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Abstract. Clifford algebras generalize many features of complex numbers and quaternions.
Quaternionic analogues of holomorphic functions – called regular functions – are known to
be invariant under conformal or Möbius transformations. It is also known that a similar
invariance property holds in the context of Clifford algebras associated to positive definite
quadratic forms. In this project, we generalize these results to the case of Clifford algebras
associated to non-degenerate quadratic forms. This approach puts the indefinite signature
case on the same footing as the classical positive definite case.

1. Introduction

It is known that a class of functions that generalizes holomorphic functions in complex
analysis, called regular functions in the context of quaternions and monogenic functions in
the context of Clifford algebras, is preserved under a certain multiplier representation of
conformal transformations. See [11] for the quaternion case and [9] for Clifford algebras of
Euclidean space with positive definite signature.

Let Cl(V ) be the universal Clifford algebra associated to a vector space V with quadratic
form Q, and let f : V → Cl(V ) be a monogenic function. If A = ( a b

c d ) represents the
conformal (or Möbius) transformation on V

(1) x 7→ (ax + b)(cx + d)−1,

then it is known in the case of positive definite quadratic forms Q that

(2) JA(x)f(Ax) =
(cx + d)−1

|(xc̃ + d̃)(cx + d)|n/2−1
f(Ax)

is also monogenic. In this paper, we extend this result to the case of quadratic forms Q having
mixed signature. While the formula in the mixed signature case visually appears the same, its
meaning is slightly different. First of all, the transformation (1) takes place on the conformal
closure of the vector space V , and it is different from the one-point compactification of V .
Secondly, one needs to revisit the definition of the monogenic functions in this context and
choose the ”right” Dirac operator. We argue that there is a certain natural choice of the
Dirac operator that makes the result valid, while other choices would not work.

We begin by reviewing the ambient construction of conformal compactification and con-
formal transformations, following [10]. After we introduce Clifford algebras based on [4, 5],
we devote a considerable part of the paper to unifying the ambient construction with the
Clifford algebra generalization of the description of Möbius transformation via 2 × 2 matri-
ces. In this generalization, conformal transformations are expressed via Vahlen matrices with
Clifford algebra valued entries. To unify the two treatments of conformal transformation,
we build upon [1, 7] and provide details that might be left out.
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Finally, we verify that the multiplier presentation of Vahlen matrices acting on monogenic
functions described in eq. (2) remains valid for vector spaces with non-degenerate signature.
Such presentation frequently appears in the context of Clifford analysis such as in [9], but
our approach is a more geometric and is independent of the signature of the quadratic form
Q.

This research was made possible by the Indiana University, Bloomington, Math REU
(research experiences for undergraduates) program, funded by NSF Award #2051032. We
would like to thank Professor Dylan Thurston for organizing and facilitating this program.
We would also like to thank Ms. Mandie McCarthy and Ms. Amy Bland for their admin-
istrative work, the various professors for their talks, and the other REU students for their
company.

2. Conformal Transformations

In this section, we review the definition of the conformal compactification N of a vector
space V and the conformal action of O(V ⊕R1,1) on N(V ). For detailed exposition, readers
may refer to [10].

2.1. Basic Definitions of Conformal Transformations. Let p, q be nonnegative integers
with n = p + q ≥ 2, and let V be an n-dimensional vector space equipped with a symmetric
non-degenerate bilinear form g : V × V → R with signature (p, q). Having signature (p, q)
means that there exists a linear bilinear form preserving isomorphism between Rp,q with V
where Rp,q is the n-dimensional vector space Rn with bilinear form

(3) g(x, y) = x1y1 + · · · + xpyp − xp+1yq+1 − · · · − xp+qyq+q.

Definition 1. Let M be a manifold equipped with a symmetric bilinear form g : TM ×
TM → R. We say that another symmetric bilinear form ĝ : TM × TM → R is conformally
equivalent to g if there exists a smooth function Ω : M → R>0 such that ĝ = Ω2g.

A smooth map ϕ : (M, g) → (M ′, g′) between manifolds equipped with a symmetric
bilinear forms is conformal if the pullback of g′ along ϕ is conformally equivalent to g. That
is, there exists a smooth function Ω : M → R>0, called the conformal factor, such that

(4) ϕ∗g′ = Ω2g.

A conformal transformation on a manifold M is a conformal map ϕ : U → M , where
U ⊆ M is a non-empty connected open subset.

If we consider bilinear forms that are related by positive scalar fields as equivalent, then
conformal maps are exactly the smooth maps that preserve this equivalence class of bilinear
forms. We call this equivalence class of bilinear forms a conformal structure. Note that our
definition of conformal transformation is not necessarily orientation preserving. To prevent
terminology conflicts, in section 2.3, we avoid talking about the conformal group, which, by
definition, is the connected component of the group of all orientation preserving conformal
transformation. Instead, we speak of the group of conformal transformations in the sense of
definition 1.

2.2. Conformal Compactification. In this section, we describe the ambient construction
of conformal compactification. The ambient construction of conformal compactification of
a vector space V with symmetric non-degenerate bilinear form g with signature (p, q) takes
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place in V ⊕ R1,1. By abuse of notation, we denote the bilinear form on V ⊕ R1,1 by g and
let (e−, e+) be the standard basis of R1,1 with

(5) g(e+, e+) = 1, g(e−, e−) = −1, g(e+, e−) = g(e−, e+) = 0.

Lemma 2. Consider the line {(t, s)|t+s = 1} ⊆ R1,1, any section r : M → M×{(t, s)|t+s =
1} ⊆ M × R1,1 is a local isometry.

Proof. Any section r is of the form

(6) r(x) = x + t(x)e− + (1 − t(x))e+.

for some function t : M → R. The pushforward is then

(7) r∗(v) = v + (∂vt)e− − (∂vt)e+.

It is then clear that for all v, u

r∗g(v, u) = g(v + (∂vt)e− − (∂vt)e+, u + (∂ut)e− − (∂ut)e+)

= g(v, u).
(8)

Since r∗g = g, r is a local isometry. □

Let

(9) N = {z ∈ V ⊕ R1,1 | z ̸= 0, g(z, z) = 0}.
be the null cone in V ⊕ R1,1. Then N inherits metric from V ⊕ R1,1. Let i : V → N be
defined by

(10) i(x) = x +
1 + g(x, x)

2
e− +

1 − g(x, x)

2
e+.

The map i is constructed so that lemma 2 applies and i is a local isometry.

Lemma 3. Suppose x ∈ N , then we have g(x, v) = 0 for all tangent vector v ∈ TxN .

Proof. Let s : (−ϵ, ϵ) → N ba a path that represents v, that is s(0) = x and ds
dt

(0) = v. We
have

(11) g(x, v) =
d

dt

∣∣∣∣
t=0

g(x, s(t)) =
1

2

d

dt

∣∣∣∣
t=0

g(s(t), s(t)) = 0

because g(s(t), s(t)) = 0 for all t. □

Lemma 4. For arbitrary smooth map ϕ : V → N and smooth function Ω : V → R>0, the
function (Ωϕ)(x) = Ω(x)ϕ(x) satisfies

(12) (Ωϕ)∗g = Ω2ϕ∗g.

Proof. By product rule, we have

(13) (Ωϕ)∗(u) = Ωϕ∗(u) + (∂uΩ)ϕ.

By lemma 3, we have g(ϕ, v) = 0 for all v tangent to the null cone. Therefore, we have

(Ωϕ)∗g(u, v) = g(Ωϕ∗(u) + (∂uΩ)ϕ,Ωϕ∗(v) + (∂vΩ)ϕ)

= g(Ωϕ∗(u),Ωϕ∗(v))

= Ω2ϕ∗g(u, v).

(14)

□
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Based on the preceding lemma, we observe that Ωi : V → N is a conformal map with
conformal factor Ω. The core idea of conformal compactification involves selecting a slice
S of N such that the canonical projection π : N → N = N /R× is a local diffeomorphism
when restricted to S. Through the local diffeomorphism, we can endow N with a symmetric
bilinear form such that π is an isometry, thereby giving N a conformal structure. Subse-
quently, we can determine Ω such that Ωi : V → S has image in S, then π ◦ (Ωi) : V → N
will become a conformal embedding.

In the positive definite case, we can simply choose the slice to be the intersection between
N and V × {(t, s) | t = 1}. This choice leads to us to

(15) Ω(x) =
2

1 + g(x, x)
,

so that

(16) Ωi(x) =
2x

1 + g(x, x)
+ e− +

1 − g(x, x)

1 + g(x, x)
e+,

which is exactly the stereographic projection up to sign convention.
In the indefinite case, the situation becomes more complicated because g(x, x) can be −1,

rendering eq. (15) undefined. To tackle this, we follow the standard approach described
in [10] for conformal compactification of Rp,q. The approach can be applied to conformal
compactification of V upon choosing a basis. While choosing a basis is not a canonical
procedure, there might be an alternative canonical construction.

Let the slice S be the intersection between N and the hypersphere

(17) Sn+2 = {(z0, . . . , zn+1) ∈ Rp+1,q+1 | z20 + · · · + z2n+1 = 2},
thus yielding

(18) S =

{
z ∈ Rp+1,q+1

∣∣∣∣∣
p∑

j=0

(zj)2 = 1 =
n+1∑

j=p+1

(zj)2

}
∼= Sp × Sq.

Then, it can be shown that π : S → N is a local diffeomorphism and a double covering.
Moreover, the metric g of S induced by inclusion S ⊆ Rp+1,q+1 carries over to N such that
π becomes a local isometry. One can show that

(19) Ω(x) =
2√

1 + 2
∑n

j=1(x
j)2 + g(x, x)2

indeed gives rise to Ωi : V → S and thus π ◦ (Ωi) : V → N is a conformal embedding.

2.3. The Group of Conformal Transformations. Let us review some well known re-
sults concerning the group of conformal transformation. Reader may again refer to [10]
for details, bearing in mind that our notion of group of conformal transformations includes
non-orientation preserving transformations.

Proposition 5. For p + q > 2, every conformal transformation ϕ : U → Rp,q is a finite
composition of the following types of conformal transformations:

(1) (Translation) x 7→ x + c where c ∈ V ;
(2) (Orthogonal transformation) x 7→ Ax where A ∈ O(V );
(3) (Dilation) x 7→ λx where λ > 0;
(4) (Inversion) x 7→ x

g(x,x)
.
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Henceforth, our discussion will focus exclusively on the case p + q > 2.
Let us denote the conformal compactification of V by N(V ), and the canonical conformal

embedding by i : V → N(V ). The main result is as follows.

Proposition 6. For p + q > 2, every conformal transformation ϕ : U → V can be uniquely
extended to a conformal diffeomorphism on N(V ), which is a diffeomorphism ϕ̂ : N(V ) →
N(V ) satisfying ϕ̂ ◦ i = i ◦ ϕ.
Moreover, every conformal diffeomorphism N(V ) → N(V ) can be induced by an action of

O(V ⊕ R1,1). The group of all conformal diffeomorphisms N(V ) → N(V ) is isomorphic to
O(V ⊕ R1,1)/{±1}.

The proof of this proposition involves applying proposition 5 and expressing the four
types of conformal transformations as actions of elements of O(V ⊕ R1,1). Let us provide
the expressions to better understand conformal transformations. For clarity and geometric
intuition, we find it most advantageous to work with a new basis n0 = (e− + e+)/2 and
n∞ = (e− − e+)/2 for R1,1. Note that n0 = i(0) represents the zero vector in V , and n∞
represents a point at infinity (the inversion of the zero vector). In this basis, the symmetric
bilinear form is given by

(20) g(n0, n0) = g(n∞, n∞) = 0, g(n0, n∞) = g(n∞, n0) = −1

2
,

and eq. (10) is given by

(21) i(x) = x + n0 + g(x, x)n∞.

(1) Translation. For a translation x 7→ x + c, we have the orthogonal transformation

(22) x 7→ x + 2g(x, c)n∞, n0 7→ c + n0 + g(c, c)n∞, n∞ 7→ n∞.

From calculation, we see that

i(x) 7→ (x + 2g(x, c)n∞) + (c + n0 + g(c, c)n∞) + g(x, x)n∞

= (x + c) + n0 + g(x + c, x + c)n∞

= i(x + c).

(23)

(2) Orthogonal transformation. For an orthogonal transformation x 7→ Ax, we simply
have

(24) x 7→ Ax, n0 7→ n0, n∞ 7→ n∞.

It is clear that i(x) 7→ i(Ax).
(3) Dilation. For a dilation x 7→ rx, we have

(25) x 7→ x, n0 7→
1

r
n0, n∞ 7→ rn∞.

Using the fact that proportional vectors in N are identified, we see that

i(x) 7→ x +
1

r
n0 + rg(x, x)n∞

∼ rx + n0 + g(rx, rx)n∞

= i(rx).

(26)
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(4) Inversion. For inversion x 7→ x
g(x,x)

, we have

(27) x 7→ x, n0 7→ n∞, n∞ 7→ n0,

or equivalently e− 7→ e− and e+ 7→ −e+. We can see that for x that is not null (i.e.
g(v, v) ̸= 0, also known as anisotropic),

i(x) 7→ x + g(x, x)n0 + n∞

=
x

g(x, x)
+ n0 +

1

g(x, x)
n∞

= i

(
x

g(x, x)

)
.

(28)

2.4. Classification of Points in N(V ). The points in N(V ) are represented by a + be− +
ce+ ̸= 0 such that g(a, a) − b2 + c2 = 0, where a ∈ V , b, c ∈ R. Proportional elements are
identified. We can distinguish between the following three classes.

(1) b = 1+g(a,a)
2

and c = 1−g(a,a)
2

. These points are identified with vectors in V through
eq. (10). This class is closed under translation, orthogonal transformation, and di-
lation. The subset of points that represents vectors in V that are not null is closed
under inversion.

(2) g(a, a) = 0, b = −1
2

and c = 1
2
. Such a point represents the inversion of null vectors

a ∈ V .
(3) g(a, a) = b = c = 0 and a ̸= 0. We can think of these points as the limiting points of

the null lines generated by the null vectors a ∈ V .

3. Clifford Algebras

In this section, we review the fundamentals of Clifford algebras including its associated
groups and introduce monogenic functions.

3.1. Definitions and Constructions of Clifford Algebras. Conventions vary greatly
when in comes to Clifford algebras. In this paper, we closely adhere to the convention found
in Garling [5]. Let V be a vector space over a field K with quadratic form Q : V → K.

Definition 7. A Clifford algebra W of V is a unital associative algebra W that is equipped
with an injective linear map j : V → W such that

(1) j(x)2 = −Q(x) for all x ∈ V ,
(2) 1 /∈ j(V ), and
(3) W is generated by K and j(V ).

Some authors such as Delanghe, Sommen, and Souček [4] use the sign convention where
j(x)2 = Q(x). Our sign convention aligns with the prevailing practice in Clifford analysis
and in the related literature concerning our main inquiry in the positive definite case.

Suppose W is a Clifford algebra of V . When there is no ambiguity, we identify V as a
subspace of W through the defining map j : V → W . For example, we can say that for
x ∈ V , we have x2 = −Q(x).

Several equivalent approaches exist for defining the universal Clifford algebra associated
to V . We employ the universal property described in [5].
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Definition 8. The universal Clifford algebra Cl(V ) of V is a Clifford algebra with the
universal property that for each isometry ϕ : V → V ′ and each Clifford algebra W ′ of
V ′, there exists a unique algebra homomorphism ϕ̂ : Cl(V ) → W ′ such that the following
diagram commutes.

(29)

V V ′

Cl(V ) W ′

ϕ

ϕ̂

We can construct the universal Clifford algebra explicitly as a quotient of the tensor algebra⊗
V =

⊕∞
k=0 V

⊗k. This construction is due to Chevalley [2], which we now describe. Let I
be the two sided ideal in

⊗
V generated by the elements of the form

(30) x⊗ x + Q(x) for x ∈ V

Then the quotient algebra

(31) Cl(V ) =
⊗

V/I

is the universal Clifford algebra of V .
The universal property guarantees the uniqueness of the universal Clifford algebra of V

up to isomorphism by the standard argument. The explicit construction serves to establish
the existence of such a universal object. It can be easily checked that the quotient algebra
is a Clifford algebra of V . The universal property in definition 8 can also be readily deduced
using the universal properties of tensor algebra and quotient. This realization leads to the
following universal property.

Proposition 9. The universal Clifford algebra Cl(V ) of V with i : V → Cl(V ) has the
universal property that for every unital associative algebra W with a linear map h : V → W
such that h(x)2 = −Q(x) for all x ∈ V , there exists a unique algebra homomorphism ĥ :

Cl(V ) → W such that h = ĥ ◦ i.

3.2. Basis of a Clifford Algebra. For a real vector space V , there is a canonical bijection
between quadratic forms on V and bilinear forms on V . We would like to establish this
connection to talk about Clifford algebra of a vector space equipped with a symmetric
bilinear form.

Proposition 10. Let V be a vector space over a field K that is not of characteristic 2. For
each quadratic form Q on V , there corresponds a symmetric bilinear form g given by

(32) g(x, y) =
1

2
[Q(x + y) −Q(x) −Q(y)],

and, conversely, for each symmetric bilinear form g, there corresponds a quadratic form given
by

(33) Q(x) = g(x, x).

Moreover, this correspondence is a bijection.



8 CHEN LIANG

Proof. Given quadratic form Q, the quadratic form Q̂ that corresponds to the symmetric
bilinear form corresponding to Q is

Q̂(x) =
1

2
[Q(x + x) −Q(x) −Q(y)]

=
1

2
[4Q(x) −Q(x) −Q(x)]

= Q(x),

(34)

which is the same as Q. Given symmetric bilinear form g, the symmetric bilinear form ĝ
that corresponds to the quadratic form corresponding to g is

ĝ(x, y) =
1

2
[g(x + y, x + y) − g(x, x) − g(y, y)]

=
1

2
[g(x, y) + g(y, x)]

= g(x, y),

(35)

which is the same as g. □

We denote by Rp,q the generalized Minkowski space. This is the vector space Rp+q with
the bilinear form eq. (3). Now, we know that it is also equipped with a quadratic form, and
we can consider its Clifford algebra Cl(Rp,q).

Proposition 11. Let V be a real vector space with a symmetric bilinear form g. If x, y ∈
V ⊆ Cl(V ), then xy + yx = −2g(x, y).

Proof. Direct calculation using eq. (32) shows

(36) xy + yx = (x + y)2 − x2 − y2 = −Q(x + y) + Q(x) + Q(y) = −2g(x, y),

where Q is the quadratic form corresponding to g. □

Corollary 12. If x, y ∈ V are orthogonal (i.e. g(x, y) = 0), then xy = −yx.

Theorem 13. The Clifford algebra Cl(Rp,q) has dimension 2n as a vector space, where
n = p + q. Specifically, it has a basis consists of elements of the form eα1eα2 · · · eαk

where
1 ≤ α1 < α2 < · · · < αk ≤ n, and where (ei) is the standard basis of Rp+q.

One can speculate that this is true based on the corollary 12. For a concrete proof, see
[4] for the identification between Clifford algebra and exterior algebra with a new prod-
uct operation or see [5] for the identification between Clifford algebra and certain linear
transformations on the exterior algebra.

For convenience, let N = {1, 2, . . . , n} and let eα1eα2 · · · eαk
where 1 ≤ α1 < α2 < · · · <

αk ≤ n be denoted by eA if A = {α1, . . . , αk}. We call {eA | A ⊆ N} the standard basis for
the Clifford algebra Cl(Rp,q).

There are three important involutions defined on the Clifford algebra.

Definition 14. Let i : V → Cl(V ) be the canonical embedding into Clifford algebra.

• The grade involution ·̂ : Cl(V ) → Cl(V ) is induced by h : V → Cl(V ) defined by
h(x) = −x. For vectors {v1, v2, . . . , vk} ⊆ V , we have

(37) ̂v1v2 · · · vk = (−1)kv1v2 · · · vk.
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Thus, in the standard basis, the grade involution is given by

(38) êA 7→ (−1)|A|eA

where |A| is the cardinality of A.
• The reversal ·̃ : Cl(V ) → Cl(V ) is the transpose operation on the level of tensor

algebra which descends to Clifford algebra because the two sided ideal I in definition 8
is preserved. The transpose operation is defined on each summand V ⊗k of tensor
algebra as

(·)t : V ⊗k → V ⊗k

v1 ⊗ · · · ⊗ vk 7→ vk ⊗ · · · ⊗ v1.
(39)

Hence, for vectors {v1, . . . , vk} ⊆ V , we have

(40) ˜v1 · · · vk = vk · · · v1.
In the standard basis, the reversal is given by

(41) ẽA = (−1)
|A|(|A|−1)

2 eA.

Note that the reversal is not an algebra homomorphism, but an anti-homomorphism.
• The Clifford conjugation is defined as a composition of the grade involution and

the reversal (note that these two involutions commute). We denote the Clifford-

conjugation by ā = ˆ̃a. In the standard basis, the Clifford conjugation is given by

(42) eA = (−1)
|A|(|A|+1)

2 eA.

Like the reversal, the Clifford conjugation is an algebra anti-homomorphism.

One important observation is that the grade involution, the reversal, and the Clifford
conjugation all commute with taking the multiplicative inverse in Cl(V ). For example,

(43) â(̂a−1) = âa−1 = 1 = â−1a = (̂a−1)â

shows that (̂a−1) = â−1. We will use this property implicitly.

3.3. Associated Groups. An essential feature of Clifford algebra is that we can perform
reflections using the so-called twisted adjoint action. Let V be a vector space with symmetric
bilinear form g. Let v ∈ V be a vector that is not null, hence every vector x ∈ V splits into
x = x⊥ + λv with x⊥ ∈ V orthogonal to v. The explicit decomposition is given by

(44) x⊥ = x− g(x, v)

g(v, v)
v and λ =

g(x, v)

g(v, v)
.

Then, the map σv : Cl(V ) → Cl(V ) defined as

(45) σv(x) = −vxv−1

is a reflection on the space V in the direction of v because

σv(x
⊥ + λv) = −vx⊥v−1 − v(λv)v−1

= x⊥ − λv.
(46)

Theorem 15 (Cartan-Dieudonné). Let V be a vector space with non-degenerate symmetric
bilinear form, then every orthogonal linear transformation on V can be expressed as the
product of at most dimV reflections in the direction of vectors that are not null.
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Thus, by the Cartan-Dieudonné theorem (see [5] for its proof), all orthogonal linear trans-
formations on V can be expressed using a twisted adjoint action

(47) σa : x 7→ axâ−1

where a is a product of vectors that are not null.
In a sense, the twisted adjoint action specializes in orthogonal transformations. To make

this precise, let us consider all elements in Clifford algebra such that their twisted adjoint
action preserves the vector space.

Definition 16. The Lipschitz group Γ(V ) consists of elements in Cl(V ) that preserve vector
space V under the twisted adjoint action, that is

(48) Γ(V ) = {a ∈ Cl×(V ) | axâ−1 ∈ V for all x ∈ V }
where Cl×(V ) is the set of invertible elements in Cl(V ).

Lemma 17. For all a ∈ Γ(V ), σa is always an orthogonal transformation. Moreover,
σ : Γ(V ) → O(V ) is surjective.

Proof. For all x ∈ V , we have

Q(σa(x)) = (axâ−1) ̂(axâ−1)

= −(axâ−1)(âxa−1)

= Q(x).

(49)

Surjectivity follows directly from the Cartan-Dieudonné theorem. □

Lemma 18. The kernel of σ : Γ(V ) → O(V ) is R×. Equivalently, we have the following
exact sequence

(50) 1 R× Γ(V ) O(V ) 1.σ

Proof. It is clear that R× ⊆ kerσ, so it remains to prove that ker σ ⊆ R×. Let (ei) be an
orthonormal basis for V and {eA | A ⊆ N} be the corresponding basis for Cl(V ). Let us
suppose a ∈ kerα and write it as a =

∑
A⊆N λAeA. Since aeiâ

−1 = ei for all i, we have

(51)
∑
A⊆N

(−1)|A|λAeieA = eiâ = aei =
∑
A⊆N

λAeAei.

Therefore, we obtain

(52) (−1)|A|λAeieA = λAeAei

for all i and A, but this expression only holds either when λA = 0 or when i /∈ A. The fact
that it holds for all i implies that λA = 0 for all nonempty A. Hence, a = λ∅ ∈ R×. □

Theorem 19. Let V be n-dimensional. The Lipschitz group is precisely the group generated
by R× and the invertible vectors (note that a vector is invertible if and only if it is not null).
Moreover, every element in the Lipschitz group Γ(V ) can be expressed as a product of R×

and at most n invertible vectors.

Proof. For every a ∈ Γ(V ), there exists a product of at most n invertible vectors v1 · · · vk
such that σa = σv1···vk by the Cartan-Dieudonné theorem. By the previous lemma, we have
a = λv1 · · · vk for some λ ∈ kerσ = R×. □
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Corollary 20. If a ∈ Cl(V ), then a ∈ Γ(V ) if and only if aā ∈ R× and axã ∈ V for all
x ∈ V .

Proof. Suppose a ∈ Γ(V ), then we can write a = v1v2 · · · vk as a product of vectors v1, . . . , vk
that are not null. It is clear that aā = Q(v1) · · ·Q(vk) ∈ R×. Fix arbitrary x ∈ V , since
ā = a−1(aā), we have

(53) axã = axˆ̄a = axâ−1(aā) ∈ V.

Conversely, if aā ∈ R×, then a ∈ Cl×(V ). And axã ∈ V for all x ∈ V implies that

(54) axâ−1 = âxa−1 = −axã

aā
∈ V,

for all x ∈ V . Thus, a ∈ Γ(V ). □

Corollary 21. If a ∈ Γ(V ), then āxa ∈ V for all x ∈ V .

Proof. Write a = v1v2 · · · vk as a product of vectors v1, . . . , vk that are not null, then we have

āxa = (−1)kvk · · · v1xv1 · · · vk
= (−1)kvk · · · v1x ˜vk · · · v1,

(55)

which is in V whenever x ∈ V because vk · · · v1 ∈ Γ(V ). □

Definition 22. The pin group Pin(V ) and the spin group Spin(V ) are defined as

Pin(V ) = {a ∈ Γ(V ) | āa = ±1},
Spin(V ) = {a ∈ Γ(V ) | āa = ±1, â = a}.

(56)

Note that the spin group induces orientation preserving transformations on V (even num-
ber of reflections) through the twisted adjoint action. Furthermore, the pin group and the
spin group are double covers of the orthogonal group and special orthogonal group respec-
tively. This can be summarized by the following exact sequences

(57) 1 {±1} Pin(V ) O(V ) 1,σ

(58) 1 {±1} Spin(V ) SO(V ) 1.σ

Relating back to the conformal transformations, observe that the volume form ω (i.e. the
product of a set of orthonormal basis vectors) acts as the total reflection v 7→ −v, under the
twisted adjoint action Thus, proposition 6 can be rephrased as the following.

Proposition 23. When dimV > 2, the group of all conformal diffeomorphisms N(V ) →
N(V ) is isomorphic to Pin(V ⊕ R1,1)/{±1,±ω}.

3.4. Monogenic Functions. Consider Rp,q and a left Cl(Rp,q)-module M . The Dirac op-
erator D with respect to the standard basis is defined to act on real differentiable functions
f : Rp,q → M by

Df = e1
∂f

∂x1
+ · · · + ep

∂f

∂xp
− ep+1

∂f

∂xp+1
− · · · − ep+q

∂f

∂xp+q

=
(
e1 · · · ep+q

)(1p×p 0p×q

0q×p −1q×q

) ∂/∂x1

...
∂/∂xp+q

f
(59)
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Note that the Dirac operator is independent of the orthonormal basis chosen because if

(60)

e′1
...
e′2

 = T

e1
...
e2


where T ∈ O(p, q) by definition satisfies

(61) T ⊺

(
1p×p 0p×q

0q×p −1q×q

)
T =

(
1p×p 0p×q

0q×p −1q×q

)
,

then the partial derivatives also transform by

(62)

 ∂
/
∂x′1

...
∂
/
∂x′p+q

 = T

 ∂/∂x1

...
∂/∂xp+q

.

Substitution into eq. (59) reveals that the Dirac operator is independent of the choice of an
orthonormal basis. We can do even better and define Dirac operator in a basis independent
fashion.

Definition 24. For vector space V with non-degenerate symmetric bilinear form g, which
we think of it as a map V → V ∗ or as an element of V ∗ ⊗ V ∗. Non-degeneracy implies that
g : V → V ∗ is an isomorphism, so g can also be considered an element in V ⊗ V .

Let L be the space of linear operators on functions V → M where M is a left Cl(V )-
module. Define the map i : V × V → L by

(63) i(v, u)f = v ∂uf

which is the Clifford product of v and the directional derivative of f along u. It is clear that
i is bilinear, so it extends to a map V ⊗ V → L, and the image of g ∈ V ⊗ V is the Dirac
operator.

In an arbitrary basis, let1 g = gµνeµ ⊗ eν ∈ V ⊗ V , then we have

Df = gµνi(eµ ⊗ eν)f

= gµνeµ
∂f

∂xν

= eν
∂f

∂xν

(64)

where we have defined eν = gµνeµ.

Definition 25. Suppose M is a left Cl(V )-module. A real differentiable function f : U → M
defined on an open set U ⊆ V is said to be monogenic at x ∈ U if Df(x) = 0. If f is
monogenic at all points in U , then we simply say f is monogenic.

Similarly, if M ′ is a right Cl(V )-module, we can apply the Dirac operator on the right

(65) (fD) =
∂f

∂xν
eν

and define monogenic functions with values in M ′. We can regard Cl(V ) itself as a Cl(V )-
module and speak of left or right monogenic functions f : V → Cl(V ) depending on whether
we are treating Cl(V ) as a left or right module.

1Einstein summation convention is in force. Two repeated indices are summed over.
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4. Vahlen Matrices

The relation between conformal transformations and Vahlen matrices, which are certain
2×2 matrices in Clifford algebra, is well known. We provide a review of the connection here.
For detailed expositions, readers may refer to [1, 7].

4.1. Algebra Isomorphism Cl(V ⊕R1,1) ∼= Mat(2,Cl(V )). The key ingredient is the (1, 1)
periodicity of Clifford algebra (see [4] for details), which is the following proposition.

Proposition 26. For a vector space V with signature (p, q), the Clifford algebra Cl(V ⊕R1,1)
is isomorphic to the matrix algebra Mat(2,Cl(V )).

Proof. An explicit isomorphism i : Cl(V ⊕R1,1) → Mat(2,Cl(V )) can be defined by extending

(66) i(x) =

(
x 0
0 −x

)
, i(e−) =

(
0 1
1 0

)
, i(e+) =

(
0 −1
1 0

)
for vectors x ∈ V . Using linearity, it suffices to check that i(u)i(v) + i(v)i(u) = −2g(u, v)
for all u, v ∈ V ∪ {e−, e+}.

(1) When u, v ∈ V , we have

(67)

(
u 0
0 −u

)(
v 0
0 −v

)
+

(
v 0
0 −v

)(
u 0
0 −u

)
=

(
uv + vu 0

0 uv + vu

)
= −2g(u, v).

(2) When u ∈ V and v = e∓, we have

(68)

(
u 0
0 −u

)(
0 ±1
1 0

)
+

(
0 ±1
1 0

)(
u 0
0 −u

)
=

(
0 ±u
−u 0

)
+

(
0 ∓u
u 0

)
= 0.

(3) When u = v = e∓, we have

(69)

(
0 ±1
1 0

)2

= ±1.

(4) When u ∈ e+ and v = e−, we have

(70)

(
0 −1
1 0

)(
0 1
1 0

)
+

(
0 1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 1

)
+

(
1 0
0 −1

)
= 0.

Hence, i : V ⊕ R1,1 → Mat(2,Cl(V )) induces i : Cl(V ⊕ R1,1) → Mat(2,Cl(V )) by universal
property. Furthermore, note that for a ∈ Cl(V ) ⊆ Cl(V ⊕ R1,1), we have

(71) i(a) =

(
a 0
0 â

)
and so for an arbitrary element a+be− +ce+ +de−e+ ∈ Cl(V ⊕R1,1) where a, b, c, d ∈ Cl(V ),
we have

i(a + be− + ce+ + de−e+) =

(
a 0
0 â

)
+

(
b 0

0 b̂

)(
0 1
1 0

)
+ · · ·

=

(
a + d b− c

b̂ + ĉ â− d̂

)
.

(72)

We can verify that i is an algebra isomorphism by showing that the inverse is

(73) i−1

(
a b
c d

)
=

1

2
(a + d̂) +

1

2
(b + ĉ)e− +

1

2
(−b + ĉ)e+ +

1

2
(a− d̂)e−e+.
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□

This isomorphism is also explicitly constructed by Maks [7] but with the Clifford algebra
convention that x2 = Q(x). Starting now, we will use the isomorphism i to identify Cl(V ⊕
R1,1) with Mat(2,Cl(V )).

Lemma 27. The three involutions of Cl(V ⊕ R1,1) in terms of Mat(2,Cl(V )) are given by
the following formulas:

the grade involution:

(̂
a b
c d

)
=

(
â −b̂

−ĉ d̂

)
,

the reversal:

(̃
a b
c d

)
=

(
d̄ b̄
c̄ ā

)
,

the Clifford conjugation:

(
a b
c d

)
=

(
d̃ −b̃
−c̃ ã

)
.

(74)

Proof. These can be readily deduced using the isomorphism between Cl(V ⊕ R1,1) and
Mat(2,Cl(V )). □

Definition 28. A matrix A ∈ Mat(2,Cl(V )) is called a Vahlen matrix if it is in the Lipschitz
group Γ(V ⊕ R1,1).

The four types of conformal transformations in proposition 5 can be represented by ele-
ments in Γ(V ⊕ R1,1) which in turn correspond to the following Vahlen matrices:

(1) Translation ( 1 c
0 1 ).

(2) Orthogonal transformation ( a 0
0 â ).

(3) Dilation
(√

r 0

0 1/
√
r

)
.

(4) Inversion ( 0 1
1 0 ).

We will describe a more systematic way to characterize Vahlen matrices in the next section,
and it will be obvious to see that the matrices listed above are indeed Vahlen matrices.

4.2. Characterizing Vahlen Matrices. Maks [7] claims a set of criteria for determining
Vahlen matrices leveraging corollary 20. We supply a proof of Maks’ criteria in this section.

Proposition 29. If A = ( a b
c d ) ∈ Mat(2,Cl(V )), then A ∈ Γ(V ⊕ R1,1) if and only if

(1) aā, bb̄, cc̄, dd̄ ∈ R,
(2) ac̄, bd̄ ∈ V ,
(3) axb̄− bxā, cxd̄− dxc̄ ∈ R for all x ∈ V ,
(4) axd̄− bxc̄ ∈ V for all x ∈ V ,

(5) ab̃ = bã, cd̃ = dc̃, and

(6) the pseudo-determinant defined as ∆(A) = ad̃− bc̃ is a nonzero real number.

Proof. By corollary 20, it is sufficient to show that this list of conditions is equivalent to
AĀ ∈ R× and AxÃ ∈ V ⊕ R1,1 for all x ∈ V ⊕ R1,1. By linearity, AxÃ ∈ V ⊕ R1,1 for all
x ∈ V ⊕ R1,1 is equivalent to the same statement for all x ∈ V ∪ {n0, n∞}. Recall that n0

and n∞ form a basis for R1,1 and they are given by

(75) n0 =
e− + e+

2
=

(
0 0
1 0

)
and n∞ =

e− − e+
2

=

(
0 1
0 0

)
.
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Direct calculation shows(
a b
c d

)(
0 0
1 0

)(
d̄ b̄
c̄ ā

)
=

(
bd̃ bb̄

dd̃ db̄

)
,(

a b
c d

)(
0 1
0 0

)(
d̄ b̄
c̄ ā

)
=

(
ac̄ aā
cc̄ cā

)
,(

a b
c d

)(
x 0
0 −x

)(
d̄ b̄
c̄ ā

)
=

(
axd̄− bxc̄ axb̄− bxā
cxd̄− dxc̄ cxb̄− dxā

)
.

(76)

Demanding all expressions to be vectors for all x ∈ V is equivalent to the first four criteria.
From the calculation (

a b
c d

)(
a b
c d

)
=

(
a b
c d

)(
d̃ −b̃
−c̃ ã

)
=

(
ad̃− bc̃ −ab̃ + bã

cd̃− dc̃ −c̃b + ãd

)
,

(77)

we see that AĀ ∈ R× is equivalent to the last two criteria. □

Recall the definition of the pin group (56). The computation (77) immediately implies the
following description of Pin(V ⊕ R1,1).

Corollary 30. The pin group Pin(V ⊕R1,1), as a subset of Mat(2,Cl(V )), consists of Vahlen

matrices A with the pseudo-determinant ∆(A) = ad̃− bc̃ = ±1.

At this point, we would like to mention that Cnops [3] has a more refined set of criteria
for a matrix A ∈ Mat(2,Cl(V )) to be in the Lipschitz group Γ(V ⊕ R1,1). Cnops’ criteria
reduces to Ahlfors’ criteria in [1] for when V has positive definite signature.

4.3. Conformal Space. In order to relate Vahlen matrices to conformal transformations,
we observe that the conformal embedding eq. (10) can be rewritten as

(78) x 7→
(
x −x2

1 −x

)
=

(
x
1

)(
1 −x

)
.

This particular representation encourages us to reinterpret the twisted adjoint action of
Lipschitz group as an action on spinor-like objects with two components. We will describe
the construction of conformal space made by Maks [7] in which these spinor-like objects live.

Definition 31. The pre-conformal space Wpre is the set of products {Ae |Vahlen matrix A},
where

(79) e =
1 + e−e+

2
=

(
1 0
0 0

)
.

The group of Vahlen matrices Γ(V ⊕ R1,1) acts on Wpre by multiplication on the left.

We see that any element in the pre-conformal space must have the matrix representation

(80)

(
x 0
y 0

)
with entries x, y ∈ Cl(V ) satisfying xx̄, yȳ ∈ R and xȳ ∈ V , by proposition 29. Simplifying
the notations, we drop the right column and write (x, y) or ( x

y ) for eq. (80).
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To go from the pre-conformal space to the null cone N of V ⊕ R1,1 as in eq. (78), we can
define the map γ : Wpre → N as

(81) γ(Ae) = Aen∞Ãe = An∞Ã.

Equivalently, we can apply lemma 27 and write it in matrix form

(82) γ

(
x
y

)
=

(
x 0
y 0

)(
0 1
0 0

)(
0 0
ȳ x̄

)
=

(
xȳ xx̄
yȳ yx̄

)
=

(
xȳ xx̄
yȳ −xȳ

)
.

The purpose of the map γ is to eventually induce a bijection between the forthcoming
conformal space W and the conformal compactification N = N(V ) of V . To accomplish this
endeavor, let us begin with the following observation.

Lemma 32 (Witt’s extension theorem). Let U be a finite-dimensional vector space (over
R) together with a non-degenerate symmetric bilinear form. If ϕ : U1 → U2 is an isometric
isomorphism of two subspaces U1, U2 ⊆ U , then ϕ extends to an isometric isomorphism
ϕ̂ : U → U .

Proof. See Lam [6]. □

Lemma 33. The map π ◦ γ : Wpre → N , which by abuse of notation we will also denote by
γ, is surjective.

Proof. By Witt’s extension theorem, for every null vector x ∈ N , there exists an orthogonal
transformation that takes n∞ to x. Since the twisted adjoint action σ is surjective onto the
orthogonal group O(V ⊕ R1,1), there exists a Vahlen matrix A such that σA(n∞) = x. By
eq. (81) and eq. (53), we have

(83) γ(Ae) = An∞Ã ∼ An∞Â−1 = σA(n∞) = x.

Therefore, it becomes an equality γ(Ae) = x in N , and so γ : Wpre → N is surjective. □

Lemma 34. Let A = ( a b
c d ) be a Vahlen matrix. If An∞Ã is proportional to n∞, then c = 0

and a, d ∈ Γ(V ).

Proof. Since we have

(84) n∞ ∼ An∞Ã ∼ An∞Â−1,

we can let An∞Â−1 = rn∞ where r ∈ R×. Thus, we obtain

(85)

(
0 a
0 c

)
= An∞ = rn∞Â = r

(
−ĉ d̂
0 0

)
.

As a result, we can conclude that c = 0 and a = rd̂. Applying proposition 29, we know
∆(A) = aā/r ∈ R× and axã/r ∈ V for all x ∈ V . By corollary 20, we conclude that a ∈ Γ(V )
and similarly d ∈ Γ(V ). □

Lemma 35. Let A1 =
(
a1 b1
c1 d1

)
and A2 =

(
a2 b2
c2 d2

)
be two Vahlen matrices. Then γ(A1e) and

γ(A2e) are proportional if and only if there exists t ∈ Γ(V ) such that (a1, c1) = (a2t, c2t).

Proof. Suppose (a1, c1) = (a2t, c2t) for some t ∈ Γ(V ), then calculation shows that

(86) γ(A1e) =

(
a1c̄1 a1ā1
c1c̄1 −a1c̄1

)
= tt̄

(
a2c̄2 a2ā2
c2c̄2 −a2c̄2

)
= tt̄γ(A2e).

Since tt̄ ∈ R×, we conclude that γ(A1e) and γ(A2e) are proportional.
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Conversely, suppose γ(A1e) = rγ(A2e) for some r ∈ R×. Then, we have

(87) A1n∞Ã1 = rA2n∞Ã2,

which implies A−1
2 A1n∞Ã−1

2 A1 = rn∞. Let A−1
2 A1 = ( a b

c d ), we know from lemma 34 that
c = 0 and a ∈ Γ(V ), and thus

(88) A−1
2 A1e =

(
a b
0 d

)(
1 0
0 0

)
=

(
a 0
0 0

)
=

(
1 0
0 0

)(
a 0
0 â

)
= ea.

In other words, A1e = A2ea, or in matrix form

(89)

(
a1 0
c1 0

)
=

(
a2a 0
c2a 0

)
.

This finishes the proof. □

This lemma reveals exactly the condition of equivalence on Wpre to mirror the passage
from N to N . Hence, we make the following definition of conformal space.

Definition 36. The conformal space W of V is the pre-conformal space Wpre modulo the
relation that (x1, y1) and (x2, y2) are equivalent if and only if there exists a t ∈ Γ(V ) such
that (x1, y1) = (x2t, y2t).

Theorem 37. The map γ : W → N is well defined and is a bijection. Moreover, the actions
by Vahlen matrices commute with γ, that is γ(AX) = σA(γ(X)) for all Vahlen matrices A
and all X ∈ W .

Proof. By lemma 35, γ is well defined and is injective, and from lemma 33, we know γ is
surjective.

The action of a Vahlen matrix A commutes with γ because, for an arbitrary element in
W represented by X ∈ Wpre, we have

(90) γ(AX) = AXn∞X̃Ã ∼ σA(Xn∞X̃) = σA(γ(X))

which becomes an equality in N . □

4.4. Classification of Points in W . Recall that eq. (78) was our inspiration for conformal
space, so we wish to identify x ∈ V with (x, 1) ∈ W , but we first have to show that
(x, 1) ∈ W . Indeed, A = ( x 1

1 0 ) satisfies the conditions of proposition 29, thereby is a Vahlen
matrix. Geometrically, A is the composition of translation ( 1 x

0 1 ) and inversion ( 0 1
1 0 ), and so

γ(Ae) = An∞Ã is inverting n∞ to n0 and translating it by x.
Maks [7] classifies the points (x, y) in W into three classes.

(1) yȳ ̸= 0. In this case, we have y−1 = ȳ/(yȳ) and

(91) γ

(
x
y

)
=

(
xȳ xx̄
yȳ −xȳ

)
∼

(
xy−1 xx̄(yȳ)−1

1 −xy−1

)
= γ

(
xy−1

1

)
.

Therefore, (x, y) is identified with (xy−1, 1) in W and in turn with xy−1 in V .
(2) yȳ = 0 and xx̄ ̸= 0. In this case, we have x−1 = x̄/(xx̄) and

(92) γ

(
x
y

)
=

(
−yx̄ xx̄
yȳ yx̄

)
∼

(
−yx−1 1

yȳ(xx̄)−1 yx−1

)
= γ

(
1

yx−1

)
.

Therefore, (x, y) is identified with (1, yx−1) in W . The Vahlen matrix that represents
inversion is ( 0 1

1 0 ). From which, we recognize (1, yx−1) as the inversion of (yx−1, 1).
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Thus, (x, y) represents the inversion of yx−1, and since yx−1 is a null vector, its
inversion does not belong to V .

(3) xx̄ = yȳ = 0. This part is empty in the Euclidean cases p = 0 or q = 0. Otherwise,
(x, y) represents the limiting point of the null-line generated by xȳ.

In light of proposition 6, every conformal transformation U → Rp,q can be described by
Vahlen matrix acting through

(93)

(
a b
c d

)
x = (ax + b)(cx + d)−1

where cx + d is invertible for all x ∈ U . Whenever we write a Vahlen matrix acting on x in
this fashion, we always assume that cx + d is invertible.

A relevant result about cx + d that we need to discuss before we go into the next section
is that (xc̃ + d̃)(cx + d) ∈ R. More generally, we have the following result.

Lemma 38. If A = ( a b
c d ) is a Vahlen matrix, then ãa, b̃b, c̃c, d̃d ∈ R.

Proof. Applying corollary 21, we know that

(94) Ān∞A =

(
d̃ −b̃
−c̃ ã

)(
0 1
0 0

)(
a b
c d

)
=

(
d̃c −d̃d
−c̃c −c̃d

)
is in V ⊕R1,1, which implies that c̃c, d̃d ∈ R. Similar calculation shows that Ān0A ∈ V ⊕R1,1

leads to ãa, b̃b ∈ R. □

Corollary 39. If x ∈ V , the product (xc̃ + d̃)(cx + d) ∈ R.

Proof. Since ( a b
c d )( x 1

1 0 ) =
(
ax+b a
cx+d c

)
is a Vahlen matrix, (xc̃+ d̃)(cx+ d) ∈ R follows from the

fact that cx + d is the an entry of a Vahlen matrix. □

Consequently, when cx + d is invertible, we have (xc̃ + d̃)(cx + d) ∈ R×. It is worth
mentioning that Maks [7] claims an even stronger result that if an entry in a Vahlen matrix
( a b
c d ) is invertible, then that entry is in Γ(V ).

5. Conformal Invariance of Monogenic Functions

Monogenic function might not stay monogenic under translations by conformal transfor-
mations. That is, starting with a Vahlen matrix A and a function f monogenic at Ax, the
composition function f(Ax) need not be monogenic at x. On the other hand, it is well known
that in the positive definite case (see [9]), the function

(95) JA(x)f(Ax) =
(cx + d)−1

|(xc̃ + d̃)(cx + d)|n/2−1
f(Ax)

where a = ( a b
c d ) is monogenic at x whenever f is monogenic at Ax. We prove that this

statement also holds when the underlying vector space V has a quadratic form Q with
mixed signature.

Since we have

(96) eµ
∂

∂xµ
(JA(x)f(Ax)) = eµ

∂JA
∂xµ

f(Ax) + eµJA(x)
∂(Ax)ν

∂xµ

∂f

∂xν
,

the proof consists of two steps. The first step is to find (or verify) the form of JA such that

(97) eµJA(x)
∂(Ax)ν

∂xµ
= (some function of x)eν ,
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so that the second term vanishes by monogenicity of f . Then, we normalize JA so that JA
is left monogenic, making the first term vanish. The central idea is that ∂(Ax)ν

∂xµ is going to
be some orthogonal transformation and dilation, so JA can be some element in the Lipschitz
group that undoes the change. This concept is similar to the calculation done in eq. (135) in
the appendix, where we demonstrate that the Dirac operator commutes with a certain form
of pullback.

Lemma 40. Suppose A = ( a b
c d ) is a Vahlen matrix, then

(98) Ax− Ay = ∆(A)(yc̃ + d̃)−1(x− y)(cx + d)−1

for all x, y such that cx + d and cy + d are invertible.

Proof. Direct calculation is possible (see [1, 8]). Nevertheless, let us apply induction to the
fact that every conformal transformation is a finite composition of translation, reflection, and
dilation, and inversion. It is straightforward to show that the formula holds for translation,
reflection, and dilation, and inversion. We simply show that if the formula is true for A1 and
A2, then the formula holds for A21 = A2A1, that is we need to show

∆(A2)∆(A1)((A1y)c̃2 + d̃2)
−1(yc̃1 + d̃1)

−1(x− y)(c1x + d1)
−1(c2(A1x) + d2)

−1

= ∆(A21)(yc̃21 + d̃21)
−1(x− y)(c21x + d21)

−1.
(99)

Since ∆(A2)∆(A1) = A2Ā2A1Ā1 = A2(A1Ā1)Ā2 = ∆(A21), it remains to show

((A1y)c̃2 + d̃2)
−1(yc̃1 + d̃1)

−1 = (yc̃21 + d̃21)
−1

(c1x + d1)
−1(c2(A1x) + d2)

−1 = (c21x + d21)
−1.

(100)

We can argue by symmetry, so we only need to show

(101) c21x + d21 = (c2a1 + d2c1)x + (c2b1 + d2d1) = (c2(A1x) + d2)(c1x + d1),

but this is obvious after we recognize that (A1x)(c1x + d1) = a1x + b1. □

Equation (98) can also be expressed as

(102) Ax− Ay = ∆(A)(xc̃ + d̃)−1(x− y)(cy + d)−1

by applying the reversal.

Corollary 41. The derivative of a conformal transformation can be expressed by

∂(Ax)

∂xµ
= ∆(A)(xc̃ + d̃)−1eµ(cx + d)−1

=
∆(A)

(xc̃ + d̃)(cx + d)
(cx + d)eµ(cx + d)−1.

(103)

Proof. The calculation is a simple application of the product rule. We obtain

(104)
∂(Ax)

∂xµ
=

d(A(x + heµ) − Ax)

dh

∣∣∣∣
h=0

= ∆(A)(xc̃ + d̃)−1eµ(cx + d)−1.

□

This allows us to verify directly that x 7→ Ax is a conformal transformation (compare with
eq. (4)).
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Lemma 42. We have:

(105) A∗g = Ω2
Ag,

where the conformal factor is

(106) ΩA(x) =
∆(A)

(xc̃ + d̃)(cx + d)
.

Proof. Rearranging eq. (103), we obtain

(107)
(xc̃ + d̃)(cx + d)

∆(A)

∂(Ax)ν

∂xµ
eν = (cx + d)eµ(cx + d)−1.

By proposition 11, we have

(108) gµλ = (cx + d)

(
−eµeλ − eλeµ

2

)
(cx + d)−1.

We can insert (cx + d)−1(cx + d) between eµ and eλ and apply eq. (107) to obtain

(109) gµλ =

[
(xc̃ + d̃)(cx + d)

∆(A)

]2
∂(Ax)ν

∂xµ

(
−eνeγ − eγeν

2

)
∂(Ax)γ

∂xλ
.

Rearrangement yields the desired result

(110)
∂(Ax)ν

∂xµ
gνγ

∂(Ax)γ

∂xλ
=

[
∆(A)

(xc̃ + d̃)(cx + d)

]2
gµλ.

□

Similarly, we also have

(111)
∂(Ax)ν

∂xµ
gµλ

∂(Ax)γ

∂xλ
= ΩA(x)2gνγ,

and pairing both sides with eν , we obtain

(112)
∂(Ax)

∂xµ
gµλ

∂(Ax)γ

∂xλ
= ΩA(x)2eγ.

We can substitute eq. (103) and arrive at

(113) ΩA(x)(cx + d)−1eν = eµ(cx + d)−1∂(Ax)ν

∂xµ
.

This finishes the first step of our proof to find the form of JA.
To prove the monogenicity of JA, we apply induction to the fact that every conformal

transformation can be written as a finite composition of translation, orthogonal transforma-
tion, dilation, and inversion. Let us separate the inductive step and the base cases into two
lemmas.

Lemma 43. Given Vahlen matrices A1 and A2, then

(114) JA2A1(x) = JA1(x)JA2(A1x)

whenever both sides are well defined.
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Proof. Let jA(x) = cx + d, then we can express JA as

(115) JA(x) =
(jA(x))−1

|j̃A(x)jA(x)|n/2−1
.

We have shown that jA2A1(x) = jA2(A1(x))jA1(x) in eq. (101). Therefore,

JA2A1(x) =
(jA2A1(x))−1

| ˜jA2A1(x)jA2A1(x)|n/2−1

=
(jA1(x))−1

|j̃A1(x)jA1(x)|n/2−1

(jA2(A1x))−1

| ˜jA2(A1x)jA2(A1x)|n/2−1

= JA1(x)JA2(A1x).

(116)

□

Lemma 44. When A is a Vahlen matrix that represents a translation, reflection, dilation,
or inversion, the function JA(x) is left monogenic wherever it is defined.

Proof. For translation, reflection, and dilation, JA is just a constant function, so it is mono-
genic. For inversion, we have

(117) JA(x) =
x sgn(x2)

|x2|n/2
.

The following identities can be verified by direct calculation:

(118)
∂x

∂xν
=

∂(xµeµ)

∂xν
= eν ,

∂(x2)

∂xν
= −2gνλx

λ, eνeν = gµνeµeν = −gµνgµν = −n.

Then, applying the Dirac operator, we obtain

DJA(x) = eν
∂JA
∂xν

=
eνeν sgn(x2)

|x2|n/2
+ n

(eνgνλx
λ)x

|x2|n/2+1

=
1

|x2|n/2+1

(
−nx2 + nx2

)
= 0.

(119)

□

Theorem 45. Suppose V is a vector space with arbitrary non-degenerate signature. For
each Vahlen matrix A = ( a b

c d ) with entries in Cl(V ), the function JA(x)f(Ax) is monogenic
at x whenever f is monogenic at Ax.

Proof. As mentioned before, it suffices to prove that JA satisfies eq. (97) and is monogenic.
Using eq. (113), we obtain

eµJA(x)
∂(Ax)ν

∂xµ
=

1

|(xc̃ + d̃)(cx + d)|n/2−1
eµ(cx + d)−1∂(Ax)ν

∂xµ

=
ΩA(x)(cx + d)−1

|(xc̃ + d̃)(cx + d)|n/2−1
eν

= ΩA(x)JA(x)eν

(120)

which shows that eq. (97) is satisfied.
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We can prove the monogenicity of JA by applying induction to the fact that A can be
written as a finite composition of translation, reflection, dilation, and inversion. The base
cases are established by lemma 44. For the inductive step, assume JA1 and JA2 are monogenic,
we wish to show that JA1A2 is monogenic. Using lemma 43 and eq. (120), we obtain

DJA1A2(x) = eµ
∂

∂xµ
(JA1(x)JA2(A1x))

= eµ
∂JA1

∂xµ
f(Ax) + eµJA1(x)

∂(A1x)ν

∂xµ

∂JA2

∂xν

= ΩA1(x)JA1(x)eν
∂JA2

∂xν

= 0,

(121)

showing that JA1A2(x) is monogenic; this proves the inductive step. □

Note that we can obtain a stronger result that for a real differentiable left Cl(V )-module
valued function f :

(122) D(JAf(Ax)) = ΩA(x)JA(x)Df(Ax).

One can follow a similar procedure and arrive at an analogous result for right monogenic
functions.

Proposition 46. For a real differentiable right Cl(V )-module valued function f , we have

(123) (f(Ax)J̃A)D = (fD)(x)J̃A(x)ΩA(x)

where

(124) J̃A(x) = J̃A(x) =
(xc̃ + d̃)−1

|(xc̃ + d̃)(cx + d)|n/2−1
.

In particular, the function f(Ax)JA(x) is right monogenic at x whenever f is right monogenic
at Ax.

Appendix A. A Note on the Definition of the Dirac Operator

We introduced Dirac operator with plus and minus signs in eq. (59), and we have shown
that this is a natural construction from the point of view of basis independence. Since this
phenomenon does not happen in the positive definite case, it is perhaps worthwhile to show
that the classical formula eq. (95) fails if Dirac operator were defined differently, for example,
having all positive signs. Consider R2,1 with e21 = −1, e22 = −1, and e23 = 1. The ostensible
Dirac operator reads

(125) D̃ = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
.

The function f(x) = x1e1 + x3e3 is in the kernel of D̃, but if we consider the orthogonal
transformation represented by the Vahlen matrix

(126) A =

(
coshα + e2e3 sinhα 0

0 coshα + e2e3 sinhα

)
,
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we find that JA(x)f(Ax) is not in the kernel of D̃. Carrying out the explicit calculation, we
have JA(x) = coshα− e2e3 sinhα and

Ae2 = e2 cosh 2α + e3 sinh 2α,

Ae3 = e2 sinh 2α + e3 cosh 2α.
(127)

Therefore, we have

(128) f(Ax) = x1e1 + (x3 cosh 2α + x2 sinh 2α)e3.

However, JA(x)f(Ax) is not in the kernel of D̃ because

JA(x)f(Ax) = (coshα− e2e3 sinhα)
(
x1e1 + (x2 sinh 2α + x3 cosh 2α)e3

)
= x1e1(coshα− e2e3 sinhα) + (x3 cosh 2α + x2 sinh 2α)(e3 coshα− e2 sinhα)

(129)

and D̃ acting on the first term yields

(130) D̃[x1e1(coshα− e2e3 sinhα)] = −(coshα− e2e3 sinhα),

whereas the second term results in

(131) D̃[(x3 cosh 2α + x2 sinh 2α)(e3 coshα− e2 sinhα)] = cosh 3α + e2e3 sinh 3α.

They clearly do not cancel with each other. To contrast, if we use the true Dirac operator,
we would have

(132) D[(x3 cosh 2α + x2 sinh 2α)(e3 coshα− e2 sinhα)] = coshα− e2e3 sinhα

and still D[x1e1(coshα− e2e3 sinhα)] = −(coshα− e2e3 sinhα), which is desired.
More broadly, the true Dirac operator plays well with orthogonal transformations, while

the ostensible Dirac operator does not. To be more precise, consider orthogonal transforma-
tion ϕ : V → V , it induces a Clifford algebra homomorphism ϕ : Cl(V ) → Cl(V ). Explicitly,
if a is a Lipschitz group element that represents ϕ, then ϕ : Cl(V ) → Cl(V ) is given by

(133) ϕ(x) = σa(x) = âxa−1.

Therefore, there is a natural pullback operation for functions f : V → Cl(V ) defined by

(134) ϕ∗f = a−1(f ◦ ϕ)â.

The true Dirac operator satisfies D(ϕ∗f) = ±ϕ∗Df where the sign depends on whether ϕ is
orientation preserving or reversing. This is because

Dϕ∗f = eµ
∂ϕν

∂xµ
a−1 ∂f

∂xν
â

= a−1eµâa−1 ∂f

∂xν
â

= (âa−1)ϕ∗Df.

(135)

On the other hand, the ostensible Dirac operator does not have such property as the previous
example shows.
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Another aspect where the ostensible Dirac operator is not well behaved is that the JA
factor for inversion is not in the kernel of D̃. Simply consider R1,1 with e21 = −1, e22 = 1. For
inversion, we have

(136) JA(x) =
(x1e1 + x2e2) sgn((x1)2 − (x2)2)

|(x1)2 − (x2)2|
.

Since D̃[x1e1 + x2e2] = e1e1 + e2e2 = 0, we have

D̃JA(x) =
(2x1e1 − 2x2e2)(x

1e1 + x2e2)

|(x1)2 − (x2)2|2

= 2 · −(x1)2 − (x2)2 + 2x1x2e1e2
|(x1)2 − (x2)2|2

,

(137)

which is clearly nonzero.
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