in exactly the same way.

Recall that multiplication is an equivalence if we multiply both sets by the
same element. Suppose we are multiplying by xk ∈ Ck. Recall that multiplying
by xi corresponds to decimating the incidence sequences by x−1k . Thus we have:

Sa
(x−1
k )

=
⋃
i∈I

Ci+k
⋃
j∈J

2Cj+k Sb
(x−1
k )

=
⋃
m∈M

Cm+k

⋃
n∈N

2Cn+k, 0 ≤ k < e

(5)
with no change to the singletons.

Now suppose we perform half-multiplication. We know from Storer (Lemma
2, pg. 24) that if f is even then −1 ∈ C0 and if f is odd then e is even and
−1 ∈ C e

2
[St1]. In the former case, the cyclic permutation induced on the cosets

is identity, so we do not get new SDS. In the latter case, however, we get new
coset combinations by a cyclic permutation of e/2, and we show this as:

Sa =
⋃
i∈I

Ci
⋃
j∈J

2Cj Sb(−1)
=
⋃
m∈M

Cm+ e
2

⋃
n∈N

2Cn+ e
2

(6)

with no change to the singletons. Note that we arbitrarily took a and b(−1)
when we could have taken a(−1) and b.

Recall that when adding p, the corresponding action on the sequence is
taking the (−p)-th shift. For adding p, an application of Corollary 3.14 gives:

Sa−p =
⋃
j∈J

Cj+s
⋃
i∈I

2Ci−s Sb =
⋃
m∈M

Cm
⋃
n∈N

2Cn (7)

where f(ρ)et+s = 2 ∈ Zp for some t, or in other words, [2]p ∈ f(Cs). Note that
we arbitrarily took ap and b when we could have taken a and bp or ap and bp.
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The singletons (if any were included in Sa, Sb) are swapped with each other.

So far we have taken individual operations on the original SDS, but in order
to map out an equivalence class we have to consider multiple operations in
sequence. In the 2p = 26 case, a computer program written by Adam Vollrath
and Dr. William Orrick (2008) found 32 SDS using generalized cyclotomy (with
e = 4 and f = 3 and ρ = 7) that give periodic Golay pairs. It turns out
that all 32 are equivalent pairs according to our classification scheme. Take
one pair and there are 4 distinct decimations. Then perform half-reversals on
each of the 4 and we have 8 distinct pairs. Then there are four possibilities for
p-shifts, and so we have 32 in total. (Neither the computer program nor our
classification scheme has accounted for complementation, which is easy enough
to figure out and work with by hand.) The 2p = 82 case is similar except instead
of one equivalence class, we have 9 equivalence classes. In the 82 case, e = 8
and f = 5, so there are 8 distinct decimation classes of an initial pair within a
given sequence, and then half-reversals give us 16, from which we get 64 pairs
by shifts. Then multiply by 9 equivalence classes to get 576 SDS pairs, which
is the number the computer program found. Since the number of solutions was
so large, Dr. Orrick used Mathematica to check that these equivalence classes
do exist among the solutions and that they account for all the solutions.

3.5 Cosets and repetition numbers

If we let S =
⋃
i∈I Ci

⋃
j∈J 2Cj and x ∈ Z2p, then we call λx the repetition

number of x if x occurs λx times in ∆S. First we show that λx respects cosets.

Theorem 3.15 If x, y ∈ Ci, then λx = λy.

Proof If ρes+n ∈ Cn ⊂ S and ρet+m ∈ Cm ⊂ S such that ρes+n − ρet+m =
ρer+i ∈ Ci, we have ρe(s+k)+n−ρe(t+k)+m = ρe(r+k)+i ∈ Ci for 0 ≤ k < f . Each
element of Ci occurs once on the right-hand side. Since ρe(s+k)+n ∈ Cn and
ρe(t+k)+m ∈ Cm for all k, each of the elements of Ci occurs in ∆S. So whenever
an element of Ci occurs in ∆S, the other elements of Ci occur in ∆S as well. �

Now that we have established that repetition numbers are the same within
each coset, let λ(Ci) denote the repetition number for all elements in Ci.

Proposition 3.16 If f is even, then 2 | λ(Ci) for all i.

Proof If f is even then −1 ∈ C0. If x− y ∈ ∆S then y−x ∈ ∆S. If x− y ∈ Ci
then y − x ∈ −Ci = Ci, so each pair x− y ∈ Ci contributes 2 to λ(Ci). �

Proposition 3.17 If f is odd, then λ(Ci) = λ(Ci+ e
2
).

Proof If f is odd then −1 ∈ C e
2
. If x− y ∈ ∆S then y− x ∈ ∆S. If x− y ∈ Ci

then y−x ∈ −Ci = Ci+ e
2
, so each pair that adds to λ(Ci) also adds to λ(Ci+ e

2
).

�
Since p belongs in its own coset, we consider the special case of λp.
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Theorem 3.18 λp = 2fθ where θ is the number of coset pairs in S of the form
(Ci, 2Ci−j), where j is such that [2]p ∈ f(Cj). As a result, 2f | λp.

Proof By Corollary 3.14, Ci+p = 2Ci−j , so there are f many x ∈ Ci, y ∈ 2Ci−j
such that x+ p = y, which means x− y = −p = p. For each of those choices,
y−x = p, so each pair of cosets contributes 2f to λp. Conversely, if x ∈ Cm and
y ∈ 2Cn are such that x− y = p, then ρekx− ρeky = ρekp = p for 0 ≤ k < f ,
so then Cm + p = 2Cn By Corollary 3.14, n must be of the form m− j. �

Now we see what happens with the repetition numbers when we introduce
the singletons. Denote S0 = S ∪ {0}, Sp = S ∪ {p}, and S0,p = S ∪ {0} ∪ {p}.

Proposition 3.19 If Ci ⊂ S, then λ(Ci) and λ(−Ci) increase by 1 in S0.

Proof For each Ci ∈ S, in ∆S0 we have Ci − 0 = Ci and 0− Ci = −Ci. �

Proposition 3.20 If Ci ⊂ S, then λ(2Ci−j) increases by 2 in Sp, and if 2Ci ⊂
S, then λ(Ci+j) increases by 2 in Sp, where j is such that [2]p ∈ f(Cj).

Proof This follows from Corollary 3.14 and the fact that p = −p. �

Proposition 3.21 In addition to the changes recorded in Prop. 3.19 and Prop.
3.20 from including {0} and {p} separately, taking S0,p will increase λp by 2.

Proof The only differences left to be accounted for are those between p and 0,
in which case we have p− 0 = p and 0− p = p, so λp increases by 2. �

3.6 Parameter and coset constraints for SDS

An important fact from the preceding discussion is that λp ≡ 0 (mod 2f) if a
cyclotomy-constructed set does not contain both of the singletons, and λp ≡ 2
(mod 2f) if a cyclotomy-constructed set does contain both of the singletons.
Thus we have the following theorem which gives us a useful constraint on the
parameters of SDS, and which can be used to rule out certain sets of parameters.

Theorem 3.22 For SDS pairs Sa and Sb in Z2p, as long as f > 2:
λ ≡ 0 (mod 2f) if both ka and kb ≡ 0 or 1 (mod f)
λ ≡ 2 (mod 2f) if ka ≡ 0 or 1 (mod f) and kb ≡ 2 (mod f)
λ ≡ 4 (mod 2f) if both ka and kb ≡ 2 (mod f)

Proof The first case corresponds to both sets being constructed from cyclo-
tomial cosets but neither having both of the singletons, so λp can only be a
multiple of 2f , so the overall λ has to be a multiple of 2f as well. The second
case corresponds to one set having both singletons and the other does not, so
λp is a multiple of 2f plus 2 from the two singletons, and so λ has to be that as
well. Finally the third case corresponds to both sets having both singletons. �

These constraints can be used to rule out parameter sets of SDS pairs. This
can be done to speed up computer searches when dealing with large values of n,
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in which case there are large numbers of parameter sets to try, and trying each
parameter set takes a good deal of time to generate all the coset combinations.

The following is a constraint on the coset combinations that an SDS pair
must have.

Theorem 3.23 Let Sa and Sb be SDS pairs in Z2p with f > 2. If 2f divides
into λ k times (with or without a remainder) then, between the two sets, there are
exactly k coset pairs of the form (Ci, 2Ci−j), where j is such that [2]p ∈ f(Cj).

Proof This is a straightforward consequence of Theorem 3.18. �

So, for given n = 2p, Theorem 3.22 narrows down the feasible parameter
sets, and once we know a parameter set is viable, Theorem 3.23 can tell us
exactly how many coset pairs go into the construction of an SDS pair with
those parameters, and just as importantly, that no more than that number of
coset pairs of that form can go into the construction. This improves computer
searches when the number of cosets is very large.
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Smale’s Mean Value Conjecture with

Complex Dynamics for Quartic

Polynomials

Nicholas Miller and Max Zhou

Abstract

We will discuss a version of the Smale Mean Value Conjecture (SMVC)
that includes a condition on the dynamics of the critical points of complex
polynomials. We call this variant of the SMVC the Dynamical Smale
Mean Value Conjecture (DSMVC). Our main results are proofs of the
DSMVC for quartics with repeated critical points and quartics with all
critical points real. Finally, we will discuss partial results on when general
quartic polynomials satisfy the DSMVC.

1 Introduction

1.1 Smale’s Mean Value Conjecture

In 1981, Stephen Smale posed the following problem in [?]:

Conjecture 1.1 (Smale’s Mean Value Conjecture) Let P be a non-linear,
complex polynomial of degree d, with critical points ci and P ′(0) 6= 0. If z ∈ C
is not a critical point of P , then does

min
i

∣∣∣∣P (z)− P (ci)

z − ci

∣∣∣∣ ≤ K |P ′(z)| . (1)

hold for K = 1 or even K = d−1
d ?

Smale noted that K = d−1
d would be the sharpest possible bound if true, as

the bound is attained for P̃ (z) = zd − z and taking z = 0 in (1).
While progress has been made, Conjecture 1.1 is still open in full generality.

Specifically, in [?], Conjecture 1.1 was proved for d ≤ 10; however, little is known
for d > 10, except for special cases. A brief survey of results is presented in [?].

1.2 Dynamical Smale Mean Value Conjecture

In [?], Pilgrim and Miles-Leighton formulated a stronger conjecture that im-
posed a condition on the dynamics of critical points:
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Conjecture 1.2 (DSMVC) Let f(z) = z + a2z
2 + · · ·+ adz

d be a non-linear

complex polynomial. Then, there exists a critical point c of f for which

∣∣∣∣f(c)

c

∣∣∣∣ ≤
1 and which in addition converges to the origin under iteration of f .

Pilgrim and Miles-Leighton proved Conjecture 1.2 for d = 2, 3. In this report,
we discuss partial results on this conjecture for d = 4.

1.3 Our Investigations

For the rest of the report, the bound

∣∣∣∣f(c)

c

∣∣∣∣ ≤ 1 will be called ‘the SMVC’ and

Conjecture 1.2 will be called ‘the DSMVC.’ Additionally, we will assume all
polynomials are over C.

Our investigations have dealt mainly with the DSMVC. The SMVC states
that after 1 iteration of the polynomial, there exists a critical point that moves
closer to the origin. As will be discussed later, Theorem 2.8 states for any
complex polynomial of the form as in the DSMVC hypothesis, there also exists
a critical point converging to the origin under iteration. For d ≤ 10, we know
there exists a critical point satisfying the SMVC. For a given polynomial, do
the same critical points satisfy the SMVC and converge to the origin under
iteration? Does one of the conditions imply the other? Will examining the
dynamics of critical points give more insight into which critical points satisfy
the SMVC?

2 Complex Dynamics

Before we present our results, we will briefly describe the field of complex dy-
namics, and present some relevant definitions/results.

The field of complex dynamics studies how dynamical systems over C behave.
A dynamical system is a system whose state changes over time deterministically,
and can take values from the phase space. In our case, the phase space is C, the
system is points in C, the change of state is determined by functional iteration,
and time is measured in integer values based on the specific functional iterate.

To make the discussion more precise, we will introduce some basic defini-
tions/notations:

Definition 2.1 We will denote fn(p) as the n-fold composition of the function
f , evaluated at p, where n ∈ N. Define f0(p) = p.

Definition 2.2 An orbit of a point p under the function f is the sequence of
points {fn(p)}n∈N.

There is a particular type of point defined by its orbit:

Definition 2.3 A point p is a periodic point of period k ∈ Z+ under a func-
tion f if fk(p) = p.
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A special case of a periodic point is:

Definition 2.4 A point p is a fixed point under a function f if p is a periodic
point of period 1, that is: f(p) = p.

An essential equivalence relation of dynamical systems that we will use often
is:

Definition 2.5 Functions f and g are conjugate if there exists an invertible
function h such that f = h◦g ◦h−1. We say ”f is conjugate to g” or ”conjugate
g by h to produce f .”

Important properties of conjugacy are that it preserves fixed points and
critical points (where the derivative vanishes):

Lemma 2.6 If f = h ◦ g ◦ h−1 and p is a fixed point of g, then h(p) is a fixed
point of f .

Proof It is easy to see that f(h(p)) = h ◦ g ◦ h−1(h(p)) = h ◦ g(p) = h(p). �

Lemma 2.7 If f = h ◦ g ◦ h−1 and c is a critical point of g, then h(c) is a
critical point of f .

Proof From the chain rule, f ′(h(c)) = h′(g ◦ h−1(h(c))) · g′(h−1 ◦ h(c)) ·
h−1

′
(h(c)) = h

′
(g(c)) · g′(c) · h−1′(h(c)) = 0. �

As alluded to before, a less technical restatement of Corollary 7.10 from [?],
included without proof, is:

Theorem 2.8 Let f(z) = z−zn+1+an+2z
n+2+ · · ·+adzd, where n ≥ 1. Then,

there exists a critical point, c, that converges to the origin under iteration of f .
That is:

lim
n→∞

fn(c) = 0

A useful result that we will use later on is:

Lemma 2.9 Let a ∈ R+. The image of the open disk D(a, a) under
1

z
is

{z : Re(z) >
1

2a
}.

Proof We will show that z0 ∈ D(a, a) = {z = x + iy : (x − a)2 + y2 < a2} ⇔
1

z0
∈ {z : Re(z) >

1

2a
}.

Applying
1

z
to z0 = x0 + iy0, we have:

1

z0
=

1

x0 + iy0
=
x0 − iy0
x20 + y20

⇒ Re

(
1

z0

)
=

x0
x20 + y20

.
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Since z0 6= 0, the following chain of equivalences proves the result:

z0 ∈ D(a, a)⇔ x20 − 2ax0 + a2 + y20 = (x0 − a)2 + y20 < a2

⇔ x20 − 2ax0 + y20 < 0⇔ 2ax0 > x20 + y20 ⇔ Re

(
1

z0

)
=

x0
x20 + y20

>
1

2a

.

�

3 Conjugacy and the SMVC

As a elementary result, we will first show that the bounds in Conjecture 1.1 and
the SMVC are equivalent:

Lemma 3.1 For all polynomials of the form f(z) = z+ a2z
2 + · · ·+ adz

d there
exists a critical point c of f for which∣∣∣∣f(c)

c

∣∣∣∣ ≤ 1 (the SMVC)

⇐⇒
For all non-linear polynomials P where P ′(0) 6= 0, and ζ not critical points

of P , there exists a critical point ci such that∣∣∣∣P (ζ)− P (ci)

ζ − ci

∣∣∣∣ ≤ |P ′(ζ)| . (from (1))

Proof The ⇐ direction results from taking f(z) = P (z) and ζ = 0 in (1). To
show the ⇒ direction, define the functions

β(z) := z + ζ αν(z) := ν(z − P (ζ)) ,where ν ∈ C

Qζ(z) := αν ◦ P ◦ β(z) = ν(P (z + ζ)− P (ζ)).

Note that Qζ(0) = 0, and with the choice of ν =
1

P ′(ζ)
, Q′ζ(0) = 1. Further,

if ci is a critical point of P , then ci − ζ is a critical point of Qζ .
It follows that for every ζ not a critical point of P ,∣∣∣∣Qζ(ci − ζ)

ci − ζ

∣∣∣∣ =

∣∣∣∣ν(P (ci)− P (ζ))

ci − ζ

∣∣∣∣ =

∣∣∣∣P (ζ)− P (ci)

(ζ − ci)P ′(ζ)

∣∣∣∣
Thus, for every non-linear polynomial P and ζ not a critical point of P ,

there exists a polynomial of the form Qζ(z) = z + a2z
2 + · · · + adz

d where for
some critical point c of Qζ and some critical point ci of P :∣∣∣∣Qζ(c)c

∣∣∣∣ =

∣∣∣∣P (ζ)− P (ci)

(ζ − ci)P ′(ζ)

∣∣∣∣
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Thus, ∣∣∣∣Qζ(c)c

∣∣∣∣ ≤ 1⇒
∣∣∣∣P (ζ)− P (ci)

ζ − ci

∣∣∣∣ ≤ |P ′(ζ)| ,

which completes the proof of the ⇒ direction.
�

Theorem 3.1 can be viewed as a simplification of the SMVC: instead of
looking at all non-linear polynomials, it is sufficient to prove the SMVC for
polynomials of the form: f(z) = z + a2z

2 + · · · + adz
d. We will be able to

simplify the SMVC and DSMVC further with conjugacy.
Finding the critical points of an arbitrary polynomial is difficult, and so we

will instead parameterize polynomials by their critical points. Conjugacy allows
us to consider only a specific parameterization. There are two preliminary
lemmas before an important fact that we will often use.

Lemma 3.2 Suppose f is conjugate to g by an invertible linear map, that is
f = h ◦ g ◦ h−1 for some h where h(z) = αz, α 6= 0. Then g has critical point c
satisfying the SMVC ⇔ f has critical point αc satisfying the SMVC.

Proof We will prove the ⇒ direction as ⇐ is almost identical. g satisfies the

SMVC ⇔
∣∣∣∣g(c)

c

∣∣∣∣ ≤ 1, for some critical point c of g. From Lemma 2.7, αc is

a critical point of f . It is easy to see that

∣∣∣∣f(αc)

αc

∣∣∣∣ =

∣∣∣∣∣∣
αg(

αc

α
)

αc

∣∣∣∣∣∣ =

∣∣∣∣g(c)

c

∣∣∣∣. So,∣∣∣∣g(c)

c

∣∣∣∣ ≤ 1 implies

∣∣∣∣f(αc)

αc

∣∣∣∣ ≤ 1, which in turn implies that f satisfies the SMVC.

�

Lemma 3.3 Suppose f is conjugate to g by an invertible linear map, that is
f = h ◦ g ◦h−1 for some h where h(z) = αz, α 6= 0. Then, g has a critical point
c converging to the origin under iteration ⇔ f has critical point αc converging
to the origin under iteration. Further, g has a critical point c̃ that does not
converge to the origin under iteration ⇔ f has a critical point αc̃ that does not
converge to the origin under iteration.

Proof We will prove the ⇒ direction of both statements as ⇐ is almost iden-
tical. Suppose c is a critical point of g such that lim

n→∞
gn(c) = 0. Then,

from Lemma 2.7, αc is a critical point for f . lim
n→∞

fn(αc) = lim
n→∞

h ◦ gn ◦
h−1(αc) = lim

n→∞
αgn(c) = 0. Similarly, suppose c̃ is a critical point of g such

that lim
n→∞

gn(c̃) 6= 0. Then, from Lemma 2.7, αc̃ is a critical point for f .

lim
n→∞

fn(αc̃) = lim
n→∞

h ◦ gn ◦ h−1(αc̃) = lim
n→∞

αgn(c̃) 6= 0, as α 6= 0. �
So, when proving the DSMVC for a class of degree d polynomials, it is

sufficient to prove the DSMVC for polynomials of the form:
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f(z) =

∫ z

0

d−1∏
i=1

(ζ − ci) dζ, where (−1)d−1
d−1∏
i=1

ci = 1.

To see this, consider a degree d polynomial of the form

p(z) = z + a2z
2 + a3z

3 + · · ·+ adz
d.

Note that p′(z) = 1 + 2a2z + 3a3z
2 + · · ·+ dadz

d−1.

Now, conjugate p by α = (dad)
1
d−1 , producing f(z) := αp

( z
α

)
. Note that

f ′(z) =
d−1∏
i=1

(z− ci), where (−1)d−1
d−1∏
i=1

ci = 1. From Lemma 3.2, a critical point

of p satisfies the SMVC ⇔ the corresponding critical point of f satisfies the
SMVC. From Lemma 3.3, a critical point of p converges to 0 under iteration ⇔
the corresponding critical point of f converge to 0 under iteration. Using the
Fundamental Theorem of Calculus, we may restrict our attention to proving the
SMVC for polynomials of the form

f(z) =

∫ z

0

d−1∏
i=1

(ζ − ci) dζ, where (−1)d−1
d−1∏
i=1

ci = 1.

4 Minimal Critical Points

First, a definition:

Definition 4.1 Let c1, . . . , cd−1 be the critical points of an degree d polynomial,
f . cj is a minimal critical point of f if |cj | = min{|ci| : i = 1, . . . , d− 1}.

4.1 Minimal critical points satisfy the SMVC

A challenge of the SMVC is attempting to single out which critical points of a
polynomial are likely to satisfy the bound. One simple choice is a critical point
that is already closest to the origin (a minimal critical point). We will show
that for quartic polynomials, this critical point does in fact satisfy the SMVC.

Theorem 4.2 If f is a quartic polynomial of the form f(z) = z+a2z
2 +a3z

3 +
a4z

4, then the minimal critical points of f satisfy the SMVC.

Proof From Lemma 3.2, it is sufficient to prove the result for quartics of the
form:

f(z) =

∫ z

0

(ζ − c1)(ζ − c2)(ζ − c3)dζ, where − c1c2c3 = 1.

Without loss of generality, suppose that c1 is a minimal critical point. We

will show that

∣∣∣∣f(c1)

c1

∣∣∣∣ ≤ 1:
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Parameterizing f(c1) as a line integral by c1t, where t ∈ [0, 1], we have

f(c1) =

∫ c1

0

(ζ − c1)(ζ − c2)(ζ − c3)dζ = c1

∫ 1

0

(c1t− c1)(c1t− c2)(c1t− c3)dt

It follows that∣∣∣∣f(c1)

c1

∣∣∣∣ =

∣∣∣∣∫ 1

0

(c1t− c1)(c1t− c2)(c1t− c3)dt

∣∣∣∣ .
It is an elementary fact that

∣∣∣∣∫ 1

0

(c1t− c1)(c1t− c2)(c1t− c3)dt

∣∣∣∣ ≤ ∫ 1

0

|(c1t− c1)(c1t− c2)(c1t− c3)| dt.

Using c1c2c3 = −1,

∫ 1

0

|(c1t− c1)(c1t− c2)(c1t− c3)| dt =

∫ 1

0

∣∣∣∣ (c1t− c1)(c1t− c2)(c1t− c3)

c1c2c3

∣∣∣∣ dt
=

∫ 1

0

∣∣∣∣c1t− c1c1

∣∣∣∣ ∣∣∣∣c1t− c2c2

∣∣∣∣ ∣∣∣∣c1t− c3c3

∣∣∣∣ dt =

∫ 1

0

|t− 1|
∣∣∣∣c1c2 t− 1

∣∣∣∣ ∣∣∣∣c1c3 t− 1

∣∣∣∣ dt.
From the triangle inequality,

∫ 1

0

|t− 1|
∣∣∣∣c1c2 t− 1

∣∣∣∣ ∣∣∣∣c1c3 t− 1

∣∣∣∣ dt ≤ ∫ 1

0

|t− 1|
(∣∣∣∣c1c2

∣∣∣∣ t+ 1

)(∣∣∣∣c1c3
∣∣∣∣ t+ 1

)
dt.

Using that |c1| is minimal,

∫ 1

0

|t− 1|
(∣∣∣∣c1c2

∣∣∣∣ t+ 1

)(∣∣∣∣c1c3
∣∣∣∣ t+ 1

)
dt ≤

∫ 1

0

|t− 1| (t+ 1) (t+ 1) dt.

As |t− 1| = 1− t for t ∈ [0, 1],

∫ 1

0

|t− 1| (t+ 1) (t+ 1) dt =

∫ 1

0

(1− t) (t+ 1) (t+ 1) dt =
11

12
< 1.

Thus, we have shown ∣∣∣∣f(c)

c

∣∣∣∣ ≤ . . . < 1.

�
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Note that a similar argument cannot be extended for polynomials of higher
degree: Using the same argument for a degree d polynomial, we obtain a final
integral of the form:

1∫
0

(1− t)(t+ 1)d−2dt.

Using integration by parts, we see that

1∫
0

(1− t)(t+ 1)d−2 dt =
(1− t)(t+ 1)d−1

d− 1

∣∣∣∣1
0

+
1

d− 1

1∫
0

(t+ 1)d−1 dt

= − 1

d− 1
+

(t+ 1)d

d(d− 1)

∣∣∣∣1
0

= − 1

d− 1
+

2d

d(d− 1)
− 1

d(d− 1)

=
2d − d− 1

d(d− 1)
.

It is easy to check that for d > 4,
2d − d− 1

d(d− 1)
> 1.

4.2 Minimal critical point doesn’t necessarily converge

Since minimal critical points for quartics always satisfies the SMVC, it is natural
to ask if minimal critical points always converges to the origin under iteration.
If this were true, then the DSMVC would be resolved for quartics. However,
the minimal critical point does not necessarily converge to the origin, as shown
by the following counterexample:

Theorem 4.3 Given f(z) = z + a2z
2 + a3z

3 + a4z
4, a minimal critical point

does not necessarily converge to the origin under iteration of f .

Proof Let c1 = − 4
5 , c2 = 1 + 1

2 i, and c3 = 1− 1
2 i so that

f(z) =

∫ z

0

(ζ +
4

5
)(ζ − 1− 1

2
i)(ζ − 1 +

1

2
i) dζ =

z4

4
− 2

5
z3 − 7

40
z2 + z

Note that c1 = −4

5
is the minimal critical point. Let p :=

8−
√

134

10
≈

−0.358. It is easy to check that p is a fixed point of f and that p ∈
[
− 4

5 ,− 3
10

]
.

We will now show lim
n→∞

fn(c1) = p 6= 0. Note, fn(− 4
5 ) ∈ R, ∀n ∈ N. So, for our

purposes, we can restrict f |R : R→ R,
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f(x) =
x4

4
− 2

5
x3 − 7

40
x2 + x

It is an easy calculus exercise to show that f ′ is increasing on (−∞,− 3
10 ].

Now observe that

f ′(−4

5
) = 0 and f ′(− 3

10
) =

97

100

Since f ′ is increasing on [− 4
5 ,− 3

10 ], 0 < f ′(x) < 98
100 < 1 ∀x ∈ (− 4

5 ,− 3
10 ).

Since f is C1, we can apply the Mean Value Theorem to obtain:

0 < p−f(−4

5
) = f(p)−f(−4

5
) = f ′(y1)(p−(−4

5
)) for some y1 ∈

(
−4

5
, p

)
.

Further, using that 0 < f ′(x) < 0.98 on

(
−4

5
, p

)
, we see that

0 < p− f(−4

5
) < 0.98

(
p+

4

5

)
.

Notice that this implies that f(− 4
5 ) ∈ (− 4

5 , p]. We will now repeat the same
process to obtain:

0 < f2(p)− f2(−4

5
) = f ′(y2)(f(p)− f(−4

5
)) for some y2 ∈ (f(−4

5
), p)

⇒ 0 < p− f2(−4

5
) = f ′(y2)(p− f(−4

5
))

⇒ 0 < p− f2(−4

5
) < 0.98

(
p− f(−4

5
)

)
< (0.98)2

(
p− (−4

5
)

)
.

This implies that f2(− 4
5 ) ∈ (f(− 4

5 ), p] ( (− 4
5 , p]. Continuing in this way,

we obtain

0 < p− fn(−4

5
) < 0.98n

(
p− (−4

5
)

)
Using the Squeeze Theorem and lim

n→∞
(0.98)n = 0, it is evident that

lim
n→∞

fn(−4

5
) = p =

8−
√
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10
6= 0

Thus we have shown that the minimal critical point of f does not necessarily
converge to the origin under iteration of f . A picture of this is shown in Figure
1.

�

136



Figure 1: The blue line is graph of f(x), the red line is graph of identity function.
Note that the minimal critical point is − 4

5 , which converges to fixed point p 6= 0.

5 Quartics with Repeated Critical Points

Our first main result is a proof of the DSMVC for quartics with repeated critical
points. The motivation for considering this special case is that it is a reduction
of the parameter space of quartic polynomials (parameterized by critical points)
from a 2 complex dimensional space to a 1 complex dimensional space. Addi-
tionally, during the proof we work with the modulus of the critical point, which
reduces the dimension further, to a 1-dimensional real space. In the proof, we
will demonstrate that under certain conditions, a minimal critical point actually
does converge to the origin under iteration.

Theorem 5.1 (DSMVC for Quartics with Repeated Critical Points) Let
p(z) = z+a2z

2 +a3z
3 +a4z

4 be a quartic polynomial. Suppose there are critical
points of p with multiplicity greater than 1. Then, p satisfies the DSMVC.

Proof We may restrict our attention to the quartic polynomials of the form

f(z) =

∫ z

0

(ζ − c1)(ζ − c2)(ζ − c3)dζ, where − c1c2c3 = 1.

Now, we will examine the case where there is a repeated critical point of f . We
have two cases:

1. There is one distinct critical point

2. There are two distinct critical points

The 1st case is trivial as we know that there always is a critical point converging
to the origin under iteration, from Theorem 2.8. We will focus on proving the
2nd case.

137



5.1 Case of 2 Distinct Critical Points

We can rewrite f as

f(z) =

∫ z

0

(ζ−c)2(ζ+
1

c2
) dζ = z−

(
1

c
− c2

2

)
z2+

(
1

3c2
− 2c

3

)
z3+

z4

4
, where c 6= 0

When written this way, the critical points of f are c and − 1

c2
. Algebra shows

that

c satisfies the SMVC⇔
∣∣4 + c3

∣∣ ≤ 12.

− 1

c2
satisfies the SMVC⇔

∣∣∣∣−6− 4

c3
− 1

c6

∣∣∣∣ ≤ 12.

In particular, when applying the triangle inequality, it is evident that suffi-
cient conditions are:

4 + |c|3 ≤ 12(⇔ |c| ≤ 2)⇒ c satisfies the SMVC.

4

|c|3
+

1

|c|6
≤ 6(⇔ c ≥ 3

√
2 +
√

10

6
≈ 0.95111)⇒ − 1

c2
satisfies the SMVC.

The regions where c and − 1
c2 separately satisfy the SMVC in Figures 2 and

3, respectively.

Rounding, the region 0.952 ≤ |c| ≤ 2 has both c and − 1

c2
satisfy the SMVC,

shown in Figure 4. We know at least 1 critical point converges to the origin
under iteration. Thus, Theorem 5.1 holds when 0.952 ≤ |c| ≤ 2.

We will need to consider the remaining cases:

1. |c| > 2

2. |c| < 0.952

First, we conjugate g even further, by β =
1

c
− c2

2
to produce

h(z) := βg(
z

β
) = z − z2 +Az3 −Bz4 (2)

where

A =
4− 8c3

3(−2 + c3)2
B =

2c3

(−2 + c3)3
(3)

The exceptional case where β = 0⇔ c = 3
√

2, which lies in the region where
both critical points satisfy the SMVC. We can apply Theorem 2.8 to see that at
least one critical point always converges to the origin under iteration of f . Thus,
our conjugation is appropriate to deal with the cases |c| > 2 and |c| < 0.952.
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Figure 2: The orange region is defined by |c| ≤ 2 and the purple region is defined
by |c| > 2 and

∣∣4 + c3
∣∣ ≤ 12.

Figure 3: The orange region is defined by c ≥ 3

√
2 +
√

10

6
and the purple region

is defined by |c| < 3

√
2 +
√

10

6
and

∣∣∣∣−6− 4

c3
− 1

c6

∣∣∣∣ ≤ 12.
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Figure 4: The orange region is defined by: 0.952 ≤ |c| ≤ 2; the purple region is

defined by the union of regions: 1. |c| < 3

√
2 +
√

10

6
and

∣∣∣∣−6− 4

c3
− 1

c6

∣∣∣∣ ≤ 12

and 2. |c| > 2 and
∣∣4 + c3

∣∣ ≤ 12.

5.2 |c| > 2

When |c| > 2, − 1

c2
satisfies the SMVC. Note − 1

c2
is the minimal critical point.

We will show that − 1

c2
also converges to the origin under iteration.

From Lemmas 2.7 and 3.3, the conjugated map h has critical point v :=

β

(
− 1

c2

)
=

1

2
− 1

c3
, which converges to the origin under iteration of h exactly

when − 1

c2
converges to the origin under iteration of f .

Let v2 denote the 2nd iterate of v under h. Computation shows that

v2 =
3

16
+

1

82944c33
+

31

165888c30
+

1

864c27
+

83

20736c24
+

95

10368c21

+
83

6912c18
− 13

2592c15
− 149

2592c12
− 29

192c9
− 281

1152c6
− 5

24c3

To bound the location of v2, we use the triangle inequality to obtain:∣∣∣∣ 3

16
− v2

∣∣∣∣ ≤ ∣∣∣∣ 1

82944c33

∣∣∣∣+

∣∣∣∣ 31

165888c30

∣∣∣∣+

∣∣∣∣ 1

864c27

∣∣∣∣+

∣∣∣∣ 83

20736c24

∣∣∣∣+

∣∣∣∣ 95

10368c21

∣∣∣∣
+

∣∣∣∣ 83

6912c18

∣∣∣∣+

∣∣∣∣ 13

2592c15

∣∣∣∣+

∣∣∣∣ 149

2592c12

∣∣∣∣+

∣∣∣∣ 29

192c9

∣∣∣∣+

∣∣∣∣ 281

1152c6

∣∣∣∣+

∣∣∣∣ 5

24c3

∣∣∣∣
< 0.0302,
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where we have used |c| > 2.
So, v2 ∈ D( 3

16 , 0.0302) ⊂ D(0.125, 0.125) ⊂ D(0, 0.25). It follows that

|v2| < 0.25 and from Lemma 2.9, Re

(
1

v2

)
> 4. Next, we conjugate h (from

(2)) by
1

z
= w to produce

y(w) :=
1

h

(
1

w

) = w + 1 +
1−A
w

+
B − 2A+ 1

w2
+

C

w3
,

(4)

where

C =
(2B +A2 − 3A+ 1) + (B −A(2B − 2A+ 1))z + (B(B − 2A+ 1))z2

1− z +Az2 −Bz3 .

(5)
Using the triangle inequality and |c| > 2, we can bound |A|, |B|, and |C| as

follows:

|A| =
∣∣∣∣ 4− 8c3

3(−2 + c3)2

∣∣∣∣ ≤ 4 + 8 |c|3

3(|c|3 − 2)2
<

4 + 8 · 23
3(23 − 2)2

=
17

27
.

The last inequality uses that 4+8|c|3
3(|c|3−2)2 is decreasing with respect to |c| when

|c| > 2. Observe,

|B| =
∣∣∣∣ 2c3

(−2 + c3)3

∣∣∣∣ ≤ 2 |c|3

(|c|3 − 2)3
<

2 · 23
(23 − 2)3

=
2

27
.

The last inequality uses that 2|c|3
(|c|3−2)3 is decreasing with respect to |c| when

|c| > 2.

We can bound |C| in a similar fashion:

|C| =
∣∣∣∣ (2B +A2 − 3A+ 1) + (B −A(2B − 2A+ 1))z + (B(B − 2A+ 1))

1− z +Az2 −Bz3
∣∣∣∣

≤ (2 |B|+ |A|2 + 3 |A|+ 1) + (|B|+ 2 |AB|+ 2 |A|2 + |A|) |z|+ (|B|2 + 2 |AB|+ |B|) |z|2

1− |z| −A |z|2 −B |z|3
.

(6)
Using the bounds for |A| and |B|, we can further bound |C| when z ∈

D(0, 0.25):

|C| ≤ · · · ≤
2503

729
+

1159

729
|z|+ 14

81
|z|2

1− |z| − 17

27
|z|2 − 2

27
|z|3

< 5.42.
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Let w2 =
1

v2
. Now, we will show that Re(w2) converges to +∞ under

iteration of y, which equivalently shows that v2 converges to 0 under iteration
of g. We know that |v2| < 0.25(⇔ |w2| > 4) and Re(w2) > 4, so the following
inequalities hold under induction:

Re(y(w)) ≥ Re(w) + 1− 1 + |A|
|w| −

|B|+ 2 |A|+ 1

|w|2
− |C|
|w|3

≥ Re(w) + 1− 44

27
· 0.25− 7

3
· 0.252 − 5.42 · 0.253

> Re(w) + 1− 0.64 = Re(w) + 0.36.

Thus, the right half-plane Re(w) ≥ 4 is forward-invariant under y(w). From
induction, w2 converges to ∞ under iteration of y, implying v2 converges to 0
under iteration of h.

This completes the proof of the case |c| > 2.

5.3 |c| < 0.952

When |c| < 0.952, c satisfies the SMVC. We will show that c also converges to
the origin under iteration.

From Lemmas 2.7 and 3.3, the conjugated map has critical point v := β (c) =

1 − c3

2
, which converges to the origin under iteration of h exactly when c con-

verges to the origin under iteration of f .
Let v5 denote the 5th iterate of v under h. Computation shows that

v5 = b0 + b3c
3 + b6c

6 + · · ·+ b1026c
1026

where b0 =
701655239901481831734279508205204350096578888782173749097

5391030899743293631239539488528815119194426882613553319203
and b3, b6, . . . , b1026 are not shown for conciseness.

To bound the location of v5, we use the triangle inequality to obtain:

|b0 − v5| ≤
∣∣b3c3∣∣+

∣∣b6c6∣∣+ · · ·+
∣∣b1026c1026∣∣ < 27

1000
,

where the last inequality used |c| < 952
1000 and computer computation using

fractions to find an upper bound. Using b0 < 0.131, we have v5 ∈ D(b0, 0.027) ⊂
D(0.79, 0.79) ⊂ D(0, 0.158) It follows that |v5| < 0.158 and from Lemma 2.9,

Re

(
1

v5

)
>

1

0.158
.

We will now use y(w) from (4), with A, B from (3) and C from (5).
Using the triangle inequality and |c| < 952

1000 , we can bound |A|, |B|, and
|C| using computer calculations involving fractions. We obtain the following
inequalities:

|A| =
∣∣∣∣ 4− 8c3

3(−2 + c3)2

∣∣∣∣ ≤ 4 + 8 |c|3

3(2− |c|3)2
<

4 + 8 · 952
1000

3

3(2− 952
1000

3
)2
<

282

100
.
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The last inequality uses that 4+8|c|3
3(2−|c|3)2 is increasing with respect to |c| when

|c| < 952
1000 . Observe,

|B| =
∣∣∣∣ 2c3

(−2 + c3)3

∣∣∣∣ ≤ 2 |c|3

(2− |c|3)3
<

2 · 952
1000

3

(2− 952
1000

3
)3
<

118

100
.

The last inequality uses that 2|c|3
(2−|c|3)3 is increasing with respect to |c| when

|c| < 952
1000 .

Bounding |C| as in (6) and using the bounds for |A| and |B|, we can further
bound |C| when z ∈ D(0, 0.158) by:

|C| ≤ · · · ≤ 19.78 + 26.56 |z|+ 9.23 |z|2

1− |z| − 2.82 |z|2 − 1.18 |z|3
< 31.6.

Let w5 =
1

v5
. Now, we will show that Re(w5) converges to +∞ under

iteration of y, which equivalently shows that v5 converges to 0 under iteration
of g. We know that |v5| < 0.158(⇔ |w2| > 1

0.158 ) and Re(w2) > 1
0.158 , so the

following inequalities hold under induction:

Re(y(w)) ≥ Re(w) + 1− 1 + |A|
|w| −

|B|+ 2 |A|+ 1

|w|2
− |C|
|w|3

≥ Re(w) + 1− 3.82 · 0.158− 7.82 · 0.1582 − 31.6 · 0.1583

> Re(w) + 1− 0.93 = Re(w) + 0.07.

Thus, the right half-plane Re(w) ≥ 1
0.158 is forward-invariant under y(w).

From induction, w5 converges to ∞ under iteration of y, implying v5 converges
to 0 under iteration of h.

This completes the proof of the case |c| < 0.952 and the proof of the theorem.
�

6 Quartics with Real Critical Points

Our second main result is a proof of the DSMVC for quartics with real critical
points. The motivation for considering this special case is that by restricting the
critical points to be real, elementary methods of single-variable calculus could
be applied to solve the problem without using computer calculations.

We can conjugate and restrict our attention to quartics of the form

f(z) =

∫ z

0

(ζ−c1)(ζ−c2)(ζ+
1

c1c2
)dζ = z+

(
−c1 − c2 + c21c

2
2

)
z2

2c1c2
−
(
−1 + c1c2 + c1c

2
2

)
z3

3c1c2
+
z4

4
.

Define
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h(z) :=
f(z)− z

z2
=

(
−c1 − c2 + c21c

2
2

)
2c1c2

−
(
−1 + c1c2 + c1c

2
2

)
z

3c1c2
+
z2

4
.

To prove DSMVC, we will show DSMVC holds for quartics for which:

1. h(0) = 0 (Lemma 6.1)

2. h(0) < 0 (Lemma 6.2)

3. h(0) > 0 (Lemma 6.3)

Lemma 6.1 If h(0) = 0, then the minimal positive and negative critical points
satisfy the DSMVC.

Proof First, we need to show that there exists positive and negative critical
points. From hypothesis,

h(0) =
−c1 − c2 + c21c

2
2

2c1c2
= 0.

It is easy to see that both c1 and c2 cannot be less than 0. If they were, then
h(0) > 0, a contradiction. If both c1 and c2 are not less than 0, then at least
one of: c1, c2, and − 1

c1c2
is positive, and at least one critical point is negative.

Let c̃1 be the minimal positive critical point and c̃2 be the minimal negative
critical point. Note that c̃1 and c̃2 are not necessarily c1 and c2, respectively.
We claim that 0 < f(z) < z on (0, c̃1] and 0 > f(z) > z on [c̃2, 0), which proves
the DSMVC. We will prove the case 0 < f(z) < z on (0, c̃1], then briefly describe
the proof for 0 > f(z) > z on [c̃2, 0):

It follows easily that the whole interval (0, c̃1] satisfies f(z) > 0: Suppose
if there was a θ ∈ (0, c̃1] where f(θ) ≤ 0. From f ′(0) = 1, we know locally
around 0, f is increasing and behaves like the identity function. So, from the
Intermediate Value Theorem, there would exist a j ∈ (0, θ] where f(j) = 0.
However, from Rolle’s Theorem this would imply there would exist a c̃ ∈ (0, j)
where f ′(c̃) = 0, contradicting that c̃1 was the minimal positive critical point.
Thus, the whole interval (0, c̃1] satisfies f(z) > 0.

To prove that (0, c̃1] satisfies f(z) < z, it suffices to show that f ′(z) < 1 on
(0, c̃1): if ∃q ∈ [0, c̃1] where f(q) > q, then by the Mean Value Theorem there
would be a q̃ ∈ (0, q) where

f ′(q̃) =
f(q)− f(0)

q − 0
=
f(q)

q
> 1,

a contradiction.

144



To show f ′(z) < 1 on (0, c̃1), we will show f ′ has its local maximum at
0 /∈ (0, c̃1). From hypothesis,

h(0) =
−c1 − c2 + c21c

2
2

2c1c2
= 0.

Solving for c2 in terms of c1, we find that:

h(0) = 0⇔ c2 =
1−

√
1 + 4c31

2c21
,

1 +
√

1 + 4c31
2c21

, or 0.

Clearly c2 6= 0, so we only need to consider the two cases

c2 =
1−

√
1 + 4c31

2c21
or

1 +
√

1 + 4c31
2c21

.

For both cases, f defined by c1 and c2 is:

f(z) = z −
(
1 + c31

)
z3

3c21
+
z4

4
.

From seeing that f ′′(0) = 0 and f ′′′(0) < 0, we find that 0 is the local
maximum for f ′(z).

Using these facts with the limit definition of the derivative and the Mean
Value Theorem, we know ∃δ > 0 where z ∈ (0, δ) satisfies 0 < f ′(z) < f ′(0) = 1.
Further, since we know that f ′ has no local maximum on (0, c̃1), we know that
the maximum of f ′ on [ δ2 , c̃1] is at one of the endpoints. Since f ′(c̃1) = 0, the

maximum is at δ
2 . Thus, we have shown that [ δ2 , c̃1] and (0, δ) satisfy f ′(z) < 1,

which shows f ′(z) < 1 on (0, c̃1). This completes the proof that the minimal
positive critical point satisfies the DSMVC.

To prove that the minimal negative critical point satisfies the DSMVC, we
use the same approach: we show that [c̃2, 0) satisfies 0 < f(z) < z. From
Intermediate Value Theorem and Rolle’s Theorem, f(z) < 0 on [c̃2, 0). Then,
using that f ′ takes its maximum at 0 and f ′′′(0) < 0, we can show that f ′(z) < 1
on [c̃2, 0). Finally, using a contradiction with the Mean Value Theorem, this
shows that f(z) > z on [c̃2, 0).

�

Lemma 6.2 If h(0) < 0, then the minimal positive critical point satisfies the
DSMVC.

Proof First, we need to show there exists a positive critical point. From hy-
pothesis,

h(0) =
−c1 − c2 + c21c

2
2

2c1c2
< 0.

It is easy to see that either c1 or c2 must be greater than 0: if they both
were less than zero, then we would have h(0) > 0.

145



Let c̃1 be the minimal positive critical point. As in the proof of Lemma 6.1,
it follows easily that f(z) > 0 on (0, c̃1]. What remains to be shown it that
f(z) < z. Let v be the local maximum of f ′. We will first show that v /∈ (0, c̃1].

From hypothesis,

h(0) =
−c1 − c2 + c21c

2
2

2c1c2
< 0,

Define the critical points of f ′ as v1 and v2:

v1 :=
−1 + c21c2 + c1c

2
2 −

√
1 + c21c2 + c1c22 + c41c

2
2 − c31c32 + c21c

4
2

3c1c2
(7)

v2 :=
−1 + c21c2 + c1c

2
2 +

√
1 + c21c2 + c1c22 + c41c

2
2 − c31c32 + c21c

4
2

3c1c2
. (8)

Using the second derivative test on the critical points of f ′, we obtain:

f ′′′(v1) = −2
√

1 + c1c22 + c41c
2
2 − c31c32 + c21 (c2 + c42)

c1c2
(9)

f ′′′(v2) =
2
√

1 + c1c22 + c41c
2
2 − c31c32 + c21 (c2 + c42)

c1c2
. (10)

Now, there are 2 cases to consider:

1. c1c2 > 0

2. c1c2 < 0

In both cases, we will show h(0) < 0⇒ v < 0⇒ v /∈ (0, c̃1].

Case 1 c1c2 > 0: From the results of the second derivative test in (9), v1
is the local maximum for f ′. So, v = v1. Using (7), it is easy to see that:

v1 < 0⇔ −1 + c21c2 + c1c
2
2 <

√
1 + c21c2 + c1c22 + c41c

2
2 − c31c32 + c21c

4
2.

Thus, to show v1 < 0, is sufficient to show:(
−1 + c21c2 + c1c

2
2

)2
< 1 + c21c2 + c1c

2
2 + c41c

2
2 − c31c32 + c21c

4
2.

However, this follows from h(0) < 0, as evidenced by the following:

(
−1 + c21c2 + c1c

2
2

)2
< 1 + c21c2 + c1c

2
2 + c41c

2
2 − c31c32 + c21c

4
2 ⇔ −c1 − c2 + c21c

2
2 < 0⇔ h(0) < 0.
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Case 2 c1c2 < 0: From the results of the second derivative test in (10), v2
is the local maximum for f ′. So, v = v2. Using (8), it is easy to see that:

v2 < 0⇔ 1− c21c2 − c1c22 <
√

1 + c21c2 + c1c22 + c41c
2
2 − c31c32 + c21c

4
2.

Thus, to show v2 < 0, it is sufficient to show:(
1− c21c2 − c1c22

)2
< 1 + c21c2 + c1c

2
2 + c41c

2
2 − c31c32 + c21c

4
2.

However, this follows from h(0) < 0, as evidenced by the following:

(
1− c21c2 − c1c22

)2
< 1+c21c2+c1c

2
2+c41c

2
2−c31c32+c21c

4
2 ⇔ c1+c2−c21c22 < 0⇔ h(0) < 0.

To verify f(z) < z on (0, c̃1], it is sufficient to use h(0) < 0 and that f ′(z)
doesn’t have a local maximum on (0, c̃1): Although 0 is a fixed point for f ,
h(0) < 0 implies that in a neighborhood of 0, f(z) < z, except at 0 when
f(0) = 0. Consider the positive part of this neighborhood, (0, δ] for δ > 0
sufficiently small. Now, from the Mean Value Theorem, we know ∃q ∈ (0, δ)
such that

f ′(q) =
f(δ)− f(0)

δ − 0
=
f(δ)

δ
< 1.

Now, consider [q, c̃1]. We know that 0 < f ′(q) < 1, and f ′(c̃1) = 0 < 1. If f ′

has no local maximum on (0, c̃1), then f ′ has no local maxima on (q, c̃1). Thus,
the maximum of f ′ on [q, c̃1] is at q, so f ′(z) ≤ f ′(q) < 1 on [q, c̃1].

Next, we will show that f ′(z) < 1 on [q, c̃1] implies that f(z) < z on [q, c̃1]:
Consider if not, and ∃w ∈ [q, c̃1] such that f(w) > w. Then, from the Mean
Value Theorem, ∃q̃ ∈ (q, c) where

f ′(q̃) =
f(w)− f(q)

w − q >
w − q
w − q = 1.

However, this contradicts f ′(z) < 1 on [q, c̃1].

We have shown f(z) < z on [q, c̃1] and (0, δ), which implies f(z) < z on
(0, c̃1]. Previously, we showed 0 < f(z) on (0, c̃1]. This completes the proof.

�

Lemma 6.3 If h(0) > 0, then the minimal negative critical point satisfies the
DSMVC.

Proof It is easy to see that there always exists a negative critical point. Let c̃2
be the minimal negative critical point. As in the proof of Lemma 0.2, it follows
easily that f(z) < 0 on [c̃2, 0). What remains to be shown is that f(z) > z.
Let v be the local maximum of f ′. We will first show that v /∈ (c̃2, 0). From
hypothesis,

147



h(0) =
−c1 − c2 + c21c

2
2

2c1c2
> 0.

The critical points for f ′ are v1 and v2 as defined in (7) and (8), respectively.
The results of the second derivative tests for v1 and v2 are the same as in (9)
and (10), respectively.

Now, there are 2 cases to consider:

1. c1c2 > 0

2. c1c2 < 0

In both cases, we will show h(0) > 0⇒ v > 0⇒ v /∈ [c̃2, 0).

Case 1 c1c2 > 0: Note that v1 is the local maximum for f ′. So, v = v1.
Using (7), it is easy to see that

v1 > 0⇔ −1 + c21c2 + c1c
2
2 >

√
1 + c21c2 + c1c22 + c41c

2
2 − c31c32 + c21c

4
2
.

Thus, to show that v1 > 0, it is sufficient to show that(
−1 + c21c2 + c1c

2
2

)2
> 1 + c21c2 + c1c

2
2 + c41c

2
2 − c31c32 + c21c

4
2.

However, this follows from h(0) > 0, as evidenced by the following:

(
−1 + c21c2 + c1c

2
2

)2
> 1 + c21c2 + c1c

2
2 + c41c

2
2 − c31c32 + c21c

4
2 ⇔ −c1 − c2 + c21c

2
2 > 0⇔ h(0) > 0.

Case 2 c1c2 < 0: Note that v2 is the local maximum for f ′. So, v = v2. It
is easy to see from (8) that

v2 > 0⇔ 1− c21c2 − c1c22 >
√

1 + c21c2 + c1c22 + c41c
2
2 − c31c32 + c21c

4
2.

Thus, to show v2 > 0, it is sufficient to show(
1− c21c2 − c1c22

)2
> 1 + c21c2 + c1c

2
2 + c41c

2
2 − c31c32 + c21c

4
2.

However, this follows from h(0) > 0, as evidenced by the following:

(
1− c21c2 − c1c22

)2
> 1+c21c2+c1c

2
2+c41c

2
2−c31c32+c21c

4
2 ⇔ c1+c2−c21c22 > 0⇔ h(0) > 0.

To verify f(z) > z on [c̃2, 0), it is sufficient to use h(0) > 0 and that f ′(z)
doesn’t have a local maximum on (c̃2, 0): Although 0 is a fixed point for f ,
h(0) > 0 implies that in a neighborhood of 0, f(z) > z, except at 0 when
f(0) = 0. Consider the negative part of this neighborhood, [−δ, 0) for δ > 0
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sufficiently small. Now, from the Mean Value Theorem, we know ∃q ∈ (−δ, 0)
such that

f ′(q) =
f(δ)− f(0)

δ − 0
=
f(δ)

δ
< 1.

Now, consider [c̃2, q]. We know that 0 < f ′(q) < 1, and f ′(c̃2) = 0 < 1. If f ′

has no local maximum on (c̃2, 0), then f ′ has no local maxima on (c̃2, q). Thus,
the maximum of f ′ on [c̃2, q] is at q, so f ′(z) ≤ f ′(q) < 1 on [c̃2, q].

Next, we will show that f ′(z) < 1 on [c̃2, q] implies that f(z) > z on [c̃2, q]:
Consider if not, and ∃w ∈ [c̃2, q] such that f(w) < w. Then, from the Mean
Value Theorem, ∃q̃ ∈ (c̃2, q) where

f ′(q̃) =
f(q)− f(w)

q − w >
q − w
q − w = 1.

However, this contradicts f ′(z) < 1 on [c̃2, q].

We have shown f(z) > z on [c̃2, q] and [−δ, 0), which implies f(z) > z on
[c̃2, 0). Previously, we showed f(z) < 0 on [c̃2, 0). This completes the proof.

�

7 General Quartics

After focusing on the two special cases of quartics with repeated critical points
and quartics with real critical points, we look at general quartics. We were only
able to obtain partial results for the general case. The main difficulty is that the
minimal critical point does not always converge (see Theorem 4.3). In dealing
with the case of repeated critical points, we were able to show in some settings,
the minimal critical point did in fact converge. In dealing with the case of
the real critical points, we were able to consider minimal positive and negative
critical points. However, in the case of the general quartic, there are some
regions in |c1|, |c2| parameter space where the minimal critical point sometimes
converges and sometimes doesn’t, for arbitrary (c1, c2). Using MatLab, we were
able to plot where these regions were, shown in Figure 5.

For the remainder of this section, we will describe our partial results for
quartics in general. As before, we can consider quartic polynomials of the form

f(z) =

∫ z

0

(ζ − c1)(ζ − c2)(ζ +
1

c1c2
)dζ

= z +
1

2

(
− 1

c1
− 1

c2
+ c1c2

)
z2 − 1

3

(
c1 −

1

c1c2
+ c2

)
z3 +

z4

4
.

(11)

We will spend the rest of the report proving the following theorem:

Theorem 7.1 Let f be in the form of (11). Then, under special regions of
|c1| , |c2| parameter space, f satisfies the DSMVC. Further, the union of these
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Figure 5: Red dots are values of (|c1| , |c2|) where there exists c1, c2 such that
the minimal critical point does not converge to the origin.

regions implies that the DSMVC is satisfied for all |c1| , |c2| except for possibly
a compact set and where f is conjugate to a polynomial of form z − z3 + a4z

4.

To prove the theorem, we will first prove several regions of |c1| , |c2| parameter
space where f satisfies the DSMVC. We will then use these regions to show that
the DSMVC is satisfied for all |c1| , |c2|, except for possibly a compact region in
|c1| , |c2| space: [0, 8]× [0, 8], and where f is conjugate to a polynomial of form
z − z3 + a4z

4.
We will first show the DSMVC holds in the following regions:

1. |c1| ≥ 1.62, |c2| ≥ 1.62

2. |c2| ≤ 1.65, |c1| ≤ 0.23 |c2|
3. |c2| ≤ 4

5 , |c1| ≤ 2
5 |c2|

4. 2
5 |c1| ≤ |c2| ≤ 5

2 |c1| , |c2| ≤ 4
5 − |c1|

First, we conjugate f even further, by β =
1

2

(
1

c1
+

1

c2
− c1c2

)
, to produce

h(z) := βf(
z

β
) = z − z2 +Az3 −Bz4 (12)

where

A =
4c1c2

(
1− c21c2 − c1c22

)
3 (−c1 − c2 + c21c

2
2)

2 B =
2c31c

3
2

(−c1 − c2 + c21c
2
2)

3 . (13)

Note that unless β = 0, f is conjugate to a polynomial in the form z − z2 +
a3z

3+a4z
4. If β = 0, then f is either conjugate to z−z3+a4z

4 or f is conjugate
to z− z4/4. The second case is easy as we note 1 is a critical point of z− z4/4,
and it is easily checked 1 satisfies DSMVC. Thus, from here on forward, we will
restrict our attention to quartics not conjugate to z − z3 + a4z

4.
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7.1 |c1| ≥ 1.62, |c2| ≥ 1.62

When |c1| ≥ 1.62 and |c2| ≥ 1.62, c3 = − 1

c1c2
satisfies the SMVC as the mini-

mal critical point by Theorem 4.2. We will show that c3 also converges to the
origin under iteration of f .

From Lemmas 2.7 and 3.3, the conjugated map has critical point v :=

β

(
− 1

c1c2

)
, which converges to the origin under iteration of h exactly when

c3 converges to the origin under iteration of f .
Let v4 denote the 4th iterate of v under h. Using Mathematica, we composed

h four times and expanded the expression into terms with powers of c1 and
c2 using the ExpandAll command. This expression has thousands of terms.
However, it starts with

v4 =
8463

65536
− 705815

12582912c21c2
− 705815

12582912c1c22
− 801767

16777216c41c
2
2

+ · · ·

To bound the location of v4, we use the triangle inequality to obtain:

∣∣∣∣v4 − 8463

65536

∣∣∣∣ ≤ ∣∣∣∣ 705815

12582912c21c2

∣∣∣∣+ ∣∣∣∣ 705815

12582912c1c22

∣∣∣∣+ ∣∣∣∣ 801767

16777216c41c
2
2

∣∣∣∣+ · · · ≤ 4

100
.

To obtain this estimate, we used a text editor to change every minus to a plus,
evaluated the expression at c1 = c2 = 162

100 , and bounded the expression from
above.

Rounding 8463
65536 up to 0.130, v4 ∈ D( 8463

65536 , 0.04) ⊂ D(0.85, 0.85) ⊂ D(0, 0.17).

It follows that |v4| < 0.17 and from Lemma 2.9, Re

(
1

v4

)
>

100

17
. Next, we

conjugate h by
1

z
= w to produce

y(w) :=
1

h

(
1

z

) = w + 1 +
1−A
w

+
B − 2A+ 1

w2
+

C

w3
, (14)

where

C =
(2B +A2 − 3A+ 1) + (B −A(2B − 2A+ 1))z + (B(B − 2A+ 1))z2

1− z +Az2 −Bz3 .

(15)
Using the triangle inequality, we can bound |A|, |B|, and |C| using |c1| , |c2| ≥

162
100 . Observe,

|A| =
∣∣∣∣∣4c1c2

(
1− c21c2 − c1c22

)
3 (−c1 − c2 + c21c

2
2)

2

∣∣∣∣∣ ≤ 4
(
|c1| |c2|+ |c1|3 |c2|2 + |c1|2 |c2|3

)
3
(
|c1|2 |c2|2 − |c1| − |c2|

)2 . (16)

151



Note that the bounds on c1 are needed to use reverse triangle inequality on
the denominator. We will now define a : [1.62,∞)× [1.62,∞)→ R by

a(x, y) =

(
xy + x3y2 + x2y3

)
(x2y2 − x− y)

2

and show that a(x, y) has a maximum at x = y = 1.62 subject to the constraints
x, y ≥ 1.62.

Observe that

ax(x, y) =
xy − y2 − x3y2 − 6x2y3 − 2xy4 − x4y4 − 2x3y5

(−x− y + x2y2)
3

and

ay(x, y) =
−x2 + xy − 2x4y − 6x3y2 − x2y3 − 2x5y3 − x4y4

(−x− y + x2y2)
3 .

Note that the first order partial derivatives exist on [1.62,∞)× [1.62,∞) and it
is an exercise to show that

∇a(x, y) = 0⇔ (x, y) = ((−3)
1
3 , (−3)

1
3 ) 6∈ [1.62,∞)× [1.62,∞).

Thus the maximum of a occurs along the boundary. We will now consider the
boundary in which x = 1.62. Note

a(1.62, y) =
1.62y + 4.251528y2 + 2.6244y3

(−1.62− y + 2.6244y2)
2 .

It is an exercise to show that a(1.62, y) has no critical points with y ∈
[1.62,∞). Thus since ay(1.62, 1.62) < 0, a(1.62, y) is decreasing for y ∈ [1.62,∞)
and thus the maximum occurs at y = 1.62. Since this argument is symmetric
with respect to x and y, the maximum of a along the boundary occurs at
x = y = 1.62. Thus it follows that

|A| ≤ 593941000000

237627109443
<

5

2
.

Now bounding |B| similarly, we obtain

|B| =
∣∣∣∣∣ 2c31c

3
2

(−c1 − c2 + c21c
2
2)

3

∣∣∣∣∣ ≤ 2 |c1|3 |c2|3(
|c1|2 |c2|2 − |c1| − |c2|

)3 . (17)

A similar argument shows that the maximum of this function of c1 and c2
occurs at c1 = c2 = 1.62. Thus

|B| ≤ 16607531250000000

22292670436249121
<

3

4
.

Using the triangle inequality, we can bound |C|:
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|C| =
∣∣∣∣ (2B +A2 − 3A+ 1) + (B −A(2B − 2A+ 1))z + (B(B − 2A+ 1))

1− z +Az2 −Bz3
∣∣∣∣

≤ (2 |B|+ |A|2 + 3 |A|+ 1) + (|B|+ 2 |AB|+ 2 |A|2 + |A|) |z|+ (|B|2 + 2 |AB|+ |B|) |z|2

1− |z| −A |z|2 −B |z|3
.

(18)
Using the bounds for |A| and |B|, we can further bound |C| when z ∈

D(0, 0.17):

|C| ≤ · · · ≤
65

4
+

39

2
|z|+ 81

16
|z|2

1− |z| − 5

2
|z|2 − 3

4
|z|3
≤ 26.2.

Let w4 =
1

v4
. Now, we will show that Re(w4) converges to +∞ under

iteration of y, which equivalently shows that v4 converges to 0 under iteration
of g.

We know that |v4| ≤ 0.17(⇔ |w4| ≥ 100
17 ) and Re(w4) ≥ 100

17 , so the following
inequalities hold under induction:

Re(y(w)) ≥ Re(w) + 1− 1 + |A|
|w| −

|B|+ 2 |A|+ 1

|w|2
− |C|
|w|3

≥ Re(w) + 1− 7

2
· 0.17− 27

4
· 0.172 − 26.2 · 0.173

≥ Re(w) + 1− 0.92 = Re(w) + 0.08.

Thus the right half plane Re(w) ≥ 100
17 is forward-invariant under y(w). Hence

by induction, w4 converges to∞ under iteration of y, implying that v4 converges
to 0 under iteration of h.

The region where |c1| and |c2| satisfies |c1| ≥ 1.62, |c2| ≥ 1.62 is shown in
Figure 6.

However, by showing the region |c1| ≥ 1.62, |c2| ≥ 1.62 satisfies the DSMVC,
we have also shown several other symmetric regions satisfy the DSMVC. These
regions are obtained from interchanging of the critical points involved in the
inequalities:

1.
∣∣∣ 1
c1c2

∣∣∣ ≥ 1.62, |c1| ≥ 1.62.

2.
∣∣∣ 1
c1c2

∣∣∣ ≥ 1.62, |c2| ≥ 1.62.

All regions obtained from case |c1| ≥ 1.62, |c2| ≥ 1.62 are shown in Figure
7.
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Figure 6: Region where |c1| , |c2| ≥ 1.62.

Figure 7: All regions obtained from case |c1| ≥ 1.62, |c2| ≥ 1.62.
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7.2 |c2| ≤ 1.65, |c1| ≤ 0.23 |c2|
From hypothesis, |c1| |c2| ≤ 0.23 |c2|2 ≤ 0.70. Using |c1c2c3| = 1, this implies
|c3| > 1. Thus, c1 satisfies the SMVC as the minimal critical point by Theorem
4.2. We will show that c1 also converges to the origin under iteration.

The conjugated map has critical point u := βc1 =
1

2
+

c1
2c2
− c21c2

2
, which

converges to the origin under iteration of h exactly when c1 converges to the
origin under iteration of f .

Let u4 denote the 4th iterate of u under h. Using Mathematica, we composed
h four times and expanded the expression into terms with powers of c1 and
c2 using the ExpandAll command. This expression has thousands of terms.
However, it starts with

u4 =
8463

65536
+

469246883c31
6442450944

− 31352311289c61
618475290624

+
129811436695643c91
12824703626379264

+ · · ·

Bounding the location of u4 using the triangle inequality, we obtain

∣∣∣∣u4 − 8463

65536

∣∣∣∣ ≤ ∣∣∣∣469246883c31
6442450944

∣∣∣∣+

∣∣∣∣31352311289c61
618475290624

∣∣∣∣+

∣∣∣∣ 129811436695643c91
12824703626379264

∣∣∣∣+ ...

Now since some terms have a power of c2 in the denominator, we use the fact
that |c1| ≤ 0.23 |c2| to remove c2 in the denominator of terms. We obtain∣∣∣∣u4 − 8463

65536

∣∣∣∣ ≤ ∣∣∣∣469246883(0.23c2)3

6442450944

∣∣∣∣+

∣∣∣∣31352311289(0.23c2)6

618475290624

∣∣∣∣+ · · · ≤ 4

100
.

To obtain this estimate, we used a text editor to change every minus to a plus,
evaluated the expression at c2 = 1.65, and bounded the result from above.

So, u4 ∈ D( 8463
65536 , 0.04) ⊂ D(0.85, 0.85) ⊂ D(0, 0.17). It follows that |u4| ≤

0.17 and from Lemma 2.9, Re

(
1

u4

)
≥ 100

17
.

We will now consider y(w) from (14) with A,B from (13) and C from (15). Using
the triangle inequality, we can bound |A|, |B|, and |C| using |c1| ≤ 0.23 · 1.65 =
0.3795 and |c2| ≤ 1.65.

Bounding |A| as in (16):

|A| ≤
4
(
|c1| |c2|+ |c1|3 |c2|2 + |c1|2 |c2|3

)
3
(
|c2| − |c1| − |c1|2 |c2|2

)2 .

Note that the bounds on c1 are needed to use reverse triangle inequality on the
denominator. We will now define a : T → R by

a(x, y) =

(
xy + x3y2 + x2y3

)
(y − x− x2y2)

2
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where T = {(x, y) ∈ R2 : 0 < y ≤ 1.65 and 0 < x ≤ 0.23y} and show that
a(x, y) has a maximum at y = 1.65, x = 0.3795. Observe that

ax(x, y) =
−xy − y2 + x3y2 − 6x2y3 − 2xy4 − x4y4 − 2x3y5

(x− y + x2y2)
3

and

ay(x, y) =
x2 + xy + 2x4y − x2y3 − 2x5y3 − x4y4

(x− y + x2y2)
3 .

Note that the first order partial derivatives exist on T and it is an exercise to
show that

∇a(x, y) = 0⇔ (x, y) = (3
−2
3 ,−3

1
3 ) 6∈ T.

Thus the maximum of a occurs along the boundary. Let L1, L2, and L3

denote the lines connecting (0, 0) to (0, 1.65), (0, 1.65) to (0.3795, 1.65), and
(0.3795, 1.65) to (0, 0) respectively.

1. L1 has an equation of x = 0. Thus a(0, y) = 0 and the maximum of a(x, y)
along L1 is 0.

2. L2 has an equation of y = 1.65. Thus

a(x, 1.65) =
1.65x+ 4.492125x2 + 2.7225x3

(1.65 − x− 2.7225x2)
2 .

It is an easy exercise to show that a(x, 1.65) has no critical points with
x ∈ [0, 0.3795]. Thus since ax(0, 1.65) > 0, a(x, 1.65) is increasing for
x ∈ [0, 0.3795] and thus the maximum occurs at x = 0.3795.

3. L3 has an equation of x = 0.23y. Thus

a(0.23y, y) =
0.23y2 + 0.065067y5

(0.77y − 0.0529y4)
2 .

It is an easy exercise to show that a(0.23y, y) has no critical point with
y ∈ (0, 1.65]. Thus since ay(0.23(1.65), 1.65) > 0, a(0.23y, y) is increasing
for y ∈ (0, 1.65] and thus the maximum occurs at y = 1.65.

Notice that the maximum for L2 and L3 occurs at (x, y) = (0.3795, 1.65) and it
follows that

|A| ≤ 13370600892800000

5441552322938787
≤ 5

2
.

Bounding |B| as in (17), we obtain

|B| ≤ 2 |c1|3 |c2|3(
|c1|2 |c2|2 − |c1| − |c2|

)3 .
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A similar argument shows that the maximum of this function of c1 and c2 occurs
at c1 = 0.3795 and c2 = 1.65. Thus

|B| ≤ 42049152000000000000

58039582085962835093
≤ 3

4
.

Bounding |C| as in (18) and using the bounds for |A| and |B|, we can bound
|C| when z ∈ D(0, 0.17):

|C| ≤ · · · ≤
65

4
+

39

2
|z|+ 81

16
|z|2

1− |z| − 5

2
|z|2 − 3

4
|z|3
≤ 26.2.

Let w4 =
1

u4
. Now, we will show that Re(w4) converges to +∞ under

iteration of y, which equivalently shows that u4 converges to 0 under iteration
of g.
We know that |u4| ≤ 0.17(⇔ |w4| ≥ 100

17 ) and Re(w4) ≥ 100
17 . Thus, the following

inequalities hold under induction:

Re(y(w)) ≥ Re(w) + 1− 1 + |A|
|w| −

|B|+ 2 |A|+ 1

|w|2
− |C|
|w|3

≥ Re(w) + 1− 7

2
· 0.17− 27

4
· 0.172 − 26.2 · 0.173

≥ Re(w) + 1− 0.92 = Re(w) + 0.08.

Thus the right half plane Re(w) ≥ 100
17 is forward-invariant under y(w). Hence

by induction, w4 converges to ∞ under iteration of y, implying u4 converges to
0 under iteration of h.

The region where |c2| ≤ 1.65, |c1| ≤ 0.23 |c2| is shown in Figure 8.
However, by showing the region where |c2| ≤ 1.65, |c1| ≤ 0.23 |c2| satisfies the

DSMVC, we have actually shown the DSMVC is satisfied for symmetric regions
resulting from interchanging of critical points involved in the inequalities:

1. |c2| ≤ 1.65,
∣∣∣ 1
c1c2

∣∣∣ ≤ 0.23 |c2|

2. |c1| ≤ 1.65, |c2| ≤ 0.23 |c1|

3. |c1| ≤ 1.65,
∣∣∣ 1
c1c2

∣∣∣ ≤ 0.23 |c1|

4.
∣∣∣ 1
c1c2

∣∣∣ ≤ 1.65, |c1| ≤ 0.23
∣∣∣ 1
c1c2

∣∣∣
5.
∣∣∣ 1
c1c2

∣∣∣ ≤ 1.65, |c2| ≤ 0.23
∣∣∣ 1
c1c2

∣∣∣
All the regions from case |c2| ≤ 1.65, |c1| ≤ 0.23 |c2| are shown in Figure 9.
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Figure 8: Region where |c2| ≤ 1.65, |c1| ≤ 0.23 |c2|.p

Figure 9: All the regions from case |c2| ≤ 1.65, |c1| ≤ 0.23 |c2|.
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7.3 |c2| ≤ 4
5
, |c1| ≤ 2

5
|c2|

Since |c2| ≤ 4
5 , we have |c1| ≤ 2

5 · 45 = 8
25 , resulting in |c1| |c2| ≤ 32

125 . Using
|c1c2c3| = 1, |c3| > 1 and thus c1 satisfies the SMVC as the minimal critical
point by Theorem 4.2. We will show that c1 also converges to the origin under
iteration.

The conjugated map has critical point u := βc1 =
1

2
+

c1
2c2
− c21c2

2
, which

converges to the origin under iteration of h exactly when c1 converges to the
origin under iteration of f .

Let u4 denote the 4th iterate of u under h. Using Mathematica, we composed
h four times and expanded the expression into terms with powers of c1 and
c2 using the ExpandAll command. This expression has thousands of terms.
However, it starts with

u4 =
8463

65536
+

469246883c31
6442450944

− 31352311289c61
618475290624

+
129811436695643c91
12824703626379264

+ . . .

Then, bounding the location of u4 with the triangle inequality, we obtain

∣∣∣∣u4 − 8463

65536

∣∣∣∣ ≤ ∣∣∣∣469246883c31
6442450944

∣∣∣∣+ ∣∣∣∣31352311289c61
618475290624

∣∣∣∣+ ∣∣∣∣ 129811436695643c91
12824703626379264

∣∣∣∣+ · · ·
Now since some terms have a power of c2 in the denominator, we use the fact
that |c1| ≤ 2

5 |c2| to remove c2 in the denominator. We obtain∣∣∣∣u4 − 8463

65536

∣∣∣∣ ≤ ∣∣∣∣469246883( 2
5c2)3

6442450944

∣∣∣∣+

∣∣∣∣31352311289( 2
5c2)6

618475290624

∣∣∣∣+ · · · ≤ 401

10000
.

To obtain this estimate, we used a text editor to change every minus to a plus,
evaluated the expression at c2 = 4

5 , and bounding the result from above. Round-
ing 8463

65536 up to 0.130, u4 ∈ D( 8463
65536 , 0.0401) ⊂ D(0.085, 0.085) ⊂ D(0, 0.17). It

follows that |u4| ≤ 0.17 and from Lemma 2.9, Re

(
1

u4

)
≥ 100

17
.

We will now consider y(w) from (14) as defined above with A,B from (13) and
C from (15). Using the triangle inequality, we can bound |A|, |B|, and |C| using
|c1| ≤ 8

25 and |c2| ≤ 4
5 .

Bounding |A| as in (16):

|A| ≤
4
(
|c1| |c2|+ |c1|3 |c2|2 + |c1|2 |c2|3

)
3
(
|c2| − |c1| − |c1|2 |c2|2

)2 .

Note that the bounds on c1 are needed to use reverse triangle inequality on the
denominator. We will now define a : T → R by

a(x, y) =

(
xy + x3y2 + x2y3

)
(y − x− x2y2)

2
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where T = {(x, y) ∈ R2 : 0 < y ≤ 4
5 and 0 < x ≤ 2

5y} and show that a(x, y) has
a maximum at y = 4

5 , x = 8
25 . Observe that

ax(x, y) =
−xy − y2 + x3y2 − 6x2y3 − 2xy4 − x4y4 − 2x3y5

(x− y + x2y2)
3

and

ay(x, y) =
x2 + xy + 2x4y − x2y3 − 2x5y3 − x4y4

(x− y + x2y2)
3 .

Note that the first order partial derivatives exist on T and it is an exercise to
show that

∇a(x, y) = 0⇔ (x, y) = (3
−2
3 ,−3

1
3 ) 6∈ T.

Thus the maximum of a occurs along the boundary. Let L1, L2, and L3 de-
note the lines connecting (0, 0) to (0, 45 ), (0, 45 ) to ( 8

25 ,
4
5 ), and ( 8

25 ,
4
5 ) to (0, 0)

respectively.

1. L1 has an equation of x = 0. Thus a(0, y) = 0 and the maximum of a(x, y)
along L1 is 0.

2. L2 has an equation of y = 4
5 . Thus

a

(
x,

4

5

)
=

4x

5
+

64x2

125
+

16x3

25(
4

5
− x− 16x2

25

)2 .

It is an easy exercise to show that a(x, 45 ) has no critical points with
x ∈ [0, 8

25 ]. Thus since ax(0, 45 ) > 0, a(x, 45 ) is increasing for x ∈ [0, 8
25 ]

and thus the maximum occurs at x = 8
25 .

3. L3 has an equation of x = 2
5y. Thus

a

(
2

5
y, y

)
=

4y2

5
+

144y5

125(
y

5
− 16y4

25

)2 .

It is an easy exercise to show that a( 2
5y, y) has no critical point with

y ∈ (0, 45 ]. Thus since ay( 2
5 ( 4

5 ), 45 ) > 0, a( 2
5 , y) is increasing for y ∈ (0, 45 ]

and thus the maximum occurs at y = 4
5 .

Notice that the maximum for L2 and L3 occurs at (x, y) = ( 8
25 ,

4
5 ) and it follows

that

|A| ≤ 20105000

7863483
≤ 13

5
.

Bounding |B| as in (17),
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|B| ≤ 2 |c1|3 |c2|3(
|c2| − |c1| − |c1|2 |c2|2

)3 .
A similar argument shows that the maximum of this function of c1 and c2 occurs
at c1 = 8

25 and c2 = 4
5 . Thus

|B| ≤ 2000000000

4243659659
≤ 1

2
.

Bounding |C| as in (18) and using the bounds for |A| and |B|, we can bound
|C| when z ∈ D(0, 0.17):

|C| ≤ · · · ≤
414

25
+

961

50
|z|+ 67

20
|z|2

1− |z| − 13

5
|z|2 − 1

2
|z|3
≤ 26.5.

Let w4 =
1

u4
. Now, we will show that Re(w4) converges to +∞ under

iteration of y, which equivalently shows that u4 converges to 0 under iteration
of g.
We know that |u4| ≤ 0.17(⇔ |w4| ≥ 100

17 ) and Re(w4) ≥ 100
17 . Thus, the following

inequalities hold under induction:

Re(y(w)) ≥ Re(w) + 1− 1 + |A|
|w| −

|B|+ 2 |A|+ 1

|w|2
− |C|
|w|3

≥ Re(w) + 1− 18

5
· 0.17− 67

10
· 0.172 − 26.5 · 0.173

≥ Re(w) + 1− 0.94 = Re(w) + 0.06.

Thus the right half plane Re(w) ≥ 100
17 is forward-invariant under y(w). Hence

by induction, w4 converges to∞ under iteration of y, implying that u4 converges
to 0 under iteration of h.

The region where |c2| ≤ 4
5 , |c1| ≤ 2

5 |c2| is shown in Figure 10.
Note that we have actually proved more than just the region |c2| ≤ 4

5 ,
|c1| ≤ 2

5 |c2| satisfies the DSMVC. There are symmetric regions resulting from
interchanging of critical points in the inequality that also satisfy the DSMVC:

1. |c2| ≤ 4
5 ,
∣∣∣ 1
c1c2

∣∣∣ ≤ 2
5 |c2|

2. |c1| ≤ 4
5 , |c2| ≤ 2

5 |c1|

3. |c1| ≤ 4
5 ,
∣∣∣ 1
c1c2

∣∣∣ ≤ 2
5 |c1|

4.
∣∣∣ 1
c1c2

∣∣∣ ≤ 4
5 , |c1| ≤ 2

5

∣∣∣ 1
c1c2

∣∣∣
5.
∣∣∣ 1
c1c2

∣∣∣ ≤ 4
5 , |c2| ≤ 2

5

∣∣∣ 1
c1c2

∣∣∣
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Figure 10: Region where |c2| ≤ 4
5 , |c1| ≤ 2

5 |c2|.p

All regions obtained from the case |c2| ≤ 4
5 , |c1| ≤ 2

5 |c2| are shown in Figure
11.

7.4 2
5
|c1| ≤ |c2| ≤ 5

2
|c1| , |c2| ≤ 4

5
− |c1|

In this section, we will prove a region of the SMVC using a different technique
than before. We will show for all monic polynomials f , there exists an R such
that |z| > R⇒ |f(z)| > R. Using this, we will provide a sufficient condition of
one of the critical points always “staying away” from the origin under iteration
and the other two critical points satisfying the SMVC. Note that this implies
the DSMVC, as one critical point that satisfies the SMVC always converges to
the origin.

We will first prove the following:

Lemma 7.2 Let p(z) = a0+a1z+a2z
2+· · ·+an−1zn−1+zn, where a0, . . . , an−1 ∈

C. Let R = 1 +
n−1∑
i=0

|ai|. If |z| > R, then |p(z)| > R, ∀z ∈ C.
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Figure 11: All regions obtained from case |c2| ≤ 4
5 , |c1| ≤ 2

5 |c2|

Proof For |z| > R > 1 the following inequalities prove the result:

|p(z)| ≥ |z|n −
∣∣an−1zn−1 + · · ·+ a2z

2 + a1z + a0
∣∣

≥ |z|n −
n−1∑
i=0

|ai| |z|i ≥ |z|n − |z|n−1
n−1∑
i=0

|ai| = |z|n−1
(
|z| −

n−1∑
i=0

|ai|
)

≥ |z|
(
|z| −

n−1∑
i=0

|ai|
)
>

(
1 +

n−1∑
i=0

|ai|
)(

1 +

n−1∑
i=0

|ai| −
n−1∑
i=0

|ai|
)

= 1 +
n−1∑
i=0

|ai| = R.

�
Now, we will further conjugate f from (11) by α = 1

3√4
so we can consider

the monic polynomial

f̃(z) = αf(
z

α
) = z +

(
−c1 − c2 + c21c

2
2

)
21/3c1c2

z2 − 24/3
(
−1 + c21c2 + c1c

2
2

)
3c1c2

z3 + z4.

The critical points of f̃ are
c1
3
√

4
,
c1
3
√

4
, and − 1

3
√

4c1c2
.

Now, we will prove the following result:

Lemma 7.3 A region where − 1

c1c2
does not converge to the origin under iter-
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ation of f is defined by the inequality:

1− 2 |c1|2 |c2| − 2 |c1| |c2|2 − 6 |c1|3 |c2|3

12 · 22/3 |c1|4 |c2|4

> 2 +
|c1|+ |c2|+ |c1|2 |c2|2

21/3 |c1| |c2|
+

24/3
(

1 + |c1|2 |c2|+ |c1| |c2|2
)

3 |c1| |c2|
. (19)

Proof

R = 1 +
n−1∑
i=0

|ai| = 1 + 1 +

∣∣∣∣∣
(
−c1 − c2 + c21c

2
2

)
21/3c1c2

∣∣∣∣∣+

∣∣∣∣∣24/3
(
−1 + c21c2 + c1c

2
2

)
3c1c2

∣∣∣∣∣
≤ 2 +

|c1|+ |c2|+ |c1|2 |c2|2
21/3 |c1| |c2|

+
24/3

(
1 + |c1|2 |c2|+ |c1| |c2|2

)
3 |c1| |c2|

.

Note that by Lemma 2.7, −α 1

c1c2
= − 1

3
√

4c1c2
is a critical point of f̃ . The first

iterate of − 1
3
√

4c1c2
under f̃ is:

v1 := −1 + 2c21c2 + 2c1c
2
2 + 6c31c

3
2

12 · 22/3c41c42
.

Observe,

|v1| =
∣∣∣∣1 + 2c21c2 + 2c1c

2
2 + 6c31c

3
2

12 · 22/3c41c42

∣∣∣∣ ≥ 1− 2 |c1|2 |c2| − 2 |c1| |c2|2 − 6 |c1|3 |c2|3

12 · 22/3 |c1|4 |c2|4
.

Thus by Lemma 7.2,

1− 2 |c1|2 |c2| − 2 |c1| |c2|2 − 6 |c1|3 |c2|3

12 · 22/3 |c1|4 |c2|4

> 2 +
|c1|+ |c2|+ |c1|2 |c2|2

21/3 |c1| |c2|
+

24/3
(

1 + |c1|2 |c2|+ |c1| |c2|2
)

3 |c1| |c2|
.

implies |v1| > R, which in turn through induction implies∣∣∣∣ lim
n→∞

f̃n(− 1
3
√

4c1c2
)

∣∣∣∣ > R.

Thus by Lemma 3.3, − 1

c1c2
does not converge to the origin under iteration of

f .
�

Now, we will show we can find a region inside the region defined by (19) that
has a much simpler implicit function with respect to |c1| and |c2|.
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Lemma 7.4 The bound |c2| ≤ 4
5 − |c1| implies the inequality (19) from Lemma

7.3 and hence − 1

c1c2
does not converge to the origin under iteration of f when

|c2| ≤ 4
5 − |c1|.

Proof The inequality (19) from Lemma 7.3 is equivalent to

24/3 |c1|2 |c2|+ 24/3 |c1| |c2|2 + 22 · 21/3 |c1|3 |c2|3

+ 12 · 22/3 |c1|4 |c2|3 + 12 · 22/3 |c1|3 |c2|4 + 48 |c1|4 |c2|4

+ 16 · 21/3 |c1|5 |c2|4 + 16 · 21/3 |c1|4 |c2|5 + 12 · 22/3 |c1|5 |c2|5

< 21/3.

Let ♣ be the left-hand side of the previous inequality.
As the trivial bounds of |c1| , |c2| ≤ 0.8 are not strong enough, we will bound

|c1| |c2|. Using the inequality of arithmetic and geometric means, we have for
any |c1| , |c2|:

|c1| |c2| ≤
( |c1|+ |c2|

2

)2

≤
(

2

5

)2

=
4

25
.

Now, applying our new bound of |c1| |c2|, we obtain the following inequalities
that prove the result:

♣ ≤ 24/3 · 4

5
· 4

25
+ 24/3 · 4

5
· 4

25
+ 22 · 21/3 ·

(
4

25

)3

+ 12 · 22/3
(

4

25

)3
4

5
+ 12 · 22/3

(
4

25

)3
4

5
+ 48

(
4

25

)4

+ 16 · 21/3
(

4

25

)4
4

5
+ 16 · 21/3

(
4

25

)4
4

5
+ 12 · 22/3

(
4

25

)5

=
12288

390625
+

1208768 · 21/3
1953125

+
780288 · 22/3

9765625
< 1 < 21/3.

Thus it follows that if |c2| ≤ 4
5−|c1|, then − 1

c1c2
does not converge to the origin

under iteration of f . �

Lemma 7.5 If 2
5 |c1| ≤ |c2| ≤ 5

2 |c1| and |c2| ≤ 4
5 − |c1|, then c1 and c2 satisfy

the SMVC.

Proof We will first find a different set of sufficient conditions for c1 and c2 to
satisfy the SMVC, then show the conditions laid out in the lemma imply those
conditions.

It is clear that∣∣∣∣f(c1)

c1

∣∣∣∣ ≤ 1⇔
∣∣∣∣−6− c31 +

2c1
c2

+ 2c21c2

∣∣∣∣ ≤ 12.
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Using the triangle inequality, we see that a sufficient condition is:

|c1|3 +
2 |c1|
|c2|

+ 2 |c1|2 |c2| ≤ 6. (20)

It is also clear that∣∣∣∣f(c2)

c2

∣∣∣∣ ≤ 1⇔
∣∣∣∣−6− c32 +

2c2
c1

+ 2c22c1

∣∣∣∣ ≤ 12.

Using the triangle inequality, we see that a sufficient condition is:

|c2|3 +
2 |c2|
|c1|

+ 2 |c2|2 |c1| ≤ 6. (21)

Now, we will prove that 2
5 |c1| ≤ |c2| ≤ 5

2 |c1| and |c2| ≤ 4
5 − |c1| imply (20).

This will also imply (21) as the entire argument is symmetric about c1 and c2.
It is easy to see that the maximum of |c1| and |c2| in the region defined by the
inequalities in the hypothesis is the value of |c2| at the intersection of the lines
|c2| = 4

5 − |c1| and |c2| = 5
2 |c1|, which is 4

7 .
It is easy to see that (20) is equivalent to

|c1|3 |c2|+ 2 |c1|+ 2 |c1|2 |c2|2 ≤ 6 |c2| .
The following chain of inequalities proves the result:

|c1|3 |c2|+2 |c1|+2 |c1|2 |c2|2 ≤
(

4

7

)3

|c2|+2·2.5 |c2|+2

(
4

7

)3

|c2| =
1907

343
|c2| < 6 |c2| .

�
Using Lemmas 7.5 and 7.4, we see that the region N = {(|c1| , |c2|) : 2

5 |c1| ≤
|c2| ≤ 5

2 |c1| , |c2| ≤ 4
5 − |c1|} satisfies the DSMVC. The region N is shown in

Figure 12. However, there are also symmetric regions that are also taken care
of from relabeling of critical points:

1. |c2| ≥
2

5 |c1| |c2|
,

1

|c1| |c2|
≥ 2 |c2|

5
, |c2| ≤

4

5
− 1

|c1| |c2|

2. |c1| ≥
2

5 |c1| |c2|
,

1

|c1| |c2|
≥ 2 |c1|

5
, |c1| ≤

4

5
− 1

|c1| |c2|

All of these regions are shown in Figure 13.

7.5 Compact region

We will conclude this section by showing that the DSMVC is satisfied except
possibly for [0, 8]× [0, 8] in |c1| , |c2| space.

We will first simplify the inequalities defining a region that was proved in
the previous section to satisfy the SMVC:
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Figure 12: Region defined by 2
5 |c1| ≤ |c2| ≤ 5

2 |c1| and |c2| ≤ 4
5 − |c1|.

Figure 13: All regions from case 2
5 |c1| ≤ |c2| ≤ 5

2 |c1| , |c2| ≤ 4
5 − |c1|.
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Lemma 7.6 The region

S = {(|c1| , |c2|) : |c2| ≥
2

5 |c1| |c2|
,

1

|c1| |c2|
≥ 2 |c2|

5
, |c2| ≤

4

5
− 1

|c1| |c2|
}

is defined by √
2

5 |c1|
≤ |c2| ≤

√
5

2 |c1|
for |c1| ≥ 8.

Proof Algebra shows the following equivalences:

|c2| ≥
2

5 |c1| |c2|
⇔ |c2| ≥

√
2

5 |c1|

1

|c1| |c2|
≥ 2 |c2|

5
⇔ |c2| ≤

√
5

2 |c1|

|c2| ≤
4

5
− 1

|c1| |c2|
⇔ 2

5
− 1

5

√
−25 + 4 |c1|
|c1|

≤ |c2| ≤
2

5
+

1

5

√
−25 + 4 |c1|
|c1|

.

To prove the desired result, it is enough to show that the following inequal-
ities hold when |c1| ≥ 8:√

5

2 |c1|
≤ 2

5
+

1

5

√
−25 + 4 |c1|
|c1|

(22)

√
2

5 |c1|
≥ 2

5
− 1

5

√
−25 + 4 |c1|
|c1|

. (23)

Define the following functions:
φ : [ 254 ,∞)→ R, where

φ(x) =
2

5
+

1

5

√
−25 + 4x

x
−
√

5

2x
=
−5
√

10 + 4
√
x+ 2

√
−25 + 4x

10
√
x

ψ : [ 254 ,∞)→ R, where

ψ(x) =

√
2

5x
−
(

2

5
− 1

5

√
−25 + 4x

x

)
=

√
10− 2

√
x+
√
−25 + 4x

5
√
x

.

We will use φ and ψ to show (22) and (23) hold for |c1| ≥ 8.
Note that

φ(|c1|) ≥ 0⇔ (22) holds.
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ψ(|c1|) ≥ 0⇔ (23) holds.

Algebra shows that
245

32
is the only zero of φ. It is easy to see

245

32
< 8.

Since φ is continuous on [8,∞) and φ(8) =
2

5
+

√
7
2

10
−
√

5

4
> 0, it follows that

φ(x) > 0 for x ≥ 8. Hence (22) holds for |c1| ≥ 8. Algebra shows that
245

32
is

the only zero of ψ. It is easy to see
245

32
< 8. Since ψ is continuous on [8,∞)

and ψ(8) = −2

5
+

√
7
2

10
+

1

2
√

5
> 0, it follows that ψ(x) > 0 for x ≥ 8. Hence

(23) holds for |c1| ≥ 8. �
Now, we will prove the main theorem of the section: showing that the

DSMVC is satisfied except for possibly on a compact set in |c1|, |c2| param-
eter space.

Theorem 7.7 Let f be as in (11). Then, if c1 and c2 satisfy at least one of
the following:

1. |c1| ≥ 8

2. |c2| ≥ 8

3.
1

|c1| |c2|
≥ 8,

then the DSMVC holds.

Proof We will prove that the DSMVC holds for |c1| ≥ 8. The other two cases
follow trivially from interchanging the labeling of critical points.

Suppose that |c1| ≥ 8. From previous results, we know the conjecture holds
for

1. 0 < |c2| ≤
50

81 |c1|
(from case |c1| ≥ 1.62, |c2| ≥ 1.62)

2.
20

33 |c1|
≤ |c2| ≤

√
23

100 |c1|
(from case |c2| ≤ 1.65, |c1| ≤ 0.23 |c2|)

3.
5

4 |c1|
≤ |c2| ≤

√
2

5 |c1|
(from case |c2| ≤ 4

5 , |c1| ≤ 2
5 |c2|)

4.

√
2

5 |c1|
≤ |c2| ≤

√
5

2 |c1|
(from Lemma 7.6)

5.

√
5

2 |c1|
≤ |c2| ≤

4

5
(from case |c2| ≤ 4

5 , |c1| ≤ 2
5 |c2|)

6.

√
100

23 |c1|
≤ |c2| ≤

33

20
(from case |c2| ≤ 1.65, |c1| ≤ 0.23 |c2|)

169



7.
81

50
≤ |c2| (from case |c1| ≥ 1.62, |c2| ≥ 1.62)

Thus, to show for |c1| ≥ 8, all (|c1| , |c2|) is in a region that satisfies the
DSMVC, it suffices to show the following inequalities hold for |c1| ≥ 8:

20

33 |c1|
≤ 50

81 |c1|
(24)

5

4 |c1|
≤
√

23

100 |c1|
(25)

√
100

23 |c1|
≤ 4

5
(26)

81

50
≤ 33

20
(27)

Note that (24) and (27) are trivially true.
Define the following functions:
φ : R+ → R, where

φ(x) =

√
23

100x
− 5

4x
=

2
√

23x− 25

20x
.

ψ : R+ → R, where

ψ(x) =
4

5
−
√

100

23x
.

It is easy to see that

φ(|c1|) ≥ 0⇔ (25) holds

ψ(|c1|) ≥ 0⇔ (26) holds.

Algebra shows that the only zero of φ is
252

4(23)
6∈ [8,∞). Since φ is continuous

on [8,∞) and φ(8) > 0, it is clear that φ(x) ≥ 0, ∀x ∈ [8,∞). Thus, (25) holds

for |c1| ≥ 8. Calculation shows that ψ′(x) =
1

2

√
100

23

1

x
3
2

. Thus, ψ is increasing

on [8,∞). Since ψ(8) = 4
5 −

√
100
23·8 > 0, then ψ(x) ≥ 0, ∀x ∈ [8,∞). Thus, (26)

holds for |c1| ≥ 8.
�
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Classification of Critically Fixed

Rational Functions

Nicholas Nuechterlein Samantha Pinella∗

Abstract

In 1989, Tischler showed that the set of all complex polynomials
whose critical points are also fixed points can be enumerated explicitly
as branched mappings [1]. Much research has been done to do the same
for rational functions f : Ĉ → Ĉ where Ĉ := C ∪ {∞}, f(z) = p(z)/q(z),
gcd(p, q) = 1 and the degree of f is d := max{deg(p), deg(q)}. Nekra-
shevych showed that the dynamics of such maps f are determined by an
algebraic invariant called a wreath recursion on a free group G, a homo-
morphism Φ : G→ GdoSd [2]. Motivated by a newly developed computer
program by Bartholdi which finds numerical approximations of f given a
wreath recursion, we develop an algorithm to compute the wreath recur-
sions of branched mappings on Ĉ.

1 Introduction

A natural question to ask in complex dynamical systems is how we might classify
self mappings of the extended complex plane, Ĉ := C ∪ {∞}. In what follows
we consider this question in the context of rational functions f(z) = p(z)/q(z)
whose critical points are all fixed. Here p, q are polynomials and gcd(p, q) = 1.
By critical we mean not locally injective: such functions f have 2d− 2 critical
points, where d := max{deg(p), deg(q)}, counting with multiplicity. In 1989,
Tischler used Thurston’s topological characterization of critically finite ratio-
nal mappings to classify all complex polynomials whose critical points are also
fixed [1]. Naturally, we ask if a similar method using branched mappings can be
used to classify critically fixed rational functions. Nekrashevych showed that,
up to conjugation by Möbius transformations, the dynamics of such maps f are
determined by an algebraic invariant called a wreath recursion on a free group
G, where G is the fundamental group of Ĉ \ Crit(f) and a wreath recursion is
a homomorphism Φ : G → Gd o Sd [2]. Here Sd acts on Gd by permuting its
coordinates.

A wreath recursion of a rational function is most conveniently found using a
topological description of it as a branched mapping. A ‘blowing up’ construction
of multigraphs on the 2-sphere will provide some branched mappings. A 2008

∗The authors would like to thank the NSF for their support of the Indiana University REU.
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result of Liu and Osserman implies that any rational map with fixed critical
points is a twist of a blown up graph [3]. In [4], it is shown that any admissible
partition of critical points can be represented as the degree set of a multigraph.

Our work is motivated by a recently developed computer program by Bartholdi
which provides numerical approximations of rational functions, given their wreath
recursions. In this paper, we describe a process of finding such wreath recur-
sions and conclude by stating and proving an algorithm for doing so. We start
by reviewing some necessary background information.

2 Background

2.1 Definitions

We will need a few basic concepts from algebraic topology, most importantly (1)
the fundamental group π1(X, b) of a topological space X based at a point b ∈ X,
(2) the notion of a covering p : X̃ → X of X, and (3) the monodromy action
of the fundamental group π1(X, b) on the preimage p−1(b) of the basepoint b
under the covering map p.

Definition: The fundamental group π1(X, b) of a topological space X based at
b ∈ X is the set of all homotopy classes of loops in X based at b. Composition
is the concatenation of paths. The identity is the constant path.

Informally speaking, two paths are homotopic if they can be continuously
deformed into each other: intuitively we may think of this as stretching paths.
If [f ] and [g] are two homotopy classes of paths, we define [f ] ◦ [g] = [f ∗ g]
where f ∗ g means one traverses the path f first then g. For obvious reasons, if
a path starts and ends at the same point we call it a loop.

Definition: We say a space X̃ together with a map p : X̃ → X is a covering
space if for each x ∈ X there exists a neighborhood Ux such that

p−1(Ux) =
∐
j∈J

Vx,j and p|Vx,j : Vx,j −→ Ux

is a homeomorphism for each j ∈ J .

Before we define the monodromy action, we introduce the notion of a path
lift. Suppose ω : [0, 1] → X is a loop in X based at b. The path lift ω̃bj of ω

based at bj ∈ p−1(b) is the unique path ω̃ : [0, 1]→ X̃ such that ω̃(0) = bj and
p ◦ ω̃ = ω. Since ω is a loop, the endpoint ω̃(1) must be in p−1(b); this gives a
natural action of the fundamental group π1(X, b) on the fiber p−1(b).
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Definition: Under the monodromy action of the fundamental group π1(X, b) on
the fiber p−1(b), each ω ∈ π1(X, b) acts on the set p−1(b) by sending bj ∈ p−1(b)
to ω̃bj (1), where ω̃bj is the lift of ω based at bj . We call the set-automorphism
of p−1(b) the monodromy of ω and denote it by σ(ω).

Branched Covering

We will also frequently use the notions of multigraphs and branched coverings
and will therefore define them now:

1. By multigraph we mean a connected undirected planar graph which allows
multiple edges between pairs of vertices but not loops. We shall denote
the set of edges of a multigraph H by E and its set of vertices by V .

2. A branched covering is an orientation preserving covering map f : S2 → S2

which is at least of degree two. For our purposes we shall be interested in
branched coverings f : (S2 \ V )→ (S2 \ V ) where V is the set of vertices
of a multigraph H.

To construct a branched covering from a connected multigraph H, we “blow
up” each edge of the given multigraph by cutting along each edge of the graph
and opening it up so it is homeomorphic to a closed disk [5]. Next we map the
interior of this disk homeomorphically onto the complement of this edge in H
in such a way that preserves orientation. The significance of this construction is
that each edge in H corresponds to a copy of H in the branched cover, namely
the one constructed by blowing up that edge.

To hope to classify critically fixed rational functions, we begin by specifying
a degree for f , a number n of critically fixed points, and the multiplicity of
each of these critical points. We can represent this data with a multigraph as
follows: let H have deg(f)− 1 edges, the same number of vertices as number of
critical points, and let each vertex have valence equal to the multiplicity of the
critical point it represents. It is possible in general to pick two non-isomorphic
graphs to represent this data, and it is known that the resulting graphs yield
critically fixed rational functions which do not differ only by Möbius conjuga-
tion [4]. Therefore we may think of choosing a multigraph H as narrowing the
constraints we place on f [4].

For example, suppose we would like to find a rational function f of degree six,
with four critical points of multiplicity 4,3,2, and 1, respectively. We represent
this information with the following multigraph:
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•

•

••

To find f , we consider H on the sphere S2 ∼= Ĉ. From this picture we con-
struct the branched covering of H, determine the monodromy of the branched
covering, and use the monodromy to find a wreath recursion of π1(S2 \ V, b).
Once done, we feed this wreath recursion to Bartholdi’s program and it com-
putes a numerical approximation for f .

Our first step is to choose a basepoint b, which we may assume is outside of
H. Next we choose a path from b to each vertex V . We insist that

1. These paths not intersect each other except at b,

2. These paths not cross an edge adjacent to the vertex they run to,

3. These paths not cross an edge in E more than once.

•

•

••

•

•

•• � b

Remark: The existence of these paths ri can be shown by an application of
the greedy algorithm on the dual graph of H and a choice of a spanning tree.

We give these paths a cyclic order by labeling r1 and numbering the indices
of the rest in ascending order, moving counter clockwise around the basepoint
b for 2 ≤ i ≤ n = |V |. We label each vi ∈ V with the index of the path ri which
connects it to b.

For 1 ≤ i ≤ n, let gi be the loop which follows ri to within an ε-distance of
vi, circles counter clockwise around vi, and returns to b along ri.
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•

•

•• � b

r1

r2

r3

r4

v1

v2

v3v4
� b

r1

r2

r3

r4

v1

v2

v3v4
� b

g1

g2

g3

g4

The elements g1, . . . , gn generate π1(S2 \V, b). Because of this, we shall refer
to the ri’s as generator stems. Since π1(S2 \ V, b) is the fundamental group of
the n-times punctured sphere, it must be isomorphic to the free group on n− 1
generators. As g1, . . . , gn is a set of n generators, there must be a relation on the
gi. We see it is g1 ∗ · · · ∗ gn ' b, which arises from the fact that the generators
are cyclically ordered. It is also seen readily by stretching g1 ∗ · · · ∗ gn around
the back of the sphere.

Now we label the edges of H. Considering parallel edges as distinct, we label
the edges in E with the elements in the set {e2, . . . , ed} where d = deg(f) =
|E|+ 1. Beginning with the edges connected to v1, we label in ascending order
the edge which connects v1 to the vertex with the lowest index. Once all of the
edges adjacent to v1 are labeled, we repeat this process for each vi connected to
v1 by an edge in E, in order of ascending index. In the case of multiple edges,
we number the edges counting upwards as we move counter-clockwise around
the vertex in question from the incoming path ri. We continue until every edge
in the graph has been labeled, as shown below.

The significance of this labeling is that it induces a labeling of the set f−1(b),
and does so without introducing other choices. By construction, the branched
covering f gives a correspondence between edges in E and copies of H in the
branched cover that arise from blowing up edges in E. Since each blowup of
an edge in E contains exactly one copy of the basepoint, the correspondence is
one-to-one: we denote the point in f−1(b) which corresponds to the blow up
of ej by bj . We label the single element of f−1(b) which does not arise from
blowing up an edge b1.
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v1

v2

v3v4

� b

e2

e5

e6

e3
e4

g1

g2

g3

g4

Now we construct the branched covering f . We begin with the identity map
fID : (S2 \ V ) → (S2 \ V ). Each edge ej ∈ E is an embedded arc in (S2 \ V )
on which fID is injective. We cut along the arc ej and open the slit slightly to
obtain the two arcs ej± which together bound a disc D. We send the interior of
D to the exterior of fID(ej) and the exterior of D first homeomorphically to the
complement of ej , then via f . We send the boundary ej± of D to ej . Repeating
this process for each edge ej ∈ E, we obtain the following branched cover.
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v1

v2

v3v4

�

�

�

�

�
�

b1

b2

b5

b6

b3

b4

• •

e4

v3

e3

e6 v4

e5

e2e2

e5

e5

•
•

e3

e4

v3

e6

e2

v1

e6

e6

•

•
e5

v2

e4

e3

e2

v1

e3

e3 e4•
•
e5

v4

e6

e2

v1

e4•
•

e2

v1

e5

v4

e6

g1

g2

g3

g4

Now we can compute the monodromy action of π1(S2 \V, b). Recall that un-
der this action ω ∈ π1(S2 \V, b) acts on f−1(b) by sending bj ∈ f−1(b) to ω̃bj (1),

where ω̃bj is the lift of ω based at b̃j . As it is a group action, it is completely
determined by the action of the generators of π1(S2 \ V, b). In our example,
however, rather than compute g̃ibj (1) for each 1 ≤ i ≤ 4 and 1 ≤ j ≤ 6, we shall

only compute σ(g4).

We begin with g̃4b1 (1). Since f is a local homeomorphism, g̃4b1 can only
cross copies of the edges that g4 crosses in H. Since g4 runs from b through
e6, through e5 and returns to b, g̃4b1 must run from b1 through a copy of e6,

through a copy of e5, to an element in f−1(b). Thus g̃4b1 (1) = b6. As the lifts
g̃4b6 and g̃4b5 are similar to g̃4b1 , we include them in the following inset of the
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region surrounding v4.

v4

�

�

�

b1

b5

b6

•

e6

v3

e5

e5

e3 e4

•

•

e6

e5

v2

e2

v1

e6

g̃4b1

g̃4b6

g̃4b5

For elements bj in f−1(b) which correspond to edges ej not adjacent to v4,
we see that the interior of the blowup of ej contains a copy of vi, and thus the
lift g̃4bj circles this copy of vi and returns to bj within the blowup of ej so that

g̃4bj (1) = bj .

v2

• •

� b2

e2 e2e4 e3

v4v3
e6

g̃4b2

v2

v3

• •

e2

v1

e5

v4

e6� b3

e3

e3

g̃4b3

v2

v3

• •
e2

v1

e5

v4

e6
� b4

e4

e4
g̃4b4

Thus

g̃4b1 (1) = b6 g̃4b2 (1) = b2 g̃4b3 (1) = b3

g̃4b4 (1) = b4 g̃4b5 (1) = b1 g̃4b6 (1) = b5

so that σ(g4) = (16)(2)(3)(4)(51)(65) = (165).
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To determine the monodromy action in full, we must compute σ(gi) for each
generator gi. But since there are d elements in f−1(b), this means computing
n · d path lifts in addition to constructing a branched covering. Fortunately, we
notice that our careful labeling of H provides a method for computing σ(gi) for
each gi without performing a single path lift, or even constructing a branched
covering.

3 Monodromy Algorithm

Step 1

Given a multigraph H, choose a basepoint b and cyclically ordered paths ri from
b to each vertex, for each 1 ≤ i ≤ n, such that ri ∩ rj = {b} for all i 6= j.

Step 2

Label each vertex vi with the index of the path ri that connects it to b. Choose
generators gi to follow each ri to vi, loop counter-clockwise around vi, and
return to b along ri.

Step 3

Label the edges as described above. Beginning with the edges connected to v1,
label in ascending order the edges which connect v1 to verticies vk of ascending
index k. Once all of the edges adjacent to v1 are labeled, repeat this process for
each vi connected to v1 by an edge in E, in order of ascending index i. In the
case of multiple edges, number the edges counting upwards, moving counter-
clockwise around the vertex in question from the incoming path ri. Continue
until every edge in the graph has been labeled.

Step 4

For each 1 ≤ i ≤ n, let the set of edges in E which ri crosses on its way to
vi divide ri into path segments. Label each such segment ek, where ek is the
edge ri has most recently crossed. If ri has not yet crossed an edge, label that
segment e1.

Theorem 1: For each 1 ≤ i ≤ n, draw a circle Ci of radius ε around vi.
Starting with the label on the path ri, record in order the indices of the labels
of the edges which intersect Ci, moving counter-clockwise around Ci from its
intersection with ri. This list is the monodromy σ(gi).

Proof: We divide the proof into two lemmas.
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Lemma 1: If neither an edge adjacent to the vertex vi nor the last segment of
ri is labeled ej , then the monodromy action of gi on bj is trivial.

Proof of Lemma 1: We treat the case j = 1 first. If j = 1, we wish to show
g̃ib1 (1) = b1. The path ri must cross an edge in E before it reaches vi since
otherwise the label of the last segment of ri would be e1. Additionally, since we
assumed ri crosses no edges adjacent to vi, it cannot be that vi is adjacent to
the first edge ek that ri crosses. Thus the copy of vi contained in the blowup of
ek must be contained in the interior of the blowup of ek and therefore have local
degree 1. Since ek is the first edge gi crosses, g̃ib1 will travel along r̃ib1 from b1
into the disk obtained by blowing up ek. Since gi does not cross back through
ek until after circling vi, g̃ib1 circles the copy of vi in the blowup of ek before
returning through ek to b1, crossing no more edges on its way. Thus g̃ib1 (1) = b1.

For 2 ≤ j ≤ d if ri does not cross the edge ej on its way to vi, then g̃ibj
cannot leave the interior of the blowup of ej as its boundary is composed of
copies of ej . Since the only element of f−1(b) within the blowup of ej is bj , it
must be that g̃ibj (1) = bj . On the other hand, if ri crosses ej on its way to vi,

then vi cannot be adjacent to ej . Furthermore, ej cannot be the last edge that
ri crosses as this implies the last segment of ri is labeled ej . Thus g̃ibj follows

r̃ibj through the blowup of ej into the blowup of ek, the edge ri crosses first

after crossing ej . Since ek is not adjacent to vi, its blowup will contain a copy
of vi in its interior. Thus g̃ibj (1) = bj by what we showed above. �

Lemma 2: If either an edge adjacent to vi or the last segment of ri is labeled
ej , then the generator gi acts nontrivially on bj . In fact, gi acts by sending
bj to bj′ where j′ is the index of the first edge or segment of ri adjacent to vi
counter-clockwise of ej .

Proof of Lemma 2: Since gi follows ri and ri cannot cross an edge adjacent
to vi, gi crosses ej exactly once: namely when gi circles vi. This says g̃ibj leaves

the blowup of ej and never returns; hence g̃ibj 6= bj and the action must be

nontrivial.

If gi, after crossing ej , does not cross another edge in E before returning
to b, g̃ibj (1) = b1. As ri cannot cross any edges in this case, it must consist of

exactly one segment labeled e1. This agrees with our claim since in this case ri
must be the first edge or segment adjacent to vi counter-clockwise of ej .

On the other hand, suppose ej′ is the first edge gi crosses after crossing ej .
Then ej′ is either adjacent to vi or not. If ej′ is adjacent to vi, then the edge
ej′ is the first edge or segment counter-clockwise of ej . That ej′ is adjacent to
vi also implies ri cannot cross ej′ and therefore gi must cross ej′ exactly once.
Thus once g̃ibj enters the blowup of ej′ it cannot leave. Since the only element

of f−1(b) in the blowup of ej′ is bj′ , we conclude g̃ibj (1) = bj′ .
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Finally, suppose ej′ is the first edge gi crosses after crossing ej , but that ej′
is not adjacent to vi. Then the segment of ri adjacent to vi is the first edge
or segment of ri adjacent to vi counter-clockwise of ej . This also implies ej′ is
the last edge ri crosses before reaching vi and therefore that the segment of ri
adjacent to vi is labeled ej′ . Therefore we need only show g̃ibj = bj′ . But this

is clear since ri can cross an edge no more than once: that is, once g̃ibj enters

the blowup of ej′ it cannot leave. Then g̃ibj = bj′ . �

This says the monodromy action σ(gi) of each generator of π1(S2 \ V, b)
consists of exactly one cycle, and that this cycle consists of the indices of the
labels of the edges and segment of ri which is adjacent to vi, written moving
counter-clockwise around vi. The practicality of this method is illustrated in
computing the monodromy of our example, which can be read directly off of the
graph.

v1

v2

v3v4
�

σ(g1) = (12)

σ(g2) = (12534)

σ(g3) = (1436)

σ(g4) = (165) b

e2

e5

e6

e3
e4

e1

e1

e1

e1

Remark: As it will be convenient later, we insist that each cycle σ(gi) begin
with the index of the label on the segment of ri adjacent to vi. This will allow
us to refer to the “first” and “last” number in the monodromy σ(gi).

4 Wreath Recursions

The wreath recursion of a group G is a homomorphism Φ : G −→ GdoSd from
G to the semi-direct product of Gd and Sd, where Sd acts on Gd by permuting
its coordinates. In what follows we will give substance to this definition in the
case where G = π1(S2\V, b) and explain an effective method for computing Φ by
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hand. Afterwards we shall describe an algorithm to find Φ, given a multigraph
H and a choice of generators.

We must first introduce the notion of a connecting path. Already we have
chosen a basepoint b, a labeling {1, . . . , d} of the elements of f−1(b), and gener-
ators g1, . . . , gn which run from b to each vi ∈ V , loop counter-clockwise around
vi, and return to b. Now for each j ∈ {1, . . . , d} we choose a connecting path
λj : [0, 1] → S2 \ V running from the basepoint b to the element bj of f−1(b)
corresponding to j. As b and b1 are in the same region, we identify them. The
connecting paths are shown in red.

v1

v2

v3v4

�

�

�

�

�
�

b1 = b

b2

b5

b6

b3

b4

• •

e4

v3

e3

e6 v4

e5

e2e2

e5

e5
•

•

e3

e4

v3

e6

e2

v1

e6

e6

•

•
e5

v2

e4

e3

e2
v1

e3

e3 e4•
•
e5

v4

e6

e2

v1

e4•
•

e2

v1

e5

v4

e6

λ1

λ2

λ3

λ4

λ5

λ6

We wish to find an algorithmic method for choosing connecting paths λj
from b to bj , for 1 ≤ j ≤ d. Since we have identified b and b1, we let λ1 be
the constant path at b1. For 2 ≤ j ≤ d, we recall that we have identified
bj ∈ f−1(b) \ b1 with the edge ej ∈ E. Thus for j > 1, rather than thinking of
λj as a path from b to bj , we may think of it as a path from b to the edge ej .
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As we forbid H to contain loops, there are exactly two distinct vertices vk, vl
adjacent to ej . Since we’ve chosen gk to circle vk and gl to circle vl, we already
have two paths from b to ej : the first follows gk until it intersects ej , the second
does the same but follows gl instead of gk. Since it is always the case that if
k 6= l either k > l or l > k, we may always choose λj so that if k > l, λj is the
path which follows gk until it enters the blowup of the edge ej and then follows
any path to bj that is contained entirely within the interior of the blowup of ej .
Since the interior of the blowup of ej contains no points in V , any two paths
contained entirely within the blowup of ej which have matching startpoints and
endpoints are homotopic.
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v3v4

�

�

�

�

�
�
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•
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e4
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Since λj may take any path to bj once it has entered the blowup, we do
not lose any generality by drawing the connecting paths on the target graph H
rather than on its branched covering.
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λ5
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Now we give the definition of a wreath recursion in its entirety.

Definition: Suppose H is a planar multigraph with vertex set V , and f :
(S2\V )→ (S2\V ) is a degree d branched covering constructed from H. Suppose
further that b ∈ S2 \ V , f−1(b) ↔ {1, . . . , d} is a labeling of f−1(b), g1, . . . , gn
are generators of π1(S2 \V, b), and λj : [0, 1]→ S2 \V is a connecting path from
b to bj for every 1 ≤ j ≤ d. We say the wreath recursion of G = π1(S2 \ V, b) is
a homomorphism

Φ : G −→ (G× · · · ×G︸ ︷︷ ︸
d−times

) o Sd = Gd o Sd which sends g 7→ 〈g|1, . . . , g|d〉σ(g).

where g|j = [λj ∗ g̃b
jσ(g)
∗λjσ(g) ]. By convention, we write jσ(gi) for j ·σ(gi), the

right action of σ(gi) on j.

The symbol o denotes the semidirect product by which Sd acts on Gd by
permuting its coordinates. Multiplication in Gd o Sd is defined as follows:
(〈g1, . . . , gd〉σ) ∗ (〈h1, . . . , hd〉τ) = (g1h1σ , . . . , gdhdσ )στ .
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5 Computing a Wreath Recursion

To provide some intuition for this process we shall compute a wreath recursion
Φ of our example π1(S2 \ V, b). Since Φ is a homomorphism, it is enough to
compute Φ(gi) for each generator gi of π1(S \ V, b). For the sake of brevity
we shall only give the computation of the wreath position g2|5 and informally
describe several helpful lemmas which we shall state and prove explicitly in the
proof of our general algorithm.

To determine g2|5 = [λ5 ∗ g̃2b5 ∗λ5σ(g2) ], we must first find λ5. Since the edge
e5 is connected to the vertices v2 and v4, and 4 > 2, λ5 follows the generator
g4 from b until it intersects the edge e5. Then it follows e5 until it reaches b5.
The monodromy σ(g2) = (12534) tells us that the lift g̃2b5 is homotopic to the
path which follows edge e5 from b5 until it intersects g2, follows g2 counter-
clockwise around v2 until it intersects e5σ(g2) = e3, and follows e3 to b3. Since e3
is connected to vertices v2 and v3, and 3 > 2, λjσ(g2) = λ3 follows g3 clockwise
around v3 from where it intersects e3 back to the basepoint b.

v1

v2

v3v4

�

�

�

�

�
�

b1

b2

b5

b6

b3
b4

e2

e5

e6

e3
e4

λ5

g̃2b5

λ3
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By examining the region this path g2|5 encloses (shaded in the picture), we
see that λ5 ∗ g̃2b5 ∗ λ5σ(g2) is homotopic to g−13 and thus conclude g2|5 = g−13 .

Performing this computation for each wreath position gi|j , 1 ≤ i ≤ 4, 1 ≤
j ≤ 6, we notice several striking patterns. First, if j is fixed by the monodromy
σ(gi) then gi|j is trivial. We delay the rigorous statement and proof of this fact,
but the intuition is latent in the procedure we have described: if vk is the vertex
of higher degree attached to the edge ej , then λj follows gk to ej . Since j is
fixed by the monodromy, g̃ibj stays within the disk obtained by blowing up ej

and thus λjσ(gi) = λj traverses λj backwards, yielding a path homotopic to the

constant map at b. Together with our computation g2|5 = g−13 , this gives us 11
of the 24 wreath positions:

Φ(g1) = 〈 , , e, e, e, e〉(12)

Φ(g2) = 〈 , , , , g−13 , e〉(12534)

Φ(g3) = 〈 , e, , , e, 〉(1436)

Φ(g4) = 〈 , e, e, e, , 〉(165)

The second observation we make is that if vi is the vertex with higher index
attached to both the edge ej and the edge ejσ(gi) , then the wreath position gi|j
is trivial. In this case λi follows gi to the edge ej and runs up ej to bj . Then
the lift g̃ibj travels back down ej to gi, follows gi to ejσ(gi) and runs up ejσ(gi) to

bjσ(gi) . Then since vi is the vertex of higher index attached to ejσ(gi) , λjσ(gi) goes
back down ejσ(gi) to gi and follows gi out backwards to b. Thus gi|j encircles
no elements of V and is therefore homotopic to the constant map. This gives
us five more wreath positions.

Φ(g1) = 〈 , , e, e, e, e〉(12)

Φ(g2) = 〈 e, , , , g−13 , e〉(12534)

Φ(g3) = 〈 e, e, , e, e, 〉(1436)

Φ(g4) = 〈 e, e, e, e, , e〉(165)

Now we fill in the rest of the table, encouraging the reader to check our work
using the processes described above.

Φ(g1) = 〈 g1, e, e, e, e, e〉(12)

Φ(g2) = 〈 e, g2g3, e, e, g−13 , e〉(12534)

Φ(g3) = 〈 e, e, g3, e, e, e〉(1436)

Φ(g4) = 〈 e, e, e, e, g4, e〉(165)

Recall the relation g1g2g3g4 = e on the generators and the fact that Φ is a
homomorphism. Since Φ(g1g2g3g4) = Φ(g1)Φ(g2)Φ(g3)Φ(g4), it must be that
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Φ(g1)Φ(g2)Φ(g3)Φ(g4) = e. This requires some familiarity with multiplication
on semidirect products, but it can be an efficient way to check one’s work.

6 Wreath Recursion Algorithm

Our goal is to express each wreath position gi|j in terms of the generators
g1, . . . , gn of π1(S2 \ V, b). We shall assume we have performed the monodromy
algorithm described above and that we have the following input.

Input: For each edge ej ∈ E, we input the list of generators of π1(S2 \ V, b)
which intersect ej , ordered from the generator which intersects ej nearest the
vertex adjacent to ej with the lower index to the generator which intersects ej
nearest the vertex adjacent to ej with the higher index.

Our guiding principle will be a procedure we describe at the end of the paper
that writes any loop ω ∈ π1(S2 \ V, b) as a word in the generators gi, provided
we know the following data:

1. The generators gs, gs+1 that ω starts “between” and the generators ge, ge+1

that ω ends “between,”

2. The ordered list c1, . . . , ck of the generators that ω intersects away from
b, written in the order ω intersects them,

3. The orientation, positive or negative, with which ω intersects the generator
corresponding to cx, for 1 ≤ x ≤ k.

Remark: Since we may ε-perturb the gi’s in a continuous manner, we may as-
sume ω starts and ends “between” two generators gi, since, after ε-perturbation,
we may choose some δ > 0 such that (∪ni=1gi)

⋂
ω = {b} within a δ-ball centered

at b. Furthermore, the orientation of the intersection of ω with the generator
corresponding to cx is well defined since we may ε-perturb each gi so its inter-
section with ω is transverse.

We say ω intersects the generator gi with positive orientation if a person
walking along ω would find the basepoint connected to the segment of gi on the
person’s left at the point of intersection. Otherwise, we say ω intersects gi with
negative orientation. In light of this procedure, our goal of expressing gi|j in
terms of the gi reduces to finding the data (1), (2), and (3).

As we have observed, each gi|j is homotopic to a path which follows only
segments of generators gi and segments of edges ej ∈ E. What is more, we have
described a process for finding this representative of gi|j based on a small subset
of the data in the pictures we draw: namely the edges in E and segments of
generator stems ri labeled ej and ejσ(gi) , their adjacent vertices, and the gener-
ators which circle these vertices.
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Definition: We call the picture composed of the edges in E and the segments
of generator stems labeled ej and ejσ(gi) along with their adjacent vertices and
the generators that circle them the local picture of gi|j .

Lemma 3: Away from the basepoint b, the loop gi|j can only intersect gener-
ators of π1(S2 \ V, b) that cross the edges ej or ejσ(gi) in E.

Proof: This follows directly from the fact that gi|j is homotopic to a path
that follows only generators and the edges ej , ejσ(gi) ∈ E. �

To find c1, . . . , ck, we will determine the segments of ej and ejσ(gi) that gi|j
traverses and consult the lists of the generators that cross ej and ejσ(gi) that we
have inputted. Then it will remain only to find the generators gs, gs+1, ge, ge+1

that gi|j starts and ends between, and the orientation of the intersection of gi|j
with the generator corresponding to cx, for all 1 ≤ x ≤ k. This data will come
from examining the local pictures, of which there are only finitely many.

Thus we begin by classifying the local pictures. Afterwards we will discuss
a method for identifying the local picture associated with an arbitrary wreath
position gi|j , describe in detail how to find the data (1), (2), and (3) for gi|j
from this local picture, and introduce the procedure which uses (1), (2), and (3)
to write gi|j in terms of the generators g1, . . . , gn.

The Classification of Local Pictures

Lemma 4: Suppose σ(gi) acts trivially on j. Then gi|j is trivial.

Proof: We wish to show λj∗g̃ibj ∗λjσ(gi) ' b. That σ(gi) acts trivially on j, or,

in other words, that jσ(gi) = j implies that g̃ibj is a loop as g̃ibj (1) = bjσ(gi) = bj .

It means also that λjσ(gi) = λj . Thus we need only check that the loop g̃ibj is

contractible, or homotopic to the constant path. But this is clear since ω is a
loop freely homotopic to a loop surrounding ṽi ∈ f−1(vi), where ṽi 6= vi. Thus
ω is contractible in S2 \ V .

Explicitly, by construction we may choose ε > 0 so that gi follows ri from
b to within the ε-ball B centered at vi ∈ V , circles vi within B, and returns
to b along ri. Denote the copy of vi in the blowup of ej by ṽi. Since vi is not
adjacent to ej , ṽi must be in the interior of the blowup of ej . Now choose a
δ-ball B′ about ṽi in the interior of the blowup of ej such that B is contained
in the image of B′ under f . Since we constructed the branched covering to send
the interior of the blowup of an edge homeomorphically to the complement of
that edge in S2 \ V , f is a homeomorphism when restricted to B′. Therefore
g̃ibj follows r̃ibj into B′, circles ṽi within B′, and returns to bj along r̃ibj . As

ṽi /∈ V , g̃ibj is contractible. �
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By Theorem 1 we have that σ(gi) acts trivially on j if and only if neither
an edge in E adjacent to vi nor the segment of ri adjacent to vi is labeled ej .
Having now proven that gi|j is trivial in this case, we turn our attention to the
cases where either an edge in E adjacent to vi or the segment of ri adjacent to
vi is labeled ej .

We first treat the case where the label of the segment of ri adjacent to vi is
neither ej nor ejσ(gi) . Since we have insisted the first number in the monodromy
be the index of the label of the segment of ri adjacent to vi, we may phrase this
in terms of the position of j in σ(gi).

Case 1 : j is neither the first nor the last number in the
monodromy σ(gi)

Any gi|j specifies a vertex vi and an edge or generator segment labeled ej . If we
assume that j is neither the first nor the last number in the monodromy σ(gi),
then ej is an edge in E and must be connected to a vertex vk distinct from vi.
In addition, ejσ(gi) is an edge in E and must be connected to the vertex vi and
a vertex vl distinct from vi. That is, if j is neither the first nor the last number
in σ(gi), gi|j specifies the edges ej , ejσ(gi) ∈ E and the vertices vi, vk, vl ∈ V .

Case 1 (a) : vk and vl are distinct

If we assume vk and vl are distinct we see there are the following six sub-cases:

(1) k < l < i (2) l < k < i (3) k < i < l

(4) l < i < k (5) i < k < l (6) i < l < k

where the local picture is

vk

vivl

� b

ej

ejσ(gi)

Lemma 5: Suppose σ(gi) acts nontrivially on j, and that j is neither the first
nor the last number in the monodromy. Suppose further that l, k < i where vk
and vl are the vertices attached to the edges ej and ejσ(gi) , respectively, which
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are not vi. Then gi|j is trivial.

Proof: Since i > k, λi follows gi until it reaches the blowup of ej , whereupon
it follows any path contained in the interior of the blowup of ej to bj . Next, as
ri crosses no edges adjacent to vi, gi crosses ej and ejσ(gi) exactly once: namely
when it circles vi. Therefore g̃ibj travels from bj through the interior of the

blowup of ej , through ej , then immediately into the blowup of ejσ(gi) and on to

bj . Since i > l, λjσ(gi) follows any path in the interior of the blowup of ejσ(gi)
to the generator gi and follows gi back out to b. Since there are no elements in
V in the interior of the blowup of ej or ejσ(gi) and vi is not encircled by gi|j ,
the only region in which gi|j can encircle a vertex v ∈ V is the region between
the blowup of ej and the blowup of ejσ(gi) . But since g̃ibj can cross no edges

between its intersections with ej and ejσ(gi) , for gi|j to encircle v means v must
be connected to vi via an edge that intersects none of ej , ejσ(gi) , g̃ibj . This is

impossible as ejσ(gi) is the next edge attached to vi counter-clockwise of ej . �

Corollary: Sub-cases (1) and (2) are trivial. �

Sub-case 3: k < i < l

Since vi is adjacent to ej and ejσ(gi) , it cannot be that ri crosses either ej or
ejσ(gi) . Thus there is exactly one homotopy class of paths [ri] from b to vi; we
choose the path ri, pictured below, to represent it.

vk

vivl

� b

ej

ejσ(gi) ri

Since vk is adjacent to ej , rk cannot cross ej . Therefore, as it is still free to
cross the edge ejσ(gi) , there are exactly two choices for rk: namely the homotopy
class of paths from b to vk that crosses ejσ(gi) and the homotopy class of paths
from b to vk which does not cross ejσ(gi) . We choose the following representatives
for these homotopy classes of paths:
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R′

b

ej

ejσ(gi) ri

rk

vk

vivl

� b

ej

ejσ(gi) ri

rk

In the case where rk crosses ejσ(gi) , the point vl is contained in a region R
bounded by rk, ri, and ej . Because the generator stems are cyclically ordered
and l > i, rl must leave b counter-clockwise of ri. Thus to enter the region R, rl
must cross ej since, as distinct generator stems meet only at b, rl cannot cross
rk or ri. But to cross ej , rk must enter the region R′ bounded by rk, ej , and
ejσ(gi) . As rl cannot intersect rk, it must cross ejσ(gi) , which is a contradiction
since vl is adjacent to ejσ(gi) and rl is therefore forbidden to cross ejσ(gi) . We
conclude that rk does not cross ejσ(gi) .

There are also exactly two choices for rl: the homotopy class of paths from
b to vl that crosses ej and the homotopy class of paths that does not. We draw
each below:

vk

vivl

� b

ej

ejσ(gi) ri

rl

vk

vivl

� b

ej

ejσ(gi) ri

rl

In the case where rl crosses ej , vk is contained in a region bounded by rl,
ri, and ejσ(gi) . Because the generator stems are cyclically ordered and k < i, rk
must leave b clockwise of ri. To enter this region rk must cross ejσ(gi) , which
we showed is impossible above. Thus the only choices we have for rk, ri, and
rl are the homotopy classes of paths from b to vk, vi, and vl, respectively, which
do not cross ej or ejσ(gi) .
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Applying similar reasoning we find the following for the remaining three
sub-cases of Case 1(a).

Sub-case 4: l < i < k

Either (1) rk is the homotopy class of paths from b to vk which crosses ejσ(gi)
and rl is the homotopy class of paths from b to rl which does not cross ej or (2)
rk is the homotopy class of paths from b to vk which does not cross ejσ(gi) and
rl is the homotopy class of paths from b to vl which does cross ej .
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� b

ej

ejσ(gi) ri

rk

rl
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� b

ej

ejσ(gi) ri

rk

rl

Sub-case 5: i < k < l

Either rk is the homotopy class of paths from b to rk which crosses ejσ(gi) and
rl is the homotopy class of paths from b to vl which does not cross ej , or rk is
the homotopy class of paths from b to vk which does not cross ejσ(gi) and rl is
the homotopy class of paths from b to vl which does cross ej .
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Sub-case 6: i < l < k

In this case rk can be only the homotopy class of paths from b to vk which does
not cross ejσ(gi) and rl can be only the homotopy class of paths from b to rl
which does not cross ej .
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vivl

� b

ej

ejσ(ri) ri

rk

rl
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Case 1 (b): vk = vl

vi

vk

�
i < k = l

b

ejσ(gi)ej ri

rk

vi

vk

i > k = l

� b

ejσ(gi)ej ri

rk

Lemma 6: If vk = vl, then gi|j is trivial.

Proof. If i > k = l, then gi|j is trivial by Lemma 5. So suppose i < k = l.
Let B be the region between the blowups of ej and ejσ(gi) . Let D be the union
of B and these blowups. Since ej and ejσ(gi) form a multiple edge, there can
be no element v ∈ V contained in B. As there can be no v ∈ V contained in
the interior of the blowup of either ej or ejσ(gi) , there can be no element of v
contained in D. But gi|j is homotopic to a path contained in the interior of D,
so gi|j must be homotopic to the constant path.

Since ej and ejσ(gi) are adjacent to vi, ri cannot cross either. This says gi
crosses ej and ejσ(gi) exactly once each: namely when gi circles vi. Therefore
the lift g̃ibj crosses the boundary of the blowup of ej exactly once and after

doing so proceeds directly into the blowup of ejσ(gi) , since ejσ(gi) is the edge gi
crosses first after crossing ej . Since gi crosses ejσ(gi) exactly once, g̃ibj remains

within he blowup of ejσ(gi) until it reaches bjσ(gi) .

As k > i, λj and λjσ(gi) each follow gk into the blowup of ejσ(gi) . We may
pick some b′ in the blowup of ejσ(gi) such that λj and λjσ(gi) each pass through
b′. Contracting gi|j along gk we see that gi|k is homotopic to the loop based at
b′ which otherwise follows λj ∗ g̃ibj ∗λjσ(gi) . Since this loop is contained entirely

within D, it must be that gi|j is trivial. �

Case 2: j is either the first or last number in the
monodromy

In this case it is possible that the edges ej and ejσ(gi) do not share a common
adjacent vertex, and hence it is possible a local picture contains as many as four
distinct vertices. To account for this, we let va and vb be the vertices adjacent
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to the edge in the local picture which is not adjacent to vi, if one exists. The
vertices vk and vl, when they appear, are defined as before.

Case 2(a): j, jσ(gi) 6= 1; vl 6= vb, vk 6= vb

Although we have assumed that there are edges in E or segments of generator
stems in the local picture labeled ej and ejσ(gi) adjacent to vi, we must exer-
cise some caution now as these objects are no longer necessarily edges in E.
As j, jσ(gi) 6= 1, ri must cross at least one edge on its way to vi. If j is the
first number in the monodromy, the last edge ri crosses is ej . If jσ(gi) is the
first number in the monodromy (or, equivalently, if j is the last number in the
monodromy), the last edge ri crosses is ejσ(gi) . Recall that the segment of ri
adjacent to vi is labeled ek, where ek is the last edge ri crosses.

va

vbvl

vi

�

j is the first number in σ(gi)

b

ejσ(ri) ej ri

va

vbvk

vi

�

j is the last number in σ(gi)

b

ej ejσ(ri) ri

In the case where j is the first number in the monodromy σ(gi), pictured
above on the left, gi|j follows gmax{a,b} to ej , goes along ej to gi, along gi
to ejσ(gi) , then along ejσ(gi) to vmax{i,l} and back to b along gmax{i,l}. In the
case where j is the last number in the monodromy, gi|j follows the same path in
the opposite direction, except that it still follows gi counter-clockwise around vi.

A priori, there are 48 sub-cases of Case 2(a): 4! ways of ordering the set
{i, k, a, b} and another 4! ways of ordering {i, l, a, b}.

Lemma 7: Suppose the conditions of Case 2(a) are met. Then permuting the
labels a and b has no effect on gi|j .

Proof: Suppose x ∈ {k, l} and O is an ordering of the set {i, x, a, b}. Let O′

be the ordering O, except with a and b exchanged. Suppose the generators in
the local picture of gi|j have order O. Since i, x, a, b are distinct, we may rotate
the edge connecting va and vb 180◦ without influencing the edge connecting vi
and vx. Now if we swap the labels a and b, the generators of the local picture
have order O′. However, since rotation is a continuous deformation, the new
loop gi|′j must be homotopic to gi|j . Since we may proceed similarly for every
gi|j whose associated local picture has generators ordered by either O or O′, we
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have our result by symmetry. �

This reduces the number of sub-cases to 24, which we classify by using ho-
motopy arguments similar to those described above in Case 1(a), sub-case 3.

Case 2 (b) : j, jσ(gi) 6= 1; vk = vb or vl = vb

If j 6= 1 is the first number in the monodromy σ(gi), it is possible that the
last edge ri crosses shares an adjacent vertex with the edge ejσ(gi) ∈ E. We let
vl = vb in this case. Similarly, if j 6= 1 is the last number in σ(gi), it is possible
that the last edge ri crosses shares an adjacent vertex with the edge ej ∈ E.
We let vk = vb in this case.

va

vk

vi

j is last in σ(gi)

� b

ej ejσ(gi)
ri

va

vl

vi

j is first in σ(gi)

� b

ejσ(gi) ej
ri

These two cases each have 3! = 6 sub-cases, arising from the permutations
of the sets {i, k, a} and {i, l, a}.

(1) a < k < i (2) k < a < i (3) a < i < k (4) i < a < k

(5) k < i < a (6) i < k < a (7) a < l < i (8) l < a < i

(9) a < i < l (10) i < a < l (11) l < i < a (12) i < l < a

Fortunately, using homotopy arguments similar to those presented above,
we find there is only one choice of homotopy class of paths for each generator
stem in any one of these twelve sub-cases.
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Case 2 (c) : j = 1 or jσ(gi) = 1

va

vk

vi

j is last in σ(gi)

� b

ej ejσ(gi)
ri

va

vl

vi

j is first in σ(gi)

� b

ejσ(gi) ej
ri

Let j = 1. Since neither ri nor rl can cross ej , there is only one choice of
homotopy class of paths for each. Since there are 2! = 2 permutations of the
set {i, l}, there are only two sub-cases of 2(c) for which j = 1. By symmetry we
have the same for the case jσ(gi) = 1 and therefore we conclude that there are
exactly four sub-cases of Case 2(c), each with exactly one choice of homotopy
class of paths for each generator stem.

Interpreting the Local Picture

Identifying the Local Picture

Identifying the local picture of gi|j in our classification is straightforward. If j
is neither the first nor last number in the monodromy, then the local picture
belongs to Case 1; otherwise it belongs to Case 2. Checking the number of dis-
tinct vertices adjacent to ej and ejσ(gi) further refines this placement to either
1(a), 1(b), 2(a), 2(b), or 2(c). Then the order of the magnitudes of the indices of
these adjacent vertices together with the knowledge of which generators in the
local picture cross ej and ejσ(gi) dictates a unique local picture corresponding to
gi|j . A catalogue of these local pictures and characteristics sufficient to find the
data (1), (2) and (3) is found in the Appendix. In what follows we calculate (1),
(2), and (3) from a local picture gi|j and thereby decide what characteristics
are necessary to include in the Appendix.

Extracting information from the local picture

From the local picture of gi|j , we wish to deduce

1. The generators gs, gs+1 that gi|j starts “between” and the generators
ge, ge+1 that gi|j ends “between,”

2. The ordered list c1, . . . , ck of the generators gi that gi|j intersects away
from b, written in the order gi|j intersects them,

3. The orientation, positive or negative, with which gi|j intersects the gen-
erator corresponding to cx, for 1 ≤ x ≤ k.
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Since we may write gi|j as a loop which follows only edges and generators
in the local picture of gi|j , we may let gα be the generator which gi|j follows to
the edge ej and let gβ be the generator gi|j follows when leaving ej . Then the
only generators which gi|j can cross while traveling along ej are the generators
which cross ej between the intersection of ej with gα and the intersection of
ej with gβ . Since we input for each edge an ordered list of the generators that
cross that edge, the generators gi|j crosses while following ej are precisely those
in the input for ej listed between gα and gβ .

As we can do the same for ejσ(gi) , and by Lemma 3 the only generators gi|j
can cross are those which cross ej or ejσ(gi) , we have found all the generators
corresponding to c1, . . . , ck. To ensure that these generators are listed in the
order gi|j intersects them, we make note of the direction gi|j travels along ej
and ejσ(gi) and which edge, ej or ejσ(gi) , gi|j traverses first, if it does traverse one.

Next we find the orientation with which gi|j intersects the generator corre-
sponding to cx for 1 ≤ x ≤ k. First, we consider the cx’s which correspond
to generators not present in the local picture of gi|j . To do this, we let the
set of indices of the generators in the local picture partition its complement
in the set {1, . . . , n}. We refer to this partition as the partition of {1, . . . , n}
induced by the local picture of gi|j , and call the parts of this partition ranges T .

Lemma 8: Suppose the indices m,n of two generators gm, gn of π1(S2 \ V, b)
belong to the same range T in the partition of {1, . . . , n} induced by the local
picture of gi|j . Then if gm and gn both intersect ej or both intersect ejσ(gi) ,
they must do so with the same orientation.

Proof: Let n and m belong to T and suppose for contradiction that gm
and gn intersect an edge e in the local picture with opposite orientations. Let
v and v′ be the vertices adjacent to e and let R be a region bounded by gv, gv′ ,
and e. We may assume without loss of generality that gm is entering R and
gn is exiting R at their respective points of intersection. Since R is bounded
by generators and a single edge in in E, gm cannot begin within R and gn
must begin within R. Since R the generators which bounded R are in the local
picture, gn and gm cannot begin in the same range T , which is a contradiction.�

Thus for each range T in the partition of {1, . . . , d} induced by the local pic-
ture of gi|j , we need only compute the orientation of a non-empty intersection
of a generator in T with ej and the orientation of a non-empty intersection of a
generator in T with ejσ(gi) , if such exists. Therefore to determine the orientation
associated with cx, where cx corresponds to a generator gi not present in the
local picture, we need only check which range i belongs to and which edge gi
crosses in the intersection associated with cx. By Lemma 8, every generator in
this range crossing that edge will do so with the same orientation.
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To find the orientation of each cx corresponding to a generator in the local
picture, we check the orientation of the intersection of each generator in the
local picture with ej and ejσ(gi) by hand.

As λj 6= λ1 follows a generator gα from b counter-clockwise around vα, we
say gi|j starts between the generators gα−1 and gα since doing so minimizes
crossings. Similarly, if λjσ(gi) 6= λ1 follows the generator gβ counter-clockwise
around vβ , we say gi|j ends between gβ−1 and gβ . In the case where j = 1, gi|j
follows the path lift g̃ibj from b to bjσ(gi) and we say gi|j starts between gi−1
and gi. In the case where jσ(gi) = 1, gi|j follows g̃ibj from bj to b and we say

gi|j ends between gi and gi+1.

A catalogue of these local pictures and complete with the results of these
computations is found in the Appendix.

Procedure for writing ω ∈ πi(S2 \ V ) as a word in
g1, . . . , gn

Suppose ω is a representative of a loop in π1(S2 \ V, b). Since we have assumed
the generators gi of π1(S2 \ V, b) are cyclically ordered and do not cross each
other, we may assume, after an appropriate continuous deformation, that the
stems ri of each gi are straight lines radiating outwards uniformly from the
basepoint b.

v1

v2

v3

v4

�

g4 g2

g3

g1

ω
v1

v2

v3

v4

�
g1

g2

g3
g4

ω

Suppose that ω leaves the basepoint b between the generators gs and gs+1

and returns to b between the generators ge and ge+1. Let c1, . . . , ck be the or-
dered list of generators ω intersects away from b, listed in the order ω intersects
them. And suppose we know the orientation with which ω intersects the gener-
ator corresponding to cx for all 1 ≤ x ≤ k. Recall that we say ω intersects the
generator gi with positive orientation if a person walking along ω would find
the basepoint connected to the segment of gi on the person’s left at the point
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of intersection. Otherwise, we say ω intersects gi with negative orientation. In
the figure above, for example, ω intersects g3 with positive orientation; on the
other hand, it intersects g1 with negative orientation.

For 1 ≤ x ≤ k− 1, we divide ω into the k− 1 paths wx,x+1, where ωx,x+1 is
the path which follows ω from the point ω intersects the generator correspond-
ing to cx to the point ω intersects the generator corresponding to cx+1. We let
ω0,1 be the path that follows ω from b to the point ω intersects the generator
corresponding to c1, and we let ωk,k+1 be the path that follows ω from the point
ω intersects the generator corresponding to ck to b.

Since ω is homotopic to the concatenation ω0,1 ∗ · · · ∗ ωk,k+1, if we express
each ωx,x+1 for 0 ≤ x ≤ k in terms of the generators g1, . . . , gn, we will have an
expression in terms of g1, . . . , gn that is homotopic to ω. So we need only find
a method for expressing an arbitrary ωx,x+1 in terms of g1, . . . , gn.

But this is done easily from the orientations associated with cx and cx+1

alone. In fact, if we let cx denote the intersection of ω with the generator ga
and cx+1 denote the intersection of ω with the generator gb, then the following
table gives an expression for ωx,x+1 in terms of the generators g1, . . . , gn which
depends only on the generators ω starts and ends between and the orientations
of the intersections associated with cx and cx+1.

Orientation at cx Orientation at cx+1 Solution
cx = b +1 gs+1 ∗ · · · ∗ gb−1
cx = b -1 (gb+1 ∗ · · · ∗ gs)−1

+1 cx+1 = b ga+1 ∗ · · · ∗ ge
-1 cx+1 = b (ge+1 ∗ · · · ∗ ga−1)−1

+1 +1 ga+1 ∗ · · · ∗ gb−1
-1 -1 (gb+1 ∗ · · · ∗ ga−1)−1

+1 -1 ga+1 ∗ · · · ∗ gb
-1 + 1 (gb ∗ · · · ∗ ga−1)−1

Closing Example

Suppose that we have identified the local picture of a wreath position gi|j to
be Case 1(a), sub-case k < i < l. From the Appendix we retrieve the following
information

1. gi|j traverses the edge ejσ(gi) from the point at which gi intersects ejσ(gi)
to the point at which gl intersects ejσ(gi) ; gi|j does not traverse the edge
ej .

2. The orientation of the intersection of a generator gα with the edge ejσ(gi)
is negative in the range α < k, negative in the range k < α < i, positive
in the range i < α < l, and again negative in the range l < α.
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3. gi|j intersects none of the generators gk, gi, gl in the local picture.

4. gi|j starts between the generators gi−1 and gi and ends between the gen-
erators gl−1 and gl.

Suppose k = 3, i = 4, and l = 8 in this example, and suppose g4, g6, g2, g7, g1,
g9, g8 is the inputted list of the generators that cross the edge ejσ(gi) , ordered
from the generator that crosses ejσ(gi) nearest v4 to the generator that crosses
ejσ(gi) nearest v8. Since gi|j traverses ejσ(gi) between the points where g4 and g8
cross ejσ(gi) and neither g4 nor g8 intersect gi|j , the list g6, g2, g7, g1, g9 is the list
of the generators gi|j intersects, written in the order gi|j intersects them. By
examining the ranges their indices belong to, we see that gi|j intersects g2, g1,
and g9 with negative orientation and g6 and g7 with positive orientation. This,
along with the fact that gi|j starts between g3 and g4 and ends between g7 and
g8, is enough to compute gi|j in terms of g1, . . . , g9.

Using the table above, we find that

gi|j = g4g5︸︷︷︸
ω0,1

g7g8g9g1g2︸ ︷︷ ︸
ω1,2

(g7g8g9g1)−1︸ ︷︷ ︸
ω2,3

g8g9g1︸ ︷︷ ︸
ω3,4

g8g9g1g2g3g4g5g6g7g8)−1︸ ︷︷ ︸
ω5,6

where ω4,5 is homotopic to the constant loop. We invite the reader to check this
both with the process we have described above and by hand with the picture
we provide below.
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Guide to the Appendix

The tables in the following sections provide the data necessary to compute the
wreath algorithm. Precise definitions for the symbols i, k, l, a, b, j, n, gi|j and
jσ(gi) can be found in the body of the report.

For each gi|j , the algorithm first identifies its local picture by its Subcase
which is an ordering of the indices of the vertices in the local picture: i, k, l for
Case 1(a), i, l, a, b for Case 2(a), first in monodromy, i, k, a, b for Case 2(a), last
in monodromy, i, l, a for Case 2(b), first in monodromy, i, k, a for Case 2(b),
last in monodromy, i, l for Case 2(c), first in monodromy, and i, k for Case 2(c),
last in monodromy. These lists correspond to the alphabetical ordering of each
Case.

When the Subcase is not enough to determine the local picture, the algo-
rithm checks the Subsubcase, the final identifier. The Subsubcase is deter-
mined by which generators in the local picture cross j or jσ(gi). We provide an
orientation ± when a generator crosses gi|j .

To write gi|j in terms of generators g1 . . . gn, we need to know between
which two generators it begins and ends. It begins between gs and gs+1 and
ends between ge and ge+1, all of which are recorded under the column headed
Start/End.

Next, the algorithm requires the edges gi|j traveres and in what order, and
the each edge’s orientation. Since gi|j traverses a maximum of two edges the
Position is labeled First or Second. When gi|j traverses no edges, we indicate
that it is not applicable, n/a. These are Labeled j or jσ(gi) in the local picture
and have orientation ±: + when gi|j runs from the lower indexed vertex to the
higher indexed vertex and − otherwise. The indices of the Start and the End
vertices also provide the orientation; if Start>End then the orientation is −.

After obtaining an ordered list of generator crosses on gi|j , the algorithm
must determine the orientation of each cross on each edge based on ranges.
Suppose the Subcase was α < β < γ. Then {T1, . . . , T4} represent the ranges

0 < T1 < α α < T2 < β β < T3 < γ γ < T4 < n+ 1

or 0 < T1 < α < T2 < β < T3 < γ < T4 < n+1 and similarly for {T1, . . . Tp} for
any p. For each edge in each local picture, the Orientation columns provide
the orientations for the crosses with ranges. When a generator in a given range
cannot cross the given edge, we indicate that it is not possible, n/p. If the cross
is a generator in the local picture, the orientation is recorded in the Subsubcase
column or the Start or End columns when it is located at the start or end of
an edge segment.

Here, as elsewhere, addition is performed modulo n.
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A Case 1(a)

j is neither the first not the last number in the monodromy and l and k are
distinct

Identify Local Picture Start/End Edges Traversed Orientation
Subcase Subsubcase gs ge Position Label ± Start End T1 T2 T3 T4
i < k < l gl crosses j, + k − 1 l − 1 First j − k i + − + +

Second jσ(gi) + i l − + + −
i < k < l gk crosses jσ(gi), + k − 1 l − 1 First j − k i + − + +

Second jσ(gi) + i l − + + −
i < l < k n/a k − 1 l − 1 First j − k i + − − +

Second jσ(gi) + i l − + − −
k < i < l n/a i− 1 l − 1 First jσ(gi) + i l − − + −
k < l < i gl crosses j i− 1 i− 1 n/a n/a n/a n/a n/a n/a n/a n/a n/a

k < l < i gk crosses jσ(gi) i− 1 i− 1 n/a n/a n/a n/a n/a n/a n/a n/a n/a
l < i < k gl crosses j, + k − 1 i− 1 First j − k i + + − +

l < i < k gk crosses jσ(gi) k − 1 i− 1 First j − k i + + − +
l < k < i n/a i− 1 i− 1 n/a n/a n/a n/a n/a n/a n/a n/a n/a

B Case 2(b)

j is neither the first not the last in the monodromy and k = l

Case 2(b) always gives the constant loop, denoted e.
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C Case 2(a)

First in monodromy

j is the first number in the monodromy, j 6= 1 and l and b are distinct.

Identify Local Picture Start/End Edges Traversed Orientation
Subcase Subsubcase gs ge Position Label ± Start End T1 T2 T3 T4 T5

i < l < a < b gl crosses j b− 1 l − 1 First j − b i + n/p n/p − +
Second jσ(gi) + i l − + − − −

i < l < a < b ga crosses jσ(gi), − b− 1 l − 1 First j − b i + n/p n/p − +
Second jσ(gi) + i l − + − − −

i < l < b < a gl crosses j a− 1 l − 1 First j − a i + n/p n/p − +
Second jσ(gi) + i l − + − − −

i < l < b < a gb crosses jσ(gi), − a− 1 l − 1 First j − a i + n/p n/p − +
Second jσ(gi) + i l − + − − −

i < a < l < b n/a b− 1 l − 1 First j − b i + n/p − − +
Second jσ(gi) + i l − + + − −

i < a < b < l gl crosses j, + b− 1 l − 1 First j − b i + n/p − + +
Second jσ(gi) + i l − + + + −

i < a < b < l gb crosses jσ(gi) b− 1 l − 1 First j − b i + n/p − + +
Second jσ(gi) + i l − + + + −

i < b < l < a n/a a− 1 l − 1 First j − a i + n/p − − +
Second jσ(gi) + i l − + + − −

i < b < a < l gl crosses j, + a− 1 l − 1 First j − a i + n/p − + +
Second jσ(gi) + i l − + + + −

i < b < a < l ga crosses jσ(gi) a− 1 l − 1 First j − a i + n/p − + +
Second jσ(gi) + i l − + + + −

l < i < a < b gl crosses j, + b− 1 i− 1 First j − b i + + n/p − +

l < i < a < b gb crosses jσ(gi) b− 1 i− 1 First j − b i + + n/p − +
l < i < b < a gl crosses j, + a− 1 i− 1 First j − a i + + n/p − +

l < i < b < a ga crosses jσ(gi) a− 1 i− 1 First j − a i + + n/p − +
l < a < i < b n/a b− 1 i− 1 First j − b i− + + n/p − +
l < a < b < i gl crosses j b− 1 i− 1 First j − b i n/p n/p − + n/p

l < a < b < i ga crosses jσ(gi) b− 1 i− 1 First j − b i n/p n/p − + n/p
l < b < i < a n/a a− 1 i− 1 First j − a i− + + n/p − +
l < b < a < i gl crosses j a− 1 i− 1 First j − a i n/p n/p − + n/p

l < b < a < i gb crosses jσ(gi) a− 1 i− 1 First j − a i n/p n/p − + n/p
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Identify Local Picture Start/End Edges Traversed Orientation
Subcase Subsubcase gs ge Position Label ± Start End T1 T2 T3 T4 T5

a < i < l < b gl crosses j, − b− 1 l − 1 First j − b i− + n/p − − +
Second jσ(gi) + i l − − + − −

a < i < l < b gb crosses jσ(gi), − b− 1 l − 1 First j − b i− + n/p − − +
Second jσ(gi) + i l − − + − −

a < i < b < l n/a b− 1 l − 1 First j − b i− + n/p − + +
Second jσ(gi) + i l − − + + −

a < l < i < b gl crosses j b− 1 i− 1 First j − b i + n/p n/p − +

a < l < i < b ga crosses jσ(gi) b− 1 i− 1 First j − b i + n/p n/p − +
a < l < b < i n/a b− 1 i− 1 First j − b i n/p − − + n/p
a < b < i < l gl crosses j b− 1 l − 1 First j − b i n/p − + n/p n/p

Second jσ(gi) + i l − − − + −
a < b < i < l ga crosses jσ(gi), − b− 1 l − 1 First j − b i n/p − + n/p n/p

Second jσ(gi) + i l − − − + −
a < b < l < i ga crosses j, + b− 1 i− 1 First j − b i n/p − + + n/p

a < b < l < i gb crosses jσ(gi) b− 1 i− 1 First j − b i n/p − + + n/p
b < i < l < a gl crosses j, − a− 1 l − 1 First j − a i− + n/p − − +

Second jσ(gi) + i l − − + − −
b < i < l < a ga crosses jσ(gi), − a− 1 l − 1 First j − a i− + n/p − − +

Second jσ(gi) + i l − − + − −
b < i < a < l n/a a− 1 l − 1 First j − a i− + n/p − + +

Second jσ(gi) + i l − − + + −
b < l < i < a gl crosses j a− 1 i− 1 First j − a i + n/p n/p − +

b < l < i < a gb crosses jσ(gi) a− 1 i− 1 First j − a i + n/p n/p − +
b < l < a < i n/a a− 1 i− 1 First j − a i n/p − − + n/p
b < a < i < l gl crosses j a− 1 l − 1 First j − a i n/p − + n/p n/p

Second jσ(gi) + i l − − − + −
b < a < i < l gb crosses jσ(gi), − a− 1 l − 1 First j − a i n/p − + n/p n/p

Second jσ(gi) + i l − − − + −
b < a < l < i gb crosses j, + a− 1 i− 1 First j − a i n/p − + + n/p

b < a < l < i ga crosses jσ(gi) a− 1 i− 1 First j − a i n/p − + + n/p
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Last in monodromy

j is the last number in the monodromy, jσ(gi) 6= 1 and k and b are distinct.

Identify Local Picture Start/End Edges Traversed Orientation
Subcase Subsubcase gs ge Position Label ± Start End T1 T2 T3 T4 T5

i < k < a < b gk crosses j k − 1 b− 1 First j − l i + − + + +
Second jσ(gi) + i− b − n/p n/p + −

i < k < a < b ga crosses jσ(gi), + k − 1 b− 1 First j − l i + − + + +
Second jσ(gi) + i− b − n/p n/p + −

i < k < b < a gk crosses j k − 1 a− 1 First j − k i + − + + +
Second jσ(gi) + i− a − n/p n/p + −

i < k < b < a gb crosses jσ(gi), + k − 1 a− 1 First j − k i + − + + +
Second jσ(gi) + i− a − n/p n/p + −

i < a < k < b n/a k − 1 b− 1 First j − k i + − − + +
Second jσ(gi) + i− b − n/p + + −

i < a < b < k gk crosses j, − k − 1 b− 1 First j − k i + − − − +
Second jσ(gi) + i− b − n/p + − −

i < a < b < k gb crosses jσ(gi) k − 1 b− 1 First j − l i + − − − +
Second jσ(gi) + i− b − n/p + − −

i < b < k < a n/a k − 1 a− 1 First j − k i + − − + +
Second jσ(gi) + i− a − n/p + + −

i < b < a < k gl crosses j, − k − 1 a− 1 First j − k i + − − − +
Second jσ(gi) + i− a − n/p + − −

i < b < a < k ga crosses jσ(gi) k − 1 a− 1 First j − k i + − − − +
Second jσ(gi) + i− a − n/p + − −

k < i < a < b gk crosses j, − i− 1 b− 1 First jσ(gi) + i− b − − n/p + −
k < i < a < b gb crosses jσ(gi) i− 1 b− 1 First jσ(gi) + i− b − − n/p + −
k < i < b < a gk crosses j, − i− 1 a− 1 First jσ(gi) + i− a − − n/p + −
k < i < b < a ga crosses jσ(gi) i− 1 a− 1 First jσ(gi) + i− a − − n/p + −
k < a < i < b n/a i− 1 b− 1 First jσ(gi) + i b − − n/p + −
k < a < b < i gk crosses j i− 1 b− 1 First jσ(gi) + i− b n/p n/p + − n/p

k < a < b < i ga crosses jσ(gi) i− 1 b− 1 First jσ(gi) + i− b n/p n/p + − n/p

k < b < i < a n/a i− 1 a− 1 First jσ(gi) + i a − − n/p + −
k < b < a < i gk crosses j i− 1 a− 1 First jσ(gi) + i− a n/p n/p + − n/p

k < b < a < i gb crosses jσ(gi) i− 1 a− 1 First jσ(gi) + i− a n/p n/p + − n/p
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Identify Local Picture Start/End Edges Traversed Orientation
Subcase Subsubcase gs ge Position Label ± Start End T1 T2 T3 T4 T5

a < i < k < b gk crosses j, + k − 1 b− 1 First j − k i + + − + +
Second jσ(gi) + i b − n/p + + −

a < i < k < b gb crosses jσ(gi), + k − 1 b− 1 First j − k i + + − + +
Second jσ(gi) + i b − n/p + + −

a < i < b < k n/a k − 1 b− 1 First j − k i + + − − +
Second jσ(gi) + i b − n/p + − −

a < k < i < b gk crosses j i− 1 b− 1 First jσ(gi) + i b − n/p n/p + −
a < k < i < b ga crosses jσ(gi) i− 1 b− 1 First jσ(gi) + i b − n/p n/p + −
a < k < b < i n/a i− 1 b− 1 First jσ(gi) + i− b n/p + + − n/p
a < b < i < k gk crosses j k − 1 b− 1 First j − k i + + + − +

Second jσ(gi) + i− b n/p + − n/p n/p

a < b < i < k ga crosses jσ(gi), + k − 1 b− 1 First j − k i + + + − +
Second jσ(gi) + i− b n/p + − n/p n/p

a < b < k < i ga crosses j, − i− 1 b− 1 First jσ(gi) + i− a n/p + − − n/p

a < b < k < i gb crosses jσ(gi) i− 1 b− 1 First jσ(gi) + i− b n/p + − − n/p
b < i < k < a gk crosses j, + k − 1 a− 1 First j − k i + + − + +

Second jσ(gi) + i a − n/p + + −
b < i < k < a ga crosses jσ(gi), + k − 1 a− 1 First j − k i + + − + +

Second jσ(gi) + i a − n/p + + −
b < i < a < k n/a k − 1 a− 1 First j − k i + + − − +

Second jσ(gi) + i a − n/p + − −
b < k < i < a gk crosses j i− 1 a− 1 First jσ(gi) + i a − n/p n/p + −
b < k < i < a gb crosses jσ(gi) i− 1 a− 1 First jσ(gi) + i a − n/p n/p + −
b < k < a < i n/a i− 1 a− 1 First jσ(gi) + i− a n/p + + − n/p
b < a < i < k gl crosses j k − 1 a− 1 First j − k i + + + − +

Second jσ(gi) + i− a n/p + − n/p n/p

b < a < i < k gb crosses jσ(gi), + k − 1 a− 1 First j − k i + + + − +
Second jσ(gi) + i− a n/p + − n/p n/p

b < a < k < i gb crosses j, − i− 1 a− 1 First jσ(gi) + i− a n/p + − − n/p

b < a < k < i ga crosses jσ(gi) i− 1 a− 1 First jσ(gi) + i− a n/p + − − n/p
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D Case 2(b)

First in monodromy

j is the first number in the monodromy, j 6= 1, b = l and it is denoted l

Identify Local Picture Start/End Edges Traversed Orientation
Subcase Subsubcase gs ge Position Label ± Start End T1 T2 T3 T4
i < l < a n/a a− 1 l − 1 First j − a i + n/p − +

Second jσ(gi) + i l − + − −
i < a < l n/a l − 1 l − 1 First j − l i + n/p − +

Second jσ(gi) + i l − + + −
l < i < a n/a a− 1 i− 1 First j − a i− + n/p − +
l < a < i n/a a− 1 i− 1 First j + a i − − + −
a < i < l n/a k − 1 l − 1 First j − l i− + n/p − +

Second jσ(gi) + i l − − + −
a < l < i n/a l − 1 i− 1 First j − l i n/p − + n/p

Last in monodromy

j is the last number in the monodromy, jσ(gi) 6= 1, b = k and it is denoted k

Identify Local Picture Start/End Edges Traversed Orientation
Subcase Subsubcase gs ge Position Label ± Start End T1 T2 T3 T4
i < k < a n/a k − 1 a− 1 First j − k i + − + +

Second jσ(gi) + i− a − n/p + −
i < a < k n/a k − 1 k − 1 First j − k i + − − +

Second jσ(gi) + i− k n/p + − n/p

k < i < a n/a i− 1 a− 1 First jσ(gi) + i a − − + −
k < a < i n/a i− 1 a− 1 First jσ(gi) − i− a + + − +
a < i < k n/a k − 1 k − 1 First j − k i + + − +

Second jσ(gi) + i k n/p + − n/p

a < k < i n/a i− 1 k − 1 First jσ(gi) − i− k n/p + − n/p
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E Case 2(c)

First in monodromy

j is the first number in the monodromy and j = 1

Identify Local Picture Start/End Edges Traversed Orientation
Subcase Subsubcase gs ge Position Label ± Start End r1 r2 r3
i < l n/a i− 1 l − 1 First jσ(gi) + i l − + −
l < i n/a i− 1 i− 1 n/a n/a n/a n/a n/a n/a n/a n/a

Last in monodromy

j is the last number in the monodromy and jσ(gi) = 1

Identify Local Picture Start/End Edges Traversed Orientation
Subcase Subsubcase gs ge Position Label ± Start End r1 r2 r3
i < k n/a k − 1 i First j − k i + − +
k < i n/a i− 1 i n/a n/a n/a n/a n/a n/a n/a n/a
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