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Abstract. Given a finite connected graph Γ with n edges, for what edge lengths ℓ⃗ =

(ℓ1, . . . , ℓn) is the quantum graph (Γ, ℓ⃗,∆) spectrally simple? Leonid Friedlander, in his

2005 paper [4], proved for generic ℓ⃗, a non-circle quantum graph is spectrally simple. Later,
Yves Colin de Verdière in [3] established a relationship between degenerate eigenvalues of a
quantum graphs and singularities of its corresponding secular manifold. He also posed the
following question: when does the secular manifold of a quantum graph admit a singular set
of codimension at least two?

Applying tools from algebraic geometry, we answer Colin de Vedière’s codimension 2
question for star graphs in the affirmative; the secular manifold admits a singular set of
codimension at least 2. We outline a method to answer the same question in arbitrary
quantum graphs, given that they are loop-free and non-mandarin.

1. Introduction

A quantum graph is a mathematical model for common physical phemonena. The classical

example is that of an electric circuit. The physical circuit is modeled by a metric graph (Γ, ℓ⃗)
where Γ is a finite connected topological graph, whose n edges are assigned positive lengths

ℓ⃗ = (ℓ1, . . . , ℓn). Real valued functions on (Γ, ℓ⃗) are representative of electric currents on
the circuit. They are defined edge-wise by functions on the intervals [0, ℓi]. Differentiation
is understood along each edge, which extends to an edge-wise notion of differentiation for

functions on the metric graph (Γ, ℓ⃗). Define the Laplacian operator ∆ on these functions by

∆(f) = ∆({fi : i = 1, . . . , n}) =
{
− d2fi

dx2
: i = 1, . . . , n

}
.

The tuple (Γ, ℓ⃗,∆) is called a quantum graph.
The spectrum of a quantum graph refers to eigenvalues of the Laplacian ∆, which are

necessarily non-negative [2]. The spectrum is dependent on the type of boundary conditions
imposed; for the purposes of this paper, Neumann and Kirchhoff conditions are enforced at
the vertices (see section 1). It is often preferred to work with square roots k of eigenvalues k2

of the graph. The positive square root function is bijective on R≥0. In accordance with [1],
the spectrum of the quantum graph shall refer to the square roots rather than the eigenvalues
themselves. An element of the spectrum is called simple if its eigenvalue has multiplicity 1
and degenerate otherwise. Similarly, a quantum graph is said to be spectrally simple if all of
its eigenvalues are simple and degenerate otherwise.

We concern ourselves with the following: given a finite connected graph Γ, for what length

vectors ℓ⃗ is (Γ, ℓ⃗,∆) spectrally simple? This question has been addressed multiple times
within the literature [1, 3, 4]. The first notable result is due to Friedlander [4]:
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“Let Γ be a connected metric graph that is different from a circle. . . Let [MΓ]
be the set in the parameter space Rn

+ of metrics, for which all eigenvalues off
are simple. Then the set [MΓ] is residual.”

As remarked by Alon in [1], while this ensures the density of MΓ, it does not address its
measure. In [3], Colin de Verdière expanded on this statement by considering the secular

manifold ΣΓ. The secular manifold ΣΓ ⊂ Cn is the set of n-tuples exp(ikℓ⃗) = (eikℓ1 , . . . , eikℓn)

such that k is in the spectrum of (Γ, ℓ⃗,∆) (see [3] and section 1). It turns out that ΣΓ is
the intersection and affine algebraic set VΓ and the n-torus {(z1, . . . , zn) : |zi| = 1}. Colin de

Verdière observed that the singular set of ΣΓ corresponds to n-tuples exp(ikℓ⃗) for which k is
a degenerate point in the spectrum; using Friedlander’s result, he proved that for Γ different
than the circle, the dimension of Σsing

Γ is strictly less than that of ΣΓ (see theorem 1.1 of [3]).
This difference, the codimension, is defined to be

cΓ := codim(Σsing
Γ ,ΣΓ) = dimΣΓ − dimΣsing

Γ .

Colin de Verdière’s proof that cΓ is positive translates to a stronger version of Friedlander’s
result. More specifically, the complement of MΓ is a subanalytic set whose codimension is
bounded below by cΓ, which also implies MΓ being of full measure [1].
It is worth noting that any improvement on the codimension cΓ yields a stronger genericity

result for MΓ. The secular manifold ΣΓ is the vanishing locus of the secular determinant
PΓ on the n-torus (see section 1). Colin de Verdière conjectured in [3] that PΓ was reducible
only for graphs Γ admitting isometric reflection symmetries for all possible metric graphs on
Γ. However, since the edges have variable lengths, reflection symmetries are hard to come
by. They occur only if Γ has loops or is mandarin (see section 1). Kurasov and Sarnak later
confirmed Colin de Verdière’s claim [6]. The bound cΓ ≥ 1 is optimal when Γ is reducible.
Colin de Verdière suggests for loop-free non-mandarin graphs, the codimension cΓ is at least
two [3]. Alon further states this as a conjecture [1]. Colin de Verdière also indicates that
singularities of star graphs (see Figure 1) are of interest. In this paper, we prove the following:

Theorem 1. All star graphs have the property
that cΓ ≥ 2.
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Figure 1: A depiction of a general star
graph with 7 or more edges.

The family of star graphs is the first infinite family for which the conjecture has been
verified. The dimension of ΣΓ is n− 1, where n is the number of edges on the graph Γ. This
introduces a number of obvious computational constraints.

Our approach to proving Theorem 1 relies on basic tools from algebraic geometry. The
codimension cΓ is bounded below by codimension of the Zariski closures of ΣΓ and Σsing

Γ .
Assuming the graph is loop-free and non-mandarin, a substantial amount of information is
known about the vanishing ideal of Σsing

Γ . A common practice in algebraic geometry is to take
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intersections with hyperplanes to obtain dimension bounds. This is not applicable in affine
space, so we projectivize the problem and consider the intersection with the hyperplane at
infinity. There are reasons to believe this proof extends to the collection of all tree graphs,
although this remains to be shown.

1. SECULAR MANIFOLD: CONSTRUCTION AND CONVENTION.

Flexibility of the quantum graph model is due, in part, to the large variety of boundary
conditions one may impose. The most relevant to this discussion are as follows:

(i) Neumann conditions. A continuous function f : Γ → R satisfies Neumann conditions
at a vertex v of Γ if fe(v) takes the same value for every edge e incident to v.

(ii) Kirchhoff conditions. A differentiable function f : Γ → R satisfies Kirkoff conditions
at a vertex v of Γ if ∑

e∼v

dfe
dx

(v) = 0.

The conditions above are also called continuity and current conditions respectively. We
restrict our attention to functions on Γ which satisfy (i) and (ii) at every vertex of the
graph.

For small graphs Γ with restraints on edge lengths, the spectrum is rather computable.
Let’s consider the 3-star graph, shown in Figure 2, whose edges all have the same length.
An eigenfunction of ∆ consists of three twice differentiable edge functions fi : [0, ℓi] → R,
satisfying the continuity and current conditions, such that

−f ′′
i (x) = △fi(x) = k2 · fi(x),

for some k ∈ R. Solutions of this differential equation take the form ai sin(kx) + bi cos(kx)
with constants ai, bi. The only conditions at the end of each protruding edge are the current
conditions, i.e.

aik = f ′
i(0) = 0.

Excluding k = 0, we arrive at the conclusion that each ai is zero. The boundary conditions
at the center are then

b1 cos(kL) = b2 cos(kL) = b3 cos(kL) &
∑

bi sin(kL) = 0.

Dividing one equation by the next, we obtain a simple expression: tan(kL) = 0. Thus, the
eigenvalues of the graph are percisely of the form (nπ/L)2, for n ∈ Z.

L

L

L

Figure 2.

The above computation was very simple because we set the edge lengths equal. In general,

we will rely on a formula which confirms if a pair (k, ℓ⃗) gives an element k of spectrum of
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(Γ, ℓ⃗,∆) and further if k is degenerate. All this information is packaged into the key definition
of this section, the secular manifold.

To obtain the desired formula, we need a more systematic approach. For a single edge of
Γ and eigenfunction f with k2 = λ of △, fi can be written in a compact exponential form:

aie
ikx + bie

ik(ℓi−x) = aie
ikx + bizie

−ikx,

where zi = eikℓi and we number the edges of Γ as 1, . . . , n. The space of eigenfunctions of
△ can thus be imagined as an 2n-tuple (a1, . . . , an, b1, . . . , bn). Each vertex of Γ produces a
system of equations in ai, bi, zi. With some clever substitutions, see [4], the system is written
succinctly as

(1) SΓ ·D(z⃗) ·



a1
...
an
b1
...
bn


=



a1
...
an
b1
...
bn


, where D(z⃗) =



z1
. . . 0

zn
z1

0 . . .
zn


and where SΓ is the secular matrix of Γ. The rows and columns of the square matrix SΓ

are denoted by 1, . . . , n, 1, . . . , n, where we simply pick some arbitrary orientation along
the graph. According to [2], the entires of SΓ are determined solely by the graph and are
summarized as follows:

(SΓ)(i,j) =

{ 2
deg v

− 1 if i = j,
2

deg v
if i follows j and i ̸= j,

0 otherwise.

.

Equation (1) tells us that k2-eigenfunctions of △ correspond to 1-eigenvectors of SΓ ·D(z⃗),
where D(z⃗) is the diagonal matrix in equation (1). An element k is in the spectrum of

(Γ, ℓ⃗,∆) only if det(I − SΓ ·D(z⃗)) evaluates to zero.
For a moment, allow z⃗ = (z1, . . . , zn) to denote symbolic variables and D to denote the

same diagonal matrix, now with symbolic variables and no dependence on k nor ℓ⃗. Define

PΓ(z1, . . . , zn) := det(I − SΓ ·D(z1, . . . , zn))

as the secular determinant of Γ. Its vanishing locus VΓ in Cn is called the secular locus.
Although an arbitrary element z ∈ VΓ doesn’t necessarily have any relevance to the spectrum,

if z also lies on the n-torus, then any (k, ℓ⃗) such that z = exp(ikℓ⃗) contributes to the
spectrum, where i =

√
−1. In particular, the intersection

ΣΓ := VΓ ∩ Tn,

called the secular manifold, essentially packages the spectrum of all possible quantum graphs
on Γ.

The secular manifold is partitioned into two components

Σreg
Γ := {z⃗ ∈ ΣΓ : ∇PΓ(z⃗) ̸= 0}

Σsing
Γ := {z⃗ ∈ ΣΓ : ∇PΓ(z⃗) = 0},

called the regular set and singular set respectively. Our interest in this particular partition
is summarized by the following theorem of Colin de Verdière:
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Theorem. [Colin de Verdière, 3] An eigenvalue k2 of the quantum graph (Γ, ℓ⃗,△) is a multiple

eigenvalue if and only if exp(ik · ℓ⃗) is an element of Σsing
Γ .

Proof. See [3].
Example: Singular Points of Σ3-star.. In order to determine the singularities, we calculate
the secular determinant. Orient the edges inward (see Figure 2). The secular matrix is given
in block-form as

S3-star =


0 0 0 −1/3 2/3 2/3
0 0 0 2/3 2/3 −1/3
0 0 0 2/3 2/3 −1/3
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

Each edge is assigned a variable z1, z2, z3. The corresponding secular determinant of the
3-star graph is

P3-star = −z21z
2
2z

2
3 −

1

3
z21z

2
2 −

1

3
z21z

2
3 −

1

3
z22z

2
3 +

1

3
z21 +

1

3
z22 +

1

3
z23 + 1.

This is an irreducible polynomial. The variety V3-star has percisely 8 singularities on the torus.
They are of the form (±i,±i,±i). Let’s restrict our attention on the cube [−π/2, π/2]3 where
the exponential map is a diffeomorphism. The singularities correspond to the corners of the
cube. Hence, if all lengths are equal, as in Figure 2, degenerate eigenvalues are of the form(
Nπ
2L

)2
, with N ∈ Z odd.

The singular set Σsing
Γ contains reminant information about length vectors ℓ⃗ giving (Γ, ℓ⃗,∆)

a degenerate spectrum. Consider the composition

F : R≥0 × Rn
+

(k,ℓ⃗)7→k·ℓ⃗−−−−−→ Rn exp(i·)−−−→ Tn.

The composition F is a submersion if k > 0, so one expects the codimension of ΣΓ and
Σsing

Γ to stay fixed after taking preimages. Let π denote projection from R≥0 × Rn
+ to the

parameter space of edge lengths. The set π(F−1(Σsing
Γ )) consists of all edge lengths giving

degenerate spectrum. Its complement corresponds to the collection of edge lengths ℓ⃗ such

that (Γ, ℓ⃗,∆) is spectrally simple. Assuming that ΣΓ admits a regular point, basic notions
regarding algebraic sets indicate that

dimΣsing
Γ ≤ n− 2,

meaning the preimage by F should be codimension 2. After applying the projection, we
would then expect the dimension to increase by at most one. That is, informally, we expect
the collection of all degenerate lengths to have positive codimension.

A number of issues prevent us from quickly formalizing the argument. To begin, ΣΓ and its
singular set are not necessarily manifolds, as the word singular suggests. They do, however,
admit a finite stratification by real manifolds, each of whose dimension is bounded by the
dimension of its Zariski closure in affine space (see section 2). Additionally, F is not a

submersion at k = 0. Any pair of the form (0, ℓ⃗) is mapped, by F , to the same point on the

torus, namely p = (1, . . . , 1). If p is an element of Σsing
Γ , then indeed, every quantum graph

on Γ is spectrally degenerate, which is not possible assuming Γ is different from the circle.
Thus, one may restrict F to Rn+1

+ , where it is certainly a submersion. Further, ΣΓ is never

required to admit regular points, meaning our expected dimension bound on Σsing
Γ , does not
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necessarily hold. Finally, projections do not preserve manifold structure. Instead, notions
of subanalytic sets are required to define dimension.

Alon does confirm our informal expectations; namely, the codimension of Σsing
Γ in ΣΓ

is a lower bound for the codimension of degenerate length vectors ℓ⃗ in Rn
+. Any further

improvement on cΓ then directly corresponds to an improved genericity result for a given
topological graph Γ. It is easily checked that the optimal lower bound on cΓ, given that Γ is
not a circle, is 1 (see Figure 3). However, assuming Γ is loop-free and non-mandarin, then
Alon and Colin de Verdière suggest that the codimension is at least 2 (see Figure 4). We
state this as a conjecture.
Definition. A graph is mandarin if it consists of two vertices, at least one edge, and no loops.
Conjecture. Suppose Γ is a loop-free, non-mandarin graph. The codimension cΓ of Σsing

Γ in
ΣΓ is at least 2.

Figure 3: The ‘lasso’ as a topological graph (left), and its secular manifold
(right). The regular points on the secular manifold are shown in blue and
the singular points in red.

Figure 4: The secular manifold of a 3-star graph, with two different
perspectives. The regular points are in purple, while the singular points
are highlighted.
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2. THE SECULAR LOCUS AND ITS SINGULARITIES.

In this section and the following sections, we will use basic notions from algebraic geometry.
Please see Hartshorne’s Algebraic Geometry [5] for a general reference on the subject.
As briefly mentioned in the previous section, the dimension of ΣΓ is n− 1, where n is the

number of edges on the graph Γ. We remark, again, that ΣΓ is not necessarily a manifold.
It is a real algebraic set and can admit singular points, where it is not locally Euclidean.
A useful trick is to simply delete all singularities, leaving only regular points. Repeating
this process gives a stratification of ΣΓ by manifolds, where the dimension of ΣΓ is given by
its regular points. Here, the terms regular and singular refer to the geometric usage, rather
than the partition of ΣΓ in the previous section. The dimension computation for ΣΓ was
established by Friedlander and Colin de Verdière, after calculating the tangent space of ΣΓ

at a regular point (see [3, 4]).

It’s not clear how to preform a direct calculation for dimΣsing
Γ . Rather, we will obtain

upper bounds with Prop. 1, which tells us dimΣsing
Γ ≤ dimV for every algebraic set V

containing Σsing
Γ . Naturally, we expect the following inclusions:

(2) Σreg
Γ = V reg

Γ ∩ Tn & Σsing
Γ = V sing

Γ ∩ Tn,

where V sing
Γ denotes the singular points of VΓ as an algebraic set (see Section 5, Chapter

I of [5]). It is always true that V sing
Γ has positive codimension in VΓ, meaning that the

same should be true of Σsing
Γ within ΣΓ. Unfortunately, our partition of ΣΓ into regular and

singular components doesn’t always agree with the geometric definition. The circle graph
C, as remarked below, is an example of this: the secular manifold of the circle is a regular
variety, yet by definition, ΣC = Σsing

C and Σreg
C = ∅.

Proposition 1. [Alon, 1]. Let V be an algebraic set in Cn, and let M denote the intersection
V ∩ Tn. The regular points of M form a manifold whose dimension is at most dimV .
Proof. See [1] or the Appendix.

Remark. For the circle graph C, ΣC = Σsing
C , and VC is a regular variety. That is, V sing

C ∩T1

is not equal to Σsing
C . Also, for every length assigned to the circle, its spectrum is degenerate.

Proof. The secular determinant of the circle C is PC = det
(
I · (1 − z)

)
= (1 − z)2.

The vanishing locus of PC consists of a single point z = 1, which lies on the 1-torus. The
derivative of PC is simply P ′

C = 2(z − 1), so by definition, ΣC = {1} = Σsing
C . Simply noting

that a point in affine space is a regular variety, we conclude the proof. □
The circle represents a degenerate case in the context of Friedlander’s result. However,
for non-circle graphs Γ, do the inclusions in (2) hold? The answer is yes (see the corollary
below). For an algebraic set V ⊂ Cn, defined by a single polynomial f , V sing = Z(f,∇f)
only if each irreducible factor of f appears with multiplicity 1. In the case of the circle, PC

has a squared factor. This doesn’t occur for any other graphs Γ. A factorization of PΓ by
Sarnak and Kurasov confirms this as a property of the secular determinant.
Theorem. [Sarnak & Kurasov, 1, 6] Let Γ be a quantum graph with n edges. The polynomial
PΓ ∈ C[z1, . . . , zn] is irreducible if and only if Γ has no reflection symmetries. Moreover, if
Γ has a reflection symmetry, then PΓ factors as follows:

(1) If Γ has loops, then

PΓ = PΓ,sym ·
∏

ej∈εloops

(1− zj)

where εloops is the set of loops, and PΓ,sym is irreducible.
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(2) If Γ is a mandarin graph, then

PΓ = PM,s · PM,as

where both PM,s and PM,as are irreducible multi-linear polynomials of the form

PM,s :=
n∑

j=1

(zj − 1)
∏
i ̸=j

(zi + 1), PM,as :=
n∑

j=1

(zj + 1)
∏
i ̸=j

(zi − 1).

Proof. See [6].
Corollary. [Alon, 1]. Let Γ be a topological graph, which is not a circle. Then V reg

Γ ∩Tn = Σreg
Γ

and V sing
Γ ∩ Tn = Σsing

Γ . As a consequence, Σsing
Γ has positive codimension in the secular

manifold ΣΓ.
Proof. According to the theorem above, as long as Γ ̸∼= C, PΓ factors into irreducible

polynomials each with multiplicity 1. Thus, V sing
Γ = Z(PΓ,∇PΓ). Recall that

Σsing
Γ := {z ∈ ΣΓ : ∇PΓ(z) = 0}.

Since ΣΓ is cut out of the n-torus by PΓ, the intersection of V sing
Γ with Tn is necessarily Σsing

Γ .
The codimension of the singular points of VΓ is positive. The algebraic set VΓ is determined
by one equation, so dimVΓ = n−1, and dimV sing

Γ ≤ n−2. By Prop. 1, the real dimension of

V sing
Γ ∩ Tn is at most n− 2. According to Colin de Verdière’s computation, dimΣΓ = n− 1.

Thus, codim(Σsing
Γ ,ΣΓ) is positive. □

Prop. 1 allows us to place the codimension 2 question into algebraic geometry. Consider
the following inequality:

codim(Σsing
Γ ,ΣΓ) = dim(ΣΓ)− dim(Σsing

Γ ) ≥ n− 1− dim(Σsing
Γ ),

where Σsing
Γ denotes the Zariski closure of Σsing

Γ (see p.g. 11 of [5]). It therefore suffices to

prove that n− 3 is an upper bound on the dimension of Σsing
Γ . The corollary above, due to

Alon, also gives the inclusion Σsing
Γ ⊂ V sing

Γ . Although this is not necessarily a strict inclusion,

one can infer about the vanishing ideal of Σsing
Γ , which could lead to a dimension bound.

For lack of a better term, the singularity problem should refer to this question of codi-
mension, and moving forward, we shall say a quantum graph Γ has property (∗) if Σsing

Γ has
codimension 2 or greater in ΣΓ.

3. PROJECTIVIZATION OF THE SINGULAR LOCUS

Obtaining a dimension bound is a regular occurance in algebraic geometry. Intersection
theory provides a means to do so. Consider the classical result: “If Y ⊂ Cn is an affine
variety, and V a hypersurface not containing Y , then the dimension of Y ∩ V is one less
than dimV , assuming the intersection is nonempty” (see Exercise 1.8, Chapter I of [5]).

This results suggests that we look how Σsing
Γ interacts with affine hypersurfaces. Two critical

issues appear. First, one does not expect Σsing
Γ to be a variety, so instead, we would need to

understand how irreducible components of Σsing
Γ interact with hypersurfaces. Secondly, we

are required to find hypersurfaces which are not disjoint from Σsing
Γ . Taken together, these

unknowns suggest failure for this line of thinking.
Both issues may be corrected by taking projective closures. The projective closure of an

affine algebraic set V is its Zariski closure considered as a subset of Pn, where Cn is identified
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with one of the standard affine open sets in Pn. The projective closure is usually denoted
with a bar notation, i.e. V . Projective space is ideal for intersection theory. Given some
dimension conditions, the intersection of two algebraic sets in projective space is always
nonempty. This provides a method to obtain a dimension bound on Σsing

Γ , which we state as
Prop. 2.
Proposition 2. Let V be an algebraic set in Pn, and H a hypersurface. If dimV ≥ 1, then

dimV ≤ dimV ∩H + 1.

Proof. See Appendix.
To projectivize this problem, we start by looking at the homogenization of the secular
polynomial PΓ. The most natural approach is to alter the definition; the projectivized secular
determinant is

projP Γ(z0, . . . , zn) = det(I · z0 − SΓ ·D(z1, . . . , zn)),

where I, S,D(z⃗) are as usual and z0 is the new variable. The polynomial above is homo-
geneous because the matrix I · z0 − SΓ · D(z⃗) is a polynomial matrix whose entires are
homogeneous of degree 1. Note that projP Γ(1, z⃗) = PΓ(z⃗). The projective closure of the
secular locus, denoted VΓ, is called the projectivized secular locus. It is the zero locus of
projP Γ. The reader should note the following facts regarding projectivization:

(1) If V ⊂ Cn is an algebraic set with vanishing ideal I(V ), then the vanishing ideal of
its projective closure V ⊂ Pn is generated by homogenizing polynomials in I(V ) with
respect to z0. (See Exercise 2.9, Chapter I of [5]).

(2) Projective closure preserves dimension. That is, for an affine algebraic set V ⊂ Cn,
dimV = dimV . (See Exercise 2.6, Chapter I of [5]).

In accordance with Prop. 2, it suffices to find a hypersurface H such that

dimA ∩H ≤ n− 4,

where A denotes the projective closure of Σsing
Γ . If Γ is a star graph (see Figure 4), then the

bound above will be obtained with H being the plane at infinity, or H = Z(z0). Several
key observations regarding star graphs are necessary in order to obtain this conclusion. The
proof is given in full rigor in the following section. The resulting theorem, as given in the
introduction, is restated below:
Theorem 1. All star graphs have property (∗).

4. APPLICATION: STAR GRAPHS SATISFY PROPERTY (∗).
Fix some star graph Γ with n edges. Some definitions and terminology are required, before
we begin the proof. Please refer back to this section for any new terminology.
Definitions & Terminology. A set V ⊂ Cn is symmetric if it remains fixed under coordinate-
wise permutation. So given any point P = (P1, . . . , Pn) in V and any permutation σ ∈ Sn,
σ(P ) = (Pσ(1), . . . , Pσ(n)) is also an element of V .
An ideal I of C[z1, . . . , zn] is called symmetric if it remains fixed under variable-wise

permutation. That is, given any polynomial f ∈ I and any permutation σ ∈ Sn, then
σ(f) = f(zσ(1), . . . , zσ(n)) is an element of I.
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Let f be a polynomial in variables z1, . . . , zn. The polynomial f decomposes as into sum
of homogeneous polynomials f0 + f1 + · · · + fd, where deg fk = k, fd ̸= 0, and deg f = d.
The leading homogeneous part of f is fd. The homogenization of f by z0 is

zd0f0 + zd−1
0 f1 + · · ·+ z0fd−1 + fd.

For simplicity, the homogenization of f by z0 is denoted β(f), in accordance with [5].
The weight of a monomial is the number of distinct variables in the monomial. For

example, z21z
10
2 z5 has weight 3 in C[z1, . . . , zn]. The weight of a polynomial f is the maximum

weight of its terms.
We present four lemmas to aid the proof.
Lemma 1. A set V ⊂ Cn is symmetric if and only if its vanishing ideal I(V ) is symmetric.
Proof. Assume V is symmetric. Let f be a polynomial in the vanishing ideal of V and σ

some element of Sn. Then

σ(f)(V ) = f(σ(V )) = f(V ) = 0,

which confirms that σ(f) is an element of I(V ), meaning that I(V ) is symmetric.
If instead, I(V ) is symmetric, find some generators f1, . . . , fm such that V is the vanishing

locus Z(f1, . . . , fm). For each fi and permutation σ ∈ Sn, one has

fi(σ(V )) = σ(fi)(V ) = 0,

since σ(fi) is an element of I(V ). The generators f1, . . . , fm cut out V as an algebraic set,
meaning that the above implies σ(V ) = V for all σ ∈ Sn. That is, V is symmetric. □

Lemma 2. The algebraic sets ΣΓ ⊂ Cn and Σsing
Γ ⊂ Cn are symmetric.

Proof. The torus Tn is a symmetric subset of Cn, and we claim that both VΓ and its
singular set are symmetric. If this is true, then the intersections

ΣΓ = VΓ ∩ Tn & Σsing
Γ = V sing

Γ ∩ Tn

are symmetric sets. The proof of Lemma 1 then tells us that their vanishing ideals are
symmetric. The Zariski closures of ΣΓ and Σsing

Γ respectively have the same vanishing ideal

as ΣΓ and as Σsing
Γ . By Lemma 1, the Zariski closures are symmetric algebraic sets.

Now we prove the claim that VΓ and V sing
Γ are symmetric. The vanishing ideal of VΓ

is generated by PΓ. The polynomial PΓ is dependent only on the underlying topological
graph of Γ. Permuting the edges causes no change to Γ. Because the edges are associated
to variables, PΓ is fixed under permutation. By Lemma 1, VΓ is symmetric. Also, for any
transposition τ switching zi, zj, one has

τ
(∂PΓ

∂zi

)
=

∂PΓ

∂zj
.

Hence, permutations of PΓ and one of its partials generate the ideal I = (PΓ, ∂PΓ/∂zi),

defining V sing
Γ . The vanishing ideal I(V sing

Γ ) is the radical of the symmetric ideal I. Symmetry

is a property preserved taking radicals of ideals,1 so by Lemma 1, we conclude V sing
Γ is

symmetric. □

1If fm is an irreducible polynomial contained in the radical of some symmetric ideal J , then every permutation
of f belongs to

√
J .
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Lemma 3. All terms of the secular polynomial take the form z2i1 · · · z
2
ik
. Its leading homoge-

neous part is a nonzero scalar of z21 · · · z2n.
Proof. The secular determinant of a star graph is very predictable. The secular matrix SΓ

takes the following form:

SΓ =

[
0 Mn

I 0

]
, Mn =

1

n
·


2− n 2 · · · · · · 2
2 2− n 2 · · · 2
... 2 2− n

. . .
...

2 · · · . . . . . . 2
2 · · · · · · 2 2− n

 ,

where Mn is an n × n matrix and SΓ is a 2n × 2n block matrix. Let Dn denote the n × n
matrix consisting of the variables z1, . . . , zn along the diagonal. The formula for the secular
determinant PΓ can be simplified substantially by taking a Schur complement:

PΓ = det

[
I −MnDn

−Dn I

]
= det

(
I − (−MnDn)(I

−1)(−Dn)
)
= det(I −MnD

2
n).

The expression above makes it clear that PΓ is a polynomial in z21 , . . . , z
2
n since D2

n consists
of entries in z21 , . . . , z

2
n. Further, all zi-terms in the matrix I − MnD

2
n belong to the same

column, meaning that the terms of f are of the form z2i1 · · · z
2
ik
.

The leading homogeneous part of PΓ is equal to projP Γ(0, z1, . . . , zn); to clarify, it’s equal
to valuation of its homogenization after substituting z0 = 0. According to the definition
given in the previous section, we obtain a formula for the leading homogeneous part of PΓ:

projP Γ(0, z1, . . . , zn) = det

(
SΓ ·

[
Dn 0
0 Dn

])
= − detMn · (detDn)

2 = − detMn · z21 · · · z2n.

The matrix Mn is invertible. To see why, let 2 denote the matrix whose entries are all
equal to 2. Its only nonzero eigenvalue is 4n, with corresponding eigenvector (1, . . . , 1). The
difference 2 − I · n is equal to Mn, and since 4n ̸= n, Mn has trivial kernel. The only
coefficient on the leading term of PΓ is − detMn, which is nonzero. □
Lemma 4. There exists a nonzero polynomial vanishing over Σsing

Γ whose leading homogeneous
part has weight at most n− 2.

Proof. Denote by P ′
Γ the first derivative of PΓ with respect to z1. By Lemma 3, PΓ is a

polynomial with terms of the form z2i1 · · · z
2
ik
. Hence, every z1-term in 2 · PΓ is equal to a

term of zi ·P ′
Γ. In particular, f = 2 ·PΓ − zi ·P ′

Γ contains no z1-terms. Further, terms in the
polynomial f appear like z2i1 · · · z

2
ik

with i1 > 1. If the weight of the leading homogeneous
part of f is less than n − 2, we are done. If not, then the leading homogeneous part of f
is a nonzero constant times z22 · · · z2n. The derivative P ′

Γ is divisible by z1. Let g = P ′
Γ/z1.

According to Lemma 3, its leading homogeneous term is

−2 · detMn · z22 · · · z2n
which is nonzero. Find a constant c such that f − c · g has a leading homogeneous part of
weight less than n− 2.

We claim that f − c ·g is nonzero and vanishes over Σsing
Γ . Both PΓ and P ′

Γ vanish over ΣΓ.
Since ΣΓ lies on the torus, no coordinate functions z1, . . . , zn can vanish over ΣΓ. Rather, g
vanishes over ΣΓ. The sum f − c · g therefore vanishes over ΣΓ. If this polynomial were zero,
then one could write

2 · PΓ = z1 · P ′
Γ + c · g = g · (z21 + c).
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This would suggest PΓ is reducible. For star graphs Γ with three or more edges, this cannot
occur. Instead, f − c · g is nonzero. □
Proof of Theorem 1. Let H ⊂ Pn denote the hyperplane at infinity, i.e. H = Z(z0). Allow

A to denote the projective closure of Σsing
Γ . Consider the intersection of A with H. All the

partials of PΓ vanish over Σsing
Γ by definition. The leading homogeneous part of the i-th

partial takes the form:

mi = −2 · detMn · z21 · · · z2i−1 · z2i+1 · · · z2n,

according to Lemma 3. All other terms, besides mi, in
projP Γ, are divisible by z0. Thus, for

β(∂PΓ/∂zi) to vanish on A ∩H, the only nonzero term mi, after substituting z0 = 0, must

vanish. The projective closure V sing
Γ is contained the vanishing locus of all the β(∂PΓ/∂zi),

so

A ∩H ⊂ V sing
Γ ∩H ⊂ Z(m1, . . . ,mn, z0).

For all monomials m1, . . . ,mn to vanish, at least two of z1, . . . , zn must be zero. Thus,

A ∩H ⊂
⋃

1≤i<j≤n

Hi,j = V,

where Hi,j is the projective plane Z(z0, zi, zj). Pick an irreducible component W of A ∩H,
which represents its dimension, i.e. dimW = dimA ∩H. The irreducible components of V
are percisely projective planes of the form Hi,j, meaning W ⊂ Hi,j for some i, j.
We claim that the inclusion W ⊂ Hi,j is strict. According to Lemmas 2 & 4, we may

find a polynomial, vanishing over Σsing
Γ , whose leading homogeneous part contains a term

missing both the variables zi and zj. The homogenization of this polynomial is necessarily
nonzero after substituting z0 = zi = zj = 0. Let p be the nonzero polynomial obtained

after homogenization and substitution. With A being the projective closure of Σsing
Γ , W ⊂

Z(p) ∩ Hi,j. Since p is a polynomial in all variables except z0, zi, zj, p cannot lie in I(H).
That is, Z(p) ∩Hi,j, and therefore W , is a proper subset of Hi,j.

The dimension of W is at most n − 4 since it is a proper subset of Hi,j, which has
codimension 3 in Pn. Recall that dimW = dimA ∩H. By Prop. 2, one has

dimA ≤ dimA ∩H + 1 = dimW + 1 ≤ n− 3.

The projective closure of Σsing
Γ and its usual affine closure have the same dimension. Prop.

1 gives the bound dimΣsing
Γ ≤ n− 3. Since the dimension of the secular manifold is exactly

n− 1, the star graph Γ has property (∗), as claimed □.

5. FUTURE DIRECTIONS

Tree Graphs. Tree graphs appear to share similar properties with star graphs. In particular,
it seems Lemma 3 holds. The terms in the secular determinant all the take the form z2i1 · · · z

2
ik
.

The key fact about star graphs is the symmetry of PΓ under permutation. This is no longer
true in general for tree graphs, so intersecting with the hyperplane at infinity does not
immediately produce the desired result. This hyperplane was introduced mainly for its
simplicity. The same method could apply to tree graphs with a different hyperplane or even
a hypersurface.
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Shrinking Edges. Given a graph Γ, we can consider quantum graphs on Γ where some edge
length is zero. Let Γ′ be the graph obtained from Γ by shrinking the edge, whose length is
set to zero. Assigning Γ′ the same edge lengths as Γ for all remaining edges, the spectrums
of the two quantum graphs agree, assuming the shrunken edge was not a loop. Setting an
edge length to zero is equivalent to assigning its associated variable the value 1, and the
secular determinant PΓ′ is obtained from PΓ by substitution. The secular manifolds are also
related. If Γ has n edges, we may embed ΣΓ′ in the affine hyperplane H = Z(z − 1), where
ΣΓ ∩H = ΣΓ′ .

The relationship between Σsing
Γ and Σsing

Γ′ doesn’t appear as obvious, although it is certainly

true that Σsing
Γ ∩H ⊂ Σsing

Γ′ . For basic examples, equality seems to hold. Understanding this
relationship might be important. We ask the following question: If Γ′ satisfies property
(∗), does Γ? Ideally, one would apply intersection theory to obtain a relationship between

the dimensions of Σsing
Γ and Σsing

Γ′ . This requires one of two things: relating either (1) the

irreducible components or (2) the projective closures of Σsing
Γ and Σsing

Γ′ . If this is successful,
induction might be applicable, reducing the codimension 2 conjecture to graphs which are
one shrinking operation away from possessing a loop.
Graph Surgery. As evident in the factorization theorem for secular determinants, loops cause
substantial issues. Less obvious is the fact that the Betti number of a graph Γ appears to
effect the secular determinant. The property of tree graphs, as outlined above, no longer
holds. In particular, given an non-looped edge with variable z, there might be a sequence of
shrinking operations sending this edge to a loop. If this so, then then PΓ has a degree 1 term
in z. As the Betti number increases, the terms of PΓ might become more unpredictable.
Shrinking non-looped edges does not alter the Betti number. Instead, a different surgery

operation should be introduced. We suggest considering either (1) edge deletion or (2)
shrinking looped-edges. The second operation appears harder because it requires us to
shrink to a graph with a loop before removing it. Instead, edge deletion changes the Betti
number of the graph without introducing loops. This is ideal considering the codimension 2
conjecture requires our graphs to be loop-free. In particular, for an edge deletion operation
sending Γ to Γ′, we ask the following questions: How are the secular determinants PΓ and
PΓ′ related? How are the singular sets of ΣΓ and ΣΓ′ related? If Γ′ has property (∗), does Γ?

APPENDIX: PROOF OF PROPOSITIONS 1 & 2

Proposition 1. Let V be an algebraic set in Cn, and let M denote the intersection V ∩ Tn.
The regular points of M form a manifold whose dimension is at most dimV .

Proof. Every affine algebraic set V in Cn is a finite union of its irreducible components.
A point of V is regular if it is contained in percisely one irreducible component and further
a regular point of that variety. Proving the claim for varieties thus proves the claim for
algebraic sets; assume V is a variety.

Pick some generators f1, . . . , fm from the vanishing ideal of V , so that V is the zero level
set of mapping F : Cn → Cm given by P 7→ (f1(P ), . . . , fm(P )). Further define G as the
map sending a point (z1, . . . , zn) to

(|z1|2 − 1, . . . , |zn|2 − 1).

The zero level set of G is the n-torus Tn. This gives a smooth map

(F,G) : Cn → Cm × Rn



14 TYLER CHAMBERLAIN

whose zero level set is percisely V ∩Tn. Regular points of V correspond to elements z where
TzV is percisely the kernel of dFz. The map (F,G) is regular in the intersection V reg ∩ Tn,
and it suffices to bound the dimension of Tz(V ∩ Tn) at a regular point z.
The tangent space to V ∩Tn at a regular point is the intersection of TzV and TzTn, where

TzTn is a real vector space and TzV is a complex one. Consider the following equality:

TzTn = i · diag(z)
(
Rn

)
,

where diag(z) is the diagonal matrix with entires z1, . . . , zn. Since z is on the torus, the
operator i · diag(z) is invertible. Then

dim(TzV ∩ TzTn) = dim(i · diag(−z)
(
V
)
∩ Rn).

Because i · diag(−z) is a complex linear transformation, its image of TzV is also a complex
space of the same dimension as V . The intersection i ·diag(−z)

(
V
)
∩Rn is real. If we select a

basis, then its ‘complexification’ in TzV is an independent set. This produces the inequality
dimV reg ∩ Tn ≤ dimV . □
Proposition 2. Let V be an algebraic set in Pn, and H a hypersurface. If dimV ≥ 1, then

dimV ≤ dimV ∩H + 1.

Proof. If A ⊂ Pn has dimension 1, then we may find an irreducible component of A,
call it V , such that dimA = dimV . It suffices to prove the result for a projective variety
V . The intersection of a variety V with positive dimension and a hypersurface H is always
nonempty (see Theorem 7.2, Chapter I of [5]). Now, pick an open affine subset U containing
some point of their intersection. Then V ′ = V ∩U is an affine variety of the same dimension
as V , while H ′ = H ∩ U is an affine hyperplane intersecting V ′. By Exercise 2.6, Chapter I
of [5], the affine version of Prop. 2 holds. Thus,

dimV = dimV ′ ≤ dimV ′ ∩H ′ + 1 ≤ dimV ∩H + 1,

where the far left and right (in)equalities occur because dimension is preserved by dense
open subsets. □

AKNOWLEDEMENTS

I would like to express my gratitude to Professor Christopher Judge for his patience, di-
rection, and attention throughout this summer. My meetings with him have contributed
substantially to my academic development. I also thank Lawford Hatcher, a PhD student of
Professor Judge, whose participation and encourgement was extremely helpful; Lior Alon for
helpful discussion; and Gregory Berkolaiko for his insights on edge shrinking and deletion.

Finally, I wish to thank the mathematics department of Indiana University for giving me
the opportunity to participate in the 2003 math REU, as well as Professor Dylan Thurston
for running this years program.

This work was supported by NSF award number 2051032.

REFERENCES

[1] L. Alon, Generic Laplacian Eigenfunctions on Metric Graphs, Journal d’Analyse Mathématique,
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