
EXPANSIVITY ON JULIA SETS
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Abstract. The expansivity of a rational map on its Julia set is closely related to an
invariant quantity known as the asymptotic E∞ energy. Using metric graphs embedded in
Julia sets, we outline methods developed for bounding and calculating E∞ for quadratic
and cubic post-critically finite hyperbolic rational maps and demonstrate this quantity’s
relation to expansivity. Upper bounds are calculated by constructing a map forcing efficient
lifts, while lower bounds are calculated through assigning a Markov partition to invariant
graphs.

1. Introduction

Fix some post-critically finite (PCF) hyperbolic rational map f : Ĉ → Ĉ with Julia
set J . Nekrashevych showed how to approximate Julia sets using sequences of combina-
torial spaces (e.g., graphs Gn) so that the inverse limit as n approaches infinity is J (f)
[Nek14]. Later, D. Thurston developed machinery using elastic graphs to study PCF hyper-
bolic maps [Thu16, Thu19, Thu20]. In doing so, a family of Ep energies of rational maps
associated with these graphs was defined. Data is currently incomplete in understanding
these energies. Park showed in his thesis that p = 1 regulates the topology of the Julia set
[Par21]. D. Thurston showed that p = 2 determines whether a certain branched self-cover
is equivalent to a rational map it has also been shown that p = ∞ controls whether f is
expanding on J (f) [DDT22, Thu20, Thu16].

We continue the study of E∞. In particular, we would like to study it as an expansion
measurement of f on its Julia set from the graph G0. We define this “expansivity energy”
a map φn0 : Gn → G0:

E∞(φn0 ) = sup
z∈Gn

|(φn0 )′(z)|,

where the supremum is taken over all points z ∈ Gn. We also consider the energy over
the homotopy class of φn0 defined for Gn in the following manner where φn0 is a map between
metric graphs:

E∞[φn0 ] := inf
ψn
0 ∈[φn

0 ]
E∞(ψn0 )

A more concise method of calculating E∞[φn0 ] was shown by Bestvina and White:

Lemma 1 (Bestvina-White [Bes11, Prop. 2.1]). For any φn0 : Gn → G0, we have

E∞[φn0 ] = sup
C⊆Gn

ℓ0(φ
n
0 (C))

ℓn(C)

where the supremum ranges over all curves C ⊆ Gn. Moreover, the supremum can be taken
as the maximum over all curves in Gn that run over each edge at most once in each direction.
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If φn0 : Gn → G0 is homotopic to an embedding, and limn→∞Gn is homeomorphic to J(f),
then it is natural to assume this quantity relates to some property of the Julia set. We study
this idea using the asymptotic ∞-energy, E

∞
[f, φn0 ].

Definition 2. The asymptotic Lipschitz energy E∞[f, φn0 ] is

E∞[f, φn0 ] = lim
n→∞

(E∞[φn0 ])
1
n

Recall that, for a given PCF function f , (E∞(φn0 , f))
1/n ≥ (E∞[φn0 , f ])

1/n ≥ E
∞
(f), where

φn0 : Gn → G0 is a map induced by the deformation retract Ĉ \ f−n(P (f)) → G0 which

commutes, up to homotopy, with the embedding εn : Gn → Ĉ \ (f−1)◦n(P (f)), the inclusion

map in0 : Ĉ \ (f−1)◦n(P (f)) → Ĉ \P (f) and the deformation retract π0 : Ĉ \P (f) → G0, i.e.
φn0 ∼ π0 ◦ in0 ◦ εn. Here, G0 is a spine, and is obtained through the deformation retract π0.
The method of constructing these graphs Gn through pullback is outlined in [DDT22].

We can then conclude that, finding upper bounds for E
∞

is the same as computing
(E∞[φn0 , f ])

1/n for a given n-th pullback. With this in mind, we delineate an iterative pro-
cedure for obtaining such quantities, outlined in (2).

H. Dai, C. Davis, and D. Thurston developed methods during Summer 2022 using non-
linear inequalities to rigorously bound and calculate the asymptotic E∞ for the seventeen
cubic Belyi rational maps [BBL+00, DDT22]. These methods relied on what will shortly
be defined as “efficiently lifting curves.” Here, we introduce key terminology from Summer
2022’s study:

A PCF rational map is hyperbolic if and only if every critical point attracts to an attracting
cycle of type C(d, p) under iteration. Each cycle of type C(d, p) = {z1, . . . , zp} ⊂ P (f)
contains two pieces of data: the period p = |C(d, p)|, and d =

∏p
i=1 degf (zi), the product of

degrees with which elements zi ∈ C(d, p) map to their following term.

Lemma 3. For f PCF with cycles of type C(d, p), where d is the product of local degrees in
the cycle and p is the number of points in the cycle, we have max(d−1/p) ≤ E

∞
.

Lemma 4. Suppose that there exists a map φ1
0 : G1 → G0 where E

∞[φ1
0] = α. Then we have

E
∞ ≤ α.

Definition 5. A curve C ⊂ Gn lifts efficiently to Gn+1 if there exists C ′ ⊂ Gn+1 such that

φn+1
n (C ′) = C and ℓn(C)

ℓn+1(C′)
= α.

For all n, consider the set of curves Cn in Gn that lift efficiently to Gn+1. Denote by Tn
be the set of curves in G0 that is the image of Cn under φn0 .

Lemma 6. If the intersection
⋂
n∈N Tn is nonempty, then E

∞
= α.

Utilizing these definitions and results, E∞ was calculated for sixteen of seventeen cubic
Belyi rational maps.

The remaining problem rational map in question is the following, #51 in the cubic census:

f3,51(z) =
4(z − 1)3

27z

Using methods from Summer 2022, it was found that 0.5 ≤ E∞ ≤ ϕ−1 where ϕ is the golden
ratio.
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Due to their non-linear nature, these methods became difficult to implement in cases with
|P (f)| = 4. Thus, new heuristics were necessary in computing E∞ for these cases.
In studying cubic map #51, we developed novel, linear methods to bound and compute

E∞. Additionally, we have shown a concrete relation between E∞ and the expansivity of a
rational map. This allowed us to improve the #51 bound from [0.5, 0.618] to [0.553, 0.563].
These linear methods, then, were easier to apply to |P (f)| = 4 cases. Hence, we have
calculated E∞ for three of seven quadratic |Pf | = 4 rational maps and in the Fall will be
further investigating another method which seems to resolve three more cases.

We summarize these methods, applications, and results in the following sections.

2. Upper Bounds

We now present a heuristic process which was found to be very useful in computing
E∞[ϕn0 , f

n] (which are upper bounds for E∞).

Definition 7. A separating curve in Gn with respect to ∅ ≠ K ⊂ Pf is a curve which
separates the elements of K from the elements of Pf \K. The set of all separating curves in
Gn for a given subset K is denoted Ψn(K) (in practice, the function f and the inclusion map
in question φn0 will generally be implied from context). Note that, Ψn(K) = Ψn(Pf \K).

Separating curves are very useful in our construction a method to calculate upper bounds
as it is not difficult to designate minimally stretched separating curves in G0. With these
curves, designated, we can exploit Lemma 1 and tweak only these relevant separating curves
in pullback.

Definition 8. A σ-triplet for a pair (Gn, G0) is a metric graph Γn together with a map
σn : Gn → Γn, and a scaling of graphs Λn, satisfying the following properties:

(1) σn commutes with respect to the following diagram:

Gn G0

Γn

σn

φn
0

Λn

where Λn is a map with constant derivative αn < 1, i.e., a scaling of graphs isomorphic
to the identity.

(2) |σ′
n(x)| ≤ 1 for all x ∈ Gn and ∥σ′

n∥∞ = 1, we call maps that satisfy this condition
short maps.

Note that, given we are able to find such a triplet, |(φn0 )′(x)| = |Λ′(σn)σ
′
n(x)| ≤ αn.

We now turn to a particular method of constructing such a map σn. Our technique involves
prescribing an arbitrary metric on G0 , and then preserving the length of a big enough choice
of separating curves under the map σn such that Γn is determined (this will automatically
imply relationships between the lengths of each edge in G0). We then check for the additional
constraint |σ′

n| ≤ 1.
To do this, we chose as many curves as there are edges (modulo edges of the same length)

in G0. We must choose at most one separating curve around each subset K ⊂ Pf . This is
because we want |σ′

n| ≤ 1, and under our construction, the curves we choose realize |σ′
n| = 1,

implying that all other curves must stretch by at most the amount that the selected curves
are stretching. As two curves around the same K need not have the same length under an
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arbitrary metric, choosing more then one curve under any givenK would contradict |σ′
n| ≤ 1.

Sometimes, more than one curve around K might have its length preserved under σn, and
in this case choosing any such curves will yield the same σ-triplet.

Note that, the maximum number of edges of different lengths in G0 for any PCF f is

bounded above by
|Pf |(|Pf |−1)

2
(for |Pf | ≤ 4 we have an equality). However, the number of

separating curves one can chose is
|P(Pf )|

2
− 1. Thus, the number of separating curves for

|Pf | > 3 is bigger than the number of edges one needs to solve for. This means that, beyond
simply choosing the curves for any given number of subsets of P (f)\{∞}, we also have some
freedom regarding the choice of subsets to consider lifts that realize the maximum stretch.

After obtaining a graph Γn, we then construct an eigenvalue equation which encapsulates
the scaling Λn:

Ax0 = xn =
1

αn

x0

Here we denote xn by the set of length of distinct edges on Γn. After this step, we have
candidates for a metric in G0, x0, and the the Lipschitz energy E∞[φn0 ], αn. For Γn to be
valid for some σ-triplet, we need to check our assumptions. First, we must check the metric
x0 and guarantee that the chosen separating curves in Gn are indeed the smallest ones for
their respective subset K ⊂ P (f). If this does not hold, the chosen curve will not realize the
supremum in Lemma 1, contradicting |σ′

n| ≤ 1. However, even if the resulting eigenvector
respects our relationships between edges, we need to guarantee that there are no separating
curves around other subsets of P (f) \ {∞} which stretch more than the chosen ones.

To do this, we need a way to guarantee that the attained σn indeed obeys |σn ≤ 1. The
way we do this is by finding an embedding of Gn into Γn (conversely G0) which obeys |σn| ≤ 1
(conversely |φn0 | ≤ αn). To visualize if this is possible, we inflate Γn and draw Gn inside of
it. If we can embed Gn in Γn without stretching it we have obtained a valid σ-triplet; we
call such an embedding a taut map. Detailed examples of this procedure will be shown in
the applications section.

The process can be expressed in the following steps:

(1) Choose some G0 and pull it back to Gn;
(2) Choose as many subsets K ⊂ P (f) \ {∞} as there are edges of different lengths in

G0;
(3) Now make a choice of the separating curves in each Ψn(K) which will realize the

maximum stretch, and record the implicit inequalities established between lengths
of edges. Alternatively, we can start with an assumption regarding the inequalities
between lengths of edges good enough so that we can distinguish separating curves
sufficiently for us to choose the one with maximum lift;

(4) Construct Γn by forcing the length of it’s shortest separating curves (which are de-
termined without any metrics) around the initially chosen subsets K to be the same
as the shortest curves determined in Gn;

(5) Obtain a candidate for the metric in G0 and for αn by constructing an eigenvalue
equation which satisfies the constrains in Λn;

(6) Check if eigenvector agrees with our initial choice of curves;
(a) If the eigenvector contradicts our assumptions, go back to (3) and choose different

curves;
(b) If the eigenvector agrees, check if a taut map can be constructed;

(i) If it can’t, go back to (2) and choose different subsets of P (f) \ {∞};
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(ii) If it can, you’ve found a valid σ -triplet.

If the process was followed through exhaustion and a proper σ-triplet hasn’t been achieved,
then one must go back to (1) and choose a different initial spine G0. Up to now, we haven’t
encountered any PCF rational map for which no spine is incompatible with this method.

3. Lower Bounds

In a very rigorous sense, E∞ is related to a quantity shortly to be defined as the expansivity
of a rational map on its Julia set. In particular, our methods used to acquire lower bounds
for the former quantity utilize the latter. Thus, we first define this related terminology.

Definition 9. Fix a rational map f : Ĉ → Ĉ with Julia set J . Consider the dynamical
system given by f : J → J . For a given metric d on J , expansion factor λ > 1, and ϵ > 0,
we say f is (λ, ϵ)-expansive on its Julia set with respect to d if, for every z1, z2 ∈ J with
|z1 − z2| < ϵ, we have

|f(z1)− f(z2)| ≥ λ|z1 − z2|.

Definition 10. We say that f is λ-expansive on its Julia set if it is (λ, ϵ)-expansive for some
ϵ > 0.

Definition 11. Define the expansivity of f on its Julia set as

λ(f) := sup {λ | there is a metric d on J so f is λ-expansive wrt d.}

A second tool in bounding E∞ comes from invariant graphs on the Julia set of a rational
map, which will now be defined.

Definition 12. A graph on J (f) is a map ϕ : Γ → J (f) where Γ is a graph.

Definition 13. A graph Γ on J (f) is f -invariant if there is a map g : Γ → Γ such that
f ◦ ϕ = ϕ ◦ g.

We utilize f -invariant, often denoted simply as invariant, graphs as a means to understand
dynamics on a rational map’s Julia set through studying a smaller subset of this space. A
graph on J (f) can be visualized as being embedded in J (f). Hence, this invariant graph
can be thought of as a sub-dynamical system of f : J → J .

We now return to the context of pulling a spine back from G0 to Gn. For each invariant
graph (indexed by k ∈ N) defined by induced map gnk : G0 ⊂ Gn → G0, we assign a Markov
partition matrix Ank (note n is not an exponential but an index for Markov matrices) where
the basis for the matrix are the colored edges, and entry aij equals the number of times the
ith edge maps to the jth edge. The following eigenvalue problem then allows one to treat
the nth root of this Perron-Frobenius (PF) eigenvalue of this matrix, λn(g

n
k )

1/n, as a uniform
expansion factor of G0. Where x0 is the n-dimensional column vector of edge lengths in G0,
we have
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
a11 a12 a13 · · · a1n

a21 a22 a23
...

a31 a32
. . .

...
...

. . .
...

an1 . . . . . . . . . ann

x0 = λnn(g
n
k)x0.

This nth root of this PF eigenvalue will then provide an effective upper bound of λ(f).

Following from these definitions are two lemmas for which we will save the proof for our
research paper.

Lemma 14. If f : J → J has an fn-invariant graph G0 with induced map g : G0 ⊂ Gn →
G0 with Markov partition matrix Ank , then λ(f) ≤ (λn(g

n
k ))

1/n.

Utilizing this inequality between the PF eigenvalue and expansivity of f on its Julia set,
one can then calculate a lower bound for E∞[π, ϕ] using expanding invariant graphs on Julia
sets.

Lemma 15. Let π, ϕ : G1 ⇒ G0 be a virtual endomorphism with E∞[π, ϕ] < 1. Then,

E∞[π, ϕ] ≥ 1

λ(f)
.

Furthermore, if the conditions for Lemma 14 are met, then for all k,

E∞[π, ϕ] ≥ 1

(λn(gnk ))
1/n

.

Example. We now provide an example of finding the a better lower bound for f3,51 than
is given by Lemma 3. Consider the following rational map with given G0 pulled back to G1:

f3,51(z) =
4(z − 1)3

z

Note there are multiple subgraphs of G1 which are homotopic invariant graph candidates.
Choose the candidate boldened in the above figure with following rules for its induced map:

• The red edge in G0 is sent to the blue edge immediately surrounding 0 ∈ P (f).
• The green edge in G0 is sent to the red edge separating 0, 1 ∈ P (f).



EXPANSIVITY ON JULIA SETS 7

• The blue edge in G1 is sent to a linear combination of three red and two green edges
immediately surrounding 1 ∈ P (f).

Using this induced map, indexed k = 1, we construct Markov partition A1
1 matrix with

basis (r, g, b) and its corresponding eigenvalue problem:

A1
1

rg
b

 =

0 0 1
1 0 0
2 3 0

rg
b

 = λ1(g
1
1)

rg
b


Finding the Perron-Frobenius eigenvalue of this system amounts of solving the polynomial

equation:

λ31 − 2λ1 − 3 = 0

We can then solve and find λ1(g
1
1) ≈ 1.893. Utilizing Lemmas 14 and 15, we then have

.
1

1.893
≈ 0.528 ≤ E∞,

which is better than the Lemma 3 bound 0.5 ≤ E∞.

Fix the nth pullback, Gn, of G0. There exists a finite amount of fn-invariant graphs with
which one can apply Lemmas 14 and 15. For many choices of G0, increasing n will give rise
to an exhaustive, growing list of invariant candidates gnk : G0 ⊂ Gn → G0. Note that for
particular rational maps, many choices of G0 will lead to no invariant graphs in any pullback.
For a particular example of this phenomenon, see quadratic census map f2,6.2.

The optimal lower bound for E∞ in Gn is realized by the invariant graph G0 ⊂ Gn such
that its Markov partition matrix Ani realizes λn(g

n
i ) = min(λn(g

n
k )) over all k.

Currently, there is no known algorithm to find such gni : G0 ⊂ Gn → G0. However, in all
but three cases of our study, considering the few invariant graphs in G1 is enough to find
some invariant graph with Markov matrix A1

i such that 1
λ1(g1i )

= E∞.

4. Applications

As instructive examples, we will outline the process of finding (often equal) upper and
lower bounds for E∞. Recall the following tier system categorizing hyperbolic rational maps
based on curves’ efficient lifting in graphs on J (f):

(1) Blue: The entire spine G0 has an efficient lift to a subgraph in G1.
(2) Green: Every curve lifts efficiently in every preimage. Notably, this is not equivalent

to Blue.
(3) Yellow: There exists a curve which lifts efficiently in every preimage. This is close to

the minimum structure needed determine the E
∞

energy using our techniques.
(4) Red: Current methods presented in the last section are not sufficient to determine

E∞.
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Among the examples outlined are quadratic census maps #6.1 (Blue), #7 (Green), and
#3.2 (Yellow). Additionally, we will outline this process for cubic census map #51 (Red),
for which E∞ = α remains an open question.

Example 1: Quadratic Map #6.1 (Blue)
Consider the following PCF hyperbolic rational map along with its corresponding critical

portrait:

f(z) =
ϕ−2

(z − 1)2

2 ϕ

ϕ−2 1 ∞ 02 2

Note P (f) = {0, ϕ−2, 1,∞}. Additionally, see that the critical portrait contains a cycle of
type C(4, 4). From previous results, it is immediately clear that 2−1/2 ≤ E∞ < 1.

We must choose a spine G0. For quadratic census map #6.1, we select the “eye spine” for
G0. We assign an arbitrary metric (r0, g0, p0, b0) to the edges of this graph, not yet requiring
any edge length ordering assumptions. We then pull back to G1.

First, we will improve the upper bound of E∞ using the methods outlined in (2).

In constructing σ1 : G1 → Γ1, we consider the shortest separating curves around subsets
of P (f) \ {∞} in G1. In order to find these curves, we must assume some key inequalities
on the metric assigned to G0.

In particular, finding the shortest curve around 1 in G1 requires finding min{g0, p0, b0}.
Before finding shortest curves in G1, one should take inventory of all relevant edge length
key inequalities in G1, outlined for this choice of G0 in the table below.

Table 1. Quadratic Census #6.1 Key Inequalities

P (f) Subset 0 ϕ−2 1 0, ϕ−2 ϕ−2, 1 0, 1 0, ϕ−2, 1

Key Inequalities None None g0, p0, b0 None g0, p0, b0 N/A g0, p0, b0
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Fortunately, quadratic map #6.1 with the eye spine provides us with only one key in-
equality to consider. We first will assume g0 ≤ p0 ≤ b0 in G0. We are now able to choose the
precise shortest curve around any subset of P (f) in G1. If the corresponding linear system
which follows’ PF eigenvector contradicts this choice of metric, we will reject this initial
assumption and restart the process of finding σ1 : G1 → Γ1 accordingly.

In constructing σ1 : G1 → Γ1, we are searching for a metric (r1, g1, p1, b1) on Γ1 forcing
curves in G0 to realize efficient lifts. Symbolically, we force

1

α1


r1
g1
p1
b1

 =


r0
g0
p0
b0


In creating a well-determined linear system, we must choose four of the seven shortest

curves in G1 to equal to the corresponding curves in Γ1. For this example, we select the

curves 0 , ϕ−2 , 0, ϕ−2 , and 0, ϕ−2, 1 , giving rise to the linear system


1 1 0 0
0 1 1 0
1 0 1 0
1 0 0 1



r1
g1
p1
b1

 =


0 1 1 0
0 0 1 1
0 1 0 1
2 2 0 0



r0
g0
p0
b0

 =
1

α1


0 1 1 0
0 0 1 1
0 1 0 1
2 2 0 0



r1
g1
p1
b1


Considering the left and right components of this equality presents calculation of 1

α1
as

an eigenvalue problem with the metric (r1, g1, p1, b1). Then, solving for the PF eigenvalue of
this system gives the inverse of our upper bound candidate, α1. In solving this eigenvalue
problem, one obtains

α1 ≈ 0.739

Note that at the moment, this is only an upper bound candidate. We must check that all
key inequalities are satisfied within the corresponding PF eigenvector, given by

v1 =


r1
g1
p1
b1

 =


α3
1

α2
1

α1

1

 ≈


0.404
0.546
0.739
1


Hence, σ1 : G1 → Γ1 endows Γ1, which is homotopic to G0, with lengths corresponding

to this eigenvector. Seeing that the assumed inequalities g0 ≤ p0 ≤ b0 is satisfied by this
eigenvector, no contradictions arise in performing the length scaling operation Λ1 : Γ1 → G0.
Finally, to prove this value as an upper bound for E∞, we must show g1k : G1 → G0 to be a
short map.
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For a short map to be present is necessary that each edge in G0 gets scaled by 1
α1

or more
in lifting to G1.

In particular, it is clear from the above diagram that

1

α1

r1 = g1

1

α1

g1 = p1

1

α1

p1 = b1

1

α1

b1 = 2r1 +min{g1, p1, b1}

Hence, the first three edges are mapped tautly while some of the edges mapping to blue
have slack, and thus g1k : G1 → G0 is a short map. Therefore, it is clear that the positive
solution to polynomial

2α4
1 + α3

1 − 1 = 0

or α ≈ 0.739 is a valid upper bound for E∞.

Now we turn our attention to finding a lower bound of E∞ using methods outlined in (3).
To do this, we rely on invariant graphs on J (f).

Referencing G0 and G1, there are three obvious choices of invariant graphs on J (f) which
are homotopic to G0. Once again, we must choose which path out of g0, p0, and b0 to take.
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As g0 has previously been determined as having the shortest length, we will choose to take
g0. Denote this invariant graph as being determined by g11 : G0 ⊂ G1 → G0. This invariant
graph is represented by Markov partition matrix

A1
1 =


0 1 0 0
0 0 1 0
0 0 0 1
2 1 0 0


with PF eigenvalue determined by the polynomial

λ1(g
1
1)

4 − λ1(g
1
1)− 2 = 0

which, upon applying Lemmas 14 and 15, gives agreeing lower and upper bounds of E∞.
Thus,

E∞ ≈ 0.739

Example 2: Quadratic Map #7 (Green)
Consider the following PCF hyperbolic rational map along with its corresponding critical
portrait:

f(z) =
(z − 1)2

(z − e2πi/3)2

eπi/3

2
2eπi/3

1 0 e2πi/3 ∞2 2

Note P (f) = {0, 1, e2πi/3,∞}. Additionally, see that the critical portrait contains a cycle
of type C(4, 4). From previous results, it is immediately clear that 2−1/2 ≤ E∞ < 1.

We must choose a spine G0. For quadratic census map #3.2, we select the following spine
for G0. We assign an arbitrary metric (r0, g0, y0, p0, b0) to the edges of this graph, not yet
requiring any edge length ordering assumptions. We then pull back to G1.
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First, we will improve the upper bound of E∞ using the methods outlined in (2).

In constructing σ1 : G1 → Γ1, we consider the shortest separating curves around subsets
of P (f) \ {∞} in G1. In order to find the shortest curve around certain subsets of P (f), we
must assume key inequalities on the metric assigned to G0.

Before finding shortest curves in G1, we take inventory of all relevant edge length key
inequalities in G1, outlined for this choice of G0 in the table below.

Table 2. Quadratic Census #6.1 Key Inequalities

P (f) Subset 0 1 e2πi/3 0, 1 1, e2πi/3 0, e2πi/3 0, 1, e2πi/3

Key Inequalities y0, p0 + b0 g0, r0 + y0 r0, g0 + y0 b0, p0 + y0 N/A b0, p0 + y0 y0, r0 + g0
b0, p0 + y0 g0, r0 + y0 r0, g0 + y0

Unfortunately, this map and spine give us many key inequalities to consider. Though
not always true, it is good practice to assume one edge has less or equal length than a lin-
ear combination of multiple edges. We first will assume the key inequalities y0 ≤ p0 + b0,
g0 ≤ r0 + y0, r0 ≤ g0 + y0, p0 ≤ g0 + y0, and p0 ≤ b0 in G0. We are now able to choose
the precise shortest curve around any subset of P (f) \ {∞} in G1. If the corresponding
linear system which follows’ PF eigenvector contradicts this choice of metric in any way, we
will reject this initial assumption and restart the process of finding σ1 : G1 → Γ1 accordingly.

In constructing σ1 : G1 → Γ1, we are searching for a metric (r1, g1, y1, p1, b1) on Γ1 forcing
curves in G0 to realize efficient lifts. Symbolically, we force

1

α1


r1
g1
y1
p1
b1

 =


r0
g0
y0
p0
b0


In creating a well-determined linear system, we must choose five of the seven shortest

curves in G1 to equal to the corresponding curves in Γ1. For this example, we select the

curves 0 , 1 , e2πi/3 , 0, 1 , and 0, 1, e2πi/3 , giving rise to the linear system
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
0 1 0 1 0
0 0 1 1 1
1 1 1 0 0
0 1 1 0 1
1 0 0 0 1



r0
g0
y0
p0
b0

 =


1 1 1 0 0
0 2 0 2 0
2 0 0 0 2
1 1 0 1 1
0 0 1 1 1



r1
g1
y1
p1
b1

 =
1

α1


0 1 0 1 0
0 0 1 1 1
1 1 1 0 0
0 1 1 0 1
1 0 0 0 1



r1
g1
y1
p1
b1


Considering the middle and right components of this equality presents calculation of 1

α1

as an eigenvalue problem. In solving for the PF eigenvalue, we obtain

α1 = 2−1/2

Note that at the moment, this is only an upper bound candidate. We must check that all
key inequalities are satisfied within the corresponding PF eigenvector,

v1 =


r1
g1
y1
p1
b1

 =


1
1

2
√
2− 2
1
1


Hence, σ1 : G1 → Γ1 endows Γ1, which is homotopic to G0, with lengths corresponding to

this eigenvector. Upon inspection, it can be found that the assumed key inequalities satis-
fied by this eigenvector, and hence no contradictions arise in performing the length scaling
operation Λ1 : Γ1 → G0. Finally, to prove this value as an upper bound for E∞, we must
show g1k : G1 → G0 to be a short map.

For a short map to be present is necessary that each edge in G0 gets scaled by 1
α1

or more
in lifting to G1.

In particular, each edge must be stretched as depicted above to satisfy this condition.
Noting y1 = 2

√
2−2 = (

√
2−1)+(

√
2−1), we stretch the outer yellow edge in half as such.

This gives, on the outer curves,
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1

α1

r1 =
√
2 = b1 +

√
2− 1

1

α1

b1 =
√
2 = p1 +

√
2− 1

We must then stretch the outer red and green edges giving equivalent length as applied to
the above equations. Then, the portion of red and green each contributing to 1

α1
y1 is 2−

√
2.

Finally, we must apply a standard ∆−Y transform as outlined in [DDT22] to the central
(y1, b1, p1)-triangle. Doing this, one obtains the rest of the equations:

1

α1

g1 =
√
2 = r1 +

√
2− 1

1

α1

p1 =
√
2 = g1 +

√
2− 1

1

α1

y1 = 4− 2
√
2 < (2−

√
2) + (4− 2

√
2)

where in the last inequality 2−
√
2 comes from the outer red and green edges and 4− 2

√
2

comes from the ∆ − Y transform. Not that this last inequality denotes the edges mapping
to yellow having slack.

Hence, we have a short map. Therefore,

E∞ ≤ 2−1/2

As this upper bound is equal to the immediate lower bound, it follows that, without need
for the lower bound methods from 3, that

E∞ =
1√
2

Example 3: Quadratic Map #3.2 (Yellow)

Consider the following PCF hyperbolic rational map along with its corresponding critical
portrait:

f(z) ≈ 13.532z − 13.532

(z + 2.383)2

−10.445

4.382 1 0 −2.382 ∞2 2

Note P (f) = {−2.382, 0, 1,∞} and that the precise values of constants and coefficients
can be found in [BBL+00]. Additionally, see that the critical portrait contains a cycle of
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type C(2, 3). From previous results, it is immediately clear that 2−1/3 ≤ E∞ < 1.

We must choose a spine G0. For quadratic census map #3.2, we select the “eye spine” for
G0. We assign an arbitrary metric (r0, g0, p0, b0) to the edges of this graph, not yet requiring
any edge length ordering assumptions. We then pull back to G1.

First, we will improve the upper bound of E∞ using the methods outlined in (2).

In constructing σ1 : G1 → Γ1, we consider the shortest separating curves around subsets
of P (f) \ {∞} in G1. In order to find these curves, we must assume some key inequalities
on the metric assigned to G0.

In particular, finding the shortest curve around −2.383 inG1 requires finding min{r0, g0}.
Before finding shortest curves in G1, we take inventory of all relevant edge length key in-
equalities in G1, outlined for this choice of G0 in the table below.

Table 3. Quadratic Census #6.1 Key Inequalities

P (f) Subset −2.383 0 1 −2.383, 0 0, 1 −2.383, 1 −2.383, 0, 1

Key Inequalities r0, g0 None None r0, g0 None N/A r0, g0

Fortunately, quadratic map #3.2 with the eye spine provides us with only one key in-
equality to consider. We first will assume g0 ≤ r0 in G0. We are now able to choose the
precise shortest curve around any subset of P (f) \ {∞} in G1. If the corresponding linear
system which follows’ PF eigenvector contradicts this choice of metric, we will reject this
initial assumption and restart the process of finding σ1 : G1 → Γ1 accordingly.

In constructing σ1 : G1 → Γ1, we are searching for a metric (r1, g1, p1, b1) on Γ1 forcing
curves in G0 to realize efficient lifts. Symbolically, we force

1

α1


r1
g1
p1
b1

 =


r0
g0
p0
b0


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In creating a well-determined linear system, we must choose four of the seven shortest
curves in G1 to equal to the corresponding curves in Γ1. For this example, we select the

curves −2.383 , 0 , −2.383, 0 , and −2.383, 0, 1 , giving rise to the linear system


1 1 0 0
0 1 1 0
1 0 1 0
1 0 0 1



r1
g1
p1
b1

 =


1 1 0 2
1 1 0 0
0 2 0 2
0 1 1 0



r0
g0
p0
b0

 =
1

α1


1 1 0 2
1 1 0 0
0 2 0 2
0 1 1 0



r1
g1
p1
b1



Considering the left and right components of this equality presents calculation of 1
α1

as an
eigenvalue problem. Then, solving for the PF eigenvalue of this system gives

α1 = 2−1/3

Note that at the moment, this is only an upper bound candidate. We must check that all
key inequalities are satisfied within the corresponding PF eigenvector,

v1 =


r1
g1
p1
b1

 =


1 + 1

α1
+ 1

α2
1

1 + 1
α1

+ 1
α2
1

1 + 1
α1

1


Hence, σ1 : G1 → Γ1 endows Γ1, which is homotopic to G0, with lengths corresponding to

this eigenvector. Seeing that the assumed inequality g0 ≤ r0 is satisfied by this eigenvector,
no contradictions arise in performing the length scaling operation Λ1 : Γ1 → G0. Finally,
to prove this value as an upper bound for E∞, we must show g1k : G1 → G0 to be a short map.

For a short map to be present is necessary that each edge in G0 gets scaled by 1
α1

or more
in lifting to G1.

In particular, it is clear from the above diagram that
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1

α1

r1 = g1 + 1 = r1 + 1

1

α1

g1 = r1 + 1

1

α1

p1 = g1 − 1

1

α1

b1 = p1 − 1

Thus g1k : G1 → G0 is a short map. Therefore, it is clear that

E∞ ≤ 2−1/3

As this upper bound is equal to the immediate lower bound, it follows that, without need
for the lower bound methods from 3, that

E∞ = 2−1/3

Example 4: Cubic Map #51 (Red)

Consider the following PCF hyperbolic rational map along with its corresponding critical
portrait:

f(z) =
4(z − 1)3

27z

4

−1
2

1 0 ∞2 3
2

Note P (f) = {0, 1,∞} and more precise information about this rational map can be found
in [BBL+00]. Additionally, see that the critical portrait contains a cycle of type C(2, 2). From
previous results, it is immediately clear that 1√

2
≤ E∞ < 1.

One problem arising when |P (f)| = 4 is that there are infinitely many initial spines G0

to choose from. Hence, it is difficult to find any “good spines.” However, when |P (f)| = 3,
there are only seven initial spines G0 to choose from. Hence, choosing an ideal initial spine
when |P (f)| = 3 is much easier. For f3,51, we choose the “theta spines.”
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To construct (σ1,Γ1,Λ1), the only key inequality one must be establish is min{g0, b0}.
Choosing g0 ≤ b0, and the only three separating curves possible inG1, we obtain the following
eigenvalue problem: 0 0 1

1 0 0
2 1 0

r0g0
b0

 =
1

α1

r0g0
b0


Which yields α1 = ϕ. It is not hard to check that σ0 is a taut map (since green is smaller

than blue, the left most blue edge won’t be stretched more than green, and the green edges
of the square do not suffer any stretch). This yields the metric (1, ϕ− 1, ϕ).

The problem in this example arrives when we try to compute improvements on the lower

bound d−
1
p = 1√

2
. The best invariant graph one can chose for this example is shown bellow.

The Markov matrix (which is fairly simple in this particular example so the details are left
to the reader) yields 1

λ1(g11)
= 0.5281..., with the characteristic equation being λ31−2λ1−3 = 0.

Upon exhaustively pulling back and finding invariant graphs in G4, we have obtained a
lower bound of 0.553.... Our best upper bound, 0.563..., is obtained via finding a σ-triplet
for (G0, G3).

5. Results and Discussion

We have collected our results for quadratic |P (f)| = 4 maps in Table 5. For some of the
maps, we have not been able to find matching lower and upper bounds, but have found other
ad. hoc. arguments where able to provide us with a value for E∞.
The main issue with the problematic rational maps seems to be that, in these cases, the

upper and lower bounds we obtain via our described methods do not agree on Gn for finite
n. This seems to be the case for ex. #51, since were not able to find matching bounds for
the four pullbacks we tried (the pullbacks quickly become unmanageable, so pulling back to
G5 and further did not seem to be productive).
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Note that, from the definition of Lipschitz energy, our αn = E∞[φn0 , f
◦n] assumes the

following form:
αn = ξn(E

∞)n

Where (ξn)
1
n → 1 as n→ ∞. Since (E∞)n depends only on f , ξn carries all the information

of the inclusion map φn0 .It also is responsible for the submultiplicativity of E∞[φn0 , f
◦n]. To

see the latter notice that αn+m ≤ αnαm, thus ξn+m(E
∞)n+m ≤ ξnξm(E

∞)n+m, which entails
ξm+n ≤ ξmξn. Moreover, ξn ≥ 1 for all n.
It is clear that, for our successful attempts, ξ1 = 1. In general, one would need some k for

which any n ≥ k, ξn = 1 so that our techniques would yield an exact value for E∞; we call
PCF maps with such property finitely realizable. There are currently no ways of determining
if a given PCF f map is finitely realizable a priori, nor there are any established methods of
computing ξn exactly.

It may well be that #51 is finitely realizable for some n > 4, however, for every single
example which yielded a successful computation of E∞ we were able to emit some G0 with
ξ1 = 1. The next steps would be developing methods to understand when can we have a
finitely realizable PCF map, and how to go about to finding E∞ for the non finitely realizable
cases. We end with the following conjecture:

Conjecture A PCF rational map f is finitely realizable if and only if the exists some G0

such that ξ1 = 1.
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#1 : #6.1 :

#3.1 : #6.2 :

#3.2 : #7 :

#4 :

Figure 1. Pullbacks for all quadratic |P (f)| = 4 maps.
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function α algebraically α numerically lengths category

1 4
3z(4−3z)

2−1/2 0.707 NOTE: G2, NOT G1


r1
g1
y1
p1
b1

 =


4
0
1
2
2

 Y

3.1 a0(z−1)
(z−P0)2

2−1/3 0.794


r1
g1
y1
p1
o1
b1

 =



3α2
1

2 + α1 − α2
1

3α1

α2
1 +

1
α2
1
− 2

2
α1

+ 1− α1

3

 Y

3.2 a0(z−1)
(z−P0)2

2−1/3 0.794


r1
g1
p1
b1

 =


1 + 1

α1
+ 1

α2
1

1 + 1
α1

+ 1
α2
1

1 + 1
α1

1

 Y

4 −1.2+1.6i
(10z−2−4i)(z−1)

2−1/3 0.794


r1
g1
y1
p1
o1
b1

 =


6α2

1 − 7α1 + 15
30α2

1 + 6α1 − 7
21α1 − 4− 18α2

1

3 + 15α1 − 7α2
1

3(8− α1 − 5α2
1)

41α2
1

 Y

6.1 ϕ−2

(z−1)2
2α4

1 + α3
1 − 1 = 0 0.739


r1
g1
p1
b1

 =


α3
1

α2
1

α1

1

 B

6.2 ϕ2

(z−1)2
NOTE: G2, NOT G1

7 (z−1)2

(z−e2πi/3)2
2−1/2 0.707


r1
g1
y1
p1
b1

 =


1
1

2
α1

− 2

1
1

 G

Table 4. Results for |P (f)| = 4 maps
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