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Abstract. The Cahn-Hilliard equation is a partial differential equation that governs the
behavior of a binary fluid system. In this work, we use a version of the Cahn-Hilliard
equation that contains an additional term to account for the long-range interaction of the
fluid molecules. We analyze the dynamic transitions and pattern formation of the model
as we vary a system control parameter λ. One of the main goals of this work is to deduce
necessary and sufficient conditions (on λ and fixed parameters) for the equilibria to form
hexagonally packed cylinder (HPC) patterns.

1. Introduction

In this work, we consider the Cahn-Hilliard equation

∂u

∂t
= −∆2u− λ∆u+∆(γ2u

2 + γ3u
3)− σu∫

Ω

u(x, t, λ)dx = 0

∂u

∂n
=
∂∆u

∂n
= 0 on ∂Ω

u(x, 0, λ) = ψ.

(1)

on a rectangular domain Ω := [0, L1]× [0, L2]× [0, L3]. The Cahn-Hilliard equation describes
the behavior of a binary fluid system, where u is a function that denotes the deviation from
the average concentration of one component and λ, γ2, γ3, and σ are parameters that depend
on physical properties of the system, such as temperature. This problem is analyzed in-depth
in [1]. We analyze the Cahn-Hilliard equation using dynamic transition theory (discussed
in [1], [2], [3], [4]) which studies how the equilibrium behavior of a differential equation
changes as we vary a parameter λ. We assume that the following principle of exchange of
stability (PES) holds:

Principle 1.1. Suppose

du

dt
= Lλu+G(u, λ),

u(0) = u0,

where Lλ is a linear operator andG consists of higher-order terms in u. Let {βi(λ) ∈ C : i ∈ N}
be the set of eigenvalues of Lλ counting multiplicities. Then
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Re(βj(λ))


< 0, if λ < λc,

= 0, if λ = λc,

> 0, if λ > λc,

∀1 ≤ j ≤ m

Re(βj(λ)) < 0, ∀j ≥ m+ 1

We now state a theorem that appears in [2] as Theorem 2.1.3:

Theorem 1.2. Let H be the codomain of u in (1), and assume that H is a Hilbert space.
Suppose that the PES holds. Then the problem 1 always undergoes a dynamic transition from
(u, λ) = (0, λc), and there is a neighborhood U ⊂ H of u = 0 such that the transition in U is
one of the following three types:

(i) Continuous (Type-I) transition: There exists an open and dense set Ũλ ⊂ U such that
for any ϕ ∈ Ũλ, the solution uλ(t, ϕ) of (1) with initial datum uλ(0, λ) satisfies

lim
λ→λc

lim sup
t→∞

||uλ(t, ϕ)|| = 0.

(ii) Jump (Type-II) transition: For any λc < λ < λ+ ϵ with some ϵ > 0, there is an open
and dense set Ũλ ⊂ U such that for any ϕ ∈ Ũλ,

lim sup
t→∞

||uλ(t, ϕ)|| ≥ δ > 0,

where δ > 0 is independent of λ.
(iii) Mixed (Type-III) transition: For any λc < λ < λ + ϵ with some ϵ > 0, U can be

decomposed into two open (not necessarily connected) sets Uλ
1 and Uλ

2 :

U = Uλ
1 ∪ Uλ

2 , Uλ
1 ∩ Uλ

2 = ∅
such that

lim
λ→λc

lim sup
t→∞

||uλ(t, ϕ)|| = 0 ∀ϕ ∈ Uλ
1

lim sup
t→∞

||uλ(t, ϕ)|| ≥ δ > 0 ∀ϕ ∈ Uλ
2 .

One of our main goals in this work is to determine conditions on γ2, γ3, σ, L1, L2, and
L3 under which each of the above types of dynamic transitions occur. Also, we seek to
determine the conditions under which some of the equilibria generate hexagonally packed
cylinder (HPC) patterns.

2. Main Results

Definition 2.1. We define the set P as follows:

P :=

{(
k1π

L1

,
k2π

L2

,
k3π

L3

) ∣∣∣∣ ki ∈ N0, 1 ≤ i ≤ 3,
3∑

i=1

k2i ̸= 0

}
.

For a vector K ∈ P , we let

eK(x1, x2, x3) := cos

(
k1x1
L1

)
cos

(
k2x2
L2

)
cos

(
k3x3
L3

)
.
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Observe that eK is an eigenfunction of the Laplacian with eigenvalue −|K|2.

Proposition 2.2. For distinct K1, K2 ∈ P, we have∫
Ω

eK1(x)eK2(x)dx = 0,

where dx = dx1dx2dx3.

Now note that in (1), Lλ = −∆2 − λ∆− σI. Therefore, eK is an eigenfunction of Lλ with
eigenvalue

βK(λ) = −|K|4 + λ|K|2 − σ = |K|2
(
λ− |K|4 + σ

|K|2

)
.

Therefore, PES implies that

λc = min
K∈P

|K|4 + σ

|K|2
.

Definition 2.3. We define the set S as follows:

S =

{
K ∈ P :

|K|4 + σ

|K|2
= λc

}
.

In [1], the following theorem is presented:

Theorem 2.4. Suppose L1 = 2πL, L2 =
2√
3
πL, and L3 = θπL for some L, θ > 0 depending

on σ. Assume that Kc
1 =

(
n
L
, 0, 0

)
and Kc

2 =
(

n
2L
,
√
3n
2L
, 0
)
are such that S = {Kc

1, K
c
2}. Let

B := γ3 −
8|Kc

1|2

36|Kc
1|4 − 9σ

γ22 .

(i) If γ2 = 0, then the phase transition of (1) at λc is Type-I. The problem bifurcates on
the side λ > λc to an attractor Σλ, which is homeomorphic to the one-dimensional
unit sphere S1. Σλ contains eight non-degenerate steady states, with four saddle points
v1, v2, v3, and v4 and four minimal attractors u1, u2, u3, and u4. Moreover, the
following approximation formulas hold:

u1,3 = ±

√
4β1(λ)

3|Kc
1|2γ3

cos
(nx1
L

)
+ o(|β1(λ)|1/2)

u2,4 = ±

√
16β1(λ)

9|Kc
1|2γ3

cos
(nx1
2L

)
cos

(√
3nx2
2L

)
+ o(|β1(λ)|1/2)

v1,2,3,4 = ±

√
4β1(λ)

15|Kc
1|2γ3

cos
(nx1
L

)
± 2

√
4β1(λ)

15|Kc
1|2γ3

cos
(nx1
2L

)
cos

(√
3nx2
2L

)
+ o(|β1(λ)|1/2),

where β1(λ) := βKc
1
(λ).
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(ii) If γ2 ̸= 0 and B < 0, then (1) bifurcates on both sides of λc and the transition is
Type-II. Moreover, there are four steady states bifurcated out on the side λ < λc,
including three saddle points and one unstable node. On the side λ > λc, the problem
bifurcates to two steady states, which are saddles.

(iii) If γ2 ̸= 0 and B > 0, then the transition is Type-III. Again, there are bifurcations on
both sides of λc. On the side λ < λc, there are two saddles bifurcating out from the
origin. On the side λ > λc, the problem bifurcates to four steady states:

w1 =
β1(λ)

|Kc
1|2γ2

cos
(nx1
L

)
+

2β1(λ)

|Kc
1|2γ2

cos
(nx1
2L

)
cos

(√
3nx2
2L

)
+ o(|β1(λ)|),

w2 =
β1(λ)

|Kc
1|2γ2

cos
(nx1
L

)
− 2β1(λ)

|Kc
1|2γ2

cos
(nx1
2L

)
cos

(√
3nx2
2L

)
+ o(|β1(λ)|),

w3 =

√
−β1(λ)
b(λ)

cos
(nx1
L

)
+ o(|β1(λ)|1/2),

w4 = −

√
−β1(λ)
b(λ)

cos
(nx1
L

)
+ o(|β1(λ)|1/2),

where b(λ) =
2|Kc

1 |4γ2
2

16|Kc
1 |4−4λ|Kc

1 |2+σ
− 3|Kc

1 |2
4

γ3. Among the four steady states, there are three

saddles and one stable node, where the node is w3 if γ2 > 0 and w4 if γ2 < 0.

We extend this result as follows:

Theorem 2.5. Suppose that the side lengths of Ω satisfy L1 =
m1

√
3L2

m2
, where m1,m2 ∈ N.

Suppose that Kc
1 :=

(
2m1π
L1

, 0, 0
)
and Kc

2 :=
(

m1π
L1
, m2π

L2
, 0
)
are such that S = {Kc

1, K
c
2}. Then

we can derive results analogous to the previous theorem:

(i) If γ2 = 0, then the phase transition of (1) at λc is Type-I. The problem bifurcates on
the side λ > λc to an attractor Σλ, which is homeomorphic to the one-dimensional
unit sphere S1. Σλ contains eight non-degenerate steady states, with four saddle points
v1, v2, v3, and v4 and four minimal attractors u1, u2, u3, and u4. Moreover, the
following approximation formulas hold:

u1,3 = ±

√
4β1(λ)

3|Kc
1|2γ3

cos

(
2m1πx1
L1

)
+ o(|β1(λ)|1/2)

u2,4 = ±

√
16β1(λ)

9|Kc
1|2γ3

cos

(
m1πx1
L1

)
cos

(
m2πx2
L2

)
+ o(|β1(λ)|1/2)

v1,2,3,4 = ±

√
4β1(λ)

15|Kc
1|2γ3

cos

(
2m1πx1
L1

)

± 2

√
4β1(λ)

15|Kc
1|2γ3

cos

(
m1πx1
L1

)
cos

(
m2πx2
L2

)
+ o(|β1(λ)|1/2),

where β1(λ) := βKc
1
(λ).
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(ii) If γ2 ̸= 0 and B < 0, then (1) bifurcates on both sides of λc and the transition is
Type-II. Moreover, there are four steady states bifurcated out on the side λ < λc,
including three saddle points and one unstable node. On the side λ > λc, the problem
bifurcates to two steady states, which are saddles.

(iii) If γ2 ̸= 0 and B > 0, then the transition is Type-III. Again, there are bifurcations on
both sides of λc. On the side λ < λc, there are two saddles bifurcating out from the
origin. On the side λ > λc, the problem bifurcates to four steady states:

w1 =
β1(λ)

|Kc
1|2γ2

cos

(
m1πx1
L1

)
+

2β1(λ)

|Kc
1|2γ2

cos

(
m1πx1
L1

)
cos

(
m2πx2
L2

)
+ o(|β1(λ)|),

w2 =
β1(λ)

|Kc
1|2γ2

cos

(
m1πx1
L1

)
− 2β1(λ)

|Kc
1|2γ2

cos

(
m1πx1
L1

)
cos

(
m2πx2
L2

)
+ o(|β1(λ)|),

w3 =

√
−β1(λ)
b(λ)

cos

(
2m1πx1
L1

)
+ o(|β1(λ)|1/2),

w4 = −

√
−β1(λ)
b(λ)

cos

(
2m1πx1
L1

)
+ o(|β1(λ)|1/2),

where b(λ) =
2|Kc

1 |4γ2
2

16|Kc
1 |4−4λ|Kc

1 |2+σ
− 3|Kc

1 |2
4

γ3. Among the four steady states, there are three

saddles and one stable node, where the node is w3 if γ2 > 0 and w4 if γ2 < 0.

Proof. We use e1 and e2 as shorthand notation for eKc
1
and eKc

2
, respectively. Thus,

e1 = cos

(
2m1πx1
L1

)
, e2 = cos

(
m1πx1
L1

)
cos

(
m2πx2
L2

)
.

The critical eigenspace is Hc = span{e1, e2}, and the stable eigenspace is the orthogonal
complement of Hc in H. Since

H = span{eK : K ∈ P},

we have

Hs = span{eK : K ∈ P \ {Kc
1, K

c
2}}

We can write our solution to (1) on the center manifold as

u(x, t, λ) = v(x, t, λ) + Ψ(v(x, t, λ), λ),

where v ∈ Hc, i.e.,

v(x, t, λ) = y1(t, λ)e1(x) + y2(t, λ)e2(x),

and Ψ : Hc → Hs is the center manifold function. Since Ψ maps to Hs, we have that

Φ(y1e1 + y2e2, λ) = projHs
Φ(y1e1 + y2e2, λ) (2)

=
∑

K∈P\{Kc
1 ,K

c
2}

⟨Φ(y1e1 + y2e2, λ), eK⟩
⟨eK , eK⟩

eK . (3)

We also have

Φ(y1e1 + y2e2, λ) = (−Ls
λ)

−1PsG2(y1e1 + y2e2) + o(2),
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where G2(v) = γ2∆v
2 and

o(k) := O(|βK1(λ)||y|k) + o(|y|k).
Now note that for each K ∈ P \ {K1, K2},

⟨Φ(y1e1 + y2e2, λ), eK⟩ = ⟨(−Ls
λ)

−1PsG2(y1e1 + y2e2), eK⟩+ o(2)

= ⟨PsG2(y1e1 + y2e2), (−Ls
λ)

−1eK⟩+ o(2)

= − 1

βK(λ)
⟨G2(y1e1 + y2e2), eK⟩+ o(2).

Substituting into (2), we obtain

Φ(y1e1 + y2e2, λ) =
∑

K∈P\{Kc
1 ,K

c
2}

−⟨G2(y1e1 + y2e2), eK⟩
βK(λ)⟨eK , eK⟩

eK + o(2).

We will now work to simplify the expression ⟨G2(y1e1 + y2e2), eK⟩. We have

⟨G2(y1e1 + y2e2), eK⟩ = γ2
〈
∆
(
(y1e1 + y2e2)

2
)
, eK
〉

= γ2
〈
(y1e1 + y2e2)

2,∆eK
〉

= −γ2|K|2
〈
(y1e1 + y2e2)

2, eK
〉

= −γ2|K|2
(
y21
〈
e21, eK

〉
+ 2y1y2 ⟨e1e2, eK⟩+ y22

〈
e22, eK

〉)
.

Since

e21 = cos2
(
2m1πx1
L1

)
=

1 + cos
(

4m1πx1

L1

)
2

,

we have (for K ∈ P \ {Kc
1, K

c
2})〈

e21, eK
〉
=

1

2

∫
Ω

(
1 + cos

(
4m1πx1
L1

))
eKdx =

{
L1L2L3

4
, K = K1 :=

(
4m1π
L1

, 0, 0
)

0, otherwise.

Similarly,

⟨e1e2, eK⟩ =
∫
Ω

cos

(
2m1πx1
L1

)
cos

(
m1πx1
L1

)
cos

(
m2πx2
L2

)
eKdx

=
1

2

∫
Ω

cos

(
m1πx1
L1

)
cos

(
m2πx2
L2

)
eKdx

+
1

2

∫
Ω

cos

(
3m1nπx1

L1

)
cos

(
m2πx2
L2

)
eKdx

=

{
L1L2L3

8
, K = K2 :=

(
3m1π
L1

, m2π
L2
, 0
)

0, otherwise.

Finally, 〈
e22, eK

〉
=

∫
Ω

cos2
(
m1πx1
L1

)
cos2

(
m2πx2
L2

)
eKdx

=
1

4

∫
Ω

(
1 + cos

(
2m1πx1
L1

))(
1 + cos

(
2m2πx2
L2

))
eKdx
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=


L1L2L3

8
, K = K3 :=

(
0, 2m2π

L2
, 0
)

L1L2L3

16
, K = K4 :=

(
2m1π
L1

, 2m2π
L2

, 0
)

0, otherwise.

Since L1 =
m1

√
3L2

m2
, we calculate

|Kc
1|2 = |Kc

2|2 =
4m2

2π
2

3L2
2

|K1|2 = |K4|2 =
16m2

2π
2

3L2
2

= 4|Kc
1|2

|K2|2 = |K3|2 =
4m2

2π
2

L2
2

= 3|Kc
1|2.

Therefore,

Φ(y1e1 + y2e2, λ) = −
4∑

i=1

⟨G2(y1e1 + y2e2, λ), eKi
⟩

βKi
(λ)⟨eKi

, eKi
⟩

eKi

= −
4∑

i=1

γ2|Ki|2 (y21 ⟨e21, eKi
⟩+ 2y1y2 ⟨e1e2, eKi

⟩+ y22 ⟨e22, eKi
⟩)

(|Ki|4 − λ|Ki|2 + σ) ⟨eKi
, eKi

⟩
eKi

= −
4γ2|Kc

1|2y21
(
L1L2L3

4

)
(16|Kc

1|4 − 4λ|Kc
1|2 + σ)

(
L1L2L3

2

) cos(4m1πx1
L1

)
−

3γ2|Kc
1|22y1y2

(
L1L2L3

8

)
(9|Kc

1|4 − 3λ|Kc
1|2 + σ)

(
L1L2L3

4

) cos(3m1πx1
L1

)
cos

(
m2πx2
L2

)
−

3γ2|Kc
1|2y22

(
L1L2L3

8

)
(9|Kc

1|4 − 3λ|Kc
1|2 + σ)

(
L1L2L3

2

) cos(2m2πx2
L2

)
−

4γ2|Kc
1|2y22

(
L1L2L3

16

)
(16|Kc

1|4 − 4λ|Kc
1|2 + σ)

(
L1L2L3

4

) cos(2m1πx1
L1

)
cos

(
2m2πx2
L2

)
= − 2γ2|Kc

1|2y21
16|Kc

1|4 − 4λ|Kc
1|2 + σ

cos

(
4m1πx1
L1

)
− 3γ2|Kc

1|2y1y2
9|Kc

1|4 − 3λ|Kc
1|2 + σ

cos

(
3m1πx1
L1

)
cos

(
m2πx2
L2

)
− 3γ2|Kc

1|2y22
4 (9|Kc

1|4 − 3λ|Kc
1|2 + σ)

cos

(
2m2πx2
L2

)
− γ2|Kc

1|2y22
16|Kc

1|4 − 4λ|Kc
1|2 + σ

cos

(
2m1πx1
L1

)
cos

(
2m2πx2
L2

)
We now let

A1(λ) :=
2γ2|Kc

1|2

16|Kc
1|4 − 4λ|Kc

1|2 + σ

A2(λ) :=
3γ2|Kc

1|2

9|Kc
1|4 − 3λ|Kc

1|2 + σ
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A3(λ) :=
3γ2|Kc

1|2

4 (9|Kc
1|4 − 3λ|Kc

1|2 + σ)

A4(λ) :=
γ2|Kc

1|2

16|Kc
1|4 − 4λ|Kc

1|2 + σ

so that

Φ(y1e1 + y2e2, λ) = −A1(λ)y
2
1 cos

(
4m1πx1
L1

)
− A2(λ)y1y2 cos

(
3m1πx1
L1

)
cos

(
m2πx2
L2

)
− A3(λ)y

2
2 cos

(
2m2πx2
L2

)
− A4(λ)y

2
2 cos

(
2m1πx1
L1

)
cos

(
2m2πx2
L2

)
We now take the Cahn-Hilliard Equation (1) and take the inner product of both sides with

e1. Since u = y1e1 + y2e2 + Φ(y1e1 + y2e2, λ), we have

dy1
dt

= βKc
1
(λ)y1 +

1

⟨e1, e1⟩

∫
Ω

∆
(
γ2u

2 + γ3u
3
)
e1dx (4)

= βKc
1
(λ)y1 +

2

L1L2L3

∫
Ω

(
γ2u

2 + γ3u
3
)
∆e1dx (5)

= βKc
1
(λ)y1 −

2|Kc
1|2

L1L2L3

∫
Ω

(
γ2u

2 + γ3u
3
)
e1dx (6)

We evaluate this integral using Maple (calculations included in the appendix). We obtain,
up to third-order terms,

dy1
dt

= βKc
1
(λ)y1 − 2|Kc

1|2
[(γ2

8

)
y22

+

(
3γ3
8

− A1(λ)γ2
2

)
y31

+

(
3γ3
8

− A2(λ)γ2
4

)
y1y

2
2

]
+ o(3).

We define

B(λ) := −2|Kc
1|2
(
3γ3
8

− A1(λ)γ2
2

)
C(λ) := −2|Kc

1|2
(
3γ3
8

− A2(λ)γ2
4

)
so that

dy1
dt

= βKc
1
(λ)y1 −

γ2|Kc
1|2

4
y22 +B(λ)y31 + C(λ)y1y

2
2 + o(3)

In a very similar manner, we obtain

dy2
dt

= βKc
1
(λ)y2 − γ2|Kc

1|2y1y2 +D(λ)y32 + E(λ)y21y2 + o(3),
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where

D(λ) := −4|Kc
1|2
(
9γ3
64

− (2A3(λ) + A4(λ))γ2
8

)
E(λ) := −4|Kc

1|2
(
3γ3
8

− A2(λ)γ2
4

)
.

Thus, the system of interest is (up to third-order terms)

dy1
dt

= βKc
1
(λ)y1 −

γ2|Kc
1|2

4
y22 +B(λ)y31 + C(λ)y1y

2
2

dy2
dt

= βKc
1
(λ)y2 − γ2|Kc

1|2y1y2 +D(λ)y32 + E(λ)y21y2.

(7)

Note that the γ2 = 0 case simplifies (7) to a case already discussed in the paper with a
different value of |Kc

1|2. However, the same method still applies. Also, because the quadratic
terms are also identical to the case discussed in [1], the analysis provided for this case also
applies here. In particular, we have that when y2 = 2y1,

dy1
dt
dy2
dt

=
βKc

1
(λ)y1 − γ2|Kc

1|2y21 +B(λ)y31 + 4C(λ)y31
2βKc

1
(λ)y1 − 2γ2|Kc

1|2y21 + 8D(λ)y31 + 2E(λ)y31
. (8)

As is the case in [1], we have that

B(λ) + 4C(λ)

8D(λ) + 2E(λ)
=

1

2
.

Therefore, (8) simplifies to 1
2
as well, so the analysis for the γ2 ̸= 0 case in the paper is

also valid here. □

We now provide a proposition that provides a more detailed classification of when S =
{Kc

1, K
c
2}, where Kc

1 and Kc
2 are as defined in the previous theorem.

Proposition 2.6. Suppose that L1 = m1

√
3L2

m2
, where m1,m2 ∈ N. In addition, suppose

that |Kc
1|2 = |Kc

2|2 =
√
σ, and suppose that π2

L2
3
>

√
σ. Then S = {Kc

1, K
c
2} if and only if

gcd(m1,m2) is not divisible by any primes congruent to 1 modulo 3.

Proof. Suppose there exists Kc
3 =

(
k1π
L1
, k2π

L2
, k3π

L3

)
such that |Kc

1|2 = |Kc
2|2 = |Kc

3|2. Since

π2

L2
3
>

√
σ, k3 = 0. Therefore, since |Kc

2|2 = |Kc
3|2,

k21π
2

L2
1

+
k22π

2

L2
2

=
m2

1π
2

L2
1

+
m2

2π
2

L2
2

.

Since L1 =
m1

√
3L2

m2
, we can recast this equation as

k21
m2

1

+
3k22
m2

2

= 4.

We are therefore interested in determining the integer solutions to

x2

m2
1

+
3y2

m2
2

= 4. (9)
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We can parameterize the solution curve using a line through the solution at (2m1, 0) of
slope t. When we do so, we obtain

x =
2m1(3t

2m2
1 −m2

2)

3t2m2
1 +m2

2

,

y =
−4tm1m

2
2

3t2m2
1 +m2

2

.

Since we have centered our parameterization at a rational solution to (9), we can only
obtain rational solutions when t is itself rational. We let t = am2

bm1
, where gcd(a, b) = 1. We

obtain

x =
2m1(3a

2 − b2)

3a2 + b2
,

y =
−4m2ab

3a2 + b2
.

Note that we can obtain all rational solutions up to symmetry across the x-axis by taking
a and b to be nonnegative. Note that (a, b) = (0, 1) produces the solution (x, y) = (−2m1, 0).
(a, b) = (1, 0) produces the solution (x, y) = (2m1, 0). (a, b) = (1, 1) produces the solution
(x, y) = (m1,−m2). (a, b) = (1, 3) produces the solution (x, y) = (−m1,−m2). These
solutions (and their reflections across the x-axis) are already accounted for by Kc

1 and Kc
2. So

in order for Kc
3 to be different from Kc

1 and Kc
2, it is both necessary and sufficient to prove

the existence of a, b ∈ N with gcd(a, b) = 1 such that (a, b) /∈ {(0, 1), (1, 0), (1, 1), (1, 3)},
3a2+ b2 | 2m1 (3a

2 − b2), and 3a2+ b2 | 4m2ab. The remainder of this proof is in the appendix
that follows. □

3. Appendix A: Number Theoretic Details in the Proof of Proposition 2.6

In the proof of Proposition 2.6, we showed that there exists Kc
3 ∈ P \ {Kc

1, K
c
2} satisfying

|Kc
1|2 = |Kc

2|2 = |Kc
3|2 if and only if there exist coprime nonnegative integers a and b with

(a, b) /∈ {(0, 1), (1, 0), (1, 1), (1, 3)} such that

3a2 + b2 | 2m1

(
3a2 − b2

)
, 3a2 + b2 | 4m2ab. (10)

We now show that such a and b exist if and only if there exists a prime p ≡ 1 mod 3 such
that p | gcd(m1,m2). To do so, we first must prove some preliminary results:

Lemma 3.1. If gcd(a, b) = 1, then gcd (3a2 + b2, 3a2 − b2) = gcd (3a2 + b2, 6).

Proof. We let d1 := gcd(3a2 + b2, 3a2 − b2) and d2 := gcd(3a2 + b2, 6). Then d1 divides any
integer linear combination of 3a2 + b2 and 3a2 − b2, meaning d1 | (3a2 + b2) + (3a2 − b2) = 6a2

and d1 | (3a2 + b2) − (3a2 − b2) = 2b2 | 6b2. So d1 | gcd(6a2, 6b2) = 6 gcd(a2, b2) = 6. Since
d1 | 3a2 + b2, we get that d1 | d2. Now note that since d2 | 6, we have that d2 = 1, d2 = 2,
d2 = 3, or d2 = 6. If d2 = 1, then d2 | d1 trivially. If d2 = 2, then 2 | 3a2 + b2, meaning a
and b must both be odd. But then 2 | 3a2 − b2 as well, meaning 2 | d1, so d2 | d1. If d2 = 3,
then in order to have 3 | 3a2 + b2, we must have 3 | b. This means that 3 | 3a2 − b2 as well.
Thus, 3 | d1, so d2 | d1. Finally, if d2 = 6, then a and b must both be odd so that 2 | 3a2 + b2,
and 3 | b so that 3 | 3a2 + b2. As in the previous two cases, we deduce that 2 | 3a2 − b2 and
3 | 3a2 − b2. Therefore, 6 | 3a2 − b2, meaning 6 | d1, i. e. d2 | d1. In all cases, we get that
d2 | d1. Since d1 | d2 as well, this proves that d1 = d2. □
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Lemma 3.2. If gcd(a, b) = 1, then gcd (3a2 + b2, ab) = gcd (3a2 + b2, 3).

Proof. We let d1 := gcd (3a2 + b2, ab) and d2 := gcd (3a2 + b2, 3). We let q ̸= 3 be a prime
such that q | 3a2 + b2. Since a and b cannot have q as a common factor, we must have
gcd(a, q) = gcd(b, q) = 1. But then q cannot divide ab. Also note that if 9 | 3a2 + b2, then we
must have 3 | b so that 3 | 3a2+ b2. But then we would need 3 | a to guarantee the divisibility
by 9, which is impossible since gcd(a, b) = 1. This means that the only possible common
divisors of 3a2 + b2 and ab are 1 and 3, which means that d1 | 3. Thus, d1 | d2. Now note
that since d2 | 3, we must have d2 = 1 or d2 = 3. If d2 = 1, then d2 | d1 trivially. If d2 = 3,
then 3 | 3a2 + b2, meaning 3 | b. Thus, 3 | ab as well, which implies that d2 | d1. Therefore,
d1 = d2. □

Lemma 3.3. Suppose that gcd(a, b) = 1. Then 3a2 + b2 | 2m1 (3a
2 − b2) if and only if

3a2 + b2 | 12m1.

Proof. To prove the forward direction, we assume that 3a2 + b2 | 2m1(3a
2 − b2). By Lemma

3.1, this means that

3a2 + b2 | gcd
(
3a2 + b2, 2m1

(
3a2 − b2

))
| gcd

(
3a2 + b2, 2m1

)
gcd

(
3a2 + b2, 3a2 − b2

)
= gcd

(
3a2 + b2, 2m1

)
gcd

(
3a2 + b2, 6

)
| 2m1(6)

= 12m1.

To prove the reverse direction, we assume that 3a2 + b2 | 12m1. By Lemma 3.1, this means
that

3a2 + b2 | gcd
(
3a2 + b2, 12m1

)
| gcd

(
3a2 + b2, 2m1

)
gcd

(
3a2 + b2, 6

)
= gcd

(
3a2 + b2, 2m1

)
gcd

(
3a2 + b2, 3a2 − b2

)
| 2m1(3a

2 − b2).

□

Lemma 3.4. Suppose that gcd(a, b) = 1. Then 3a2+ b2 | 4m2ab if and only if 3a2+ b2 | 12m2.

Proof. To prove the forward direction, we assume that 3a2 + b2 | 4m2ab. By Lemma 3.2, this
means that

3a2 + b2 | gcd
(
3a2 + b2, 4m2ab

)
| gcd

(
3a2 + b2, 4m2

)
gcd

(
3a2 + b2, ab

)
= gcd

(
3a2 + b2, 4m2

)
gcd

(
3a2 + b2, 3

)
| 4m2(3)

= 12m2.

To prove the reverse direction, we assume that 3a2 + b2 | 12m2. By Lemma 3.2, this means
that

3a2 + b2 | gcd
(
3a2 + b2, 12m2

)
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| gcd
(
3a2 + b2, 4m2

)
gcd

(
3a2 + b2, 3

)
= gcd

(
3a2 + b2, 4m2

)
gcd

(
3a2 + b2, ab

)
| 4m2ab. □

The previous two results imply that (10) is equivalent to

3a2 + b2 | 12 gcd(m1,m2).

We now provide some results on which positive integers cannot be expressed as 3a2 + b2

for a, b ∈ Z with gcd(a, b) = 1.

Lemma 3.5. Suppose n ≡ 0 mod 8. Then n cannot be expressed as 3a2 + b2 for a, b ∈ Z with
gcd(a, b) = 1.

Proof. Suppose towards contradiction that there exist a, b ∈ Z with gcd(a, b) = 1 such that
n = 3a2 + b2. Note that a and b cannot both be even since they are coprime, so a and b
must both be odd because n is even. But then a2 ≡ b2 ≡ 1 mod 8, meaning n ≡ 4 mod 8, a
contradiction. □

Lemma 3.6. Suppose n ≡ 2 mod 4. Then n cannot be expressed as 3a2 + b2 for a, b ∈ Z with
gcd(a, b) = 1.

Proof. Suppose towards contradiction that there exist a, b ∈ Z with gcd(a, b) = 1 such that
n = 3a2 + b2. Since n is even, we must have that a ≡ b ≡ 1 mod 2 by the same reasoning
as in the proof of the previous result. Therefore, a2 ≡ b2 ≡ 1 mod 4, which implies that
n ≡ 0 mod 4. This is a contradiction. □

Lemma 3.7. Suppose n ≡ 0 mod 9. Then n cannot be expressed as 3a2 + b2 for a, b ∈ Z with
gcd(a, b) = 1.

Proof. Suppose towards contradiction that there exist a, b ∈ Z with gcd(a, b) = 1 such that
n = 3a2 + b2. If n ≡ 0 mod 9, then n ≡ 0 mod 3 as well, which means that b ≡ 0 mod 3.
But since n ≡ 0 mod 9, we must have a ≡ 0 mod 3. This is a contradiction because a and b
cannot have 3 as a common divisor. □

Lemma 3.8. Let p ≥ 5 be prime. Then −3 is a quadratic residue modulo 3 if and only if
p ≡ 1 mod 3.

Proof. Using Legendre symbols, we have(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2 (−1)

p−1
2

· 3−1
2

(p
3

)
= (−1)p−1

(p
3

)
=
(p
3

)
.

Now note that since 1 is a quadratic residue modulo 3 and 2 is not,
(

−3
p

)
= 1 if p ≡ 1 mod 3,

and
(

−3
p

)
= −1 if p ≡ 2 mod 3. This proves the claim. □

Lemma 3.9. Suppose n ≡ 0 mod p, where p ≥ 5 is a prime satisfying p ≡ 2 mod 3. Then n
cannot be expressed as 3a2 + b2 for a, b ∈ Z with gcd(a, b) = 1.

Proof. Suppose towards contradiction that there exist a, b ∈ Z with gcd(a, b) = 1 such that
n = 3a2 + b2. Thus, 3a2 + b2 ≡ 0 mod p. Note that if a ≡ 0 mod p, then b ≡ 0 mod p as
well, which is impossible since gcd(a, b) = 1. Thus, a ̸≡ 0 mod p, which means a has a

multiplicative inverse modulo p. Therefore, we have that −3 ≡ (a−1b)
2
mod p. Therefore, −3
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is a quadratic residue modulo p. So by the previous lemma, p ≡ 1 mod 3, which contradicts
our assumption that p ≡ 2 mod 3. □

Our next lemma is a theorem of Fermat, which is proven in the exercises in [5].

Lemma 3.10. Let p ≡ 1 mod 3 be prime. Then there exist a, b ∈ Z with gcd(a, b) = 1 such
that p = 3a2 + b2.

With these tools, we can now complete the proof of Proposition 2.6. We know that
there exists Kc

3 ∈ P \ {Kc
1, K

c
2} satisfying |Kc

1|2 = |Kc
2|2 = |Kc

3|2 if and only if there exist
coprime nonnegative integers a and b with (a, b) /∈ {(0, 1), (1, 0), (1, 1), (1, 3)} such that
3a2 + b2 | 12 gcd(m1,m2). We first prove the reverse direction by supposing there exists
a prime p ≡ 1 mod 3 such that p | gcd(m1,m2). Then by Lemma 3.10, p = 3a2 + b2

for some a, b ∈ Z with gcd(a, b) = 1. By extension, 3a2 + b2 | 12 gcd(m1,m2). Also,
(a, b) /∈ {(0, 1), (1, 0), (1, 1), (1, 3)} since 3a2+b2 does not equal a prime congruent to 1 modulo
3 in any of these cases. Thus, there exists Kc

3 ∈ P \{Kc
1, K

c
2} satisfying |Kc

1|2 = |Kc
2|2 = |Kc

3|2
in this case. Conversely, if no such p exists, then 12 gcd(m1,m2) factors into a product of
2s, 3s, and odd primes congruent to 2 modulo 3. But then Lemma 3.5, Lemma 3.6, Lemma
3.7, and Lemma 3.9 imply that the only divisors of 12 gcd(m1,m2) that can be expressed
as 3a2 + b2 for a, b ∈ Z with gcd(a, b) = 1 are 1, 3, 4 and 12. However, these correspond to
(a, b) ∈ {(0, 1), (1, 0), (1, 1), (1, 3)}. Thus, there does not exist Kc

3 ∈ P \ {Kc
1, K

c
2} satisfying

|Kc
1|2 = |Kc

2|2 = |Kc
3|2 in this case. This proves the claim.

4. Appendix B: Maple Calculations

On the following pages, we include Maple calculations for the integral in (4).



> > 

(4)(4)

(1)(1)

(3)(3)

> > 

(2)(2)

> > 

> > 

(5)(5)

> > 

> > 

Warning, A new binding for the name `D` has been created. The 
global instance of this name is still accessible using the :- 
prefix, :-`D`.  See ?protect for details.

D



> > 

(6)(6)

> > 

(5)(5)

(7)(7)



(5)(5)

(7)(7)

> > 



PATTERNS IN THE CAHN-HILLIARD EQUATION WITH LONG-RANGE INTERACTIONS 17

References

[1] H. Liu, T. Sengul, S. Wang, P. Zhang, Dynamic transitions and pattern formations for a Cahn-Hilliard
model with long-range repulsive interactions, Communications in Mathematical Sciences, 13(5):1289-1315,
2015.
[2] T. Ma, S. Wang, Phase transition dynamics, Springer, New York, NY, 2014.
[3] T. Ma, S. Wang, Dynamic transitions in classical and geophysical fluid dynamics, Proceedings in Applied
Mathematics and Mechanics, 7(1):1101503-1101504, 2007.
[4] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields,
Springer, New York, NY, 1983.
[5] D. Cox, Primes of the form x2 + ny2, Springer, New York, NY, 2015.


