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Preface

During the summer of 2012 nine students participated in the Research Experi-
ences for Undergraduates program in Mathematics at Indiana University. The
program ran for eight weeks, from June 4 through July 27, 2012. Six faculty
served as research advisers. Three faculty members oversaw a pair of related
projects; all other faculty advised one student each.

The program opened with an introductory pizza party. On the following
morning, students began meeting with their faculty mentors; these meetings
continued regularly throughout the first few weeks. During week one, there
were short presentations by faculty mentors briefly introducing the problem to
be investigated. Several other IU faculty gave talks on their favorite topics
during the first half of the program. Students also received an orientation to
the mathematics library. Week two featured a tour of the IU Art Museum led
by undergraduate docent, math, and English student and REU alumnus John
Brown, and an introduction to professional ethics for researchers in mathemat-
ics. In week three, students gave short, informal presentations to each other on
the status of work on the project; they also enjoyed a party at a local swimming
pool, hosted by Dr. Housworth. Brief training sessions on using LATEXwere also
given during week three. Week four featured a pool party hosted by Dr. Hous-
worth at Bryan Park, a tour of the puzzle collection at the Lily Library, and
a campuswide reception for REU programs at the IMU faculty club. In week
five, they received a tour of the cyclotron facility led by Prof. Baxter. During
week six, there was an intimate panel discussion on What is it like to be a
mathematician? hosted by Professors Hoff, Katz, and Kirk. During week seven
we hosted the Indiana Mathematics Undergraduate Research conference, which
featured 20 lectures by 32 students from Rose-Hulman Institute of Technology,
Wabash College, Goshen College, Valparaiso University, and Indiana University,
and ended with an hourlong panel discussion on graduate school. The program
concluded with a dinner at local eatery Max’s Place and the submission of final
reports, contained in this volume.

It took the help and support of many different groups and individuals to
make the program a success.

We thank the National Science Foundation for major financial support through
the REU program through grants DMS-0851852 and DMS-1156515. We thank
the staff of the Department of Mathematics for support, especially Mandie Mc-
Carty for coordinating the complex logistical arrangments (housing, paychecks,
information packets, meal plans, frequent shopping for snacks). We thank In-
diana graduate student Anne Carter for serving as LATEXconsultant and for
compiling this volume.

Thanks to mathematics faculty Chris Judge, Kevin Pilgrim, and Matthias
Weber for serving as mentors and giving lectures, and to biology faculty Michael
Lynch, Emilia Martins, and Sidney Shaw for serving as mentors and giving lec-
tures. Thanks to Jillian Hinchcliffe of the Lily Library for her personal tour of
the Slocum collection. Thanks to David Baxter of the Center for Exploration
of Energy and Matter (nee IU cyclotron facility) for his personal tour of the cy-
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clotron facility and lecture on the physics of materials. Thanks to mathematics
faculty members Larry Moss, Ciprian Demeter, Richard Bradley, Matt Bain-
bridge and graduate student Holly Attenborough for inspiring lectures. Thanks
to undergraduate John Brown for the museum tour and to Elizbeth Housworth
for the pool party.

The group put together a video montage at http://www.youtube.com/
watch?v=LTHi5zGR_1I, and volunteered this creative photo:

KMP
November, 2012
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Reconstructing Rhombic Tilings

From Curve Systems

Kyla Baldwin

1 Introduction

In this paper, we focus on identifying a classification system by which periodic
tilings composed exclusively of rhombi may be distinguished from one another.
In particular, we consider invariants such as the number of unique rhombi used
and the number of zones contained in each tiling.

Figure 1: Periodic tilings composed exclusively of rhombi

We approach this problem systematically as follows:

1. For a given tiling, we find an associated curve system on the quotient torus
of the tiling that encodes its topological nature.

2. We identify the edge vectors of the rhombi used to compose the tiling. We
note that any pair of edge vectors must have a positive determinant. We
refer to this as the determinant condition.

3. We demonstrate that any set of such curve systems and edge vectors may
be used to reconstruct a periodic rhombic tiling.

Our paper first discusses general background and notation. We then provide
examples illustrating the process of encoding a periodic tiling onto a curve sys-
tem. We proceed to discuss the general case of reconstruction of a periodic tiling
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from its given curve system and edge vectors, elaborating upon the necessary
restrictions of the given data. We conclude by generalizing to a third dimension.

2 Background and Notation

We wish to examine different constructions by which a plane may be covered.
We introduce the following terminology:

Definition 2.1. A tiling uses a set of geometric shapes repeated infinitely many
times to create a two-dimensional plane without gaps or overlapping shapes.

Definition 2.2. We refer to a tiling of the plane as periodic if there are two
independent translations under which the tiling is invariant. In our paper, we
only consider periodic tilings.

Definition 2.3. Given two independent translations ~v1 and ~v2, we refer to the
set Λ : {a~v1 + b ~v2 ∈ Z} as the lattice generated by ~v1 and ~v2. If our periodic
tiling is invariant under ~v1 and ~v2, we refer to Λ as the associated periodic lattice
of ~v1 and ~v2.

We may categorize associated periodic lattices by the geometrical form that
they take in the plane. For example, if our lattice is generated by ~v1 = (1, 0) and
~v2 = (0, 1), we refer to it as a square lattice (Figure 2). However, if our lattice is
generated by ~v1 = (1, 0) and ~v2 =

(
1
2 ,
√

3
2

)
, we refer to it as a hexagonal lattice

(Figure 2).

Figure 2: An example of a hexagonal lattice and a square lattice, respectively.

By definition, a periodic tiling consists of a single shape or a set of shapes re-
peated infinitely many times. The independent translations ~v1 and ~v2 determine
the collection of shapes that is iterated infinitely many times to tile the plane.
We refer to this collection as the fundamental domain of the tiling. Formally,

5



Definition 2.4. Given a lattice Λ, the fundamental domain Q ⊂ R2 is such
that:

1. For every point p ∈ R2, there is a translation ~v ∈ Λ such that ~v + p ∈ Q

2. Given a point p ∈ R2 and a translation ~v ∈ Λ, if the translation p+~v ∈ Q,
then p lies in the boundary of Q

Definition 2.5. A zone segment is a curve whose endpoints lie on the bound-
aries of two opposing edges of a rhombus. A zone curve is an infinite curve
(without endpoints) composed of zone segments. Finally, a zone is composed of
exactly those rhombi intersected by a given zone curve.

Zone Segments Zone Curve Zone 

Figure 3: An example of a zone segment, a zone curve, and a zone

Definition 2.6. A curve system consists of the zone curves and their intersec-
tions.

Throughout this paper, we denote the n zone curves of a given periodic tiling
as (γ1, γ2, . . . , γn), where n ≥ 2. Furthermore, we label the intersections of pairs
of zone curves (which appear as vertices on the curve system) as v̂1, v̂2, . . . , v̂m,
where m ≥ 1.

Note that because a periodic tiling covers the entire plane, any given zone
curve is repeated infinitely many times, so, in particular, the number of zone
curves in the periodic tiling is equal to the number of zone curves in the fun-
damental domain. We may therefore classify a periodic tiling by the number of
zone curves in its fundamental domain.
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3 Associating a tiling to a curve system

Consider the periodic tiling T with a fundamental domain of four squares, as
shown in Figure 4. We would like to represent T by a curve system on the
quotient torus.

Figure 4: T .

We begin by defining the four zone curves of T .

(0,0) (2,0)

(2,2)(0,2)

Figure 5: The zone curves of T

We refer to the zone curve intersecting (0, 0) and (0, 2) as γ1, the zone curve
intersecting (2, 0) and (2, 2) as γ2, the zone curve intersecting (0, 2) and (2, 2)
as γ3, and the zone curve intersecting (0, 0) and (2, 0) as γ4.
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Figure 6: Labeled zone curves

We map the curve system onto a torus by identifying γ1 with γ2 and γ3 with
γ4:

Figure 7: Mapping to quotient torus

4 Reconstruction of a Periodic Tiling From a
Curve System

Considering the mapping of zone curves (γ1, γ2, . . . , γn) onto the quotient torus,
it is clear that we may represent γi by a list of vertices v̂1, . . . , v̂m unique up to
cyclic permutation, where each v̂k represents the intersection of γi with some
other zone curve γj . For example, as seen in Figure 8, we may represent γ1 as
[v̂1, v̂3].

Since a zone curve intersects rhombi with opposing edges parallel to some
edge vector, it is clear that the intersection of two zone curves γi, γj defines a
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Figure 8: A curve system with zone curves γ1, γ2, γ3, γ4 and intersection vertices
v̂1, v̂2, v̂3, v̂4, v̂5.

unique rhombus with one pair of opposing edges parallel to the vector associated
with γi, and the other pair of opposing edges parallel to the vector associated
with γj . In this way, we see that each intersection vertex v̂k of a curve system
describes a rhombus in the periodic tiling, since v̂k represents the intersection
of two zone curves.

Furthermore, since we may consider a curve system to be a dual map of a
periodic tiling, each face of a curve system is uniquely associated with a vertex
of the periodic tiling it represents. The number of edges bounding a given
face in the curve system is equal to the degree of the corresponding vertex in
the periodic tiling, so we may connect vertices in adjacent faces with segments
parallel to the pertinent zone curves to determine the rhombi of the periodic
tiling.

ɣ
1

ɣ
2

ɣ
3

ɣ
4

2̂v

3̂v 5̂v

1̂v

4̂v

1v

2v

3v 4v

5v

Figure 9: The curve system with faces identified with vertices, and segments
connecting adjacent vertices
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5 Example of a Reconstruction

We provide a concrete example of the reconstruction of a periodic tiling from
a given curve system. In particular, we consider the following curve system,
represented on the quotient torus:

ɣ
1

ɣ
2

ɣ
3

ɣ
4

2̂v

3̂v 5̂v

1̂v

4̂v

We see that curve system contains five intersection vertices, so the periodic
tiling is composed of five distinct rhombi, whose edge vectors are given by the
pairs of intersecting zone curves as previously discussed.

We begin by identifying each of the five distinct faces of the curve system
with a vertex of the periodic tiling, (v1, . . . , v5)

ɣ
1

ɣ
2

ɣ
3

ɣ
4

2̂v

3̂v 5̂v

1̂v

4̂v

1v

2v

3v 4v

5v

Figure 10: The five vertices of the rhombi of the periodic tiling, shown in boxes.

Then we determine how each vertex is related to another by connecting
every vertex to all adjacent vertices by a segment. In a given face of the curve
system, there are a certain number of edges which make up the face, and these
edges must all be zone curves. When determining the number of segments
extruding from a vertex of the periodic tiling contained within the face of the
curve system, there must be the same number of these segments as edges of
the face. In particular, every vertex of the periodic tiling must have as many
segments extruding from it as the number of edges contained within the same
face. An example can be seen in Figure 11.

We note that every time one of these segments crosses a zone curve, it
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3v 4v

5v

Figure 11: Curve system with segments added to detail how vertices are related
to each other.

represents an edge vector in the periodic tiling belonging to whichever zone in
which the edge vector is a member - i.e. when a segment crosses the γ1 curve,
in Figure 11, the segment represents an edge vector in the periodic tiling that
is part of the γ1 zone.

Therefore, if we assign edge vector to the zones and we know how each of the
vertices is connected to every adjacent vertex by these edge vectors, it becomes
possible for us to rebuild the fundamental domain, as well as the entire periodic
tiling. In this example, we have chosen to represent the edge vectors associated
with each zone curve as shown in Figure 12.

ɣ
1

ɣ
3

ɣ
2

ɣ
4

Figure 12: Edge vectors associated with each zone curve.

Now, it is possible to reconstruct the tiling. Beginning with vertex v1, we
see that it is connected to four other vertices, v2, v3, v4, and to another copy of
v2.Therefore, the beginning construction of v1 would look like Figure 13.
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1v

2v

2v

3v

4v

Figure 13: Every edge vector extending from v1.

We continue this process for each of the five vertices in the curve system
until the fundamental domain is complete and continue on with the periodic
tiling, as seen in Figure 14.

1v

2v

2v

3v

3v

4v
4v

5v

5v

4v

4v

Figure 14: Completed fundamental domain and periodic tiling.

6 Generalization to the Third Dimension

Beginning with a periodic tiling in the plane, we find that these tilings can be
realized in the third dimension by choosing edge vectors in R3. In particular,
there are two different operations that allow us to move from a planar tiling to
a three dimensional tiling by altering the value of the third coordinate of certain
vertex pairs in the tiling.

For a given rhombus:

1. We increase the third coordinate of two adjacent vertices, raising the rhom-
bus from the xy-plane.

12



2. We increase the third coordinate of a single vertex, as well as decreasing
the nonadjacent vertex by the same amount.

Furthermore, we find that such tilings can be constructed using only one
rhombus. For example, given the planar tiling in Figure 15, we wish to construct
a spatial tiling with the same pattern of zone intersections so that it may be
represented by the same curve system. Furthermore, we need four independent
edge vectors that satisfy the determinant condition for area so that we maintain
the same number of rhombi in the spatial tiling as in the planar version.

Figure 15: Planar tiling which we look to construct as a spatial tiling

To do this, we may use the four vectors that point to the four corners of the
tetrahedron. However, we find that using these four vectors does not create one
unique tiling. There are several orientations of such a tiling, two of which can
be seen in Figure 16.

Figure 16: Different orientations of the spatial tiling created from the planar
tiling in Figure 15

7 Conclusion

We see that a given periodic tiling has a unique intersection of zone curves
which can be represented on the quotient torus. We also recognize that this
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representation gives us a curve system for which we can classify all periodic
tilings. Moreover, it is possible to not only represent a given tiling on a curve
system but to reconstruct a tiling from a given curve system, as well.
Finally, we find that periodic tilings may be realized in space by choosing edge
vectors in R3, and such tilings can even be constructed of one rhombus exclu-
sively.
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A Maximum Likelihood Approach to

the Analysis of Diploid DNA Sequences

Stephen Bates

Abstract

The heterozygosity of a DNA sample from a diploid (containing two
chromosomes) organism is the fraction of sites at which the 2 chromosomes
match. This quantity is of great interest in the field of population genetics
as it can provide information about the nature of mutations ongoing in a
population. Accurate, unbiased estimation of this quantity is non-trivial
because DNA sequencing methods give an incomplete picture of the data
and suffer from high error rates. In this talk, we will examine a maximum
likelihood approach to estimating the heterozygosity of a given DNA se-
quence. This approach is useful, both because it is accurate for small
sampling coverage and because it provides an estimate of the sequencing
error rate. We will then extend the maximum likelihood technique to the
estimation of other properties of interest in a DNA sample.

1 Background

Population genetics is a field of biology dedicated to understanding the ge-
netic structure of populations. Mutation, recombination, natural selection, and
stochastic drift all affect the genetic makeup of populations, and this field seeks
a thorough understanding of these elements. Nearly all other fields of biology
rely on the ideas of reproduction and the transfer of genetic information between
generations, so the questions explored in this field are very central to the overall
discipline of biology. Because populations can be described quantitatively in a
very natural way, mathematical models and statistical techniques play a very
important role in this area of study [Wak].

Recently, DNA sequencing techniques have improved dramatically. Because
of this, the amount of DNA data available for analysis is continually increasing.
Properties of an organisms DNA are naturally of interest in population genetics,
but statistical techniques for gathering information from these sequences must
be developed. The purpose of this paper is to develop a statistical method for
inferring the value of two such properties of the DNA sequences: the heterozy-
gosity and the correlation of zygosity (both to be defined shortly). These two
parameters are relevant because they provided in formation about levels of ge-
netic variation and genetic structure of the population. The approach taken here
follows that of [Lyn], but with slight differences in the mathematical details.
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1.1 DNA

DNA is the primary way that organisms carry and transfer information. For our
purposes, a DNA sequence is simply a sequence of bases. In realistic biological
settings, these sequences can often be millions of bases long. 4 different bases
are possible at any location along this sequence, denoted by an A,C,G, or T. A
diploid organism is one that contains two DNA sequences: one inherited from
the father and one inherited from the mother. A site is a specific base location
on the sequence; for example, the 5th base from the beginning of the sequence
is a site. If we compare the two DNA sequences in a diploid organism at a
given site, the two sequences will either have identical bases present, denoted
homozygous, or have different bases, denoted heterozygous.

A A C G C T T

A T C G C T T

Mom

Dad

Heterozygous 
Site

Homozygous 
Site

1.2 Sequencing Method

Our first goal is to estimate the fraction of sites which are heterozygous, denoted
π , from sequencing data. Modern methods of DNA sequencing methods do
not take a picture of the entire DNA strand, rather they chop the several DNA
sequences into small pieces and the reassemble overlapping pieces. The difficulty
is that we cannot determine which pieces of information come from the mother’s
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DNA sequence, and which come from the father’s. In addition, some fraction
ε of the sequencing reads will be errors. A priori, we do not know this epsilon
and also wish to estimate this from the data.

For a given site, the only information that is observed from the sequencing
process is the number of times we observed an A, C, G, or T, denoted by a
quartet (n1, n2, n3, n4). Each individual read could have come from a correct
read of either of the two DNA sequences or it could be an error. As a model
for the sequencing process, we assume that first for each read that one of the
twoDNA sequence is selected. Each has probability 1

2 of being selected. It is
then read correctly with probability 1− ε, and the probability of observing any
particular one of the three incorrect bases at that site is ε

3 each.

2 Notation

We will use P (A) to denote the probability of event A occurring and P (A | B)
to denote the probability of even A occurring given that event B has occurred.

Lowercase m1, m2, m3, m4, n1, n2, n3, n4 are the constants. They are the
data observed. Capital M1, M2, M3, M4, N1, N2, N3, N4 refer to the random
variable of the number of A, C, G, and T observed.

For notational convenience, we set m = m1 + m2 + m3 + m4 and n = n1
+ n2 + n3 + n4. This is the coverage at each site.

We also denote the overall frequencies of A, C, G, and T in the sequence in
question by p1, p2, p3, p4 respectively. Biologically, these frequencies will vary
from sequence to sequence.

3 The Model

We begin with the problem of estimating π. There are two important diffi-
culties estimating this parameter. First, at low coverages (n = 4 to 6 or so)
there is a high probability that only one of the two chromosomes present will
be sampled, making it possible to overlook heterozygous sites. Second, there
are a substantial number of machine sequencing errors. Although sequencing
machines come with a factory estimate of their accuracy, leaving the error rate
ε unknown and estimating it from the sample is best, because it will vary from
sample to sample. To account for these two difficulties, we will estimate the
parameters π and ε using maximum likelihood estimation. This is the
technique of calculating the probability of the observed data for different values
of of the parameters, and then maximizing this probability for the parameter
space. The values π̂ and ε̂ that maximize the probability of the observed data
are the maximum likelihood estimates (MLEs). Maximum likelihood estimation
is well-studied statistic technique that has some very nice properties. Notably,
maximum likelihood estimates are consistent: as the amount of data increases
to infinity, the estimate will converge upon the true value of the parameter.

Our total data set will a collection of quartets: one quartet for each site.
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The overall probability of the data set is simply the product of the probabilities
at each site. Thus we only need to calculate the probability of observing some
quartet (n1, n2, n3, n4) at a given site. To do this, we will break it into two
cases: heterozygous sits and homozygous sites.

3.1 Homozygous Case

We first consider the case where the site is homozygous, i.e. the base is the
same on both of the two DNA strands present. Suppose that both sites are in
reality base i. In this case, for each sample taken, the probability of observing
base i is simply the probability that there is no sequencing error: 1 − ε. The
probability of observing any of the three other bases is ε

3 each. Thus the proba-
bility of observing the quartet (n1, n2, n3, n4) follows a multinomial distribution
with the above probabilities (see the appendix for details on the multinomial
distribution).

To calculate the probability of observing (n1, n2, n3, n4), we must sum over
the probabilities of it occurring for each of the four homozygous possibilities
(the site could be A, C, G, or T). Here the 1

pi
term accounts for the probability

of that particular base occurring. For instance, if over the whole sample that
base ’A’ occurs with frequency .9, then 1

pi
= .9. Thus this term is a weighting

term based on the frequencies of each of the four bases across all sites.

L1(n1, n2, n3, n4, ε) =
4∑
i=1

1
pi

[
n!

n1!n2!n3!n4!
(1− ε)ni( ε

3
)n−ni ]

3.2 Heterozygous Case

Next we consider the heterozygous case, i.e. the bases present on the two DNA
strands differ. Suppose one of the bases present is i and the other is j. Then the
probability of observing one of the other two bases (not base i or j) is ε

3 each,
because these observations must arise from sequencing errors. From symmetry,
we then see that the probability of observing a read of base i is 1−2/3ε

2 (which
is of course equal to the probability of observing a j). Thus the probability of
observing the quartet (n1, n2, n3, n4) follows a multinomial distribution with
the above probabilities.

To calculate the probability of observing (n1, n2, n3, n3), we must sum over
the probabilities of it occurring for each of the 6 possible heterozygous configu-
rations. Here we se S =

∑3
i=1

∑4
j=i+1 pipj . so that the pipj

S term accounts for
the weighting of each heterozygous possibility. This accounts for the difference
of frequency of the four bases present.

L2(n1, n2, n3, n4, ε) =
3∑
i=1

4∑
j=i+1

pipj
S

[
n!

n1!n2!n3!n4!
(
1− 2/3ε

2
)ni+nj (

ε

3
)n−ni−nj ]
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3.3 Overall Likelihood.

We can now combine these two cases to determine the unconditional likelihood.
The probability that a site is homozygous is π and the probability that a site is
heterozygous is 1− π. Thus the probability of observing a quartet (n1, n2, n3,
n4) at a particular site is:

Lsite(n1, n2, n3, n4, π, ε) = πL2(n1, n2, n3, n4, ε) + (1− π)L1(n1, n2, n3, n4, ε)

The total likelihood over all sites is then:

Ltotal(π, ε) =
∏

all sites

[Lsite(n1, n2, n3, n4, π, ε)]

We then maximize this for 0 ≤ π ≤ 1 and 0 ≤ ε ≤ 1 to find our estimates π̂
and ε̂.

In practice, this probability will often be extremely small making it com-
putationally difficult to deal with. Instead of maximizing Ltotal, we instead
maximize

log(Ltotal) =
∑

all sites

[log(Lsite)]

Because log(x) is monotonically increasing, the maximum will occur at the
same position, and this sum is computationally much easier to deal with. In
practice, this maximization must of course be done using a computer. There
are a variety of such algorithms available. An implementation of this specific
method can be found in [Hau].

Thus we have developed a method for estimating the parameters π and ε
from the data. These estimators have been tested using simulated data sets,
and the estimates prove to be very good. Even for low coverages (n = 4 to 8)
the estimates are quite reliable and have bias usually less than 2 percent, which
is is considered acceptable in this field.

4 The Correlation of Zygosity

We now wish to use the machinery that we developed to infer other properties of
the DNA sequences from the data. One such biologically meaningful parameter
is ∆: the correlation of zygosity. When considering pairs of sites, ∆ is defined
as the probability that two sites are linked: that is if one is homozygous than
both are homozygous and if one is heterozygous then both are heterozygous.
This parameter is biologically useful as a measurement of linkage disequilibrium,
which loosely speaking is the non-random occurrence of some genetic material
in a population.

Now for a pair of sites, there are three possible configurations: both sites are
homozygous, both sites are heterozygous, and one site is homozygous and one
site is heterozygous. Using our definition of ∆, the probabilities of these three
cases are, respectively:
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H0 = ∆(1− π) + (1−∆)(1− π)2 = (1− π)2 + ∆π(1− π)

H2 = ∆π + (1−∆)(π)2 = π2 + ∆π(1− π)
H1 = 2(1−∆)π(1− π)

Notice H1 = 1−H0−H2 so knowing the first two quantities determines the
third.

Now π = .5H1 + H2 and from the final equation ∆ = 1 − H1
2π(1−π) . Thus

estimation of H0 and H2 will allow the estimation of π and ∆ thanks to the
following theorem (see [Bar]):

Theorem 4.1. If θ̂ is the MLE of parameter θ, then h(θ̂) is the MLE of pa-
rameter h(θ)

In our case, π and ∆ can be written as a function of H0 and H2.

4.1 Estimation Technique.

We will again use a maximum likelihood technique for estimating the parameters
in question. The method of estimation will be very similar to our initial method
of estimation of π. Because we are considering two sites, our data will now be
octets (m1, m2, m3, m4, n1, n2, n3, n4). Here, m1 is the number of ’A’s
observed at site 1, n1 is the number of ’A’s observed at site 2, m2 is the number
of ’C’s observed at site 2, etc. As described above, there are three possible
configurations for a double site. Using the language of conditional probability:

P (m1,m2,m3,m4, n1, n2, n3, n4) =
P (m1,m2,m3,m4, n1, n2, n3, n4 | double homozygous)P (double homozygous)
+ P (m1,m2,m3,m4, n1, n2, n3, n4 | double heterozygous)P (double heterozygous)
+ P (m1,m2,m3,m4, n1, n2, n3, n4 | mixed homo/heterozygous)P (mixed)

Using the L1 and L2 terms calculated earlier, we find simple expressions for
these terms:

P (m1,m2,m3,m4, n1, n2, n3, n4 | double homozygous) = L1(m1,m2,m3,m4, ε)L1(n1, n2, n3, n4, ε)
P (m1,m2,m3,m4, n1, n2, n3, n4 | double heterozygous) = L2(m1,m2,m3,m4, ε)L2(n1, n2, n3, n4, ε)
P (m1,m2,m3,m4, n1, n2, n3, n4 | mixed homo/heterozygous) = L1(m1,m2,m3,m4, ε)L2(n1, n2, n3, n4, ε)

+ L2(m1,m2,m3,m4, ε)L1(n1, n2, n3, n4, ε)

So combining these cases, we have our likelihood function:

Loctet(m1,m2,m3,m4, n1, n2, n3, n4, H0, H2, ε) =
L1(m1,m2,m3,m4, ε)L1(n1, n2, n3, n4, ε)H0 + L2(m1,m2,m3,m4, ε)L2(n1, n2, n3, n4, ε)H2

+ [L1(m1,m2,m3,m4, ε)L2(n1, n2, n3, n4, ε) + L2(m1,m2,m3,m4, ε)L1(n1, n2, n3, n4, ε)](1−H0 −H2)
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The overall likelihood is then the product of the likelihoods across all the
different octets under consideration:

Ltotal(H0, H2, ε) =
∏

all octets

[Loctet(m1,m2,m3,m4, n1, n2, n3, n4, H0, H2, ε)]

For computational simplicity, we again choose to instead maximize

log(Ltotal) =
∑

all octets

[log(Loctet)]

Maximizing this yields maximum likelihood estimates Ĥ0,Ĥ2, and ε̂. By
the theorem above, Ĥ1 = 1 − Ĥ0 − Ĥ2 and also π̂ = .5Ĥ1 + Ĥ2 and finally
∆̂ = 1 − Ĥ1

2π(1−π) . Thus we have found maximum likelihood estimates for all
the quantities we are interested in. Simulated data again shows that these
estimators preform well; specifically, they are nearly unbiased, even for small
coverages.

5 Appendix: The Multinomial Distribution

The multinomial distribution is a very common distribution from probability
theory. It can be thought of as randomly dropping a ball into one of k bins n
different times, where at every step the probability of a ball ending up in bin
i denoted by pi. Naturally, for a valid multinomial distribution we must have
p1 +p2 + ...+pk = 1. We denote the number of balls that end up in bin i by ni.
Thus by the definition of n, n = n1 + n2 + ...+ nk. From standard probability
theory, we know the probability of observing any valid output (n1, n2, ...nk) is
given by the following formula:

P (n1, n2..., nk) =
n

n1!n2!...nk!
pn1

1 pn2
2 ...pnkk

There are many other interesting features of the multinomial distribution, but
this is the only one necessary for the current application.
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Probabilistic Modeling Techniques for

Microtubules

Alex Chin

Abstract

We develop a discrete time model for the behavior of microtubules,
a cellular filament vital for such tasks as motility and cell division. We
consider integer values for growth and shortening velocities and construct
a Markov chain model for a single polymer based on the nucleation rate,
catastrophe frequency, and rescue frequency. This model gives rise to a
set of recurrence relations for each pair of growth and shortening velocities
that can be solved using linear algebra techniques to determine a length
distribution for the polymer in steady state. We consider both finite and
infinite models and consider the mathematical and biological implications
of each.

1 Introduction

1.1 Motivation

The behavior of microtubules has been studied extensively by biologists and
mathematicians alike, and the field of microtubule dynamics lies at the inter-
section of mathematics and cell biology. Several models have been developed
but none perfectly predict in vivo observations and all make key simplifying
assumptions. The development of such a biologically viable model would have
several immediate applications, including in the development of cancer treat-
ment pharmaceuticals. We first present a summary of the biology behind the
process of microtubule dynamics, so that the reader may better understand the
mathematical processes and methods chosen.

1.2 Biological Background

Microtubules are one of three types of protein polymer filaments that compose
the cellular cytoskeleton, and are critical for a variety of tasks including motility,
cargo transport and cell division. Microtubules are composed of α- and β- tubu-
lin protein dimers that are globular in shape. These individual subunits arrange
longitudinally into protofilaments, and subsequently laterally into a hollow tube
composed of 13 protofilaments. The parallel nature of this arrangement creates
a polar filament, as α- and β- tubulins are exposed at opposite (minus and plus)
ends. Microtubules may extend in length indefinitely, and in living cells may be
thousands of subunits long.
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At any given time, a tubulin subunit may be in one of two states. Free
subunits float in the cellular cytoplasm and incorporated subunits are attached
to microtubule polymers. Free subunits in the cytoplasm are bound to a guano-
sine triphosphate (GTP) molecule. Once these subunits attach to a microtubule,
the GTP on the β monomer begins to hydrolyze, leaving a GDP-bound tubulin
subunit. GTP-bound subunits have a higher bonding affinity than GDP-bound
subunits; therefore, microtubules are likely to grow if the plus-end subunit is
GTP-bound, and likely to shrink if it is GDP-bound. This depends on the rate
of subunit addition; if it is high enough to facilitate the addition of new sub-
units before hydrolysis can occur (forming a GTP-cap) then the microtubule
undergoes a growth phase. If the end unit is allowed to hydrolyze, then the
microtubule undergoes a rapid shortening phase until a new GTP-bound sub-
unit can be added. This protein hydrolysis gives rise to a system in which some
microtubules may be growing while others are shortening, and in fact a single
polymer may switch states unpredictably.

Definition 1.1. The stochastic process of switching between growth and short-
ening is termed dynamic instability.

Definition 1.2. The event that a polymer switches from a growth state to a
shortening state is called catastrophe, and the event that a polymer switches
from a shortening state to a growth state is called rescue.

Definition 1.3. The event that a polymer begins to grow on a free site is called
nucleation, and the event that a shrinking polymer shortens completely is called
extinction.

We now describe the process by which a system of microtubules comes to
steady state. Consider a system consisting initially only of free tubulin sub-
units where the temperature and initial concentration of free subunits is fixed.
The free subunit concentration will then decrease in a non-uniform manner un-
til steady state is reached, beginning with a nucleation process that creates
an initial lag in which little activity occurs. The high concentration of free
subunits in the system then leads to a high polymerization rate and low catas-
trophe frequency, and any polymers that do undergo catastrophe are quickly
rescued. If polymerization is allowed to continue for some time, however, the
free dimer concentration decreases as more subunits are incorporated into the
polymer system. Growth rate and rescue frequency decrease while catastrophe
frequency increase; these factors slow the decrease of free subunit concentration.
Throughout this process, the shortening rate of polymers that have undergone
catastrophe is constant; it depends only on temperature and binding kinetics
and is independent of free subunit concentration.

The system eventually reaches a steady state in which global rate of subunit
polymerization equals the rate of subunit depolymerization (we do not use the
term equilibrium because energy must constantly be fed into the system in order
for the dynamic instability process to occur). This steady state can then be
analyzed for a length distribution of the microtubules in the system, which will
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remain constant. Note that a second steady state must also occur that relates
the number of polymers undergoing nucleation and extinction; this steady state
is necessary for the length distribution to remain unchanged. However, we do
not address this second steady state here.

2 Mathematical Formalization

Past models have used a continuous time approach to model microtubule dynam-
ics with differential equations techniques; instead, we use discrete time steps.
We begin by formalizing some of the biological terms with respect to this ap-
proach.

Definition 2.1. The growth velocity is the number of units that a growing
microtubule will grow in a given time step, and is denoted by Vg. The shortening
velocity is the number of units that a shrinking microtubule will shrink in a given
time step, and is denoted by Vs.

Here the unit may be chosen to be anything biologically appropriate, mea-
sured in microns, another unit of length, or even individual subunits. We will
only consider positive integer values of velocities. Furthermore, we need only
consider relatively prime pairs of Vg and Vs because all other cases may be scaled
accordingly.

Notation. We denote the probability of catastrophe by Pgs, the probability of
rescue by Psg, and the probability of nucleation by PN , where all three values
lie in (0, 1) (we do not consider the trivial endpoint probabilities).

These five parameters form the basis for our analysis. To simplify the model,
we assume that all five parameters are constant and independent of the free sub-
unit concentration. This allows us to analyze the model without recalculating
the parameters at each time step. We also assume that individual polymers
behave independently from each other.

We consider possible states 0, 1g, 1s, 2g, 2s, 3g, 3s, . . . , where the 0 state de-
notes a free nucleation site and every other state denotes a length coupled with
whether the polymer is growing or shortening. We denote by πi(t) the probabil-
ity that a polymer exists at state i at time t. We write π0(t), π1,g(t), π1,s(t), . . .
instead of π0, (t)π1g(t), π1s(t), . . . to eliminate ambiguity, e.g. when dealing with
such states as the shortening state of length m+ 1.

Definition 2.2. A Markov chain is a sequence of random variables such that
given the present state, the future and past states are independent.

We use the defined states and parameters to develop a Markov chain model
for the behavior of a single microtubule polymer.

We may represent a Markov chain using a directed graph where the states are
vertices and the edges are labeled with probabilities such that for every vertex,
the sum of edge labels leaving the vertex is 1. For example, if Vg = Vs = 1, then
we have the following graph:
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Figure 1: Infinite Markov chain for Vg = Vs = 1

Note that we assume that a polymer undergoing catastrophe or rescue con-
tinues this process for the entire time step and does not change length until the
following time step.

A well-defined Markov chain may be described using a set of recurrence
relations. Our model gives the following for all t = 0, 1, 2, . . . :

π0(t+ 1) = (1− PN )π0(t) + (1− Psg)
Vs∑
k=1

πk,s(t) (1)

πVg,g(t+ 1) = PNπ0(t) + PsgπVg,s(t) (2)
πm,s(t+ 1) = (1− Psg)πm+Vs,s(t) + Pgsπm,g(t) m = 1, 2, 3, . . . (3)
πn,g(t+ 1) = (1− Pgs)πn−Vg,g(t) + Psgπn,s(t) n = 2, 3, 4, . . . (4)

Equation (1) represents a free nucleation site by considering the sum of the
probability that the site did not undergo nucleation in the previous step and
the probability that all polymers shorter than Vs did not undergo rescue and
instead became extinct. Equation (2) represents nucleation by considering the
sums of nucleation and rescue in the previous time step. Equation (3) represents
shortening and catastrophe of polymers of lengthm, and Equation (4) represents
growth and rescue of polymers of length n.

Now we observe what happens if the system achieves steady state.

Definition 2.3. A steady state is a probability vector (π0, π1,g, π1,s, . . . ) such
that if πi(0) = πi for all i = 0, 1g, 1s, . . . , then πi(t) = πi(t + 1) for all t =
0, 1, 2, . . . .

Therefore, if we have a system at steady state, we may assume our recurrence
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relations are independent of time t and may write them as follows:

π0 = (1− PN )π0 + (1− Psg)
Vs∑
k=1

πk,s (5)

πVg,g = PNπ0 + PsgπVg,s (6)
πm,s = (1− Psg)πm+Vs,s + Pgsπm,g m = 1, 2, 3, . . . (7)
πn,g = (1− Pgs)πn−Vg,g + Psgπn,s n = 2, 3, 4, . . . (8)

This allows us to analyze the possible parameters for which the system reaches
steady state, and ultimately determine a length distribution.

Definition 2.4. A steady state length distribution (SSLD) is a probability mass
function P : N → [0, 1], where P (L) is defined to be the probability that a
polymer in steady state has length L.

It is clear that given expressions for the probabilities, we may obtain the
length distribution by

P (L) =

{
π0 if L = 0
πL,g + πL,s if L = 1, 2, 3, . . .

Note that in steady state, πi > 0 for all possible states i.
It is helpful to consider the system for specific values of Vg and Vs because

then the recurrence relations take on a specific form. For each, we establish a
set of relations that characterize the values of PN , Psg, and Pgs that lead to
steady state.

3 The Vg = 1, Vs = 1 case

3.1 Infinite Model

We first allow for arbitrarily long polymers. Using these specific velocities allows
us to simplify our recurrence relations as follows:

π0 = (1− PN )π0 + (1− Psg)π1,s (9)
π1,g = PNπ0 + Psgπ1,s (10)
πm,s = (1− Psg)πm+1,s + Pgsπm,g m = 1, 2, 3, . . . (11)
πn,g = (1− Pgs)πn−1,g + Psgπn,s n = 2, 3, 4, . . . (12)

This provides a much more tangible set of equations to work with. We determine
the set of parameters that leads to steady state.
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Theorem 3.1. Let Vg = Vs = 1. The system diverges if Psg ≥ Pgs and
converges if Psg < Pgs. The steady state probabilities are

π0 =
Pgs − Psg

Pgs − Psg + 2PN

πm,s = πm,g =
PN (Pgs − Psg)

(1− Pgs)(Pgs − Psg + 2PN )

(
1− Pgs
1− Psg

)m
Proof. Solving Equation (9) for PNπ0 and substituting into Equation (10) yields

π1,g = π1,s (13)

Let m be an arbitrary positive integer. We prove that the growth and
shortening probabilities for length m are equal, and that each forms a monotone
increasing subsequence of probabilities. Note that adding Equations (11) and
(12) for n = m+ 1 yields

πm,s + πm+1,g = πm,g + πm+1,s (14)

A simple induction proof using Equation (14) with Equation (13) as the base
case yields

πm,g = πm,s m = 1, 2, 3, . . . (15)

Substituting into Equation (11) gives

(1− Pgs)πm,s = (1− Psg)πm+1,s (16)

for all lengths m.
If Psg ≥ Pgs it is clear that

πm,s ≤ πm+1,s (17)

This contradicts
∑
Pi = 1, so this particular parameter set leads to unbounded

growth.
If Psg < Pgs, then we may reduce the problem to first order recurrence

relations of the growth and shortening states. Since πm,g = πm,s, we need
only worry about the shortening state (the growth state will have the same
distribution). Equation (16) now yields a ratio of 1−Pgs

1−Psg that is nonzero and less
than one. The following recurrence relation can be solved

πm+1,s =
1− Pgs
1− Psg

πm,s (18)

and has a solution of the form

πm,s = A

(
1− Pgs
1− Psg

)m
(19)
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for some constant A. Using Equation (9) we conclude that A = PNπ0
1−Pgs . We now

use the fact that
∑
πi = 1 to solve for π0.

π0 +
∞∑
m=1

(πm,g + πm,s) = 1

π0 +
∞∑
m=1

(
2
PNπ0

1− Pgs

(
1− Pgs
1− Psg

)m)
= 1

π0 + 2
PNπ0

1− Pgs
1− Pgs
1− Psg

∞∑
m=1

(
1− Pgs
1− Psg

)m−1

= 1

π0 +
2PNπ0

1− Psg
1

1− 1−Pgs
1−Psg

= 1

π0 +
2PNπ0(1− Psg)

(1− Psg)(Pgs − Psg)
= 1

π0 +
2PNπ0

Pgs − Psg
= 1

π0 =
1

1 + 2PN
Pgs−Psg

π0 =
Pgs − Psg

Pgs − Psg + 2PN

Therefore, substituting back into Equation (19) produces the desired result for
πm,s and πm,g. This completes the proof.

The growth and shortening states for a given length are equal, meaning
P (L) = 2πL,s for any L. Thus Theorem 3.1 gives us the following length
distribution, given in terms of the parameters PN , Psg, and Pgs:

P (L) =


Pgs−Psg

Pgs−Psg+2PN
if L = 0

2PN (Pgs−Psg)
(1−Pgs)(Pgs−Psg+2PN )

(
1−Pgs
1−Psg

)L
if L = 1, 2, 3, . . .

(20)

Note that the value of PN affects nature of the length distribution but does not
affect whether or not the system comes to steady state. Several example plots for
specific parameters are below (note the exponential nature of the distribution).

Example 3.2. These graphs show what is happening over time for unbounded
and bounded growth parameters. The first chart displays unbounded growth
for Psg = 0.7; if we change this value to 0.3, the system displays a steady state.
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Figure 2: PN = 0.25, Psg = 0.7, Pgs = 0.4, after 100, 300, and 500 steps

Figure 3: PN = 0.25, Psg = 0.3, Pgs = 0.4, after 100, 300, and 500 steps
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3.2 Finite Model

Microtubules are stiff polymers and have an upper bound on their length, de-
termined by the volume and dimensions of the cell. If we impose such an upper
bound K on our model, the relations for πK,s and πK,g vary slightly. We place
a loop on the growth state at K and let it feed itself instead of continuing to
grow, and the shortening state at K is not fed from any longer shortening state
since such a state does not exist. Then we obtain the following:

Figure 4: Finite Markov chain for Vg = Vs = 1

This Markov chain contains the following new relations at the K growth and
shortening states:

πK,s = PgsπK,g (21)
πK,g = (1− Pgs)πK−1,g + (1− Pgs)πK,g + PsgπK,s (22)

These may be expressed in terms of πK−1,g as follows:

πK,s =
1− Pgs
1− Psg

πK−1,g (23)

πK,g =
1− Pgs

Pgs(1− Psg)
πK−1,g (24)

Note that we use the same values as in the infinite case for m = 1, . . . ,K − 1:

πm,s = πm,g =
PNπ0

1− Pgs

(
1− Pgs
1− Psg

)m
(25)
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We may then solve for π0 similarly:

π0 +
K−1∑
m=1

(πm,g + πm,s) + πK,g + πK,s = 1

π0 +
2PNπ0

1− Pgs

K−1∑
m=1

(
1− Pgs
1− Psg

)m
+

PNπ0

1− Pgs

(
1− Pgs
1− Psg

)K (
1 +

1
Pgs

)
= 1

π0 +
2PNπ0

1− Pgs
1− Pgs
1− Psg

1−
(

1−Pgs
1−Psg

)K−1

1− 1−Pgs
1−Psg

+
PNπ0

1− Pgs

(
1− Pgs
1− Psg

)K (
1 +

1
Pgs

)
= 1

π0 +
2PNπ0

1− Pgs

(
1−

(
1− Pgs
1− Psg

)K−1
)

+
PNπ0

1− Pgs

(
1− Pgs
1− Psg

)K (
1 +

1
Pgs

)
= 1

π0 =

[
1 +

2PN
1− Pgs

(
1−

(
1− Pgs
1− Psg

)K−1
)

+
PN

1− Pgs

(
1− Pgs
1− Psg

)K (
1 +

1
Pgs

)]−1

As the complexity of this equation makes it difficult to work with, we will
generally stick to numerical methods.

Example 3.3. Figure 5 compares finite (in red) and infinite (in blue) models for a
specific choice of parameters. Note that the finite length distribution approaches
the infinite length distribution as K →∞, and in fact converges rather quickly.

(a) K = 5 (b) K = 10 (c) K = 20

Figure 5: finite and infinite models with parameters PN = 0.25, Psg = 0.3, Pgs =
0.4 and varying max length K
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4 The Vg = 1, Vs = 2 case

4.1 Infinite Model - Unbounded Growth Parameters

Let us now consider the system with growth velocity Vg = 1 and shortening
velocity Vs = 2. Then we obtain the following Markov chain:

Figure 6: Markov chain for Vg = 1, Vs = 2

Note that shortening polymers now shrink by length 2 instead of 1. This
gives us the following recurrence relations:

π0 = (1− PN )π0 + (1− Psg)π1,s + (1− Psg)π2,s (26)
π1,g = PNπ0 + Psgπ1,s (27)
πm,s = (1− Psg)πm+2,s + Pgsπm,g m = 1, 2, 3, . . . (28)
πn,g = (1− Pgs)πn−1,g + Psgπn,s n = 2, 3, 4, . . . (29)

We first prove a result relating the growth and shortening probabilities of
the same length.

Lemma 4.1. Let Vg = 1 and Vs = 2. Then for every m = 1, 2, 3, . . . , πm,g >
πm,s and, in particular, πm,g = πm,s + (1− Psg)πm+1,s.

Proof. We proceed by induction. Solving Equation (26) for PNπ0 and substi-
tuting into Equation (27) yields

π1,g = π1,s + (1− Psg)π2,s (30)

Adding Equations (28) and (29) for n = m+ 1 yields

πm,s + πm+1,g = πm,g + Psgπm+1,s + (1− Psg)πm+2,s (31)

for m = 1,2,3,. . . . We prove by induction that πm,g = πm,s+(1−Psg)πm+1,s for
every positive integer m. Equation (30) serves as the base case. Now suppose
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that there is some k = 1, 2, 3, . . . such that πk,g = πk,s + (1− Psg)πk+1,s. Then
we may substitution this equation into Equation (31) with m = k to obtain

πk,s + πk+1,g = πk,s + (1− Psg)πk+1,s + Psgπk+1,s + (1− Psg)πk+2,s

which simplifies to

πk+1,g = πk+1,s + (1− Psg)πk+2,s

This completes the induction proof.

We may now use this lemma to obtain a result regarding unbounded growth
parameters.

Theorem 4.2. Let Vg = 1 and Vs = 2. If Pgs ≤ 2Psg − 1, then the system has
no steady state.

Proof. Consider an arbitrary m = 1, 2, 3, . . . . We add the result of Lemma 4.1
to Equation (28) to obtain

πm,g = (1− Psg)(πm+2,s + πm+1,s) + Pgsπm,g

Using Lemma 4.1 to substitute πm+2,g and πm+1,g for πm+2,s and πm+1,s, this
equation becomes

(1− Pgs)πm,g < (1− Psg)(πm+2,g + πm+1,g)

Using the assumption Pgs ≤ 2Psg − 1 gives

(1− (2Psg − 1))πm,g < (1− Psg)(πm+2,g + πm+1,g)

which simplifies to

πm,g <
1
2

(πm+2,g + πm+1,g)

So each growth term is smaller than the average of the two subsequent growth
terms. This contradicts

∑
Pi = 1, and the result is proven.

4.2 Infinite Model - Steady State Parameters

In the Vg = Vs = 1 case we were able to solving a first order recurrence to
obtain a closed-form expression for the length distribution (Equation (20)). We
attempt a similar approach for the Vg = 1, Vs = 2 case, but this case is compli-
cated by the fact that the growth and shortening probabilities for a given length
are not equal. We proceed by obtaining homogeneous second-order recurrence
relations for the growth and shortening states.

We first determine a shortening-only relation. We know that for every m
(this is simply Lemma 4.1)

πm,g = πm,s + (1− Psg)πm+1,s (32)
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Substituting this equation for πm,g into equation (28) and solving for the πm+2,s

term gives what is desired:

(1− Psg)πm+2,s = −Pgs(1− Psg)πm+1,s + (1− Pgs)πm,s (33)

We now determine a growth-only relation. Combining equations (28) and (29)
with n = m+ 2 gives

πm+2,g − (1− Pgs)πm+1,g − Pgsπm,g = πm+2,s − πm,s (34)

which implies the following equation by induction

πm+1,g + Pgsπm,g = πm+1,s + πm,s (35)

Note that equation (29) with n = m + 1 and n = m gives the following two
equations:

πm+1,s =
1
Psg

(πm+1,g − (1− Pgs)πm,g) (36)

πm,s =
1
Psg

(πm,g − (1− Pgs)πm−1,g) (37)

Substituting into equation (35) and simplifying results in the following equation
consisting of growth states only:

(1− Psg)πm+1,g = −Pgs(1− Psg)πm,g + (1− Pgs)πm−1,g (38)

We reindex with m+ 1 instead of m for consistency and simplicity.

(1− Psg)πm+2,g = −Pgs(1− Psg)πm+1,g + (1− Pgs)πm,g (39)

We now have two useful recurrence relations, equations (35) and (39). Note
that these relations are identical. Thus a solution of the system has the form

πm,s = Axm1 +Bxm2 (40)
πm,g = Cxm1 +Dxm2 (41)

where A, B, C, and D are appropriate constants and where x1 and x2 are the
roots of the quadratic equation (1 − Psg)x2 + Pgs(1 − Psg)x − (1 − Pgs)x = 0.
We determine that x1 and x2 are given as follows:

x1 =
−Pgs +

√
(Pgs)2 + 4(1−Pgs)

1−Psg

2
(42)

x2 =
−Pgs −

√
(Pgs)2 + 4(1−Pgs)

1−Psg

2
(43)

MATLAB simulations seem to indicate that no steady state solution exists
for these relations. The author has no idea why this is the case. We treat the
finite case instead.
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4.3 Finite Model

Just as in the trivial velocity case, the finite model here provides additional
information that allow the system to be solved. If we place an upper bound K
on the length of the polymer, we obtain the following three top end relations

πK−1,s = PgsπK−1,g (44)
πK,s = PgsπK,g (45)
πK,g = (1− Pgs)(πK−1,g + πK,g) + PsgπK,s (46)

which can be solved in terms of πK−1,g:

πK−1,s = PgsπK−1,g (47)

πK,s =
1− Pgs
1− Psg

πK−1,g (48)

πK,g =
1− Pgs

Pgs(1− Psg)
πK−1,g (49)

The 1, . . . ,K − 2 shortening states and the 1, . . . ,K − 1 growth states obey
the normal geometric pattern discussed in the infinite case (Equations (40) and
(41)).

We require four boundary conditions to obtain a unique solution; we use
expressions for the π0, π1,g, πK,s, and πK,g states (derived from Equations (26)
through (29)).

(1− Psg)(Ax1 +Bx2) + (1− Psg)(Ax2
1 +Bx2

2) = PNπ0

(Cx1 +Dx2)− Psg(Ax1 +Bx2) = PNπ0

(AxK1 +BxK2 ) = Pgs(CxK1 +DxK2 )

Psg(AxK1 +BxK2 ) + (1− Pgs)(CxK−1
1 +DxK−1

2 ) = Pgs(CxK1 +DxK2 )

When grouped by A, B, C, and D terms, these equations generate the
following matrix:

0BBBB@
(1− Psg)(x1 + x2

1) (1− Psg)(x2 + x2
2) 0 0 PNπ0

−Psgx1 −Psgx2 x1 x2 PNπ0

xK
1 xK

2 −Pgsx
K
1 −Pgsx

K
2 0

Psgx
K
1 Psgx

K
2 (1− Pgs)xK−1

1 − Pgsx
K
1 (1− Pgs)xK−1

2 − Pgsx
K
2 0

1CCCCA
The reduced matrix generates an analytic solution, but because it is too

complicated of an expression to be useful, we recommend generating numerical
results for specific parameter choices. The MATLAB code used to generate
these expressions is included at the end of the report.
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Example 4.3. A length distribution for specific parameter choices. Note that
even with a rather small upper bound K, much of the mass is concentrated at
small lengths.

Figure 7: PN = 0.25, Psg = 0.2, Pgs = 0.6 with an upper bound K = 20

5 Future Work

This work represents an approach to microtubule modeling that utilizes discrete
time steps and probabilistic techniques rather than continuous time differential
equations models. It remains to be seen whether this approach is useful. We
present several possible research directions below.

5.1 Generalized Velocities

Theorem 4.2 gave a requirement for unbounded growth if Vg = 1 and Vs = 2.
A similar result may be obtained for Vg = 1 and Vs = n, in which every growth
term is smaller than the average of the n subsequent growth terms. The required
condition can be shown to be Pgs ≤ nPsg−n+1. M. Dogterom et al. presented
a model that displayed unbounded growth if PgsVs ≤ PsgVg [1]. As n is the
ratio between Vs and Vg, we conclude that our model behaves similarly, but
with the error term −n+ 1.

Determining steady state parameters is more difficult. The set of equations
for specific velocities Vg = 1 and Vs = n generates an n-th order recurrence
relation. This yields a complicated analytic solution for n = 2 and is more
difficult to solve for larger values of n (unsolvable in fact, for n ≥ 5 as there is
no formula for roots of a general quintic formula). We reason that it is best to
stick to numerical methods.

Ultimately, we seek to develop results for arbitrary growth velocities as well.
As mentioned previously, we need only consider relatively prime pairs of veloc-
ities.
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5.2 Non-constant Parameters

In reality, the values of Vg, Pgs, Psg, and PN are not constant and are instead
dependent on the free subunit concentration of the system [Df ]. The value of
Vs depends on the properties of binding kinetics and on the temperature of
the system, but is independent of free concentration and can be assumed to
be constant. Vg, Psg, and PN takes on higher values at higher concentrations
and Pgs takes on higher values at lower concentration. In a Monte Carlo sim-
ulation study, Mourão et al. represented these values as varying linearly with
concentration, as follows [2]:

PN = k1[Df ]− k2

Vg = k3[Df ]− k4

Vs = C1

Psg = k5[Df ]− k6

Pgs = −k7[Df ] + k8

for biologically appropriate constants ki, C1 (all positive). Such an assumption
greatly complicates the Markov model, as the parameters change with each
iteration before the system reaches steady state. It is within reach to calculate
a numerical solution for specific parameter choices, but it remains to be seen
whether this Markov approach can produce an analytic solution.

5.3 Multiple Polymers

We have thus far considered the behavior of a single microtubule polymer. If
all polymers in the system behaved independently, then the probability length
distribution for a single polymer would represent the length distribution for the
entire system. However, polymer behavior is highly dependent; for example,
growing polymers locally remove free subunits resulting in a lower free subunit
concentration. In the past, researchers have approached this problem by con-
sidering a fixed number of nucleation sites that at any given point in time are
either free or occupied. A length distribution can be determined for each site,
and the aggregate provides the distribution for the overall system.

6 MATLAB Code

This section contains MATLAB code that was used for this project.

6.1 Probability Matrix - Infinite Model

This code begins with a free polymer and runs for T time steps, allowing the
user to examine how the length distribution changes over time. The polymer
may grow arbitrarily long. The user specifies the input parameters and the value
of T . Parameters that reach steady state may be visually observed to do so,
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though the code itself does not provide a proof of steady state parameters. The
code recursively generates a (T + 1)× (2VgT + 1) matrix P consisting of length
probabilities for a single microtubule polymer. Each row consists of time steps
from 0 to T and each column denotes a single Markov state. The first column is
the unoccupied state with length 0, the (2j)-th column is the shortening state
with length j, and the (2j + 1)-st column is the growth state with length j.
Each row sums to 1. To plot the length distribution, the growth and shortening
states for a given length are summed together in the matrix Psum.

clear;

% INPUTS - these can be edited

PN = .5; %nucleation frequency
Psg = .7; %rescue frequency
Pgs = .4; %catastrophe frequency
Vg = 1; %growth velocity
Vs = 1; %shortening velocity

T = 500; %number of steps

% DEFINING THE MATRIX

P = zeros(T+1,2*Vg*T+1); %empty matrix framework
P(1,1) = 1; %initial state at time i=0
Psum = zeros(T+1,Vg*T+1); %length matrix to plot

for i = 1:T

%extinction
k = 1:Vs;
P(i+1,1) = (1-PN)*P(i,1) + sum((1-Psg)*P(i,2*k));

%shortening
for j = 1:T-Vs

P(i+1,2*j) = (1-Psg)*P(i,2*j+2*Vs) + Pgs*P(i,2*j+1);
end
for j = T-Vs+1:T

P(i+1,2*j) = Pgs*P(i,2*j+1);
end

%growth
for j = 1:Vg-1 %length < Vg

P(i+1,2*j+1) = Psg*P(i,2*j);
end
P(i+1,2*Vg+1) = PN*P(i,1) + Psg*P(i,2*Vg); %length = Vg
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for j = Vg+1:i*Vg %length > Vg
P(i+1,2*j+1) = (1-Pgs)*P(i,2*j+1-2*Vg) + Psg*P(i,2*j);

end

%PLOT OF PROBABILITIES

Psum(:,1) = P(:,1);
for j = 2:T+1

Psum(:,j) = P(:,2*j-2)+P(:,2*j-1);
end
x = 0:T*Vg;
figure(1);
plot(x,Psum(i+1,:),’LineWidth’,2)
title(’Length Probability Distribution of an Individual Polymer’);
xlabel(’Length’);
ylabel(’Probability’);
axis([0 200 0 .05]);

end

6.2 Transition Matrix - Finite Model

This code generates a transition matrix P for the finite polymer model. The user
specifies the input parameters, the upper bound on length K, and the number
of time steps t. Any positive value of K may be specified, but note that the
finite model resembles the infinite model with values as small as K = 20. The
initial state v0 is an empty polymer, and the code calculates the steady state
vector vss = v0P

t (t must be rather large for vss to approach steady state).
The growth and shortening states are summed together and plotted as a length
distribution.

clear;

PN = .5; %nucleation frequency
Psg = .2; %rescue frequency
Pgs = .6; %catastrophe frequency
Vg = 1; %growth velocity
Vs = 2; %shortening velocity

K = 50; %upper limit on length
t = 50^50; %time steps

v0 = [1 zeros(1,2*K)]; %initial state

P = zeros(2*K+1); %empty matrix framework
P(1,1) = 1-PN;
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P(1,2*Vg+1) = PN;
for i = 1:Vs %early states

P(2*i,1) = 1-Psg;
P(2*i,2*i+1) = Psg;
P(2*i+1,2*i) = Pgs;
P(2*i+1,2*i+2*Vg+1) = 1-Pgs;

end

for i = Vs+1:K-Vg %middle states
P(2*i,2*i-2*Vs) = 1-Psg;
P(2*i,2*i+1) = Psg;
P(2*i+1,2*i) = Pgs;
P(2*i+1,2*i+2*Vg+1) = 1-Pgs;

end

for i = K-Vg+1:K %end states
P(2*i,2*i-2*Vs) = 1-Psg;
P(2*i,2*i+1) = Psg;
P(2*i+1,2*i) = Pgs;
P(2*i+1,2*K+1) = 1-Pgs;

end

%steady state vector
vss = v0*(P^t);
vsum(1) = vss(1);
for j = 1:K

vsum(j+1) = vss(2*j) + vss(2*j+1);
end
x = [0:K];
figure(2);
plot(x,vsum,’LineWidth’,2)
title(’Steady State Length Distribution of an Individual Polymer’);
xlabel(’Length’);
ylabel(’Probability’);
axis([0 K 0 .1]);

6.3 Finite Numerical Solution for Vg = 1, Vs = 2

This code was used to solve for specific values of matrix coefficients as discussed
in Section 4.3. Vg = 1 and Vs = 2 are assumed and do not appear in the
code, but the other input parameters are specified along with the upper bound
on length K. The value of π0 is first treated symbolically (pi0) before its
numerical value is calculated (pi). The vector pre consists of the coefficients of
π0 for each length, and multiplying by π0 gives the final length distribution.
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clear;

PN = .25;
Pgs = .6;
Psg = .2;

K = 20; %upper limit on length

pi0 = sym(’pi0’);

%roots and matrix coefficients
x1 = (-Pgs+sqrt(Pgs^2+(1-Pgs)/(1-Psg)))/2;
x2 = (-Pgs-sqrt(Pgs^2+(1-Pgs)/(1-Psg)))/2;

Mat = [(1-Psg)*(x1+x1^2) (1-Psg)*(x2+x2^2) 0 0 PN*pi0; %pi0
-Psg*x1 -Psg*x2 x1 x2 PN*pi0; %pi1g
x1^K x2^K -Pgs*x1^K -Pgs*x2^K 0; %piK,s
Psg*x1^K Psg*x2^K (1-Pgs)*x1^(K-1)-Pgs*x1^K (1-Pgs)*x2^(K-1)-Pgs*x2^K 0];

%piK,g
R=rref(Mat);

A = R(1,5)/pi0;
B = R(2,5)/pi0;
C = R(3,5)/pi0;
D = R(4,5)/pi0;

%value of pi0
for j = 1:K-2

S(j) = A*x1^j+B*x2^j;
G(j) = C*x1^j+D*x2^j;
pre(j) = (A*x1^j+B*x2^j+C*x1^j+D*x2^j);
pre(K-1) = (1+Pgs)*(C*x1^(K-1)+D*x2^(K-1));
pre(K) = ((1-Pgs)/(1-Psg)+(1-Pgs)/(Pgs*(1-Psg)))*(C*x1^(K-1)+D*x2^(K-1));

end
pi = 1/(1+sum(pre));

pi0value = eval(pi)

%length distribution
PL(1) = pi;
for i = 1:K

PL(i+1) = pi*pre(i);
end

sumPL = eval(sum(PL))
L = [0:length(PL)-1];
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figure(3);
plot(L,PL,’LineWidth’,2)
title(’Steady State Length Distribution of an Individual Polymer’);
xlabel(’Length’);
ylabel(’Probability’);
axis([0 length(PL) 0 .5]);
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On the Realizability of Critical Orbit

Portraits

Kristin Cordwell Selina Gilbertson ∗

Abstract

Given a rational function f with fixed critical points, the associated
branch data of f refers to a set of partitions of the degree of f , with each
partition determined by the local degrees of points in the preimages of
a corresponding distinct critical value of f . The critical portrait of f is
determined by a partition of the multiplicities of the critical points of f .
It is known that a critical portrait is realizable if it may be expressed as
a connected planar multigraph G, where each critical point corresponds
to a vertex of G and each vertex has degree equal to the multiplicity of
the associated critical point. It is also known that necessary conditions
for the realizability of a critical portrait are that the associated branch
data is realizable and the number of distinct critical points is at most the
degree of the function. In this paper, we provide a graph-theoretic proof to
conclude that these conditions are also sufficient for the realizability of a
critical portrait. We also discuss code written to explore the classifications
of such rational functions.

1 Introduction

A rational function f := p(z)
q(z) where p, q are polynomials such that GCD(p, q) = 1

has degree d := max(deg(p),deg(q)). The iteration of rational functions gives
dynamical systems on the extended complex plane, and one of the most basic
cases occurs when the critical points c ∈ (C∪∞) : f ′(c) = 0 are also fixed under
f . For the remainder of this paper, we will only consider rational functions
with fixed critical points. In such cases, the branch data of f , which is a set
of partitions of d with each partition determined by the local degrees of the
critical points mapping to a distinct critical value of f , and the critical orbit
portrait of f , which is given by a partition corresponding to the multiplicities of
the critical points of f , encode the same information. For convenience, we note
that the partition associated with a critical orbit portrait may be expressed as a
Young diagram, or a union of N congruent boxes arranged into horizontal rows
such that each row consists of at most the number of boxes of the row above.
In particular, each critical point corresponds to a unique row of the Young
diagram, and the number of boxes in the row is determined by the multiplicity
of the associated critical point.

∗The authors would like to thank the NSF for their support of the Indiana University REU.
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We refer to a critical orbit portrait as realizable if this partition corresponds
to data from a rational function f . We consider a multigraph G to be a finite
collection of vertices and edges such that two vertices may be connected by
arbitrarily many edges, but one vertex may not be connected to itself by an
edge. A multigraph G may be mapped to a partition, which may in turn be
regarded as a potential critical orbit portrait as previously described, such that
each vertex of G corresponds to a unique critical point and the degree of a
vertex corresponds to the multiplicity of the associated critical point. Note that
two multigraphs that are not isomorphic in the plane through an orientation-
preserving homeomorphism may map to the same critical orbit portrait. For
example, both of the following graphs correspond to a critical orbit portrait that
is a partition of 12 into (1, 2, 2, 3, 4) (here, d = 7).

 

Note that the degree sequence of a connected planar multigraph with d− 1
edges gives a partition of 2d − 2, and the multiplicities of a rational function
of degree d also give a partition of 2d − 2. In particular, is known that each
such multigraph partition coincides with the partition of a rational function [3,
Section 5].

Previous results from complex dynamical systems have shown that several
conditions are necessary for the realizability of a critical orbit portrait. First,
the multiplicity of each critical point of f may be at most d− 1. Second, by the
Riemann-Hurwitz condition, the sum of the multiplicities of all of the critical
points must be 2d − 2. Finally, f may have at most d fixed critical points.
This last is a consequence of the Holomorphic Index Formula, which states
that given a rational map of degree d with d+ 1 distinct fixed points, we have∑
z∈Fix(f)

1
1− f ′(z)

= 1 [2].

We prove the following theorem, answering a recent question posed by Rafe
Jones and Michelle Manes.

Theorem 1.1. Any partition of 2d− 2 with at most d elements, each of size at
most d− 1, is realizable by a rational function.

We also consider a topological approach dealing with the classification of
such rational functions. In particular, we would like to determine when, given
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f, g : S2 → S2 branched coverings (orientation-preserving morphisms of degree
≥ 2), we may send f to g through some braiding of the critical points of f . We
consider the invariants given by the Hurwitz data of f , which is given by:

1. A labeling of critical values {v1, v2, . . . , vn}
2. A chosen base point b ∈ S2 \ V
3. For each critical value vi, the choice of a ray ri from b to vi such that:
(i) ri ∩ rj = {b} for all i 6= j ∈ {1, . . . , n}
(ii) the cyclic ordering on rays given by ri < rj for i < j corresponds to the
cyclic ordering on rays given by the counterclockwise ordering of the plane
4. A bijection f−1(b)↔ {1, 2, . . . , d}

The following example illustrates how a connected planar multigraph yields
a rational map. We begin with a topological description of the rational map,
recalling that this data is sufficient to determine a unique rational map, up to
Moebius conjugacy [3, Section 5]. From this topological description, we retrieve
the ordered list of permutations determined by the Hurwitz data of our rational
function f .

Suppose we have the critical orbit portrait of f associated withG a connected
planar multigraph such that V (G) = {1, 2, 3, 4} and each edge with distinct
endpoints is labeled with a different letter, as shown. Since we have 10 edges,
d = 6. Note that, for later convenience, we color the distinct planar regions
defined by the graph.

 
We first choose a base point and a cyclic ordering of rays as below. We find

generators of the fundamental group π1(S2 \ V, b) by following each ray from
the basepoint to the pertinent vertex, looping counterclockwise, and returning.
Notice that each loop drawn is uniquely determined by the sequence of edges
that it crosses. Thus, the sequences for g1, g2, g3, g4 are respectively d, dbc, ca, ab,
read from left to right.
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We may now topologically define the branched covering associated to our

original multigraph G. The figure below shows the inverse image of each region,
edge, and numbered vertex of G, with labeled objects mapping to like labeled
objects. Since we chose our original basepoint to lie in the shaded region defined
by G, each shaded region in the figure below contains exactly one preimage of
the basepoint, and each region is labeled with a distinct element of {1, . . . , d}.
Following this figure, we find the ordered list of permutations given by a path-
lifting of each generator, as (1, 2), (1, 2, 3, 5, 6), (1, 6, 5, 4), (1, 4, 3).

 

It is known that f and g are Hurwitz equivalent if their corresponding lists of
permutations, up to some set of elementary moves, are simultaneously conjugate
in Sd. It is also known that the Hurwitz equivalence class of any branched
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covering f with exactly one critical point in the preimage of each critical value
is determined by the branch data of f [1].

The second half of this paper discusses code written to computationally ex-
plore this idea of Hurwitz equivalence classes. In particular, the code provides
a quick verification that two non-isomorphic connected planar multigraphs cor-
responding to the same partition are indeed Hurwitz equivalent.

2 Realizability of a Critical Orbit Portrait

We will refer to the underlying simple graph of G by SG, where V (SG) = V (G)
and v, w ∈ V (SG) are connected by exactly one edge if v, w are connected by
at least one edge in G. We denote the degree of v ∈ v(G) in G by degG(v),
and the degree of v in SG by degSG(v). We consider a face of a simple planar
graph SG to be a connected region of the plane that is bounded by edges of SG.

Definition 2.1. Given n, d ∈ N, if d ≥ 3 and d ≥ n, we say that (n, d) has
an associated admissible partition k1 + . . . + kn = 2d − 2, with ki ≤ d − 1
for all i ∈ {1, 2, . . . , n}. Consider a Young diagram associated with an admis-
sible partition of (n, d) to have n rows and 2d−2 boxes, where row i has ki boxes.

Theorem 2.2. Given any Young diagram associated with an admissible par-
tition of (n, d), we may find a corresponding connected planar multigraph G
such that each Young diagram row corresponds to a unique vertex of G and the
number of boxes in a row is equal to the degree of the associated vertex.

Note that the restriction n ≤ d is necessary. For instance, if d = 3, n = 4,
then we have 2 ·(3−2) = 4 boxes and 4 rows, so each row must have exactly one
square. But clearly there is no way to obtain a connected planar multigraph
with 4 vertices each of degree 1.

Proof. By induction on d.

Note that, given a Young diagram associated with an admissible partition of
(2, d), we may find a corresponding connected planar multigraph G that consists
of vertices v1 and v2 connected by d− 1 edges. For the remainder of the proof,
we assume n ≥ 3.

Base Case:
Since n, d ≥ 3 and n ≤ d, we first must show that this holds for n = d. We

do so by induction on n.
If n = d = 3, there is only one possible Young diagram, as below. We see

that the only possible corresponding multigraph is a path of length 2, which we
note is connected and planar.
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Assume that we may find a connected planar multigraph G for any Young
diagram associated with an admissible partition of (k−1, k−1). Since |V (G)| >
2 and G is connected, we may find v1 and v2 ∈ V (G) two adjacent vertices
connected by edge e ∈ E(G).

We now must show that we may find a connected planar multigraph G′ for
any Young diagram associated with an admissible partition of (k, k). We note
that we may construct any of the Young diagrams associated with an admis-
sible partition of (k, k) (with 2k − 2 boxes) from one of the Young diagrams
associated with an admissible partition of (k − 1, k − 1) (with 2k − 4 boxes) by
adding one row and two new boxes. Let the vertex corresponding to the added
row be v′ ∈ V (G′). We consider two cases.

Case I: We add one new row with two boxes.
In this case, we may construct G′ from G by deleting e ∈ E(G) and adding

e1, e2 ∈ E(G′) such that e1 connects v1 and v′, and e2 connects v2 and v′. Note
that the degree of v1 and v2 has not changed, and v′ has degree 2 in G′. Fur-
thermore, since G was connected and planar by our inductive assumption, G′ is
clearly connected and planar.

Case II: We add one new row consisting of one box and also add one other box
to some existing row (say the row corresponding to v1).

In this case, we may construct G′ from G by adding v′ as a leaf of v1. Note
that we have increased the degree of v1 by 1, and v′ has degree 1 in G′. Again,
since G was connected, G′ is clearly connected. Furthermore, since we may add
a leaf to any vertex of a planar multigraph and the resulting multigraph will
also be planar, G planar implies that G′ is planar.

Thus, given n = d, we may find a connected planar multigraph for any
Young diagram associated with an admissible partition of (n, d). �

Now, consider d > n. For the purposes of induction on d, we assume that we
may find a connected planar multigraph G for any Young diagram associated
with an admissible partition of (n, d). We now must show that we may find
such a connected planar multigraph G′ for any Young diagram associated with
an admissible partition of (n, d+ 1). We note that we may construct all of the
Young diagrams associated with an admissible partition of (n, d + 1) from the
Young diagrams associated with an admissible partition of (n, d) by adding two
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new boxes. We proceed by two cases.

Case I: We add one new box to each of two distinct rows of a Young diagram
associated with an admissible partition of (n, d). Recall that, by assumption,
n ≥ 3. We note that this corresponds to increasing the degree of two vertices of
G by 1.

Lemma 2.3. Let G be a connected planar multigraph with |V (G)| ≥ 3. Given
v1, v2 ∈ V (G) adjacent and degSG(v1) ≥ 2, we may find a connected planar
multigraph G′ with V (G) = V (G′) such that

1. degG′(v) = degG(v) for all v ∈ V (G), v 6= v1, v2

2. degG′(v1) = −1 + degG(v1)
3. degG′(v2) = 1 + degG(v2).

Proof. G is a planar multigraph with |V (G)| ≥ 3, so since SG contains no
multiple edges or loops, the boundary of each face of SG contains at least three
distinct vertices. Since v1 and v2 are adjacent, they lie on the boundary of
some face F of SG. Furthermore, since degSG(v1) ≥ 2, there exists w ∈ V (G)
adjacent to v1, w 6= v2, such that w also lies on ∂F .

Definition 2.4. We refer to w as a buffer vertex of v1, v2.

Let G′ be the graph obtained from G by deleting edge v1w and adding edge
wv2. By construction, Conditions 1 - 3 hold. Since w and v2 are both on ∂F ,
we may add edge wv2 without crossing any other edges, so G′ is planar. Since
G is connected, G′ is connected by construction.

The proof of Case I then follows from the following proposition:

Proposition 2.5. Let G be a connected planar multigraph with |V (G)| ≥ 3.
Given arbitrary s, t ∈ V (G), we may find a connected planar multigraph G′ with
V (G) = V (G′) such that

1. degG′(v) = degG(v) for all v ∈ V (G), v 6= s, t
2. degG′(s) = 1 + degG(s)
3. degG′(t) = 1 + degG(t).

Proof. If s and t are adjacent in G, we may construct G′ by simply adding
another edge between them. Assume s, t not adjacent in G.

Since G is connected, we may find P1 = s, a1, a2, . . . , am, t a path of minimal
length between s and t. Add edge sa1, increasing the degrees of s and a1 each by
1. Call the resulting graph H, and note that H is a connected planar multigraph
with V (G) = V (H).

Since a1 is adjacent to s and a2, degSH(a1) ≥ 2. Furthermore, since P1

is a path of minimal length, a1 is not adjacent to any other vertices in P1.
Therefore, there exists w ∈ V (H) adjacent to a1 such that w 6∈ V (P1)−{s} and
w, a1, a2 lie on the boundary of some face F of SH. We apply Lemma 1 with
w as our buffer vertex of a1, a2 to obtain connected planar multigraph H ′ with
V (H) = V (H ′) such that

1. degH′(v) = degH(v) for all v ∈ V (H), v 6= a1, a2
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2. degH′(a1) = −1 + degH(a1)
3. degH′(a2) = 1 + degH(a2).

Note that we now have degH′(a1) = degG(a1). So, if a2 = t, we are done.
Otherwise, since H ′ is connected, we may find P2 = a2, b1, . . . , bn, t a path of
minimal length from a2 to t. Note that since the path a1, a2, a3, . . . , am, t ∈ H ′,
the length of P2 is strictly less than the length of P1. We redefine a1 := a2,
a2 := b1 and repeat the argument. Since the length of our minimal path strictly
decreases with each iteration, we will eventually obtain a2 = t, thus proving our
claim.

Case II: We add two new boxes to one row of a Young diagram associated with
an admissible partition of (n, d). Following the given constraints, this case only
pertains to rows of size ≤ d− 2.

Suppose that our row corresponds to v1 ∈ V (G). Since n, d ≥ 3 and G is
planar, we may find v2, v3 ∈ V (G) such that v2 and v1 are connected by edge
e12, v2 and v3 are connected by edge e23, and v1, v2, v3 lie along the boundary
of a face F of SG. Now, to increase the degree of v1 by 2 without changing
the degrees of any of the other vertices of G, we may simply delete e23 and
add an edge from v3 to v1 and another edge from v2 to v1 to form G′. Note
that since G is connected, G′ is connected. Furthermore, as previously argued,
we may connect v1 and v3 without violating planarity, since they are both on ∂F .

Thus, if we can find a connected planar multigraph G for any Young diagram
associated with an admissible partition of (n, d), we may find a connected planar
multigraph for any Young Diagram associated with an admissible partition of
(n, d+ 1), so our induction is complete. As desired.

3 Hurwitz Equivalency Programs

We provide brief descriptions of the programs written to explore Hurwitz equiv-
alency classes. The specific code may be found in Appendix A.

The function isAdmissible takes a list of permutations and determines whether
the data satisfies the restrictions imposed by the Hurwitz data invariants. In
particular, it checks whether the group generated by the permutations is tran-
sitive, whether one less than the sum of the cycle lengths is equal to 2d−2, and
whether the product of the permutations is equal to the identity.

The function areSimulConj takes two lists of permutations, g1 and g2, and
determines whether there exists some x ∈ Sd such that each permutation g1[i]
is equal to the corresponding permutation g2[i] conjugated with x (that is,
g2[i] ∧ x = x−1 ◦ g2[i] ◦ x).

The function elementaryMove takes g a list of permutations and performs
an elementary move on some ith element, in which g[i] is replaced with g[i+ 1],
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and g[i+ 1] is replaced with g[i] ∧ g[i+ 1].

The function orbit takes g a list of permutations and determines the asso-
ciated Schreier graph, whose vertices consist of lists of permutations accessible
from g through some sequence of elementary moves, and whose directed edges
join two lists of permutations g1, g2 iff g2 is obtained from g1 with a single
elementary move. The edges of Schreier graph are returned in the form [tail,
label, head], where the label of the edge indicates which elementary move was
performed on the tail to obtain the head.

The function HC takes two lists of permutations and determines whether
they are in the same Hurwitz equivalence class by generating the orbit of the
first list and checking whether the second list appears, up to simultaneous con-
jugation.
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A Appendix: Code

#isAdmissible
#Kristin Cordwell, Selina Gilbertson
#July 2012
#this function determines whether a set of generators is admissible data
#admissibility if all three conditions print "true"
######################
#
# calling sequence: isAdmissible(d, g) where g is a list of permutations in the
# symmetric group on d symbols
# output is boolean (true or false)

isAdmissible := function(d, g)

#declare local variables
local G, length, cycleLengths, sum, prod, i;

#Group generated by permutations
G:=Group(g);

#length of list g
length := Length(g);;

######################

#first admissibility criterion: check if generated group is transitive
if not (IsTransitive(G)) then
Print("false trans");
return false;
fi;

######################

#second admissibility criterion: check Riemann-Hurwitz condition

#initialize
cycleLengths:=[];;

#determine one less than cycle length of a given permutation, add it to list
for i in [1..length] do

cycleLengths[i] := (NrMovedPointsPerm(g[i])-1);;
od;

#check sum of elements of cycleLengths equals 2d - 2
sum:=Sum(cycleLengths);
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if not sum=(2*d-2) then
Print("false Sum");
return false;

fi;
Print("\n");

######################

#third admissibility criterion: check product of generators is the identity

#initialize
prod:=[()];;

#compute product
for i in [1..length] do

prod:=prod*g[i];
od;

#check
if not prod=[()] then
Print("false prod");

return false;
fi;

return true;

end;

#areSimulConj
#Kristin Cordwell, Selina Gilbertson
#July 2012
#this function determines whether two sets of generators are simultaneously conjugate
######################
#
# calling sequence: areSimulConj(d, g1, g2), where g1, g2 are lists of permutations in the
# symmetric group on d symbols
# output is boolean (true or false)

#d the size of the symmetric group, g1 and g2 lists of permutations
areSimulConj := function(d, g1, g2)

#declare local variables
local SG, length, xinv, x, i, centr, coset, S;

#symmetric group of size d
SG := SymmetricGroup(d);;
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#length of list g1
length := Length(g1);;

#initialize
x:=[];;
centr:=[];;
coset:=[];;

#check if g1 and g2 are identical
if g1 = g2 then
return true;
fi;

for i in [1..length] do

#check that g1[i] is the same cycle size as g2[i]
if RepresentativeAction(SG, g2[i], g1[i],OnPoints) = fail then
return false;
else
#find the element of SG such that g2[i] = xinv^-1 g1[i] xinv
xinv:=RepresentativeAction(SG, g2[i], g1[i],OnPoints);;
fi;

#find the element of SG such that g1[i] = x^-1 g2[i] x
x[i]:=xinv^(-1);;

#find the centralizer of g1[i]
centr[i] := Centralizer(SG, g1[i]);;

#find the right coset centr*x
coset[i] := RightCoset(centr[i], x[i]);;

#on the first iteration, initialize S
if i=1 then
S := coset[1];;
fi;

#while S nonempty, intersect coset[i] with previous elements in the list
if not Size(S)=0 then
S := Intersection(coset[i], S);;
fi;

#if S becomes empty, return false
if Size(S) = 0 then
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return false;
fi;
od;

#if S nonempty
return true;

end;

#elementaryMove
#Kristin Cordwell, Selina Gilbertson
#July 2012
#this function performs an elementary move on a permutation belonging to the
# symmetric group on d elements
######################
#
# calling sequence: elementaryMove(d, g, i), where g is a list of permutations in the
# symmetric group on d symbols and i and i+1 are the elements affected
# output is the resulting permutation list

elementaryMove := function(d, g, i)

#declare local variables
local gNew, length, j;

gNew := [];;

#length of given list
length := Length(g);;

#set gNew equal to g
for j in [1..length] do
gNew[j] := g[j];;
od;

#move i, i+1 elements of g
if i < length then

gNew[i] := g[i+1];;
gNew[i+1] := g[i]^g[i+1];;

fi;

if i = length then
gNew[length] := g[1];;
gNew[1] := g[length]^g[1];;

fi;
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return gNew;

end;

#orbit
#Kristin Cordwell, Selina Gilbertson
#July 2012
#this function takes a list of permutations and generates the associated orbit
# (Hurwitz class), stored as edges
######################
#
# calling sequence: orbit(d, g), where g is a list of permutations in the
# symmetric group on d symbols
# output is list of edges of the form [tail, label, head], where tail is a list of
# permutations, label is an integer dictating the element of tail on which an
# elementary move will be performed, and head is the resulting list of permutations

#d the size of the symmetric group, g a list of permutations
orbit := function(d, g)

#declare local variables
local edges, length, gAdj, h, i, j, k, l, found, orbitLength, heads;

#initialize local variables
length := Length(g);
#edges of the Hurwitz graph of the orbit
edges := [[]];;
#heads a list of lists of heads used and the number of times they appear as heads
heads := [[[]]];;
found := false;;

#first element of heads is g, appearing once
heads[1][1] := g;;
heads[1][2] := 1;;
i := 1;;
#length of heads
l := 1;;
#count number of elements in the orbit
orbitLength := 0;;

#for each element of heads
while i <= l do
Print("found", i, "\n");
for j in [1..length] do
#each possible elementary move
h := elementaryMove(d,heads[i][1],j);;
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#check not already simul conj to an element of heads
for k in [1..l] do
#only check elements of heads that are not saturated
if heads[k][2] > length then
continue;
else
if areSimulConj(d, heads[k][1], h) then

found := true;;

#increment the number of times heads[k] is a head
heads[k][2] := heads[k][2] + 1;

#add new edge
Add(edges, [heads[i][1], j, heads[k][1]]);;
orbitLength := orbitLength + 1;;

break;
fi;
fi;
od;
if not found then
#add to heads
Add(heads, [h,1]);
#increment length of heads
l := l+1;;

#add new edge
Add(edges, [heads[i][1], j, h]);;
orbitLength := orbitLength + 1;;
fi;
found := false;
od;

#move to next element of heads
i := i+1;

od;

#delete the first element of edges, which is the empty set
Remove(edges, 1);;

return edges;

end;
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#HurwitzClass
#Kristin Cordwell, Selina Gilbertson
#July 2012
#this function takes a list of permutations and determines whether another list is
# in the orbit of the first
######################
#
# calling sequence: hc(d, g1, g2), where g1 and g2 are lists of permutations in the
# symmetric group on d symbols
# output is true if g2 is in the orbit of g1, false otherwise

#d the size of the symmetric group, g a list of permutations
HC := function(d, g1, g2)

#declare local variables
local length, h, i, j, k, l, found, heads;

#initialize local variables
length := Length(g1);
#heads a list of lists of heads used and the number of times they appear as heads
heads := [[[]]];;
found := false;;

#check if g1, g2 are simultaneously conjugate
if areSimulConj(d,g1,g2) then
return true;
fi;

#first element of heads is g, appearing once
heads[1][1] := g1;;
heads[1][2] := 1;;
i := 1;;
#length of heads
l := 1;;

#for each element of heads
while i <= l do
Print("found", i, "\n");
for j in [1..length] do
#each possible elementary move
h := elementaryMove(d,heads[i][1],j);;
#check not already simul conj to an element of heads
for k in [1..l] do
#only check elements of heads that are not saturated
if heads[k][2] > length then
continue;
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else
if areSimulConj(d, heads[k][1], h) then

found := true;;

#increment the number of times heads[k] is a head
heads[k][2] := heads[k][2] + 1;

break;
fi;
fi;
od;
if not found then

#check if g2 is simulconj
if areSimulConj(d,h,g2) then
return true;
fi;

#add to heads
Add(heads, [h,1]);

#increment length of heads
l := l+1;;

fi;
found := false;

od;

#move to next element of heads
i := i+1;

od;

return false;

end;
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3-Dimensional Gluings of Cubes

Lindsay Martin

Abstract

A 3-dimensional gluing of cubes is constructed by gluing together n
unit cubes. We glue the top of each cube to a bottom of another, the left
of each cube to the right of another, and the front of each cube to the
back of another. If we label the cubes 1 through n, the gluing pattern
corresponds to a triple of permutations of {1, . . . , n}. Given a triple of
permutations, we provide a method for determining whether or not the
corresponding 3-dimensional gluing of cubes is a manifold.

1 Introduction

Our goal is to study properties of 3-dimensional gluings of cubes. In this paper
we focus on determining whether or not a 3-dimensional gluing of cubes is a
3-manifold. The 2-D analogue, a square-tiled surface, is always a 2-manifold.
However, that is not the case in 3-D. In section 2, we formally define square-tiled
surfaces, 3-dimensional gluings of cubes, and what it means for a 3-dimensional
gluing of cubes to be a manifold. In section 3, we use Euler’s characteristic to
reduce the problem to counting the vertices, edges, and faces in a 3-dimensional
gluing of cubes. Section 4 shows us how to algorithmically count the vertices,
edges, and faces. Once we have computed the number of vertices, edges, and
faces, the problem is solved. An example of 3-dimensional gluing of cubes that
is a manifold is given in section 5.

Remark 1.1. In order to be consistent, we will always multiply permutations
from left to right in this paper. For example, let σ =(1 2 4) and τ =(2 5 4).
Then, στ = (1 2 4)(2 5 4) = (1 5 4).

2 Preliminary Definitions

2.1 Square-Tiled Surfaces and 3-Dimensional Gluings of
Cubes

Definition 2.1. Let Si = [2i, 2i + 1] × [0, 1]. Let Z be the disjoint union of
the squares S1, S2, S3, . . . , Sn. Let σ, τ be permutations of {1, . . . , n}. For each
i ∈ {1, . . . , n}, let

Aσ,i = {((2i, y), (2σ(i) + 1, y)) | y ∈ [0, 1]}
Aτ,i = {((2i+ x, 1), (2τ(i) + x, 0)) | x ∈ [0, 1]}.
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Let A ⊂ Z × Z be the equivalence relation generated by the union

n⋃
i=1

Aσ,i ∪Aτ,i

A square-tiled surface X(σ, τ), i.e., the gluing space, is the set of equivalence
classes.

A vertex in X(σ, τ) is an equivalence class that contains a vertex of one of
the n squares. An edge in X(σ, τ) is an equivalence class that contains an edge
of one of the n squares.

Basically, a square-tiled surface, X(σ, τ), is the result of gluing together n
unit squares. We identify each left edge with a right edge and each top edge with
a bottom edge. If we label the squares 1, . . . , n, the gluing pattern corresponds
to a pair of permutations, (σ, τ), of {1, . . . , n}.
Example 2.2. X((1), (1)), i.e. a torus

Example 2.3. X(σ, τ), where σ = (3 4) and τ = (1 3 2)., i.e., a double torus

Definition 2.4. Let Ci = [2i, 2i+1]× [0, 1]× [0, 1]. Let Z be the disjoint union
of the cubes C1, C2, C3, . . . , Cn. Let σ, τ , ω be permutations of {1, 2, . . . , n}.
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For each i ∈ {1, . . . , n}, let

Aσ,i = {((2i, y, z), (2σ(i) + 1, y, z) | y, z ∈ [0, 1]}
Aτ,i = {((2i+ x, y, 1), (2τ(i) + x, y + 1, 0) | x, y ∈ [0, 1]}
Aω,i = {((2i+ x, 0, z), (2ω(i) + x, 1, z) | x, z ∈ [0, 1]}.

Let A ⊂ Z × Z be the equivalence relation generated by the union

n⋃
i=1

Aσ,i ∪Aτ,i ∪Aω,i

A 3-dimensional gluing of cubes X(σ, τ, ω), i.e., the gluing space, is the set of
equivalence classes.

A vertex in X(σ, τ, ω) is an equivalence class that contains a vertex of one of
the n cubes. An edge in X(σ, τ, ω) is an equivalence class that contains an edge
of one of the n cubes. A face in X(σ, τ, ω) is an equivalence class that contains
a face of one of the n cubes.

Basically, a 3-dimensional gluing of cubes, X(σ, τ, ω), is the result of gluing
together n unit cubes. We identify each left face with a right face, each top face
with a bottom face, and each front face to a back face. If we label the cubes
1, . . . , n, the gluing pattern corresponds to a triple of permutations, (σ, τ, ω), of
{1, . . . , n}.

2.2 Locally Euclidean 3-Dimensional Gluings of Cubes

Definition 2.5. A 3-dimensional gluing of cubes is said to be locally Euclidean,
and therefore a manifold, if and only if for each point in the space, there is a
neighborhood of the point which is homeomorphic to Euclidean space[1].

Remark 2.6. The rest of the paper will give a systematic way of determining
whether or not a 3-dimensional gluing of cubes is a manifold.

3 Euler’s Characteristic for 3-Dimensional Glu-
ings of Cubes

We will use the Euler’s characteristic of a 3-dimensional gluing of cubes in order
to determine whether or not X(σ, τ, ω) is a manifold.

First, we have a theorem about 3-dimensional gluings of tetrahedra.

Definition 3.1. The Euler characteristic of a 3-dimensional gluing of tetrahedra
is

χ( 3-dimensional gluing of tetrahedra) = v − e+ f − t

where v, e, f , and t are the number of vertices, edges, faces, and tetrahedra in
the 3-dimensional gluing of tetrahedra, respectively [2].
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Theorem 3.2. A three-dimensional gluing of tetrahedra is a three-manifold if
and only if its Euler characteristic is zero.

Proof. See [2].

We can divide a cube into 6 tetrahedra.

Thus, we can apply theorem 3.2 to a 3-dimensional gluing of cubes.

Proposition 3.3. The Euler characteristic of X(σ, τ, ω) is

χ(X(σ, τ, ω)) = v − e+ f − n

where v, e, f and n are the number of vertices, edges, faces, and cubes in X(σ, τ, ω),
respectively.

Proof. Let v, e, f, n be the number of vertices, edges, faces, and cubes inX(σ, τ, ω),
respectively. Divide each cube in X(σ, τ, ω) into 6 tetrahedra as above. We will
have the same gluing space except it will be divided into tetrahedra instead of
cubes. Let v′, e′, f ′, t be the number of vertices, edges, faces, and tetrahedra in
the gluing of tetrahedra. We can see that v′ = v, e′ = e+ f + n, f ′ = 2f + 6n,
and t = 6n. So by definition 3.1,

χ(X(σ, τ, ω)) = v′ − e′ + f ′ − t
= v − (e+ f + n) + (2f + 6n)− 6n
= v − e+ f − n.

Theorem 3.4. A three-dimensional gluing of cubes is a three-manifold X(σ, τ, ω)
is a three-manifold if and only if its Euler characteristic is zero.

Proof. Divide each cube into 6 tetrahedra, and apply theorem 3.2.

Thus, if we can compute v, e, and f , then we can determine whether or not
X(σ, τ, ω) is a manifold by computing its Euler characteristic.
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4 Computing v, e, and f in X(σ, τ, ω)

4.1 Computing f

First, we compute f . Each cube has 6 faces, and since the faces are glued in
pairs,

f =
6n
2

= 3n.

4.2 Computing e

We want to compute the number of edges in a 3-dimensional gluing X(σ, τ, ω).
Of course, we can count the edges directly for X(σ, τ, ω) for small n. However,
we would like an algorithm for computing the number of edges given σ, τ, and
ω for any n.

Proposition 4.1. The number of edges in X(σ, τ, ω) is equal to the sum of of
the number of vertices in X(σ, τ), X(τ, ω), X(σ, ω).

Proof. Let X(σ, τ, ω) be a 3-dimensional gluing of cubes. Let square-tiled sur-
face X(σ, τ) is naturally identified with the subset of X(σ, τ, ω) corresponding
to the union

⋃n
i=1 S̃i where

S̃i = [2i, 2i+ 1]× {1
2
} × [0, 1].

The edges in X(σ, τ, ω) parallel to the vector (1, 0, 0) are in one to one
correspondence with the vertices of X(σ, τ). Similarly, the edges of X(σ, τ, ω)
parallel to the vector (0, 0, 1) are in one-to-one correspondence with the vertices
of X(σ, ω), and the edges parallel to (0, 1, 0) correspond to the vertices of
X(τ, ω). We must count the vertices in the X(σ, τ), X(σ, ω) and X(τ, ω) to
count all the edges in X(σ, τ, ω). Thus, the number of edges in X(σ, τ, ω) is
equal to the sum of of the number of vertices in X(σ, τ), X(τ, ω), X(σ, ω).

Example 4.2. X(σ, τ, ω), where σ = (1 5), τ = (1 4 2), and ω = (1 4 3)
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Thus, in example 4.2, there are 3 vertices in X(σ, τ). Therefore, these three
vertices account for 3 of the edges in X(σ, τ, ω).

We want to be able to compute the number of vertices in a square-tiled
surface, so that we can count the number of edges in a 3-dimensional gluing of
cubes.

4.2.1 Counting Vertices in a Square-Tiled Surface

For notational purposes, we will label the vertices of a square as follows:

The left bottom vertex is labeled wi, right bottom vertex is labeled xi, right
top vertex is labeled yi, and left top vertex is labeled zi. So the set of vertices
of the squares is {vi | v ∈ {w, x, y, z} and i ∈ {1, . . . , n}}.

First, we begin by defining an equivalence relation generated by a set B.

Definition 4.3. Let B be any subset X×X. We define the equivalence relation
generated by B to be the smallest equivalence relation in X ×X that contains
B [1].

Proposition 4.4. [1] Let B ⊂ V × V be a relation. Let A ⊆ V × V be the set
of ordered pairs (x, y) such that there exists a sequence x1, . . . , xn with x = x1,
y = xn and for each i = 1, . . . , n− 1 we have either:

1. (xi, xi+1) belongs to B,

2. (xi+1, xi) belongs to B, or

3. xi+1 = xi

A is the equivalence relation generated by B.

Proof. To prove this claim, we need to show

• A ⊃ B

• A is an equivalence relation

• If A′ is any other equivalence relation that contains A, then A ⊂ A′.
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Let (x, y) ∈ B, x1 = x, and x2 = y. Thus, there exists a sequence x1, x2

such that (x1, x2) ∈ B.⇒ (x, y) ∈ A.

Let (x, x) ∈ V × V, x1 = x, and x2 = x. Thus, there exists a sequence x1, x2

such that x1 = x2.⇒ (x, x) ∈ A.
Let (x, y) ∈ A. Then there exists a sequence x1, . . . , xn such that x = x1,

y = xn and for each i = 1, . . . , n − 1 either (1), (2), or (3) above is true.
There is a sequence x′jn , . . . , x

′
j1

such that x′jn = y and x′j1 = x and for each
ji = 1, . . . , n − 1 either (1), (2), or (3) above is true if we let ji = n + 1 − i.
Thus, (y, x) ∈ A.

Let (x, y) ∈ A and (y, z) ∈ A. Then there exist sequences x1, . . . , xn such
that x = x1, y = xn and for each i = 1, . . . , n− 1either (1), (2), or (3) above is
true and w1, . . . , wm such that y = w1, z = wm and for each j = 1, . . . ,m − 1
either (1), (2), or (3) above is true. If we let each wj = xj+n, then there is a se-
quence x1, . . . , xn, xn+1, . . . , xn+m such that x = x1 and z = xn+m and for each
l = 1, . . . , (n+m)− 1 either (1), (2), or (3) above is true since xn = xn+1 = y.
Thus, (x, z) ∈ A.

Suppose that (x, y) ∈ A. Then there exists a sequence x1, . . . , xn l =
1, . . . , n − 1 with x = x1, xn = y and for each i = 1, . . . , n − 1 such that
either (1), (2), or (3) above is true. Since B ⊂ A′, and since A′ is an equiv-
alence relation and hence symmetric and reflexive, we have (xi, xi+1) ∈ A′ for
each i. Since A′ is transitive and by induction we find that (x, y) ∈ A′.

The equivalence relation, 〈B〉, on the set of vertices of the n squares is the
equivalence relation generated by B, where B = {(wi, xj) | σ(i) = j}∪{(xi, yj) |
τ−1(i) = j} ∪ {(yi, zj) | σ−1(i) = j} ∪ {(zi, wj) | τ(i) = j}. The equivalence
classes of 〈B〉 are the vertices of X(σ, τ).

The equivalence relation on the set of vertices of the n squares gives us
multiple ”paths” between two equivalent vertices. The following proposition
defines one of the ”paths” between equivalent vertices.

Definition 4.5. Θ := στ−1σ−1τ

Proposition 4.6. 1. wi ∼ wj ⇔ ∃m ∈ Z such that Θm(i) = j.

2. wi ∼ xj ⇔ ∃m ∈ Z such that Θmσ(i) = j.

3. wi ∼ yj ⇔ ∃m ∈ Z such that Θmστ−1(i) = j.

4. wi ∼ zj ⇔ ∃m ∈ Z such that Θmτ−1(i) = j.

5. xi ∼ xj ⇔ ∃m ∈ Z such that σ−1Θmσ(i) = j. .

6. xi ∼ yj ⇔ ∃m ∈ Z such that σ−1Θmστ−1(i) = j.

7. xi ∼ zj ⇔ ∃m ∈ Z such that σ−1Θmτ−1(i) = j.

8. yi ∼ yj ⇔ ∃m ∈ Z such that τσ−1Θmστ−1(i) = j.
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9. yi ∼ zj ⇔ ∃m ∈ Z such that τσ−1Θmτ−1(i) = j.

10. zi ∼ zj ⇔ ∃m ∈ Z such that τΘmτ−1(i) = j.

Note: We can use symmetry to show that for each vi ∼ v′j , v′j ∼ vi implies
the same result as vi ∼ v′j .

Proof. Suppose wi ∼ wj . Then by proposition 4.4, there exists a sequence
v1, . . . , vl with v1 = wi and vl = wj such that for each k = 1, . . . , l − 1 either
(vk, vk+1) belongs to B, (vk+1, vk) belongs to B, or vk+1 = vk. If for any
k = 1, . . . , l − 1 vk = vk+1, then we can alter the sequence by deleting vk+1

from the sequence. v1, . . . , vk, vk+2, . . . , vl still satisfies the necessary properties
because if vk = vk+1, then either (vk, vk+2) ∈ B, (vk+2, vk) ∈ B, or vk = vk+2.

So now we consider the case where (wi, v2) ∈ B. ⇒ v2 = xσ(i). Then
either (xσ(i), v3) ∈ B or (v3, xσ(i)) ∈ B. If (v3, xσ(i)) ∈ B, then v3 = wi which
lead us back to the starting vertex and we would repeat the previous process
(backtrack). So it is enough to only consider the case (xσ(i), v3) ∈ B. ⇒ v3 =
yστ−1(i). Next, since we don’t want to consider backtracking, (yστ−1(i), v4) ∈
B. ⇒ v4 = zστ−1σ−1(i). ⇒ (zστ−1σ−1(i), v5) ∈ B. ⇒ v5 = wστ−1σ−1τ(i). If
wστ−1σ−1τ(i) = wj , then we are done and we have στ−1σ−1τ(i) = Θ(i) = j.
Otherwise, we repeat the process until we have Θm(i) = j for some m ∈ Z.

Next, suppose that (v2, wi) ∈ B. we can analogously repeat the process
above to find that Θ−m(i) = j.

Thus, ∃m ∈ Z such that Θm(i) = j.
Conversely, suppose ∃m ∈ Z such that Θm(i) = j. Then there is a sequence

wi, xσ(i), yστ−1(i), zστ−1σ−1(i), wστ−1σ−1τ(i), . . . , wΘm = wj

that satisfies the condition (vk, vk+1) ∈ B ∀k = 1, . . . l − 1. By proposition 4.4,
wi ∼ wj .

An analogous argument applies to the other 9 cases.

Remark 4.7. This theorem gives a way to count the number of vertices in a
square-tiled surface only given σ and τ .

Theorem 4.8. There is a bijective correspondence between the vertices in X(σ, τ)
and the orbits of the action of 〈Θ〉 on {1, . . . , n}.

Proof. Define ϕ : {vi | v ∈ {w, x, y, z} and i ∈ {1, . . . , n}} 7→ {〈Θ〉j | j ∈
{1, . . . , n}} by vi → 〈Θ〉j where

j =


i if v = w,

σ−1(i) if v = x,

τσ−1(i) if v = y,

τ(i) if v = z.

We must show that ϕ is well defined, injective, and surjective. Generally, we
will say that vi 7→ 〈Θ〉j where j = h(i) and h ∈ H = {(1), σ−1, τσ−1, τ}. Note
that h depends on v.
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To show that ϕ is well defined, we must that if vi ∼ v′i′ , then ϕ(vi) = ϕ(v′i′).
So assume vi ∼ v′i′ . ϕ(vi) = 〈Θ〉j, and ϕ(v′i′) = 〈Θ〉j′. By proposition 4.6, there
exists an r such that r = sΘmt and r(i) = i′ where s, t−1 ∈ H and m ∈ Z.
We know ϕ(vi) = 〈Θ〉j = 〈Θ〉h(i) and ϕ(v′i′) = ϕ(v′r(i)) = 〈Θ〉j′ = 〈Θ〉h′(i′).
Note that s = h and t = (h′)−1. So r(i) = sΘmt(i) = hΘm(h′)−1(i) = i′. ⇒
hΘm(i) = h′(i′). ⇒ 〈Θ〉h(i) = 〈Θ〉h′(i′). ⇒ 〈Θ〉j = 〈Θ〉j′. Thus, ϕ is well
defined.

Next, we will show the ϕ is injective.
Assume ϕ(vi) = ϕ(v′i′).ϕ(vi) = 〈Θ〉j = 〈Θ〉h(i) and ϕ(v′i′) = 〈Θ〉j′ =

〈Θ〉h′(i′). Thus, 〈Θ〉h(i) = 〈Θ〉h′(i′). ⇒ ∃m ∈ Z such that hΘm(i) = h′(i′). ⇒
hΘm(h′)−1(i) = i′. Propostion 4.6 implies vi ∼ v′i′ .

Finally, we will show that ϕ is surjective. Let i = j and v = w, then
∀j ∈ {1, . . . , n} ϕ(wj) = Oj . Thus, ϕ is surfective.

4.3 Computing the number of vertices, v, in X(σ, τ, ω)

Now, we have a way to compute f and e. Thus, once we compute v, then we
will be able to determine whether or not X(σ, τ, ω) is a manifold by computing
its Euler characteristic. First, we want to define the equivalence relation on the
set of vertices.

For notational purposes, we will label the vertices of a cube as follows:

So the set of vertices of the cubes is {vi | v ∈ {w, x, y, z, w′, x′, y′, z′} and
i ∈ {1, . . . , n}}.

The equivalence relation, 〈B〉, on the set of vertices in of the n cubes is the
equivalence relation generated by B, where

B ={(wi, xj) | σ(i) = j} ∪ {(xi, x′j) | ω(i) = j} ∪ {(x′i, y′j) | τ−1(i) = j}
∪ {(y′i, yi) | ω−1(i) = j} ∪ {(yi, xj) | τ(i) = j} ∪ {(xi, wj) | σ−1(i) = j}
∪ {(xi, yj) | τ−1(i) = j} ∪ {(yi, zj) | σ−1(i) = j} ∪ {(zi, wj) | τ(i) = j}
∪ {(wi, zj) | τ−1(i) = j} ∪ {(zi, yj) | σ(i) = j} ∪ {(yi, y′j) | ω(i) = j}
∪ {(y′i, z′j) | σ−1(i) = j} ∪ {(z′i, zj) | ω−1(i) = j} ∪ {(zi, z′j) | ω(i) = j}
∪ {(z′i, w′j) | τ(i) = j} ∪ {(w′i, wj) | ω−1(i) = j} ∪ {(wi, w′j) | ω(i) = j}
∪ {(w′i, x′j) | σ(i) = j} ∪ {(x′i, xj) | ω−1(i) = j}.
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The following definitions for the γi’s are analogous to our definition of Θ in
the square-tiled surface.

Definition 4.9.

γ1 = σωτ−1ω−1τσ−1.

γ2 = στ−1σ−1τ.

γ3 = στ−1ωσ−1ω−1τ.

γ4 = τ−1ωτω−1.

γ5 = ωσω−1σ−1.

The equivalence relation on the set of vertices gives us multiple ”paths”
between two equivalent vertices. The following proposition defines one of the
”paths” between equivalent vertices in X(σ, τ, ω).

Proposition 4.10. Let G = 〈γ1, γ2, γ3, γ4, γ5〉.

1. wi ∼ wj ⇔ ∃g ∈ G such that g(i) = j.

2. wi ∼ xj ⇔ ∃g ∈ G such that gσ(i) = j.

3. wi ∼ yj ⇔ ∃g ∈ G such that gστ−1(i) = j.

4. wi ∼ zj ⇔ ∃g ∈ G such that gτ−1(i) = j.

5. wi ∼ w′j ⇔ ∃g ∈ G such that gω(i) = j.

6. wi ∼ x′j ⇔ ∃g ∈ G such that gσω(i) = j.

7. wi ∼ y′j ⇔ ∃g ∈ G such that gσωτ−1(i) = j.

8. wi ∼ z′j ⇔ ∃g ∈ G such that gτ−1ω(i) = j.

9. xi ∼ xj ⇔ ∃g ∈ G such that σ−1gσ(i) = j.

10. xi ∼ yj ⇔ ∃g ∈ G such that σ−1gστ−1(i) = j.

11. xi ∼ zj ⇔ ∃g ∈ G such that σ−1gτ−1(i) = j.

12. xi ∼ w′j ⇔ ∃g ∈ G such that σ−1gω(i) = j.

13. xi ∼ x′j ⇔ ∃g ∈ G such that σ−1gσω(i) = j.

14. xi ∼ y′j ⇔ ∃g ∈ G such that σ−1gσωτ−1(i) = j.

15. xi ∼ z′j ⇔ ∃g ∈ G such that σ−1gτ−1ω(i) = j.

16. yi ∼ yj ⇔ ∃g ∈ G such that τσ−1gστ−1(i) = j.

17. yi ∼ zj ⇔ ∃g ∈ G such that τσ−1gτ−1(i) = j
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18. yi ∼ x′j ⇔ ∃g ∈ G such that τσ−1gσω(i) = j.

19. yi ∼ y′j ⇔ ∃g ∈ G such that τσ−1gσωτ−1(i) = j.

20. yi ∼ z′j ⇔ ∃g ∈ G such that τσ−1gτ−1ω(i) = j.

21. zi ∼ zj ⇔ ∃g ∈ G such that τgτ−1(i) = j.

22. zi ∼ x′j ⇔ ∃g ∈ G such that τgσω(i) = j.

23. zi ∼ y′j ⇔ ∃g ∈ G such that τgσωτ−1(i) = j.

24. zi ∼ z′j ⇔ ∃g ∈ G such that τgτ−1ω(i) = j.

25. w′i ∼ w′j ⇔ ∃g ∈ G such that ω−1gω(i) = j.

26. w′i ∼ x′j ⇔ ∃g ∈ G such that ω−1gσω(i) = j.

27. w′i ∼ y′j ⇔ ∃g ∈ G such that ω−1gσωτ−1(i) = j.

28. w′i ∼ z′j ⇔ ∃g ∈ G such that ω−1gτ−1ω(i) = j.

29. x′i ∼ x′j ⇔ ∃g ∈ G such that ω−1σ−1gσω(i) = j.

30. x′i ∼ y′j ⇔ ∃g ∈ G such that ω−1σ−1gσωτ−1(i) = j.

31. x′i ∼ z′j ⇔ ∃g ∈ G such that ω−1σ−1gτ−1ω(i) = j.

32. y′i ∼ y′j ⇔ ∃g ∈ G such that τω−1σ−1gσωτ−1(i) = j.

33. y′i ∼ z′j ⇔ ∃g ∈ G such that τω−1σ−1gτ−1ω(i) = j.

34. z′i ∼ z′j ⇔ ∃g ∈ G such that ω−1τgτ−1ω(i) = j.

Proof. Suppose wi ∼ wj . Then by proposition 4.4, there exists a sequence
v1, . . . , vl with v1 = wi and vl = wj such that for each k = 1, . . . , l − 1 either
(vk, vk+1) ∈ B, (vk+1, vk) ∈ B, or vk = vk+1. Our goal is to show that given
any sequence starting with wi and ending with wj , we can alter the sequence
to make a new equivalent sequence that is a word in G.

We will to represent the sequence in terms of the cycles beginning at w in
the following cubic graph.

Note: We will allow the cycle to return to w multiple times.
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This cubic graph is a dual graph of the gluing space of a 3-dimensional gluing
of cubes.

Here is how we will define the sequence wi, . . . , wj in terms of cycles in
the cubic graph. By the properties of this sequence, there is a word r ∈
〈σ, τ, ω〉 such that r(i) = j. We want to take the simplest form of this word,
i.e., we simplify r such that after the simplification no section can be simpli-
fied to the identity permutation.Now we have a simplified version of r, call
it r′. r′ represents an equivalent sequence of shorter or the same length as
wi, . . . , wj . The sequence representing r′ can be represented in terms of ele-
ments in V = {w,w′, x, x′, y, y′, z, z′}. If a cycle returns to w before the end we
will insert another w whenever this occurs. For example,we defined to be γ1 =
σωτ−1ω−1τσ−1. The sequence for γ1 is wi, xσ(i), x

′
σω(i), y

′
σωτ−1(i), yσωτ−1ω−1(i),

xσωτ−1ω−1τ(i), wσωτ−1ω−1σ−1(i). Thus, γ1 = w, x, x′, y′, y, x, w when represented
by cycles of the cubic graph. The rest of the γi’s are as follows:

γ2 = w, x, y, z, w

γ3 = w, x, y, y′, z′, zw

γ4 = w, z, z′, w′, w

γ5 = w,w′, x′, x, w

Now, we define C ⊂ V × V × V to be

C := {(x′, x, y), (y, x, x′), (w′, x′, y′), (y′, x′, w′), (x′, y′, z′), (z′, y′, x′), (y′, y, z),
(z, y, y′), (y, z, z′), (z′, z, y), (y′, z′, w′), (w′, z′, y′)(x′, w′, z′)(z′, w′, x′)}

In the following figure, each element of C is represented by a green arc.
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Thus, if a cycle, v1, . . . , vm, follows a green part on the following graph then
there exists an i ∈ {1, . . . ,m− 2} such that (vi, vi+1, vi+2) ∈ C .

Lemma 4.11. Let l = v1, . . . , vm be the cycle that represents a sequence given
by proposition 4.4. If ∀i ∈ {1, . . . ,m− 2}, (vi, vi+1, vi+2) /∈ C, then the cycle is
a word in G = 〈γ1, γ2, γ3, γ4, γ5〉.

Proof. Assume ∀i ∈ {1, . . . ,m − 2}, (vi, vi+1, vi+2) /∈ C. The cycle must begin
and end with w. Thus, v1 = vm = w.

Case 1: v2 = x.

Case 1a. v3 = x′. Then either v4 = w′ ⇒ v5 = w ⇒ v1, . . . , v5 = γ5
−1, or

v4 = y′ ⇒ v5 = y.⇒ v6 = x⇒ v7 = w ⇒ v1, . . . , v7 = γ1.

Case 1b. v3 = y. Then either v4 = y′ or v4 = z. If v4 = y, then either
v5 = x′ ⇒ v6 = x ⇒ v7 = w ⇒ v1, . . . , v7 = γ1

−1 or v5 = z′ ⇒ v6 = z ⇒ v7 =
w ⇒ v1, . . . , v7 = γ3. If v4 = z, then v5 = w.⇒ v1, . . . , v5 = γ2.

Case 2: v2 = z.

Case 2a. v3 = y.⇒ v4 = x.⇒ v5 = w.⇒ v1, . . . , v5 = γ2
−1.

Case 2b. v3 = z′. Then either v4 = y′ ⇒ v5 = y ⇒ v6 = x ⇒ v7 = w ⇒
v1, . . . , v7 = γ3

−1 or v4 = w′ ⇒ v5 = w ⇒ v1, . . . , v5 = γ4.

Case 3: v2 = w′.

Case 3a. v3 = x′.⇒ v4 = x.⇒ v5 = w.⇒ v1, . . . , v5 = γ5.
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Case 3b. v3 = z′.⇒ v4 = z.⇒ v5 = w.⇒ v1, . . . , v5 = γ4.
If k 6= 5 or 7, then we repeat this process until we have a word in G.

Proposition 4.12. Given any cycle l = v1, . . . , vm that represents a sequence
given by proposition 4.4, we can make a finite number of insertions of ”back-
tracks” into l, such that the new cycle, l′ is a word in G = 〈γ1, γ2, γ3, γ4, γ5〉
and equivalent to l.

Proof. This is how we will make the insertions:

• If for some i ∈ {1, . . . ,m− 2}, (vi, vi+1, vi+2) = (x′, x, y) or (y, x, x′), then
we insert w,w, x into the cycle after vi+1.

• If for some i ∈ {1, . . . ,m − 2}, (vi, vi+1, vi+2) = (w′, x′, y) or (y, x′w′),
then we insert x,w,w, x, x′ into the cycle after vi+1.

• If for some i ∈ {1, . . . ,m − 2}, (vi, vi+1, vi+2) = (x′, y′, z′) or (z′, y′, x′),
then we insert y, x, w,w, x, y, y′ into the cycle after vi+1.

• If for some i ∈ {1, . . . ,m− 2}, (vi, vi+1, vi+2) = (y′, y, z) or (z, y, y′), then
we insert x,w,w, x, y into the cycle after vi+1.

• If for some i ∈ {1, . . . ,m− 2}, (vi, vi+1, vi+2) = (y, z, z′) or (z′, z, y), then
we insert w,w, z into the cycle after vi+1.

• If for some i ∈ {1, . . . ,m − 2}, (vi, vi+1, vi+2) = (y′, z′, w′) or (w′, z′, y′),
then we insert z, w,w, z, z′ after vi+1.

• If for some i ∈ {1, . . . ,m − 2}, (vi, vi+1, vi+2) = (x′, w′, z′) or (z′, w′, z′),
then we insert w,w,w′ into the cycle after vi+1.

Note: When thinking of the cycle as as a word in 〈σ, τ, ω〉, the insertions are
equivalent to the identity permutations. Thus, adding them in does not change
the cycle.

Once we have made the insertions, we have a new equivalent cycle, v1, . . . , vq,
such that ∀i ∈ {1, . . . , q − 2}, (vi, vi+1, vi+2) /∈ C. By lemma 4.11, v1, . . . , vq is
a word in G.

So wi ∼ wj ⇒ there exists a sequence v1, . . . , vl with v1 = wi and vl = wj
such that for each k = 1, . . . , l − 1 either (vk, vk+1) ∈ B, (vk+1) ∈ B, or vk =
vk+1. We represent this sequence in terms of cycles of the cubic graph which
we have proven can be written as a word g ∈ G. When we write g in terms of
elements in 〈σ, τ, ω〉, g(i) = j.

Conversely, suppose ∃g ∈ G such that g(i) = j. Then there is a sequence

wi, . . . , wg(i) = wj

that satisfies the property (vk, vk+1) ∈ B ∀k = 1, . . . , l − 1. By proposition 4.4,
wi ∼ wj .

An analogous argument applies to the other 33 cases listed in proposition
4.10.
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Remark 4.13. The following theorem gives us a way to count the number of
vertices in a 3-dimensional gluing of cubes given σ, τ, and ω.

Theorem 4.14. There is a bijective correspondence between the vertices in
X(σ, τ, ω) and the orbits of the action of G = 〈γ1, γ2, γ3, γ4, γ5〉 on {1, . . . , n}.

Proof. Define φ : {vi | v ∈ {w, x, y, z} and i ∈ {1, . . . , n}} 7→ {Gj | j ∈
{1, . . . , n}} by vi → Gj where

j =



i if v = w,

σ−1(i) if v = x,

τσ−1(i) if v = y,

τ(i) if v = z.

ω−1(i) if v = w′

ω−1σ−1(i) if v = x′

τω−1σ−1(i) if v = y′

ω−1τ(i) if v = z′

We must show that φ is well defined, injective, and surjective. Generally, we will
say that vi 7→ Gj where j = h(i) and h ∈ H = {(1), σ−1, τσ−1, τ, ω−1, ω−1σ−1,
τω−1σ−1, ω−1τ}. Note that h depends on v.

To show φ is well defined, we must show that if vi ∼ v′i′ , then φ(vi) = φ(v′i′).
So assume vi ∼ v′i′ . φ(vi) = Gj, and φ(v′i′) = Gj′. By proposition 4.10, there
exists an r such that r = sgt and r(i) = i′ where s, t−1 ∈ H and g ∈ G . We
know φ(vi) = Gj = Gh(i) and φ(v′i′) = φ(v′r(i)) = Gj′ = Gh′(i′). Note that
s = h and t = (h′)−1. So r(i) = sgt(i) = hg(h′)−1(i) = i′. ⇒ hg(i) = h′(i′). ⇒
Gh(i) = Gh′(i′).⇒ Gj = Gj′. Thus, φ is well defined.

Next, we will show that φ is injective.
Assume φ(vi) = φ(v′i′). φ(vi) = Gj = Gh(i) and φ(v′i′) = Gj′ = Gh′(i′).

Thus, Gh(i) = Gh′(i′). ⇒ ∃g ∈ G such that hg(i) = h′(i′). ⇒ hg(h′)−1(i) = i′.
Propostion 4.10 vi ∼ v′i′ .

Finally, we will show that φ is surjective. Let i = j and v = w, then
∀j ∈ {1, . . . , n} φ(wj) = Gj. Thus, φ is surjective.

Thus, we have a way to compute v, e, and f in X(σ, τ, ω).

5 An Example

Example 5.1. Here is an example of a 3-dimensional gluing of cubes that is
a manifold. Let σ =(2 3 5), τ =(3 4), and ω =(1 2). Let X(σ, τ, ω) is a
3-dimensional gluing of cubes. Since n = 5, f = 15.

Next, we find Θ for X(σ, τ), X(σ, ω), and X(τ, ω) in order to compute e.
For X(σ, τ),

Θ = (2 3 4).
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There are 3 orbits in the group action of Θ on {1, . . . , 5}. So by theorem 4.8,
there are 3 vertices in X(σ, τ).

For X(σ, ω)
Θ = (1).

There are 5 orbits in the group action of Θ on {1, . . . , 5}. So by theorem 4.8,
there are 5 vertices in X(σ, ω).

For X(τ, ω),
Θ = (1 5 2).

There are 3 orbits in the group action of Θ on {1, . . . , 5}. So by theorem 4.8,
are 3 vertices in X(τ, ω). By proposition 4.1, e = 11.

Lastly, we compute v by using theorem 4.14. For X(σ, τ, ω),

γ1 = (1)
γ2 = (2 3 4)
γ3 = (1 5 2)
γ4 = (1)
γ5 = (1 2 5).

Thus, there is one orbit in the group action of 〈γ1, γ2, γ3, γ4, γ5〉 on {1, . . . , 5}.
By theorem 4.14, v = 1.

χ(X(σ, τ, ω)) = v − e + f − n = 1 − 11 + 15 − 5 = 0. Theorem 3.4 implies
X(σ, τ, ω) is a manifold.
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Developing a Phylogenetic ANCOVA:

Analyzing Multiple Variables in the

Evolution of Continuous Traits

Annie Murphy and Ashley Weber

Abstract

The relationship between a particular trait and a factor where it occurs
is a relevant issue in evolutionary biology; however, this kind of relation-
ship rarely happens in isolation. In addition to analyzing the relationship
between a continuous and a categorical variable, researchers are usually
interested in assessing the effect of a concomitant continuous variable.
Data transformations (both phylogenetic and non-phylogenetic) have been
commonly used to deal with this kind of data, but such approach usually
involves splitting the analysis in several steps. The phylogenetic version of
the analysis of covariance (ANCOVA) allows modeling the evolutionary re-
lationships of this kind of data explicitly. It has been used before by means
of simulations or to address specific hypotheses about the relationships of
the variables, but the former case is particularly linked to hypothesis test-
ing and the latter gives place for some improvement in terms of model fit-
ting. Besides such improvement, a phylogenetic ANCOVA would be more
informative by its combination with new comparative approaches, allow-
ing addressing questions about adaptation and phenotypic radiation. Here
we present a phylogenetic ANCOVA framework that takes those features
into account. To address phenotypic radiation questions, our framework
allows for heteroscedasticity according to phylogenetic regions determined
by the categorical variable. To address causal relationships we combine
this framework with the adaptation-inertia model, where the categori-
cal variable is presented as the weighted, summed, time each species has
evolved under each evolutionary regime (i.e. each category of the discrete
variable mapped on the phylogeny). The approach we present here has a
potential advantage in terms of model fitting, where the relevance of all
the parameters involved in the model (not necessarily linked to particular
hypotheses) can be determined by iterative procedures.

1 Background

A phylogeny is a diagram of the relationships of ancestry and descent among a
group of species. Mathematically, a phylogeny is a tree. The phylogenies we will
be using are rooted, so we will be talking about rooted trees. The tips of the tree
will correspond to a species within our set. A phylogeny also contains clades,
or subtrees. Sometimes we will need to refer to clades within the phylogeny to
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separate some species. We use the phylogenies to correct for independence in
the comparative analysis model. The phylogenies we work with are ultrametric,
meaning that all the tips are lined up and the branch lengths from the root to
any tip sums to one. It is important to keep in mind that in a phylogeny, the
branch lengths are proportional to time.

We are interested in looking at traits of species and find a relationship be-
tween the traits. There are two types of traits: categorical and continuous
traits. Categorical traits have a finite number of states or possibilities. These
can be considered qualitative traits. Gender is a categorical trait with the states
as male or female. The categorical traits we work with usually can be consid-
ered present or absent, so there are two distinct states. Some examples that
we worked directly with are sociality in canids where the states are social or
not social, diet in canids where the states are carnivore or omnivore, and belly
color in lizards where the states are blue or white. Sometimes we call one state
the novel state, meaning that state showed up in the phylogeny closer to the
present. The other state is called the ancestral state, meaning that is the state
that the root species is considered to have. Continuous traits are measurable
traits and in theory can take on any value. Some examples of continuous traits
that we worked with directly are size as according to weight, litter size of canids,
or the number of head bobs lizards make when signaling. Statistical methods
can be used to analyze the relationship between traits of a given set of species.

1.1 Regression

ANCOVA is a statistical method that analyzes the relationship between one
categorical trait and two continuous traits. The categorical trait and one of the
continuous traits are used the predict the second continuous trait. The first
continuous trait (used in the predicting) is also called the covariate. The second
continuous trait is also called the predicted variable or trait. In this method, two
regression lines are given, a line for the relationship between the two continuous
traits for each state of the categorical trait. The equation in matrix format for
any general linear model, and so for ANCOVA as well, is:

Y = Xβ + ε (1)

Where Y is a column vector of the value of a continuous trait, X is the design
matrix, β is a column of parameters, and ε is the error term. Written out fully,
equation (1) becomes:

y1

y2

...
yn

 =


1 0 x1 0 · x1

1 1 x2 1 · x2

...
...

...
...

1 1 xn 1 · xn



b0
b1
b2
b3

+


ε1

ε2

...
εn

 (2)

In this equation, n is the number of species in the data set. In the design
matrix, the first column is all 1’s for the intercept. The second column is for the
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categorical trait, where the two states are coded with either a 0 or 1. The third
column is the value of the covariate. And the fourth column is for an interaction
between the categorical trait and the covariate, which is just the second column
multiplied by the third column. In the β matrix we have 4 parameters. b0 is
the intercept for the 0 state, b1 is the difference between the intercepts, b2 is the
slope for the 0 state, and b3 is the difference between slopes. So, the intercept
for the 1 state is b0 + b1 and the slope for the 1 state is b2 + b3. To estimate β
we can use the following equation, called the normal equation:

β = (XtX)−1XtY (3)

1.2 Variance Likelihood Equation

Sometimes with a given phylogeny and a continuous trait there are two variances
across the continuous trait. We say one variance is for those species in one state
of the categorical trait and the other variance is for the second categorical trait.
We can consider branches of the phylogeny in one variance state or another
depending on the state of the categorical trait in that branch. O’Meara et
al. (2006) presents a likelihood equation to test whether one variance or two
variances are appropriate for a given phylogeny [5].

log(L) = log

(
− 1

2 [X − E(X)]tV −1[X − E(X)]√
(2π)N × det(V )

)
(4)

In this equation, X is the column vector of the observations, E(X) is a column
matrix of expected tip values, and V is a matrix that is given by the phylogeny.
Details on the V matrix will be discussed later. Our model does not use this X
or E(X), so refer to the [5] for more details.

2 Our Likelihood Equation

We expanded on equation (4) to include the regression model as well. We wanted
to have one likelihood equation that we could use to maximize that gives us
both the regression parameters and whether one variance or two variances are
appropriate. Equation (4) became

log(L) = log

(
exp

(
− 1

2 [Y −Xβ]tV −1[Y −Xβ]
)√

(2π)N × det(V )

)
(5)

In equation (5) Y , X, and β are all from the regression model explained in
Section 1.1. N is the number of species in the data set. V is considered a
weight matrix that is given by the phylogeny. We define V as:

V = σ2G+ τ2C (6)

Here, σ2 is the variance for the 0 state of the categorical trait and τ2 is the
difference in the variances. G and C are both matrices that change depending
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Figure 1: A phylogeny of some canid species. The green branches represent the
branches considered to be in the 1 state or to have the second variance. The
letter above some of the branches represent branch lengths.

on what biological process one wants to model. The details of these two matrices
are explained below.

2.1 Brownian Motion

Brownian motion is one process used in evolutionary biology to model traits.
Essentially, Brownian Motion is a random walk. The error term, ε is considered
to have a mean of 0 and a variance of σ2t, where t is time. In this case, the
variance of the error term will be the same as the variance of the predicted con-
tinuous trait. As suggested by the variance equation, under Brownian Motion
as time increases the variance of the trait increases as well. We use this fact, and
the fact that the branches in a phylogeny are proportional to time to calculate
the matrices G and C that are in equation (6).

2.1.1 The G Matrix

The G matrix in equation (6) takes into account the phylogeny in order to
account for the dependence of species. Under Brownian Motion, this can be
called a similarity matrix or a variance-covariance matrix. Each entry in the G
matrix is given by

Gij = tra (7)

where tra is the time from the root to the most recent common ancestor of
species i and j. This means that the diagonals of G are 1 because all of our
phylogenies are required that the branch lengths from the root to the tip sum
to 1.
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Example 2.1. For the phylogeny in Figure 1, GUCI,NPR = 0 because their most
recent common ancestor is the root itself.

Example 2.2. If we look at the species VLA and VFE then GVLA,VFE = g+h+
k +m+ o+ p.

2.1.2 The C Matrix

The C matrix in equation (6) is to take into account the extra variance the
species that are in state 1 might have. To make the C matrix, first all the clades
that only contain species in the 1 state must be identified. In Figure 1 there are
three clades. One is the subtree containing VFE, VMA, VVE, and VLA; the
second clade contains only one species, VCO; and the third clade contains VVU.
Then we have to decide how much of the branch directly preceding the clade is
considered to be in the second variance state. For the clade with VFE, VMA,
VVE, and VLA the branch directly preceding it is labeled g. For clades with
VCO or VVU, we look at the branches r and q, respectively. This introduces a
new parameter t, which is the proportion of the branch directly preceding the
clade that is to be considered part of the second variance state. So if t = 0 then
none of the branch is considered, but if t = 1 the whole branch is considered
part of the second variance state. So now we can fill in the C matrix. We only
want to consider the relationship between species that are in the same clade, so
many of the entries in the C matrix are 0. However, if species i and j are in the
same clade, then

Cij = tsa (8)

where tsa is the time from where the second variance state starts to the most
recent common ancestor of species i and j.

Example 2.3. The following are some entries in C when we consider Figure 1 as
the phylogeny.

CUCI,NPR = 0
CVVU,VCO = 0
CVCO,VCO = t · r
CVLA,VFE = t · g
CVVE,VLA = f + t · g

Because the entries in C are dependent on the parameter t, we can consider
C as a function of t.

2.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is the second process that we modeled using
our likelihood equation. Ornstein-Uhlenbeck can be said to be Brownian Mo-
tion under a constraint. In the Ornstein-Uhlenbeck process the error term, ε is
considered to have mean 0 and variance e−2αt

(
e2αt−1

2α

)
, where t is time and α is

a constraint parameter. Again, the variance of the error term will be the same
as the variance of the predicted continuous trait. Under Ornstein-Uhlenbeck
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process, has time increases the variance reaches a steady state, meaning that
after a certain time t, the variance is the same. The Ornstein-Uhlenbeck process
is a stationary processes, where Brownian Motion is not stationary. However, if
α = 0 then Ornstein-Uhlenbeck and Brownian Motion are the same. The α pa-
rameter determines how fast the stationary state is reached. For our model, we
assume the the traits are already stationary. In biological terms, this accounts
for any outside conditions, like environmental conditions, that might pull a trait
to an optimum. Like in Brownian Motion, we use the variance to calculate the
G and C matrix in equation (6).

2.2.1 The G Matrix

The G matrix in equation (6) for the Ornstein-Uhlenbeck process is calculated
in two steps. First, a divergence matrix must be calculated, call this matrix D.
Each entry in D is given by

Dij = tij (9)

where tij is the time separating species i and j. This means that the diagonals
of D are 0 because there is no time separating a species from itself.

Example 2.4. For the phylogeny in Figure 1, DUCI,NPR = a + p + c + b = 2, it
equals 2 because we require that our branch lengths from the tip to the root is
1, and UCI and NPR separated at the root.

Example 2.5. If we look at the species VLA and VFE then DVLA,VFE = d+f+e.

We use the D matrix to calculate G. The entries of G are given by

Gij = exp(−αDij) (10)

So the diagonals of G are 1.

Example 2.6. GUCI,NPR = exp(−α(a+ p+ c+ b)) and GVLA,VFE = exp(−α(d+
f + e)).

Because G depends on α, we can think of G as being a function of α. α
becomes one of the parameters we must estimate.

2.2.2 The C Matrix

In the C matrix, which is in equation (6), we again just want to compare species
that are in the same clade and in state 1 to account for any extra variance.
Because we are looking at the divergence of species in the Ornstein-Uhlenbeck
process, we do not need the parameter t since that parameter represented some-
thing before the common ancestor of species in the same clade. To account for
the potential of extra variance is the 1 state, if species i and j are in the same
clade then

Cij = Gij (11)

where Gij is defined as in equation (10). As with Brownian Motion, if species i
and j are not in the same clade then the entry is 0. This makes the C matrix
mostly zeros.

82



Example 2.7. CUCI,NPR = 0 and CVLA,VFE = exp(−α(d+f +e)) since UCI and
NPR are not in the same clade, but VLA and VFE are in the same clade.

2.3 Hansen’s Method

Hansen’s method, described in [2] describes a new regression method that per-
forms the regression on the amount of weighted time each species spent evolving
in each different environment, where the environment is the state of the cate-
gorical trait of interest, either 0 or 1. Hansen’s method allows for the evolution
of traits toward two separate optimum, one for each state of the categorical
variable. Using Hansen’s method, we can determine whether the presence of
one particular categorical state influences the evolution of the continuous trait
of interest, allowing us to infer causation. In Hansen’s method, the categorical
trait is transformed into a continuous trait according to the time each species
spent evolving in a particular state, and this information is stored in the design
matrix.

We were not able to implement a complete version of Hansen’s method,
however code was developed to calculate both the method matrix and the design
matrix described in Hansen’s paper [2], and the code is detailed below.

2.3.1 Method Matrix

The first matrix described in Hansen’s method is the method matrix. The
method matrix has a row corresponding to each branch in the tree, and four
columns. The first two columns list the beginning and ending node for each
branch in the tree, with the beginning node being the node that is closest to
the root. The third column lists the branch length. The fourth lists Hansen’s
number for each branch, where Hansen’s number is defined to be

H = exp(−α · te)− exp(−α · tb) (12)

Where te is the distance from the tips to the end of the branch closest to
the tips, and tb is the distance from the tips to the end of the branch closest
to the root. For any branch connected to the root, tb is assumed to be infinite,
and exp(−α · tb) = 0.

2.3.2 Design Matrix

The second matrix described in Hansen’s method is the design matrix. The
design matrix lists, for each species, the amount of time the species evolved in
the ancestral state, and the novel state. It has a row corresponding to each
species and two columns for each species, the first for the amount of time spent
in the novel state and the second for the amount of time spent in the ancestral
state. This describes the design matrix when looking at one continuous trait
and one categorical trait.

To implement Hansen’s Method using two continuous traits and one cate-
gorical trait, like the ANCOVA, one has to add two more columns in the design
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matrix. The first column added (which is the third column in the design ma-
trix) would be the value of the second continuous (or covariate) trait. And the
second column would be the interaction between the covariate and categorical
trait, as described in Section 1.1. Note that this is slightly different than what
Hansen describes in [2]. The method described in the paper uses ancestor trait
values as well, but we just want to use the tip values. We were not able to code
the additional two columns into the design matrix.

3 The Code

3.1 Current Code

3.1.1 Brownian Motion

Our current Brownian motion code loads the “ctv”, “ape”, “geiger”, “nlme”
and “phangorn” libraries in R.

It reads in alphabetical data that contains the species and character values
from a .csv file, assuming that each row of the .csv contains a species and each
column contains either species names or characters. It identifies the categorical
and covariate variables within that .csv file, and reads in the phylogeny, a .tre
file.

It then proceeds to a section of code referred to as Fast Clades, which will be
discussed in further detail in section 3.2.1. FastClades identifies the species that
possess a 1 value for the categorical trait of interest, which is also referred to as
the novel state of the categorical trait. It places the numbers corresponding to
those species on the tree (the node labels) in a matrix called clade matrix, the
species name abbreviations in a matrix called name matrix, and the numbers
corresponding to the appropriate species rows in the data frame read in from
the .csv file in row matrix.

The code then calculates the G similarity matrix using the cophenetic func-
tion, and scales that matrix to have a maximum value of 1. G is ordered
alphabetically by species name along both the rows and columns.

The code moves on to a function called Time Ranges, which calculates the
location of the starting and ending points of the branch directly proceeding the
monophyletic clades and single species that have a categorical variable state of 1
(the novel species), and uses these locations to calculate the C similarity matrix
which will describe the novel species in which additional variance occurs. The
C similarity matrix assumes that changes in the novel groups occur along the
branches determined in TimeRanges, according to a parameter t which is to be
estimated.

Two functions that will calculate the likelihood equation based on an esti-
mation are declared, Alt and Null. Alt calculates the V matrix according to (6)
and uses the V matrix to calculate the likelihood according to (5). Null feeds
the correct parameters to the Alt function.

A standard version of Powell’s method is laid out, and bounds are set for
the parameters that are to be estimated using Powell’s method.
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Where x0 is the covariate in the ancestral state (value of 0), x1 is the co-
variate in the novel state (value of 1) and y is the predicted variable, we allow
the upper bounds on the four β parameters to be estimated to be

β0 = ymax − (β2max · x0,max) (13)

β1 = ymax − β0,min − (β2,min · x1,min)− (β3,max · x1,min) (14)

β2 = ((ymin − ymax)/(x0,max − x0,min)) (15)

β3 = ((ymin − ymax − β0,min + β0,max − (β2,min · x1,min) + (β2,max · x1,max))/(x1,max − x1,min)) (16)

and the lower bounds to be

β0 = ymin − (β2,min · x0,max) (17)

β1 = ymin − β0,max − (beta2,max · x1,max)− (β3,min · x1,max) (18)

β2 = (ymin − ymax)/(x0,min − x0,max)) (19)

β3 = (ymin − ymax − β0,max − β0,min − (β2,max · x1,max) + (β2,min · x1,min))/(x1,min − x1,max)) (20)

We allow the lower bounds for σ2, τ2 and t to be 0, and the upper bounds
to be the following

σ2 = (xmax − xmin)2 (21)

τ2 = (xmax − xmin)2 (22)

t = 1 (23)

,
where x is the covariate in either the ancestral or novel state.
Powell’s method is then used to estimate the parameters of interest, and the

likelihood according to (5) is returned.
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3.1.2 Ornstein-Uhlenbeck Process

Our current Ornstein-Uhlenbeck process code loads the same R libraries as the
Brownian motion code. It reads in the same type of .csv data and phylogeny
files.

It reads in data that contains the species and character values from a .csv
file that is alphabetized by row, assuming that each row of the .csv contains a
species and associated traits and each column contains either species names or
characters. It identifies the categorical and covariate variables within that .csv
file, and reads in the phylogeny, a .tre file.

It then proceeds to the same Fast Clades section, which will be discussed
in further detail in section 3.2.1, placing the numbers corresponding to the
novel species on the tree (the node labels) in a matrix called clade matrix, the
species name abbreviations in a matrix called name matrix, and the numbers
corresponding to the appropriate species rows in the data frame read in from
the .csv file in row matrix.

The code then calculates the G divergence matrix, described in further detail
in section 3.2.3.

The code moves on to the same Time Ranges function , which calculates
the location of the starting and ending points of the branch directly proceeding
the monophyletic clades and single species that have a categorical variable state
of 1 (the novel species), and uses these locations to calculate the C divergence
matrix, which contains the divergence distances for only the novel species . The
C divergence matrix is described in greater detail in section 3.2.3.

Both matrices are transformed according to the Ornstein-Uhlenbeck process,
described in greater detail in Section 2.2, and for which code is discussed in
Section 3.2.3.

The same Alt and Null functions are used as described in Section 3.1.1.
A standard version of Powell’s method is laid out, and bounds are set for

the parameters that are to be estimated using Powell’s method. The bounds
are the same as those described in section 3.1.1. Powell’s method is then used
to estimate the parameters of interest, and negative two times the likelihood
according to (5) is returned.

3.1.3 Hansen’s Method

While we didn’t have time to implement a full version of Hansen’s method, as
described in Section 2.3, we were able to develop code to calculate both the
method matrix and the design matrix for a set of data and phylogeny.

The Method Matrix: We formed the first three columns of the method
matrix by binding together existing fields of information from our tree.

method_matrix<-cbind(tree$edge, tree$edge.length)

.
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We then calculated the distance from each node in the tree to its first tip
descendant, and listed these values in the vector tip2node. We assumed that
the tree was ultrametric.

for(i in 1:length(tip2node)){
descendants<-Descendants(tree, i, type="tips")[[1]]
tip_descendant<-descendants[1]
tip2node[i]<-dist.nodes(tree)[i, tip_descendant]

}

We changed the distance from the root node to its tip descendant to -1,
which we allow to represent infinity.

depths<-node.depth(tree)
max_depth<-max(depths)
root<-which(depths== max_depth)
tip2node[root]<--1

hansens_number<-rep(0,nrow(method_matrix))
t_e<-0
t_b<-0
alpha<-0.5

for(i in 1:nrow(method_matrix)){
t_b<-tip2node[method_matrix[i,1]]
t_e<-tip2node[method_matrix[i,2]]

if(tip2node[method_matrix[i,1]]==-1){
hansens_number[i]<-(exp(-1*alpha*t_e))

}else {
hansens_number[i]<-(exp(-1*alpha*t_e))-(exp(-1*alpha*t_b))

}
}

method_matrix<-cbind(method_matrix,hansens_number)

The Design Matrix: To calculate the design matrix, we began by assigning
space for the matrix and listing the species that evolved in the novel state of
the categorical variable and those that did not. The nodes and names of the
species were stored in ones, names1, zeroes and names0.

design_matrix<-mat.or.vec(num_tips,2)
zeroes<-0
rm(ones)
ones<-0
names0<-’xxx’
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names1<-’xxx’

for(i in 1:nrow(data)){
if(categ[i]==0){
add<-as.character(data[i,1])
names0<-c(names0,add)

}
if(categ[i]==1){
add<-as.character(data[i,1])
names1<-c(names1,add)

}
}

for(i in 1:nrow(data)){
for(j in 1:length(names0)){
if(tip_labels[i]==names0[j]){
zeroes[j]<-i

}
}

}

for(i in 1:nrow(data)){
for(j in 1:length(names1)){
if(tip_labels[i]==names1[j]){
ones[j]<-i

}
}

}
zeroes<-zeroes[-1]
ones<-ones[-1]
names0<-names0[-1]
names1<-names1[-1]

Then, for the species listed in the vector zeroes, that evolved in the ancestral
state, we listed the names of their ancestors in the vector edge progression, and
used the values stored in the method matrix to add the Hansen’s numbers of each
branch described by their edge progression nodes. We then filled in the design
matrix’s first column with the sum of these species’ Hansen’s numbers (which
summed to 1) and the design matrix’s second column with a zero, because the
species spent no time evolving in the second (novel) environment.

for(i in 1:length(zeroes)){
edge_progression<-Ancestors(tree,zeroes[i])
edge_progression<-sort(edge_progression, decreasing=FALSE)
edge_progression<-c(edge_progression, zeroes[i])
edge_progression<-edge_progression[-1]
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hansens_sum<-0

for(j in 1:length(edge_progression)){
for(k in 1:nrow(method_matrix)){
if(method_matrix[k,2]==edge_progression[j]){
hansens_sum<-hansens_sum+method_matrix[k,4]

}
}

}

design_matrix[zeroes[i],1]<-hansens_sum
design_matrix[zeroes[i],2]<-0

}

We listed all the descendants of the nodes stored in the vector clade markers
(the common ancestors of monophyletic clades and the single species that dis-
played the novel version of the categorical trait). We stored these descendants
in the vector ones nodes, and eliminated repeated values.

ones_nodes<-unlist(c(clade_markers, Descendants(tree,clade_markers,type="all")))
ones_nodes<-unique(ones_nodes)

We then listed the edge progression for each species in the vector ones. For
each branch described by the edge progression, we asked if its endpoint closest to
the root was in the vector ones nodes. If it was, we added that branch’s Hansen’s
number to the second column of the design matrix. If it wasn’t, we added it to
the first, thus recording the weighted time each species spent evolving in each
environment.

for(i in 1:length(ones)){
edge_progression<-Ancestors(tree,ones[i])
edge_progression<-sort(edge_progression, decreasing=FALSE)
edge_progression<-c(edge_progression, ones[i])
edge_progression<-edge_progression[-1]

hansens_sum0<-0
hansens_sum1<-0

for(j in 1:length(edge_progression)){
for(k in 1:nrow(method_matrix)){
if(method_matrix[k,2]==edge_progression[j]){
if(method_matrix[k,1]%in%ones_nodes==TRUE){
hansens_sum1<-hansens_sum1+method_matrix[k,4]

}else {
hansens_sum0<-hansens_sum0+method_matrix[k,4]
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}
}

}
}

design_matrix[ones[i],1]<-hansens_sum0
design_matrix[ones[i],2]<-hansens_sum1

}

3.2 Components of Code

3.2.1 Fast Clades

FastClades is a piece of code that was developed to identify monophyletic clades
and single species in the phylogenetic tree that display the novel state of the
categorical trait of interest. It begins by determining the names of the species
associated with a categorical trait value of 1 and placing them in a vector called
names.

for(i in 1:nrow(data)){
if(categ[i]==1){
add<-as.character(data[i,1])
names<-c(names,add)

}
}

Taking the names, the code compares the names from the data frame to the
tip labels of the phlyogenetic tree and puts them into vector ones.

for(i in 1:nrow(data)){
for(j in 1:length(names)){
if(tip_labels[i]==names[j]){
ones[j]<-i

}
}

}

The code determines which of the species’ whose node labels are in the vector
ones have ancestors with at least two descendants in ones and stores them in
vector ancestors.

while(n!=max_depth){

ancestors<-0

for(i in 1:length(ones)){
for(j in 1:nrow(edge)){
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if(edge[j,2]==ones[i]){
ancestors[i]<-edge[j,1]

}
}

}

for(i in 1:length(ancestors)){
count<-0
for(j in 1:length(ancestors)){
if(ancestors[i]==ancestors[j]){
count<-count+1

}
}

index<-max(0,which(ones==ancestors[i]))
if(index==0 && count==2){
ones<-c(ones,ancestors[i])

}
}
n<-n+1

}

The code then removes those nodes contained in vector ancestors that have
descendants that are not in ones.

remove<-0

for(i in 1:length(ancestors)){
node<-ancestors[i]
descendants<-Descendants(tree, node, type="all")

for(j in 1:length(descendants)){
if(max(which(ones==descendants[j]),0)==0){
remove<-c(remove,ancestors[i])

}
}

}

remove<-remove[-1]
remove<-unique(remove)

for(i in 1:length(remove)){
element<-remove[i]
index<-which(ancestors==element)
ancestors<-ancestors[-index]

}
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We take those in the vector ancestors that are unique, and assign them to
vector clade markers.

clade_markers<-unique(ancestors)

The clade markers vector describes the common ancestors of each mono-
phyletic clade within the group of species that display the novel state of the
categorical variable.

If the clade markers vector is non-empty, the tip numbers for the species are
added back in to the clade markers.

If the clade markers vector is non-empty, the matrix clade matrix is filled
with the descedants of those nodes listed in clade markers, with a row corre-
sponding to each monophyletic clade or isolated species.

If the clade markers vector is empty, then the matrix clade matrix is filled
with the species contained in ones.

3.2.2 Time Ranges

In an effort to replicate the distance ranges returned by the original Time Ranges
function, a piece of code was developed based on the newly developed Fast
Clades code to calculate the distance from the root to the beginning and ending
points of each branch preceding a monophyletic clade displaying the novel state
of the categorical trait, and each single species displaying the same novel state.
The code uses the vector clade markers used in the Fast Clades code described
in section 3.2.1, and determines each entry’s parent, placing them in correspond-
ing spots in a vector the same length as clade markers called preceding clade
markers.

Then, using the following code, the root of the tree is determined, and the
distance from the root to each end of the branch marked by preceding clade
markers and clade markers is recorded in an i× 2 matrix called TimeRanges.

root2_prec_clade_markers<-0
root2_clade_markers<-0
TimeRanges<-mat.or.vec(length(clade_markers),2)

max_depth<-max(node_depth)
root<-which(node_depth==max_depth)

for(i in 1:length(clade_markers)){
TimeRanges[i,1]<-dist.nodes(tree)[root,prec_clade_markers[i]]
TimeRanges[i,2]<-dist.nodes(tree)[root,clade_markers[i]]

}

3.2.3 G and C Matrices

The G Divergence Matrix: In order to calculate the G divergence matrix,
we form two matrices, each with a row and column corresponding to the species
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depicted in the tree. These matrices are the divergence matrix and the common
ancestor matrix. We then fill the upper triangle of the common ancestor by
allowing each cell to be the node label corresponding to the node that is the most
recent common ancestor of the species given by the row number and column
number.

#get common ancestors, fill upper triangle of common ancestor matrix
for(i in 1:num_tips){
for(j in i:num_tips){
common_anc_matrix[i,j]<-(mrca(tree)[i,j])

}
}

We then calculate the distance from most recent common ancestor to each
of the tips given by the row number and the column number of the cell, and
add those to get the total divergence. The corresponding cell in the divergence
matrix is then filled with this value.

for(i in 1:num_tips){
for(j in i:num_tips){
mrca_to_tip1<-dist.nodes(tree)[common_anc_matrix[i,j],i]
mrca_to_tip2<-dist.nodes(tree)[common_anc_matrix[i,j],j]
divergence_matrix[i,j]<-mrca_to_tip1 + mrca_to_tip2

}
}

We then assign row and column names, scale the G matrix and order G
alphabetically according to the species names.

rownames(divergence_matrix)<-tree$tip.label
colnames(divergence_matrix)<-tree$tip.label
G<-divergence_matrix

G = G/(max(G)/2)
G <- as.matrix(G)

G <- G[order(dimnames(G)[[1]], na.last=NA) , ]
G <- G[,sort(colnames(G))]

The C Divergence Matrix: In order to create the C divergence matrix,
which describes the divergence of the species listed in the clade matrix, row
matrix and name matrix given by FastClades (see Section 3.2.1 for more details),
we first create a matrix with a row for each species, and a column for each
species. We initially fill all the cells of that matrix with -1.
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fill_ones<-as.matrix(rep(-1,num_tips))
c_divergence<-fill_ones[,rep(1,num_tips)]

For each clade in FastClades, we look at the species contained in it and
determine the common ancestor for each two species. We then sum the distance
from that common ancestor to its two descendants of interest and place that
divergence distance in the C matrix, in the cell corresponding to the two species.

for(i in 1:nrow(row_matrix)){
clade<-0
count<-1
for(j in 1:ncol(row_matrix)){
if(row_matrix[i,j]!=0){
clade[count]<-row_matrix[i,j]
count<-count+1

}
}

for(n in 1:length(clade)){
for(m in 1:length(clade)){
mrca<-mrca(tree)[clade[n],clade[m]]
div<-dist.nodes(tree)[mrca,clade[n]] + dist.nodes(tree)[mrca,clade[m]]
c_divergence[clade[n],clade[m]]<-div
c_divergence[clade[m],clade[n]]<-div

}
}

}

We then assign row and column names to C and alphabetize C in a manner
consistent with G.

rownames(c_divergence)<-tree$tip.label
colnames(c_divergence)<-tree$tip.label
C<-(c_divergence/(max(G)/2))

C <- C[order(dimnames(C)[[1]], na.last=NA) , ]
C <- C[,sort(colnames(C))]

We note that for each entry Cij 6= −1, Cij = Gij .

Transforming the G and C Matrices According to the Ornstein-Uhlenbeck
Process: Each entry in the G divergence matrix is transformed according to
the Ornstein-Uhlenbeck process described in (10), using the following function:

OU<-function(alpha, G){
for(i in 1:nrow(G)){
for(j in 1:ncol(G)){
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G[i,j]<-exp(-1*alpha*G[i,j])
}

}

G
}.

The fields in the C matrix corresponding to species that do not display
the novel state of the categorical trait of interest are marked with -1, and so
these are changed to zeroes when the matrix is transformed. The remaining
entries are transformed according to the same equation described above, using
the following function:

OUC<-function(alpha,C){
for(i in 1:nrow(C)){
for(j in 1:ncol(C)){
if(C[i,j]==-1){
C[i,j]<-0

}else{
C[i,j]<-exp(-1*alpha*C[i,j])

}
}

}

C
}.

4 Results

We ran our code assuming no phylogeny, Brownian Motion, and Ornstein-
Uhlenbeck process. We had three main data sets that we worked with and
ran our code with. The first data set is a canid phylogeny, with the categor-
ical trait as diet, the covariate as cranial length, and the predicted as palatal
width. In this case, carnivore is considered the novel state or the 1 state and
omnivore is considered the ancestral state or the 0 state. The second data set
is a similar canid phylogeny, with the categorical trait as sociality, the covariate
as size, and the predicted as litter size. In this case, social is considered the
novel state and solitary is considered the ancestral state. The third data set is a
lizard phylogeny, with belly color as the categorical trait, number of head bobs
(HBT), which is a visual cue, as the covariate, and femoral pores (FP), which
is a chemical cue, as the predicted. In this case, white is considered the novel
state and blue is considered the ancestral state. The following are the numbers
we got and interpretation of them.
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4.1 No Phylogeny

The first thing that we needed to check was that our code, maximizing our
likelihood equation, would give the same results for the regression parameters
as the least square regression way. Since we didn’t need any phylogeny to check
this, we set G equal to the identity matrix and set τ2 equal to zero. The results
of our code are shown in Table 1 and Table 3. The results of the the linear
regression are shown in Table 2 and Table 4. Comparing the tables with the
same data we see that in fact we do get the same numbers for the regression
parameters. So we can correctly estimate the regression parameters without a
phylogeny.

4.2 Brownian Motion

Next we ran our code with the G and C matrices being coded as described in
Section 3.2.3. Tables 5, 6, and 7 show our results. The regression parameters
all seem to fit the data well, which can be seen in the Figures 2, 3, and 4. The
variances for the first canid set is reasonable and a good estimate. The variances
for the second canid set are slightly high, but not so high to be too concerned.
The variances for the lizard set is very high however. As you can see, σ2 = 13
which isn’t that high given the data set. On the other hand, τ2 = 177 which is
very high given the data. The data shows little difference between the variances
however the simulation suggests very high difference between the two variances.
τ2 does not fit the data at all. There is obviously something wrong somewhere
in our code, and we have not been able to as of yet figure out why our simulation
is putting τ2 so high.

4.3 Ornstein-Uhlenbeck Process

We also ran our code with the G and C matrix coded as explained in Section
3.2.3. Tables 8, 9, and 10 show our results. The fact that α is going to the
maximum allowed number for the first canid and the lizard data set is a little
worrying. When looking at the likelihood of the data sets, setting α closer to 0,
the likelihood is higher than when α is set to 15. This was done with setting all
other parameters to their maximum likelihood when G was equal to the identity
matrix. So more investigation into why α is going off to the maximum is needed.
For the second canid data set and the lizard data set the variances are more
appropriate than in the Brownian Motion model. The regression parameters all
seem to fit the data appropriately, this can be seen in Figures 5, 6, and 7.
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Parameter Estimates Std Error
β0 0.04883 3.73460
β1 −9.31656 5.72461
β2 0.22416 0.02903
β3 0.08220 0.04003

Table 1: Results of our code with the first canid data set.
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Parameter Estimates Std Error
β0 0.04883 3.73460
β1 −9.31656 5.72461
β2 0.22416 0.02903
β3 0.08220 0.04003

Table 2: Results of the linear regression with the first canid data set.

Parameter Estimates Std Error
β0 13.76471 4.82301
β1 0.37045 5.21600
β2 -0.35294 0.53003
β3 -0.01156 0.58150

Table 3: Results of our code with the lizard data set

Parameter Estimates Std Error
β0 13.76471 4.82301
β1 0.37045 5.21600
β2 -0.35294 0.53003
β3 -0.01156 0.58150

Table 4: Results of the linear regression with the lizard data set

Parameter Estimates
β0 −1.91141779
β1 −8.18273501
β2 0.24380374
β3 0.05851228
σ2 20.32750116
τ2 82.14189284
t 0.19678674

Table 5: Results under Brownian Motion for the first canid data set.

Parameter Estimates
β0 4.14618885
β1 0.80167733
β2 0.05715093
β3 0.02903409
σ2 3.58700887
τ2 0.67301755
t 0.02100741

Table 6: Results under Brownian Motion for the second canid data set.
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Parameter Estimates
β0 12.446887630
β1 0.726860591
β2 −0.263412550
β3 0.186805728
σ2 13.080796297
τ2 177.860775362
t 0.005066908

Table 7: Results under Brownian Motion for the lizard data set.

Parameter Estimates
β0 1.2306484
β1 −12.4193078
β2 0.2160755
β3 0.1000723
σ2 5.2344894
τ2 18.0756395
α 14.9999992

Table 8: Results under Ornstein-Uhlenbeck Process for the first canid data set.

Parameter Estimates
β0 3.92667130
β1 0.16753446
β2 0.01338394
β3 0.08459182
σ2 1.06176301
τ2 0.72237481
α 8.96256396

Table 9: Results under Ornstein-Uhlenbeck Process for the second canid data
set.

Parameter Estimates
β0 12.30247
β1 1.666286
β2 −0.2479737
β3 −0.008568642
σ2 16.06123
τ2 7.490528× 10−12

α 15

Table 10: Results under Ornstein-Uhlenbeck Process for the lizard data set.
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Figure 2: Regression for the first canid data set given by the four β parameters
under Brownian Motion. The graph shows that there is a significant difference
in the intercepts and slopes between omnivores and carnivores. The lines follow
the data well.

Figure 3: Regression for the second canid data set given by the four β parameters
under Brownian Motion. The graph shows that there is a significant difference
in the intercepts between solitary and social canids, but there is not much
difference in the slopes.
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Figure 4: Regression for the lizard data set given by the four β parameters
under Brownian Motion. The graph shows that there is a slight difference in
the intercepts and slopes between blue and white bellied lizards.

Figure 5: Regression for the first canid data set given by the four β parameters
under Ornstein-Uhlenbeck process. The graph shows that there is a significant
difference in the intercepts and slopes between omnivores and carnivores. The
lines follow the data well.
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Figure 6: Regression for the second canid data set given by the four β parame-
ters under Ornstein-Uhlenbeck process. The graph shows that there is a slight
difference in the intercepts and a large difference in the slopes between social
and solitary canids.

Figure 7: Regression for the lizard data set given by the four β parameters under
Ornstein-Uhlenbeck process. The graph shows that there is a slight difference
in the intercepts and almost no difference in the slopes between blue and white
bellied lizards.
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Combinatorics of Curves on Closed

Surfaces
Drew Reisinger

Let S be an oriented, closed (but not necessarily connected) surface.

Definition 0.1. A topological curve system on S is a finite list of regular,
oriented simple closed curves Σ = (γ1, γ2, . . . , γm) on S, m ≥ 2, such that

1. all intersections between curves are double points,

2. every curve intersects at least one other curve, and

3. each component of S\Σ is a topological disk (here Σ is identified with the
trace of its curves).

!1

!2

!3

1 2 3

!4

4
5

Figure 1: An example of a curve system on a torus

Figure 1 depicts a curve system on a torus consisting of four curves. Note
that each of the system’s intersection points involves exactly two curves; we will
explain the integer labels on these intersection points shortly.

103



Our goal is a combinatorial description of the oriented intersections between
curves in a curve system. Label the intersection points of Σ with positive integers
k1, . . . , kn, n ≥ 1. For each γi ∈ Σ, let

ai = (a1
i , a

2
i , . . . , a

mi
i ),

aji ∈ {±k1,±k2, . . . ,±kn}, be the vector of signed intersection points on γi
ordered by the curve’s orientation where the sign of each entry is determined by
intersection number1 of γi with the other curve at that point. We identify these
vectors up to cyclic permutation so that this correspondence is well-defined.

!1 !2

Figure 2: The intersection number of γ1 with γ2 at their intersection is +1,
whereas the intersection number of γ2 with γ1 is −1.

For example, the encoding of the system in Figure 1 is

a1 = (1, 2, 3)
a2 = (−1,−4)
a3 = (−2,−5)
a4 = (−3, 4, 5).

We have thus defined a procedure for describing a topological curve system
Σ on a surface S with intersection labels k1, . . . , kn with a list of integer vectors,
which we call the encoding of the tuple (S,Σ, (k1, . . . , kn)). We now define these
lists of vectors more precisely.

1The intersection number of a curve γ1 with another curve γ2 at a point is +1 if γ2 crosses
from the right side of γ1 to the left side at that point (where “left” and “right” are defined by
the orientation of S); otherwise, the intersection number is −1. See Figure 2 for an example.

104



Definition 0.2. A combinatorial curve system on positive integers k1, . . . , kn,
n ≥ 1 is a list of vectors A = (a1, . . . , am), m ≥ 2, with elements from the
set {±k1, . . . ,±kn} and identified up to cyclic permutation that satisfies the
following conditions:

1. Each element of {±k1, . . . ,±kn} appears exactly once in some vector ai,
and

2. +kj and −kj never appear in the same vector.

We have already demonstrated a method for associating to each tuple

(S,Σ, (k1, . . . , kn))

—where S is a surface, Σ is a topological curve system on S, and (k1, . . . , kn) is a
list of positive integer labels for intersection points of Σ—a combinatorial curve
system A on k1, . . . , kn. We will now demonstrate that there exists an inverse
to this map, thus establishing a one-to-one correspondence between topological
and combinatorial curve systems.
Notation. If ai is a vector in a combinatorial curve system A, and k is an integer
in ai, we denote the cyclic predecessor of k in ai by k− and the cyclic successor
by k+. For example, if a1 = (1,−2, 3) is a vector in some combinatorial curve
system A, then 1+ = −2, 1− = 3, 3+ = 1, and 3− = −2 in this system.

Theorem 0.3. Let A be a combinatorial curve system on k1, . . . , kn with n ≥ 1.
Then there exists a surface S and a curve system Σ on S such that the encoding
of (S,Σ, (k1, . . . , kn)) is A.

We first discuss the intuitive motivation for the construction behind this
theorem before we proceed with its formal proof, which can seem cryptic without
its geometric context.

One way to understand a topological curve system is as a graph on the
surface S whose vertices correspond to the intersection points of the system
and whose edges correspond to the sections of curves between intersections (see
Figure 3). By the definition of a topological curve system, this graph divides the
surface into faces that are homeomorphic to disks. The essence of the proof of
Theorem 0.3 is that a combinatorial curve system provides enough information
to traverse the edges that bound each face in counter-clockwise order. Once we
specify the face boundaries, we can topologically attach disks to insides of these
loops. Hence gluing these faces along the appropriate edges will reconstruct the
original surface.

In the course of this proof, we introduce the formalism of segments. One
way to conceptualize segments is as the left and right “sides” of edges in the
graph described above. More concretely, consider the edge between ki and its
successor k+

i . We will let the segment [ki, k+
i ] represent the left side of this edge

while −[ki, k+
i ] will represent the right side (see Figure 4).

Proof. For each k appearing in some vector in A, let [k, k+] and −[k, k+] be
disjoint closed unit intervals [0, 1], which we call segments at k. Let S be the
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v1

v4

v2 v3

v5

e1

e2

e3

e4 e5

e6

e7e8

e9

e10

f1
f2

f3

f4

f5

Figure 3: The system from Figure 1 as a graph with its vertices, edges, and
faces labeled. Note that some of the edges and faces continue over the identified
edges of the square in this diagram.

set of all such disjoint segments. For each segment in S, we define its successor
based on which of the following four forms the segment takes.

• If a segment is of the form [k−i , ki], then its successor is [−ki, (−ki)+].

• If a segment is of the form [(−ki)−,−ki], then its successor is −[k−i , ki].

• If a segment is of the form −[ki, k+
i ], then its successor is −[(−ki)−,−ki].

• If a segment is of the form −[−ki, (−ki)+], then its successor is [ki, k+
i ].

Note that each segment also takes exactly one of the successor forms listed
above, so we can also define the predecessor of a segment as the inverse of the
above operation. Intuitively, the successor operation represents turning left at a
vertex while traversing the boundary of a face in the counter-clockwise direction
(see Figure 5).

Let
U =

⋃
s∈S

s
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ki

ki+

[ki, ki+]
−[ki, ki+]

Figure 4: Segments represent the two sides of an edge

be the disjoint union of all these segments, and let L be the quotient space of
U formed by identifying the 1 endpoint of each segment with the 0 endpoint of
its successor. The space L is then composed of a finite disjoint union of circles,
which we call loops (see Figure 6). To see this, consider linking the successors
of a given segment s. As there are only finitely many segments in S, the end of
some successor segment must eventually attach to the beginning of a segment
that is already in this loop. But since the predecessor of each segment is unique,
only two segments can meet at any one point. It follows that the loop must close
up at the beginning of the original segment s and hence is homeomorphic to a
circle. Since every segment has a successor, these loops partition L.

For each loop in L, define its face to be a closed unit disk, and let F be
the disjoint union of all such faces. Define F to be the quotient space of L ∪ F
obtained by identifying each loop with the boundary of its face (see Figure 7).

Finally, we construct S as a quotient space of F by identifing each segment
[k, k+] with its negative counterpart −[k, k+] such that the 0 endpoint of each
segment is attached to the 1 endpoint of its negative; in essence, we are joining
the left and right sides of each edge with opposite orientation. Formally, we refer
to the images of segment pairs under this quotient map as edges. We denote
the edge formed by the segments [k, k+] and −[k, k+] with ek.

We now show that S is, in fact, a surface by exhibiting a neighborhood of
each point in S that is homeomorphic to an open disk. By definition, points
on the interior of some face have such a neighborhood. Now consider a point
p in the interior of some edge. On each bordering face, the point is contained
in a half-disk; in the quotient, these two half-disks meet to form an open disk
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ki− ki ki+−ki

(−ki)−

(−ki)+

[ki−, ki]
−[ki−, ki]

[−ki, (−ki)+] −[−ki, (−ki)+]

[ki, ki+]
−[ki, ki+]

[(−ki)−, −ki] −[(−ki)−, −ki]

Figure 5: The successor operation represents turning left at a vertex.

U L

Figure 6: The space L is formed from U by connecting each segment to its
successor.
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around p. Finally, consider a point p at the intersection of edges. In each of the
four adjacent faces, p is contained in a sector of an open disk; in the quotient,
these sectors meet along their edges to form an open disk around p. The latter
two cases are illustrated in Figure 8.

As S is the quotient space of a finite union of closed disks, which is compact,
it is also compact, and since each boundary component of a face in F is identified
with some other boundary component, it follows that S is a closed surface.

Each disk in F inherits an orientation from the natural orientation of its
loop, which runs in the direction from a segment to its successor. Since each
segment is identified with its negative counterpart in the opposite direction, it
follows that the orientations of the adjacent faces are preserved across the edge
(see Figure 9). Thus S is an oriented surface.

Finally, we construct the curve system Σ = {γ1, . . . , γn} on S. For each
vector ai = (a1

i , . . . , a
mi
i ) in A, let γi consist of the edges eaji oriented so that

γi traces these edges in the cyclic order specified by ai, that is, in the order
ea1
i
, ea2

i
, ea3

i
, and so on. If k ∈ ai, then −k ∈ aj for some i 6= j, and hence

γi intersects γj ; thus Σ satisfies condition 1 of Definition 0.1. Condition 2 is
guaranteed by the requirement that if k appears in some ai, then −k is not in
ai. Finally, condition 3 follows from the construction of S from closed disks and
that the curves in Σ comprise the boundaries of these disks. By construction,
A is the encoding of (S,Σ, (k1, . . . , kn)).
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L ∪ F F

Figure 7: F is constructed from L ∪ F by “filling in” each loop with a closed
disk.

Figure 8: The two cases of points on the boundary of some face. In both cases,
the neighborhoods of the point in each face meet to form an open disk in the
quotient.
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Figure 9: Two faces attached along the highlighted edge. The blue arrows define
“left” on each face, and because the faces are being attached in the opposite
direction, the new surface inherits this orientation.
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