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Abstract. In this report, I will give a brief overview of the construction of Brownian
motion on metric graphs, and then outline known results and estimates for the transition
density of Brownian motions on metric graphs, with a focus firstly on compact metric graphs
and then infinite symmetric metric trees.

1. Introduction

Brownian motions are continuous time stochastic processes, first used to model the random
motion of particles suspended in a medium, named after the botanist Robert Brown who
described the phenomenon in 1827, and made formal by the work of Bachelier and Einstein.
Today, Brownian motion is used in models in wide-ranging applications in fields like physics,
finance, biology and more.

Metric graphs have also been growing in popularity as models in many different domains
([Pos07], [FS00]). Notably, there has been notable recent research on solving stochastic
partial differential equations on metric graphs ([FAN21], [HR14]). Much recent work has
been also done on infinite metric trees due to their inherent symmetrical structure ([FHT21]),
which will be a focus of one of the sections in this report.

In Section 2, I summarize preliminary definitions and elementary examples. Then, in
the following sections. I summarize the bijection between Brownian motion, semigroup
operators and Dirichlet forms, in order to formally construct Brownian motion on metric
graphs. Finally, I will first summarize known results for compact metric graphs, and then I
will summarize known results for (infinite) metric trees.

2. Preliminaries

Definition 2.1. An Rd-valued stochastic process B(t) : t ≥ 0 is called a d-dimensional
Brownian motion starting at x ∈ Rd if:

(1) B(0) = x.
(2) For all 0 ≤ t1 ≤ · · · ≤ tn, the increments B(tn) − B(tn−1), . . . , B(t2) − B(t1) are

independent random variables.
(3) For all t ≥ 0 and h > 0, the increment B(t + h)− B(t) is distributed normally with

a mean of 0 and variance of h.
(4) Almost surely, the function t 7→ B(t) is continuous.

This report primarily concerns 1-dimensional Brownian motions starting at 0. This will
be referred to as Standard Brownian Motion.

The primary space we will be working in is a metric graph Γ = (V,E), where each e ∈ E
is associated with a closed interval [0, l(e)] if l(e) < ∞, or [0,∞). The goal of this report
is to summarize known results about the transition density of Brownian motions on metric
graphs.
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The simplest example of a metric graph is the non-negative real line R+, which is a metric
graph with one vertex and one edge with infinite length. This is analogous to Reflected
Brownian Motion:

Theorem 1. Let W (t) be a Brownian motion on R+ and let B(t) denote Standard Brownian
Motion. Denote the transition density function of W (t) by pW and similarly the transition
density of B(t) by pB. Then, we have:

pW (t, x, y) = pB(t, x, y) + pB(t, x,−y)(1)

=
1√
2πt

(
e

(y−x)2

2t + e
(y+x)2

2t

)
.(2)

Now, consider Brownian motion on a bounded interval [0, a]. Using a similar principle, we
can see that:

Theorem 2. Let W (t) be a Brownian motion on [0, a] and let B(t) denote Standard Brown-
ian Motion. Denote the transition density function of W (t) by pW and similarly the transition
density of B(t) by pB. Then, we have:

pW (t, x, y) =
∞∑

n=−∞

pB(t, x, y + 2na).(3)

Unfortunately, if we wish to study Brownian motions on metric graphs in general, we are
no longer able to find nice formulas for transition densities in terms of Standard Brownian
Motion.

3. Constructing Brownian Motion on Metric Graphs

3.1. The Heat Kernel. Consider the Standard Brownian Motion B(t). The transition
density function is equal to the normal probability density function:

p(t, 0, x) =
1√
2πt

e−x2/2t.

We can notice that
1

2

∂2

∂x2
p(t, 0, x) =

∂

∂t
p(t, 0, x).

This leads us to the interesting connection between Brownian motions and the heat kernel.

Theorem 3. Let u be a solution to the heat equation. In other words:
∂

∂t
u(x, t) =

1

2

∂2

∂x2
u(x, t),

with initial condition u(x, 0) = f(x) for some function f .
Informally, u(t, x) represents the density of heat particles at position x at time t. So, if

we imagine there are f(y) heat particles at y at time 0 and the fraction that are at x is the
probability that a particle at y moved to x, we can reformulate the problem:

u(t, x) =

∫
I

f(y)p(t, y, x)dy(4)

=

∫
I

f(y)p(t, x, y)dy(5)

= E[f(W (t)) : W (0) = x],(6)
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where I is the length of the 1-dimensional “rod" and W (t) is a Brownian motion on I.

3.2. Dirichlet Forms. Another way to construct Brownian motions on metric graphs is by
considering Dirichlet forms.

Definition 3.1. A Dirichlet form on a measure space (X,A, µ) is a bilinear function ϵ :
D ×D → R such that:

(1) D ⊆ L2(µ) is dense.
(2) ϵ is symmetric; that is, ϵ(f, g) = ϵ(g, f).
(3) ϵ(u, u) ≥ 0 for all u ∈ D.
(4) D equipped with the inner product (u, v)ϵ := (u, v)L2(µ)+ϵ(u, v) is a real Hilbert space.
(5) For all u ∈ D, u∗ = min(max(u, 0), 1) ∈ D and ϵ(u∗, u∗) ≤ ϵ(u, u).

Consider a metric graph Γ = (V,E), and denote the length of each e ∈ E by ℓ(e). Also
consider associating to each edge e values p(e) representing edge weight and ω(e) representing
jump conductance. Consider the Hilbert space L2((Γ, ℓ, p, ω), µ), where

µ(dx) =
∑
e∈E

1I(e)(x)m(dx),

where I(e) is the interval associated with e and m is the Lebesgue measure on I(e).
Let Cc((Γ, ℓ, p, ω)) be the set of compactly supported continuous functions on Γ, and

C0((Γ, ℓ, p, ω)) the closure of Cc((Γ, ℓ, p, ω)) with respect to the ∥∥∞-norm.
Now, let W k,p(I(e), µ|I(e) denote the Sobolev space of functions in Lp(I(e)) such that its

weak derivatives up to order k have finite Lp norm. Set for k ∈ R+ and p ≥ 1,

Sk,p((Γ, ℓ, p, ω), µ) := {u ∈ C((Γ, ℓ, p, ω)) : ∀e ∈ E, u|I(e) ∈ W k,p(I(e), µ|I(e))}(7)

W k,p((Γ, ℓ, p, ω), µ) := {u ∈ Sk,p((Γ, ℓ, p, ω), µ) :
∑
e∈E

∥u∥pWk,p(I(e),µ|Ie
) <∞}(8)

W k,p
0 ((Γ, ℓ, p, ω), µ) := C0((Γ, ℓ, p, ω)) ∩W k,p((Γ, ℓ, p, ω), µ).(9)

Finally, consider the Dirichlet form on L2((Γ, ℓ, p, ω), µ) with domain W 1,2
0 ((Γ, ℓ, p, ω), µ),

defined by

ϵ(f, g) =
∑
e∈E

∫
I(e)

f ′(x)g′(x)p(e)m(dx).

It is a well-established fact that every regular Dirichlet form has an associated Markov
process [CF11, Theorem 1.5.1]. The process associated with ϵ is in fact a Brownian motion
on (Γ, ℓ, p, ω).[Fol14]

Informally, we can view this process as obtained from Brownian Motion on R, denoted
B(t). If we start at some vertex x, then {B(t) ̸= 0} consists of countably many intervals.
Now, during each of these intervals, we pick an adjacent edge f with probability p(f)∑

e∈E(x) p(e)
,

where E(x) denotes all edges that connect to x, and the process moves like
∣∣Wω(f)−1t

∣∣ until it
reaches a new vertex, at which point, we can use the strong Markov property and continue.

4. Well-Known Results about Brownian Motions on Metric Graphs

We denote Brownian motion on a metric graph Γ as (Yt)t≥0.
Pick a vertex x ∈ Γ that is adjacent to vertices x1, . . . , xk by edges e1, . . . , ek, and itself

through the edge xloop. Let B be the part of the graph that contains these.
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We also introduce a coordinate system: for 1 ≤ j ≤ k and 0 ≤ z ≤ ℓ(ej), we call (j, z) the
point on ej that is at distance z from x. On the loop, we choose some arbitrary orientation
and write (loop, z).

Finally, let τ = inf{t ≥ 0 : Yt /∈ B}, which is the hitting time for x1, . . . , xk.

Theorem 4. Given a Brownian motion (Yt) starting at x ∈ Γ, the probability that Yt hits
the vertex ej first is

(10) Px(Yτ = xj) =
q(ej)/ℓ(ej)∑

e∈E(x) q(e)/ℓ(e)
,

where

(11) q(ej) =

{
p(ej) if e ̸= loop

2p(ej) if e = loop
,

and E(x) denotes all edges that connect to x.[Fol14, Theorem 2.1]

5. Compact Metric Graphs

The heat kernel on compact metric graphs is very well understood, and we have a lot of
nice methods for calculating the heat kernel.

5.1. Known Results. Let Γ be a compact metric graph. On each edge, the Laplacian −∆ is
subject to Kirchhoff-Neumann boundary conditions. We associate with −∆ an orthonormal
basis of real-valued eigenfunctions ψj with corresponding eigenvalues λj. Then, it is well-
known that the heat kernel can be calculated using this formula:[BHJ22]

(12) H(t, x, y) =
∞∑
j=1

e−tλjψj(x)ψj(y).

Example 1. Let Γ be a star graph with d equal edges of length a. Then, considering an
orthonormal basis of eigenfunctions for the Laplacian on Γ, using the above formula we can
find the expansion:

(13) H(t, x, x) =
1

ad
+

2

ad

∞∑
k=1

e(−πk/a)2t cos2(
πk

a
x)+

2(d− 1)

ad

∞∑
k=0

e(
π
a
(k+ 1

2
)2t sin2(

π

a
(k+

1

2
)x).

5.2. Setup. Let Γ be a compact metric graph, meaning that the number of edges and
vertices is finite, with each edge length being finite as well. Since Γ is an “undirected" graph,
we can turn it into a directed graph by turning each edge into two directed edges (which will
henceforth be referred to as bonds), with one in each direction.

For each bond e⃗, we denote the initial vertex as ∂−(e⃗) and the final vertex as ∂+(e⃗), and
we say that two bonds e⃗1 and e⃗2 are consecutive if ∂+(e⃗2) = ∂−(e⃗1). Given two consecutive
bonds e⃗1 and e⃗2, we say that they form a transfer if ∂−(e⃗1) ̸= ∂+(e⃗2), and a bounce if
∂−(e⃗1) = ∂+(e⃗2).

Using consecutive bonds, we can build a path between two vertices v1 and v2, denoted
γ = (v1, e⃗1, . . . , e⃗n, v2), where ∂−(e⃗1) = v1 and ∂+(e⃗n) = v2, and we denote the length of the
path as ℓ(γ).
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Finally, let P(v1, v2) be the collection of all paths from v1 to v2, and to each path γ we
assign a coefficient α(γ), defined as follows:

(14) α((v, v)) :=
2

deg(v)
,

where (v, v) is the trivial path from a vertex v to itself (note that the path does not travel
through any bonds).

Now, for a general path, we define:

(15) α((v−, e⃗1, . . . , e⃗n, v+)) :=
4

deg(v−) deg(v+)

n∏
j=1

β(e⃗j, ⃗ej+1),

where

(16) β(e⃗j, ⃗ej+1) :=

{
2

deg ∂+(e⃗j)
, ∂−(e⃗j) ̸= ∂+( ⃗ej+1) (transfer)

2
deg ∂+(e⃗j)

− 1, ∂−(e⃗j = ∂+( ⃗ej+1) (bounce)

An important distinction to be made is that we do not want to allow for tadpoles, which are
bonds with equal initial and final vertices. We can work around this issue by inserting an
artificial vertex of degree 2:

(a) A tadpole (b) No longer a tadpole

Figure 1. Tadpole: Before and After

These artificial vertices contribute a factor of 0 for a bounce and 1 for a transfer, making
them essentially invisible except as potential terminal points for a path in the calculation of
the coefficient of a path.

5.3. A Path Theorem for Compact Metric Graphs.

Theorem 5. Given a compact metric graph Γ, and given two points q1, q2 ∈ Γ (including
vertices), the heat kernel admits the expansion

(17) H(t, q1, q2) =
1√
4πt

∑
γ∈P(q1,q2)

α(γ)e−ℓ(γ)2/4t,

where α(γ) denotes the coefficient of the path γ, ℓ(γ) denotes the length, and P(q1, q2) is the
collection of paths from q1 to q2.
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5.4. Path Formula for One-Dimensional Finite Interval. Let Γ consist of two vertices
and an edge of finite length a > 0. From here on out, we will simply regard Γ as being
equivalent to [0, a]. Our goal is to use Theorem 5 to find a closed form expansion for the
heat kernel on Γ. In other words, we pick x, y in the interior of Γ (i.e. not the endpoints of
the interval), where without loss of generality x < y, and we wish to find H(t, x, y).

First, we can make some observations:
(1) A potential path between x and y cannot bounce at x or y. This is because x and

y, if we consider them as “artificial" nodes in the graph, have degree 2, and will any
such path will involve some paths e⃗j and ⃗ej+1 such that β(e⃗j, ⃗ej+1) = 0, and therefore
the coefficient of that path will be 0, thus not counting towards the formula.

(2) However, a path can bounce at the 0 or a vertices which have degree 1.
Given these observations, we first begin by considering the most rudimentary “types” of
paths. The two most basic types of paths are:

(1) A path going straight from x to y (henceforth denoted path type A).
(2) A path going from x to 0 to y (henceforth denoted path type B).

These are the shortest possible “allowed” paths that will count towards the summation.

0 x y a

(a) Path Type A

0 x y a

(b) Path Type B

Figure 2. Two Rudimentary Path Types

Now, given these two path types, we can construct all possible paths by starting with one
of the rudimentary types, then allowing the particle to bounce at 0 or 1 as many times as
desired, as long as the path does not bounce at x or y.

(3) Starting with path type A, bouncing between 0 and a, then approaching y from the
right. The length of such a path would be |x+ y + 2ak| for some k ∈ −N.

(4) Starting with path type A, bouncing between 0 and a, then approaching y from the
left. The length of such a path would be |x− y + 2ak|, for some k ∈ −N.

(5) Starting with path type B, bouncing between 0 and a, then approaching y from the
right. The length of such a path would be |x− y + 2ak| for some k ∈ N.

(6) Starting with path type B, bouncing between 0 and a, then approaching y from the
left. The length of such a path would be |x+ y + 2ak| for some k ∈ N.

x y

bounce k times

Path Type (3)

x y

bounce k times

Path Type (5)

Figure 3. Examples of Constructed Paths

Therefore, we have that P(x, y) consists exactly of all the 6 above types of paths for every
k ∈ N. We can also see that for all γ ∈ P(x, y), α(γ) = 1.
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Therefore, plugging everything into the path summation formula, we get:

(18) H(t, x, y) =
1√
4πt

∑
k∈R

(
e−|x−y+2ak|2/4t + e−|x+y+2ak|2/4t

)
.

5.5. Solving the Heat Equation on One-Dimensional Finite Interval. Another way
to obtain a formula for the heat kernel on [0, a] is to directly solve the heat equation given
Neumann boundary conditions at 0 and a. In other words, we want to solve for the function
H(t, x, y) such that for u(t, x) :=

∫ a

0
ϕ(y)H(t, x, y)dy:

(19)


∂u
∂t

= k ∂2u
∂x2

u(x, 0) = ϕ(x)
∂u
∂x
(0, t) = ∂u

∂x
(a, t) = 0

.

In order to solve this, we use separation of variables and find a solution of the form u(x, t) =
X(x)T (t). Plugging this expression, we get

XT ′ − kX ′′T = 0

⇒ T ′

kT
=
X ′′

X
=: −λ.

So, the problem reduces to finding X and λ such that:

(20)

{
−X ′′(x) = λX(x)

X ′(0) = X ′(a) = 0
.

Solving this differential equation, we can see that general solutions are given by

(21) X(x) = an cos
(nπ
a

)
.

Therefore, the solution is

(22) u(x, t) = a0u0 +
∞∑
n=1

ane
−λ2

nt cosµnx,

for any choice of a1, a2, . . . , where µn = nπ
a

and λn =
√
kµn.

Now, we solve for the initial condition u(x, 0) = ϕ(x) to get that

(23) ϕ(x) = a0 +
∞∑
n=1

an cos
(nπx

a

)
,

for x ∈ (0, a). This is a Fourier cosine series, and so we can write

a0 =
1

a

∫ a

0

ϕ(x)dx,

an =
2

a

∫ a

0

ϕ(x) cos
(nπx

a

)
.

By the linearity of integrals and plugging in appropriate values, we recover the formula

(24) H(t, x, y) =
1

a
+

2

a

∞∑
n=1

e−(
πn
a )

2
t cos2

(nπx
a

)
.
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This matches up with (13). It is also important to note that if we solve this system with the
method of images, we get the path formula (18).

5.6. Other Remarks. The path formula (18) also works for some non-compact metric
graphs.

Example 2. Consider the positive real line R+ again. Following our principle of not allowing
bounces at vertices of degree 2, we can see that the only viable paths between two points
x, y ∈ R+ is the direct path from x to y and the path from x to 0 to y, both with coefficient
of 1. Therefore, we know that P(x, y) = {(x, y), (x, 0, y)}. Additionally, we know that
α((x, y)) = α((x, 0, y)) = 1, and ℓ((x, y)) = |x− y| and ℓ((x, 0, y)) = |x+ y|. Therefore,
plugging these into the formula, we recover our original formula for the heat kernel:

(25) H(t, x, y) =
1√
4πt

(
e−(x−y)2/4t + e−(x+y)2/4t

)
.

Note the small difference with the original formula. This is because we are working with
different k coefficients for the heat equation ∂u

∂t
= k ∂2u

∂x2 .

6. Infinite Metric Trees

6.1. Definitions. The heat kernel on (infinite) metric trees is not as well understood as
compact metric graphs, and it is very difficult to compute an explicit value for the heat
kernel on metric trees. This section will outline various methods to estimate the heat kernel
on metric graphs.

Note that we are assuming all metric trees to be of infinite volume, i.e. it is not bounded.

Definition 6.1. For a metric tree Γ, the branching function is defined to be

g0(r) = #{x ∈ Γ : |x| = r},
where |x| denotes the distance from x to the root.

Example 3. Let Γ be a binary tree with doubling edge lengths:

1 1
2

4

. . .
Then, we have g0(r) = min{2n : n ∈ N, r < 2n}.

6.2. Results on Metric Trees. The following theorem does not only apply to metric trees,
but general metric graphs of infinite volume: [FK13, Theorem 2.2]

Theorem 6. Let Γ be a connected graph of infinite volume. Then, for all x ∈ Γ and t > 0,

H(t, x, x) ≤ (πt)−1/2.

This is the sharpest possible bound, as evidenced in the following example:

Example 4. Γ = R+.

H(t, x, x) =
1√
4πt

(1 + e−
x2

t ) ≤ 1√
4πt

(2) =
1√
πt
.
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The long-time decay of the diagonal of the heat kernel on a metric tree is dependent on
the speed of the growth of g0.

Theorem 7. [FK13, Theorem 2.3] If there exists a constant C0 such that g0(2r) ≤ C0g0(r)
for all r ∈ [0,∞) for some symmetric tree Γ, then there exists c > 0 such that for all x ∈ Γ
and t > 0,

1

c
√
tg0(|x|+

√
t)

≤ H(t, x, x) ≤ cg0(|x|)√
tg0(|x|+

√
t)
.

If the metric tree does not fulfill the above condition, we still have a theorem for the upper
bound for the diagonal of the heat kernel:

Theorem 8. [FK13, Theorem 2.5] Let Γ be a symmetric tree, and assume that

S−1
Γ (δ) := sup

r>0

(∫ r

0

g0(s)ds
)(δ−2)/δ (∫ ∞

r

1

g0(s)
ds
)
<∞,

for some δ > 2. Then, for all x ∈ Γ, t > 0,

H(t, x, x) ≤
(

δ

2S̃Γ(δ)

)δ/2

t−δ/2g0(|x|),

where

S̃γ(δ) :=

(
(δ − 2)δ−2δδ

(2(δ − 1))2(δ−1)

)1/δ

SΓ(δ).

Remark. The above theorem still imposes a condition on the speed of the growth of the tree.
As a simple example, consider a binary tree with constant edge lengths of 1.

1 1
1 1

. . .
For this tree, we can see that g0(r) = 2⌊r⌋, where ⌊r⌋ denotes the largest integer that is
smaller than or equal to r. We can quickly see that

(26) sup
r>0

(∫ r

0

g0(s)ds
)(δ−2)/δ (∫ ∞

r

1

g0(s)
ds
)
<∞

if and only if δ−2
δ

= 1, which is impossible. This can be attributed to the fact that the tree
simply grows too quickly.

Definition 6.2. We say that a graph Γ has global dimension d ≥ 1 if

(27) 0 < inf
r≥0

g0(r)

(1 + r)d−1
≤ sup

r≥0

g0(r)

(1 + r)d−1
<∞.

Proposition 1. If Γ has global dimension d > 2, then the condition in Theorem 8 is met,
i.e.

sup
r>0

(∫ r

0

g0(s)ds
)(δ−2)/δ (∫ ∞

r

1

g0(s)
ds
)
<∞,

with δ = d.
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Proof. Define F (r) =
∫ r

0
g0(s)ds, G(r) =

∫∞
r

1
g0(s)

ds. We want to prove that

F (r)
d−2
d ·G(r) <∞.

We know that for sufficiently large r, g0(r) grows about as fast as (1 + r)d−1. So, we can
write

F (r) =

∫ r

0

g0(s)ds

≪
∫ r

0

(1 + r)d−1ds

=
(1 + r)d

d
.

On the other hand, we also write

G(r) ≪
∫ ∞

r

1

(1 + s)d−1
ds

= (1 + r)2−d.

Putting it all together, we have

F (r)
d−2
d ·G(r) ≪

(
(1 + r)d

d

) d−2
d

· (1 + r)2−d

=
(1 + r)d−2

d
d−2
d

· 1

(1 + r)d−2

=
1

d
d−2
d

<∞.

□

Proposition 2. Suppose a graph Γ has global dimension d ≥ 1. Then, Γ fulfills the volume
doubling condition, or in other words, there exists C0 such that:

(28) g0(2r) ≤ C0g0(r),

for all r ∈ [0,∞).

Proof. Since Γ has global dimension d, this means that there exists some R such that for all
r > R,

⇒ ∃c1, c2 ∈ R such that c1(1 + r)d−1 ≤ g0(r) ≤ c2(1 + r)d−1.

Fix some large enough r0 such that this holds. Then, we also get that
c1(1 + r0)

d−1 ≤ g0(2r0) ≤ c2(1 + r0)
d−1

⇒ g0(2r0)

g0(r0)
≤ c2(1 + 2r0)

d−1

c1(1 + r0)d−1
.

Therefore, for large r, the ratio g0(2r)
g0(r)

is bounded by k1 c2c1 for some k1.
Now, for small r, we can observe that we can pick r0 ∈ (0, r), and we can simply take

k2 = supr0∈[0,r)
g0(2r0)
g0(r0)

. Since g0 is an integer-valued function and r is a fixed finite value,
k2 <∞.

Let C0 = max(k1, k2) and we are done. □
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Proposition 3. The converse of Proposition 2 holds, i.e. if there exists C0 such that g0(2r) ≤
C0g0(r) for all r ∈ [0,∞), then there exists d ≥ 1 such that

(29) 0 < inf
r≥0

g0(r)

(1 + r)d−1
≤ sup

r≥0

g0(r)

(1 + r)d−1
<∞.

Proof. Suppose that g0(2r) ≤ C0g0(r) for all r ∈ [0,∞). Then, let g0(1) = k < ∞. Using
the volume doubling condition, we can see g0(2) ≤ C0k, g0(4) ≤ C2

0k, and so on. Linearly
interpolating this, we can therefore see that g0(r) ≤ C

log2(r)
0 for all r.

Using this information, we can pick d such that C log2(r)
0 ≤ k(1 + r)d−1, which we know

exists since C0 is a finite value. Therefore, Γ has global dimension d as required. □

7. Acknowledgements

This material is based on work done during the Indiana University Mathematics REU
in the Summer of 2023. I would like to express my immense appreciation for Professor
Wai-Tong (Louis) Fan for his incredible patience and guiding me along the research process
and Johnny Yang, a PhD student at IU, for his mentorship and guidance. I’d also like to
thank Elena Axinn, a fellow IU REU participant who also worked with Professor Fan, for her
endless support and help throughout the summer. Finally, this would not have been possible
without the generous support of Grant 2051032 from the National Science Foundation.

References

[BHJ22] David Borthwick, Evan Harrel, and Kenny Jones, The heat kernel on the diagonal for a compact
metric graph, Ann. Henri Poincare 24 (2022), 1661–1680.

[CF11] Zhenqing Chen and Masatoshi Fukushima, Symmetric markov processes, time change, and boundary
theory, Princeton University Press, 2011.

[FAN21] Wai-Tong Louis FAN, Stochastic pdes on graphs as scaling limits of discrete interacting systems,
Bernoulli 27 (2021), no. 3, 1899–1941.

[FHT21] Wai-Tong Louis Fan, Wenqing Hu, and Grigory Terlov, Wave propagation for reaction-diffusion
equations on infinite random trees, Communications in Mathematical Physics 384 (2021), no. 1,
109–163.

[FK13] Rupert Frank and Hynek Kovarik, Heat kernels of metric trees and applications, SIAM Journal on
Mathematical Analysis 45 (2013), no. 3, 1027–1046.

[Fol14] Matthew Folz, Volume growth and stochastic completeness of graphs, Transactions of the American
Mathematical Society 366 (2014), no. 4, 2089–2119.

[FS00] Mark Freidlin and Shuenn-Jyi Sheu, Diffusion processes on graphs: stochastic differential equations,
large deviation principle, Probab. Theory Relat. Fields 116 (2000), 181–220.

[HR14] Hatem Hajri and Olivier Raimond, Stochastic flows on metric graphs, Electron. J. Probab. 19
(2014), 1–20.

[Pos07] Olaf Post, Spectral analysis of metric graphs and related spaces, arXiv e-prints (2007),
arXiv:0712.1507.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48104 USA
Email address: justliu@umich.edu


	1. Introduction
	2. Preliminaries
	3. Constructing Brownian Motion on Metric Graphs
	3.1. The Heat Kernel
	3.2. Dirichlet Forms

	4. Well-Known Results about Brownian Motions on Metric Graphs
	5. Compact Metric Graphs
	5.1. Known Results
	5.2. Setup
	5.3. A Path Theorem for Compact Metric Graphs
	5.4. Path Formula for One-Dimensional Finite Interval
	5.5. Solving the Heat Equation on One-Dimensional Finite Interval
	5.6. Other Remarks

	6. Infinite Metric Trees
	6.1. Definitions
	6.2. Results on Metric Trees

	7. Acknowledgements
	References

