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Abstract. We study the Ancestral Recombination Graph (ARG) and the Sequentially
Markov Coalescent’ (SMC’). We first recall the algorithms of the ARG and SMC’, provid-
ing concise definitions of their respective methodologies. Building upon this foundation,
conducted a literature review to establish a classification system for different recombina-
tion events, drawing from multiple scholarly papers. Next, we focus on the SMC’ structure
with two leaves. We computed the probabilities associated with each classification of re-
combination events. These formulas represent the core findings of this research endeavor.
It is important to note that the fluctuation in tree lengths adheres to a Markov process,
which serves as the key mathematical property of interest. This research contributes to
the advancement of our understanding of evolutionary processes and their mathematical
underpinnings, paving the way for further exploration and applications in related fields.

1. Introduction and Motivation

Mathematical biology largely refers to the area of mathematics that applies its knowl-
edge to a wide array of biological topics. My project would be considered a probabilistic
approach to studying population genetics, which is the study of the evolutionary history and
relationships among or within groups of organisms.

Mathematicians study many things in population genetics, but each study will consider
the genetic relationship among a group of individuals. Typically this is applied to groups of
genetic interest, like different strains of viruses or prehistoric fossils. Such studies quantify the
genetic "closeness" of two individuals by focusing on their Most Recent Common Ancestor
(MRCA). This definition is right in the name – the closest genetic ancestor to both of the
individuals. Typically this is a good measure for how related they are. The process of
reaching the MRCA is called coalescence [Kin82]. Coalescence is defined in the biological
glossary.

There are many methods by which coalescence can be modeled, but the two that are most
relevant for my project are the Wright-Fisher model and the Kingman Coalescent, both of
which are described below.

The Wright-Fisher model is a very simple and idealized model of genetic reproduction
[Fis30]. It can be described with the following steps:

(1) Choose a population size denoted N. This will be kept constant throughout the
simulation, so each generation (iteration of the process) will have size N.

(2) Assign allele types to each member of the original generation. Assign reproductive
probabilities to each member of the original generation.
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(3) Create a new generation of the same size N. Assign each member of the new gen-
eration a parent dependent on the probabilities assigned to the previous generation.
Individuals will inherit their parents’ exact allele type with probability 1.

(4) Repeat until there are as many generations as desired.

Once this process is complete, there will be N individuals, each with an allele type inherited
from their parent. To find the MRCA of two individuals, simply trace their lineages backward
in time until they become one lineage. This process can be modeled as a tree where two
branches become one at this coalescence point.

However, because this is a stochastic (random) process, each iteration of the Wright-
Fisher model will produce a different tree even when every initial condition is held constant.
For that reason, it is necessary to consider the average of all of these trees: The Kingman
Coalescent.

With a full knowledge of the Wright-Fisher model, it is easy to understand the Kingman
Coalescent in an intuitive way: it is the average of the trees generated by the Wright-Fisher
model for any two individuals in the last generation [Kin82]. This can be thought of as
eliminating some of the randomness in the Wright-Fisher model. It provides biologists with
more relevant information by reducing the possibility of the tree being a probabilistic outlier.

These models made incredible strides in probabilistic population genetics. However, by the
very nature of models, they can be improved. There are several ways that these coalescent
models could be improved – like allowing for variation in population size, incorporating
spatial tactics, or utilizing mutations. My project focuses on one of many ways to improve
the biological accuracy of coalescent models: integrating recombination. Here we focus on
understanding how the coalescent tree changes at a recombination event, which can be useful
for developing sampling formula [Cra16, WFKS23] in the future.

2. Background on Recombination

Amalgamated from several sources, this is the definition of the Ancestral Recombination
Graph (ARG) [YD21] [MC05].

Definition 1. ARG A process starting in the present and looking backward in time in
which the ancestral lineages relating to the sampled chromosomes are traced until coalescence
or recombination. Note that chromosomes are defined in the biological glossary. It is also the
mathematical structure which fully describes the joint distribution of coalescent trees along the
genome, providing all of the information about the genealogical history of a sample, including
the locations of recombination events.

This can be thought of much like a family tree, but represented as a mathematical graph
with nodes representing individuals and edges representing the shared genetic material re-
tained in reproduction. Biologically relevant ARGs can have thousands or millions of indi-
viduals.

In the ARG, coalescence is typically done in accordance with the Kingman Coalescent
model [Kin82]. The primary difference is that it also incorporates recombination events as
defined in the biological glossary.
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Recombination is done according to one of many different algorithms that vary greatly in
speed and accuracy.

It is worth giving some thought to the biological significance of recombination. This
process happens very often in the natural world – an offspring will inherit not one parents’
allele type or the other, but a mixture of the two. On a genetic level, this means that the two
parent alleles were torn apart and sewn back together in a new order to create the child’s
allele type. This creates genetic richness in ancestral lineages.

The ARG is an interesting mathematical object in addition to being very biologically
relevant. These are some of the interesting mathematical properties of the ARG.

(1) Graph structure: The ARG is a Directed Acyclic Graph, meaning the edges have
direction, there are no cycles, and it is composed of nodes and edges

(2) Coalescent property: Any 2 lineages will merge into a common ancestor
(3) Recombination: Shuffling/exchange of genetic material is dictated by a probabilistic

model
(4) Data-driven: Becomes complex with the extensive genetic data used in frontier com-

putational applications
(5) Mutations: Can include mutations, which add to complexity but also to biological

accuracy.

The Sequentially Markov Coalescent’ (SMC’) is one algorithm that supplies recombination
events to a coalescent tree. This is the most accurate algorithm that approximates the ARG
with a reasonable run time. That is to say that while other algorithms may be slightly more
accurate, they take much longer to run, resulting in the extreme popularity of the SMC’.

This process looks both left to right across a genome and backwards in time on the
coalescent tree. Note that the genetic material is represented by the unit interval, so the
beginning of the genetic material is represented by 0 and the end is represented by 1. The
SMC’ algorithm is as follows:

(1) Set x = 0 as a distance left to right on the genetic material and generate a coalescent
tree (by the Kingman process) denoted T (x) with numeric length L(x).

(2) Generate y ∼ Exp(ρ
2
L(x)), the left to right distance along the chromosome until the

next recombination event.
(3) Choose a point g on T (x) uniformly.
(4) Add a recombination event to the graph at g. This recombination occurs at chromo-

somal location y. The left emerging branch of the recombination event follows the
original path of the lineage, the right emerging branch coalesces with the other lin-
eages with an exponential distribution at a rate of 1 per lineage. The lineage that the
right emerging branch coalesces with will determine the type of the recombination,
with types classified by section 1.2.

(5) Delete the part of the left emerging branch that lies between the recombination event
and the branch’s coalescence with another branch to revert the graph back to a tree.

(6) Set x̂ = x+ y, with T (x̂) and L(x̂) constructed based on this new x̂.
(7) If x̂ < 1, return to step 2, replacing every x with x̂. If x̂ = 1, stop.



4 AXINN

y ŷ0 1
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Figure 1. Result of the SMC’ Algorithm

The SMC’ is closely related to the SMC, but with a slight variation regarding the order of
steps 4 and 5. The SMC’ algorithm is slightly more accurate, so it is favored over the SMC
[MW06].

It is clear that the SMC’ algorithm is an extremely accurate approximation of the ARG.
One must wonder, though, why computational biologists choose not to simulate the entire
ARG. The original object has two main limitations: The state-space is huge and the data can
be uninformative. The ARG itself does not bound recombination events in any way, resulting
in a huge number of recombinations in any given simulations. These simulations can take
days to run successfully. Despite this computational inconvenience, many computational
biologists would be forced to continue to use this method if it guaranteed the best data.
However, much of the data that the ARG produces is irrelevant to the original sample of
individuals because it can quickly become so genetically distant. Part of the beauty of
the SMC’ algorithm is that it maintains a focus on the most genetically relevant material
by deleting the leftmost branch. This helps the recombination to happen only with the
most genetically relevant material, producing more genetically relevant material rather than
irrelevant offshoots. These are the problems that originally motivated the creation of the
SMC algorithm.

3. Recombination Types

There are many approaches to defining recombination events, with different classifications
depending on the level of specificity required for the problem. In our work, we use the
following classification developed by Hein et al [JH04].

(1) These two recombining sequences coalesce with each other before coalescing with any
other genetic material. Consequently, they have identical genealogies. That is why
this is known as an invisible recombination – it does not affect the genetic data in
any way and cannot be meaningfully represented by any known algorithm.

(2) These two recombining sequences coalesce with only one other sequence before coa-
lescing with each other. This elongates the branches of the tree, but does not change
the topology.

(3) These two recombining sequences coalesce with two or more sequences before coalesc-
ing with each other. This does change the topology of the tree. These recombination
events are considered the most genetically relevant.

As mentioned, ome biologists take different approaches to classifying recombination events,
both more broadly and more specifically. Some results focus more generally on recombination
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(a) Type 1: No
Change

(b) Type 2: Length
Change

(c) Type 3: Topol-
ogy Change

events that result in no change to the tree in comparison to those that do. In the case
of the waiting distance paper, they outline four types of recombination events, specifying
whether a length-changing event shortens or lengthens the tree [YD21]. The approach to
classifying events as outlined in this paper is certainly not more genetically accurate, but
simply highlights the most relevant differences for our study.

With that established, we begin with the most simple example of the recombination graph
possible: The n=2 case. The point at the "beginning" of the recombination event (denoted
g by the original algorithm) is placed uniformly on the tree. The point at the "end" of the
recombination event can then be on any of the 3 branches of the graph. The branch that
it combines with will dictate whether the resulting tree is lengthened, shortened, or has no
change. This distinction is as follows:

L1

L0

L1

L0
β
α

(a) Type 2:
Lengthening

L1

L0

L0

L1
α
β

(b) Type 2: Short-
ening

L0 L1

L0

L1
α
β

(c) Type 1: No Change FOR
REAL

Note that these diagrams depict the mapping of the 2 dimensional tree graph to the 1
dimensional vertical interval. This is intended to highlight that the probability of these
changes is dictated by the vertical position of L1 with respect to L0. In the case of the
shortening and no change events, they take place in the same vertical area of the graph,
with the only difference being their horizontal location. The recombination event happens
on each of these lower branches with uniform probability 1

2
, so these probabilities can be

considered the same with that factor included.

There are two more variables that are not defined by these figures, but are important for
the following theorems. The first is λ(r), which represents the rate of recombination. This
happens with every branch at a rate of 1, so in the vertical area with two branches (before
L0) λ(r) = 2 and in the vertical area with one branch (after L0) λ(r) = 1. The second is A.
A is a random variable representing a distance backward in time on the figure at which the
recombination event begins. On these figures, it would be placed where the arrow begins,
whereas L1 is placed where the arrow ends.
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4. The SMC’ n=2 case

4.1. Probability of the next tree length.

Theorem 1. The conditional probability that L1 falls within the range (α, β), given A and
L0, is

P(L1 ∈ (α, β)|A,L0) = e−
∫ α
A λ(r)dr(1− e−

∫ β
α λ(r)dr).

Proof.
P(B ∈ (α, β)|A) = P(N [A,α] = 0 ∩N [α, β] = 1)

By definition of recombination, this simply states that the recombination hit occurs 0
times from A to α, and then once from α to β. It is not necessary to include the probability
that there are no recombination hits after β, as this is not relevant to the calculation of the
next tree height: we assume that there is only one recombination hit total.

P(N [A,α] = 0 ∩N [α, β]) = P(N [A,α] = 0)P(N [α, β] = 1|N [A,α] = 0)

By the definition of intersection, and its relationship to conditional probabilities.

P(N [A,α] = 0)P(N [α, β] = 1|N [A,α] = 0) = P(N [A, a] = 0)P(N [α, β] = 1)

By the conditional independence of a Poisson process.

P(N [A,α] = 0)P(N [α, β] = 1) = P(N [A,α] = 0)(1− P(N [α, β] = 0)

By the assumption that there is only one recombination hit total, similar to the reasoning
for not including the probability of having no recombination hits after b.

P(N [A,α] = 0)(1− P(N [α, β] = 0) = e−
∫A
α λ(r)dr(1− e−

∫ β
α λ(r)dr)

By the definition of the probability of no hits in a Poisson process. □

Most of these variables are defined in the diagrams above, but two are not: A and λ(r).
A refers to the "starting" point of the recombination event, or where the arrow begins its
formation in the diagrams. λ(r) refers to the recombination rate, which is 2 in the vertical
location before L0 (1 on each branch, then combined) and 1 in the vertical location after L0.

In order to make this formula more specific, particularly by replacing the λ(r) with a nu-
merical value, it is necessary to break the formula into different cases: lengthening, shorten-
ing, and no change. These numbers are the result of the piecewise recombination parameter,
which is 2 while there are 2 branches (before L0) and 1 while there is 1 branch (after L0).

Corollary 1. The probability of lengthening is

P(L1 ∈ (α, β)|A,L0) = e
−

∫ L0
A 2dr+

∫ α
L0

1dr
(1− e−

∫ β
α 1dr)

For the following 2 theorems, keep in mind that the only difference between the shortening
case and the no change case is their horizontal position on the tree – there is no difference
vertically. Thus, when computing the probability of each event within a certain range, it is
necessary to multiply by 1

2
to represent each horizontal option on the tree. This assumes

that the distribution between each horizontal position on the tree is uniform.

Corollary 2. The probability of shortening is 1
2
P(L1 ∈ (α, β)|A,L0) =

1
2
e−

∫ α
A 1dr(1−e−

∫ β
α 1dr)

Corollary 3. The probability of no change is 1
2
P(L1 ∈ (α, β)|A,L0) =

1
2
e−

∫ α
A 1dr(1−e−

∫ β
α 1dr)
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This means that this same probability can be expressed piecewise and more generally as
follows.

Theorem 2. P(L1 ≤ l1|L0 = l0, A = a) =

{
1
2
(1− e−2l1+2a) if l1 < l0

1− e2a−l0−l1 if l1 > l0

Proof. Theorem 1 is written with λ(r) included because λ(r) changes at l0. To include
specific numbers for λ(r), we must specify whether this recombination event is happening
before or after l0. This necessitates a piecewise formula, though this proof utilizes many of
the same concepts as the proof for Theorem 1.

First consider when l1 < l0. This is conceptualizes as the Poisson process having 1 hit in
the area from a to l1. Because there is only 1 hitting event total in this biological example,
the probability of 1 event in that area can be written as 1 minus the probability of no hits in
that area. Note that this vertical range has two horizontal areas, each with uniform hitting
probability of 1

2
. Thus 1

2
must be multiplied in front of the formula. Combining these facts

produces the following initial formula.

P(L1 ≤ l1|L0 = l0, A = a) = 1
2
P(1−N [a, l1] = 0) if l1 < l0

By the definition of the probability of no hits in a Poisson process, we get the following
more specific formula.

P(L1 ≤ l1|L0 = l0, A = a) = 1
2
(1− e−

∫ l1
a λ(r)dr) if l1 < l0

In this area, λ(r) = 2, so the formula can be rewritten as follows.
P(L1 ≤ l1|L0 = l0, A = a) = 1

2
(1− e−

∫ l1
a 2dr) if l1 < l0

Use the constant rule of integration to simplify as follows.

P(L1 ≤ l1|L0 = l0, A = a) = 1
2
(1− e−2l1−a) if l1 < l0

This concludes the proof of the equation given for the first interval. Now, approach the
second.

In the next interval, l1 > l0. This means there is one hit either from a to l0 or from l0 to l1.
Again because there is only one total hitting event in this recombination process, this can
be expressed as 1 minus the probability that there are no hits both from a to l0 and from l0
to l1. It is tempting to multiply this expression by the probability of having no hits from a
to l0, but this is not necessary as we are considering L1 ≤ l1, not L1 = l1. That is to say, it
is fine if the hitting event happens before l0, so long as l1 > l0 in this interval. Combining
these facts produces the following formula.

P(L1 ≤ l1|L0 = l0, A = a) = 1− P(N [a, l0] = 0)P(N [l0, l1]) if l0 < l1

By the definition of the probability of no hits in a Poisson process, we get the following
more specific formula.

P(L1 ≤ l1|L0 = l0, A = a) = 1− e−
∫ l0
a λ(r)dre−

∫ l1
l0

λ(r)dr if l0 < l1

λ(r) = 2 from a to l0 and λ(r) = 1 from l0 to l1, so insert these values appropriately.

P(L1 ≤ l1|L0 = l0, A = a) = 1− e−
∫ l0
a 2dre−

∫ l1
l0

1dr if l0 < l1

Use the constant rule of integration to simplify.
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P(L1 ≤ l1|L0 = l0, A = a) = 1− e−2(l0−a)e−(l1−l0) if l0 < l1

Use the multiplication rule of exponents to add these exponents as follows.

1− e2a−l0−l1 if l0 < l1

This concludes the proof of the equation given for the second interval. Combine these
intervals into one piecewise equation.

P(L1 ≤ l1|L0 = l0, A = a) =

{
1
2
(1− e−2l1+2a) if l1 < l0

1− e2a−l0−l1 if l1 > l0
□

In order to generalize this probability, it is necessary to remove the conditioning on A, the
original breakpoint of the recombination event. In accordance with conditional probability
rules, it is necessary to multiply the CDF (Theorem 2) by 1

l0
(the range that A can be found

in) as well as integrate from 0 to l0 with respect to A.

Theorem 3. P(L1 ≤ l1|L0 = l0) =

{
1
4l0

(e−2l1 + 2l1 − 1) if l1 < l0

− 1
2l0

(e−l0−l1)(−2l0e
l0+l1 + e2l0 − 1) if l1 > l0

Proof. In order to generalize over all A = a values, it is necessary to integrate with respect
to a over the piecewise range of A (which changes based on interval) and then to divide
that expression by the total distance of that interval (which is l0 − 0 = l0). Because the
original equation (Theorem 2) is expressed piecewise, this process will be done in two pieces
according to the different intervals. Begin with l1 < l0.

Start by dividing by l0 and integrating with respect to a from 0 to l1, the range of A for
this interval. This produces the following.

P(L1 ≤ l1|L0 = l0) =
1
2l0

∫ l1
0
(1− e−2l1−a) if l1 < l0

Now compute this integration. First, apply linearity to break up the integral.∫ l1
0
(1− e−2l1−a) =

∫ l1
0
1da− e−2l1

∫ l1
0
e2ada if l1 < l0

Now use the constant rule to solve this first integral.∫ l1
0
1da = a|l10 if l1 < l0

Next, use u-substitution with u = 2a and du = 2da to solve the second integral.∫ l1
0
e2ada = e2a

2
|l10 if l1 < l0

Apply these evaluated integrals to the original broken up integral.∫ l1
0
1da− e−2l1

∫ l1
0
e2ada = a|l10 − e−2l1 e2a

2
|l10 if l1 < l0

Using multiplication and addition to simplify that result produces the following equation.

P(L1 ≤ l1|L0 = l0) =
1
2l0

2a−e2a−2l1

2
|l10 if l1 < l0 if l1 < l0

Evaluating from 0 to l1 along with some simple multiplication produces the final equation.

P(L1 ≤ l1|L0 = l0) =
1
4l0

(e−2l1 + 2l1 − 1) if l1 < l0

This completes the proof for the first interval. Now begin the second interval.
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In this case, the possible range for A is from 0 all the way up to l0. This changes the
bound of integration. However, the equation is still divided by l0 as this is still the total
range of A. Those facts produce the following equation.

P(L1 ≤ l1|L0 = l0) =
1
l0

∫ l0
0
1− e2a−l0−l1dl1 if l1 > l0

Now compute this integration. First, apply linearity to break up the integral.∫ l0
0
1− e2a−l0−l1dl1 =

∫ l0
0
1da− e−l0−l1

∫ l0
0
e2ada if l1 > l0

Use the constant rule to solve the first integral.∫ l0
0
1da = a|l00 if l1 > l0

Use u-substitution with u = 2a and du = 2da to solve the second integral.∫ l0
0
e2ada = e2a

2
|l00 if l1 > l0

Apply these evaluated integrals to the original broken up integral.∫ l0
0
1da− e−l0−l1

∫ l0
0
e2ada = a|l00 e−l0−l1 e2a

2
|l00 if l1 > l0

Using multiplication and addition to simplify that result produces the following equation.

P(L1 ≤ l1|L0 = l0) =
1
l0

2a−e2a−l0−l1

2
|l00 if l1 > l0

Evaluating from 0 to l1 along with some simple multiplication produces the final equation.

P(L1 ≤ l1|L0 = l0) = − 1
2l0

(e−l0−l1)(−2l0e
l0+l1 + e2l0 − 1) if l1 > l0

This concludes the proof of the equation given for the second interval. Combine these
intervals into one piecewise equation.

P(L1 ≤ l1|L0 = l0) =

{
1
4l0

(e−2l1 + 2l1 − 1) if l1 < l0

− 1
2l0

(e−l0−l1)(−2l0e
l0+l1 + e2l0 − 1) if l1 > l0

□

Note that the Probability Density Function (PDF) is not necessary to calculate here
because it does not contribute to the expectation of the eventual tree length. In addition,
at the point l0, the Cumulative Distribution Function (CDF) experiences a jump that would
need to be modeled with the Dirac delta function. Both of those reasons contribute to the
fact that it is not outlined in this paper.

4.2. Expectation of eventual length. The expectation of eventual tree length is the
mathematical object that our project sought – this perfectly describes the long-time tree
behavior of the n=2 case, since the tree can only experience length changes (as opposed to
topology changes). This section describes the expectation of final tree length.

Theorem 4. E[L1|L0 = l0] =
e−2l0 ((6l20+2l0−1)e2l0+1)+4−4e−2l0

8l0

Proof. To calculate expectation, use this well-known fact from probability in general.

E[X] =
∫∞
−∞ 1− P(X ≤ x)dx

Which, in our case, becomes the following theorem.

E[L1|L0 = l0] =
∫∞
0

1− P(L1 ≤ l1|L0 = l0)dl1

Then, we can take this theorem a step further by integrating our actual cumulative distri-
bution function. Keep in mind that this is piecewise, so it must be integrated separately and
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then added together to produce the integral on the full range of the function. Use Theorem
3, which has removed the conditioning on A.

E[L1|L0 = l0] =
∫ l0
0
1− 1

4l0
(e−2l1 +2l1 − 1)dl1 +

∫∞
l0

1+ 1
2l0

(e−l0−l1)(−2l0e
l0+l1 + e2l0 − 1)dl1

Evaluate these integrals separately and then add the results. Start with the first integral.∫ l0
0
1− 1

4l0
(e−2l1 + 2l1 − 1)dl1 = − 1

4l0

∫ l0
0
e−2l1dl1 − 1

2l0

∫ l0
0
l1dl1 + ( 1

4l0
+ 1)

∫ l0
0
1dl1

By applying linearity. Now evaluate each integral separately, applying the answers to
the equation above. Begin with the first integral, using the method of u-substitution with
u = −2l0 → du = −2dn.∫ l0

0
e−2l1dl1 = − e−2l1

2
|l00

Next, use the power rule to evaluate the second integral.∫ l0
0
l1dl1 =

l21
2
|l00

Finally, use the constant rule on the third integral.∫ l0
0
1dl1 = l1|l00

Plug these values into the previous equation for the following equation.

− 1
4l0

∫ l0
0
e−2l1dl1 − 1

2l0

∫ l0
0
l1dl1 + ( 1

4l0
+ 1)

∫ l0
0
1dl1 = ( 1

4l0
e−2l1

2
− 1

2l0

l21
2
+ ( 1

4l0
+ 1)l1)|l00

Simplify this formula through multiplication and addition for the following.

( 1
4l0

e−2l1

2
− 1

2l0

l21
2
+ ( 1

4l0
+ 1)l1)|l00 =(

e−2l1−2nl21+(8l0+2)l1
8l0

)|l00
Evaluate this expression from 0 to l0. Then the final evaluation of this first integral is as

follows.∫ l0
0
1− 1

4l0
(e−2l1 + 2l1 − 1)dl1 =

e−2l0+6l20+2l0
8l0

Now approach the evaluation of the second integral. First distribute the first two terms
into the third term to reduce the complexity of the equation. Elementary multiplication and
addition produces the following result.∫∞

l0

1
2l0

(e−l0−l1)(−2l0e
l0+l1 + e2l0 − 1)dl1 =

∫∞
l0

1
2l0

(el0−l1 − e−l0−l1)dl1

Then apply linearity to simplify.∫∞
l0

1
2l0

(el0−l1 − e−l0−l1) = 1
2l0

(el0 − e−l0)
∫∞
l0

e−l1dl1

Apply u-substitution with u=-n and du=-dn to the final term in the integral.∫∞
l0

e−l1 = −e−l1 |∞l0
1
2l0

(el0 − e−l0
∫∞
l0

e−l1dl1 =
1
2l0

(el0 − e−l0)− e−l1|∞l0
Simplifying using multiplication and addition produces the following result.
e−l0−l1−el0−l1

2l0
|∞l0

Evaluating from 0 to ∞ produces the following final result for the second integral.∫∞
l0

1
2l0

(e−l0−l1)(−2l0e
l0+l1 + e2l0 − 1)dl1 =

1−e2l0
2l0

These pieces are added together for the following expression of the expectation.
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0
1− 1

4l0
(e−2l1+2l1−1)dl1+

∫∞
l0

1+ 1
2l0

(e−l0−l1)(−2l0e
l0+l1+e2l0−1)dl1 =

e−2l0+6l20+2l0
8l0

+ 1−e2l0
2l0

This expression need only be simplified through multiplication and addition for the final
expectation result.

E[L1|L0 = l0] =
e−2l0 ((6l20+2l0−1)e2l0+1)+4−4e−2l0

8l0
□

The following table is provided to build intuition on the expectation of L1 for different
values of l0.

l0 E[L1|L0 = l0]
1 10.594
2 30.945
3 62.993

5. Discussion on Markov Chains

Though we have primarily focused on the changes themselves, the most mathematically
relevant properties lie in the relationships between different changes. The changing of a
tree over time is a Markov Process: only the current structure of a tree has any affect on
the probabilities of how the tree may change. This is clear from the variables involved in
the probability calculations – they only reflect the current height of the tree, current place
on the genome, and so forth. This is what makes the coalescent with recombination so
mathematically interesting – the recombination events maintain the Markov Property.

L0 L0 L0

L1 L1 L2

Both mathematicians and biologists are interested in the long-term behavior of this tree
length. This is why computing the probabilities of the respective tree changes is so relevant
– knowing how the tree will change is the same thing as knowing what its eventual length
will be.

6. Connections to The Distribution of Waiting Distances in ARGs

The paper [YD21] was the inspiration for my work on the n=2 case. It produces several
very relevant results. It defines waiting distance as the following.

Definition 2. Waiting distance The distance until the next recombination event along the
chromosome, exponentially distributed.

Though the paper is centered around waiting distances, in seeking these theorems, the
authors ended up finding several theorems regarding the probability of different tree changes
that closely mirror the calculations I did for the n=2 case. In particular, they found the
probability for general n that a recombination event does not produce a topology change.
As per the recombination classifications in the n=2 case, this means the recombination event
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produces no change, a shortening change, or a lengthening change. The following equation
can be drawn as an initial step to comparing that paper’s results to the results in this paper.

P(Topology does not change)= P(Lengthening + Shortening + No Change)

First, it is important to modify the theorems in this paper to be easily compared to those
in the other paper. Observe corollaries 1.1, 1.2, and 1.3, but choose the α and β values to
be their entire respective ranges. The new corollaries are as follows.

Lengthening: P(l1 ∈ (l0,∞)|A = a, L0 = l0) = e−
∫ l0
A 2dr−

∫ l0
l0

1dr(1− e
−

∫∞
l0

1dr
= e2A−2l0

Shortening: P(l1 ∈ (A, l0)|A = a, L0 = l0) =
1
2
e−

∫A
A 1dr(1− e−

∫ l0
A 1dr) = 1

2
(1− eA−l0)

No change: P(l1 ∈ (A, l0)|A = a, L0 = l0) =
1
2
e−

∫A
A 1dr(1− e−

∫ l0
A 1dr) = 1

2
(1− eA−l0)

Now it is necessary to remove the conditioning on A.

Lengthening: P(l1 ∈ (l0,∞)|L0 = l0) =
1
l0

∫ l0
0
e2A−2l0dA = 1

2l0
(1− e−2l0)

Shortening: P(l1 ∈ (A, l0)|L0 = l0) =
1
2l0

∫ l0
0
(1− eA−l0)dA = 1

2l0
(e−l0 + l0 − 1)

No change: P(l1 ∈ (A, l0)|L0 = l0) =
1
2l0

∫ l0
0
(1− eA−l0)dA = 1

2l0
(e−l0 + l0 − 1)

Now add these results together for the final result to compare to the waiting distance
paper.

P(Lengthening + Shortening + No Change)= 1
2l0

(1− e−2l0)+ 1
2l0

(e−l0 + l0− 1)+ 1
2l0

(e−l0 +

l0 − 1) = 2e−l0−e−2l0+2l0−1
2l0

Now, evaluate the key theorem from the waiting time paper for the n=2 case. Begin with
the statement of the theorem itself.

P(Topology does not change)= 1
L(T )

[
∑An(tlb)

i=An(tub′ )+1
1
i
[Ti+(eiσi−eiσi−1)(

∑An(tlb′ )

j=An(tub′ )
exp(−iσi−∑i−1

k=j+1KTk)
1
j
[1−e−jTj ]+

∑i
j=An(tuc+1) exp(−iσi−

∑i−1
k=j+1KTk)

1
j
[1−ejTj ]]+

∑An(tlb′ )

i=An(tub′ )+1
1
i
[2Ti+

(eiσi − eiσi+1)(2
∑i

j=An(tuc )
exp(−iσi −

∑i−1
k=j+1KTk)

1
j
[1 − e−jTj ] −

∑An(tlc
j=An(tuc+1) exp(−iσi −∑i−1

k=j+1 KTk)
1
j
[1− e−jTj ]]− 1

2
e−2σ2 − e−σ1 ]

The next step to evaluating this theorem when n=2 is to take note of the variables and
symbols found in this equation. Also take note of the meaning in the context of the paper
and the evaluation for n=2.
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Symbol Meaning Evaluation for n=2
b branch at the start of recombination no value
b’ branch at the end of recombination no value
c the parental branch of b and b’ no value
i summing variable such that i ∈ (2, .., n) 2
j summing variable no value
k summing variable no value

L(T ) total length of the tree 2l0
n sample size 2
Ti length of epoch with i lineages l0
σi sum of Ti from i to n l0

An(t
u
b ) number of lineages at tub 2

An(t
l
b) number of lineages at tlb 2

An(t
u
b′) number of lineages at tub′ 1

An(t
l
b′) number of lineages at tlb′ 2

An(t
u
c ) number of lineages at tuc 1

An(t
l
c) number of lineages at tlc 1

To explain the evaluations for n=2, the following diagram is provided with labelings of
the stated variables.

tlb

tub

tlc

tuc

tlb′

l0

tub′

T2 = σ2

The next step toward solving this equation is to plug in the summation bounds. This is
done based on the symbol and meaning chart above. Specifically, plug in the values denoting
the number of lineages in each area.

P(Topology does not change)= 1
L(T )

[
∑2

i=2
1
i
[Ti+(eiσi−eiσi−1)(

∑2
j=3 exp(−iσi−

∑i−1
k=j+1KTk)

1
j
[1−

e−jTj ]+
∑i

j=2 exp(−iσi−
∑i−1

k=j+1KTk)
1
j
[1−ejTj ]]+

∑2
i=2

1
i
[2Ti+(eiσi−eiσi+1)(2

∑i
j=1 exp(−iσi−∑i−1

k=j+1KTk)
1
j
[1− e−jTj ]−

∑1
j=2 exp(−iσi −

∑i−1
k=j+1KTk)

1
j
[1− e−jTj ]]− 1

2
e−2σ2 − e−σ1 ]

Now, because i=2, remove both summations with respect to i and replace every i with 2.
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P(Topology does not change)= 1
L(T )

[1
2
[T2+(e2σ2−e2σ1)(

∑2
j=3 exp(−2σ2−

∑1
k=j+1KTk)

1
j
[1−

e−jTj ]+
∑2

j=2 exp(−2σ2−
∑1

k=j+1 KTk)
1
j
[1−ejTj ]]+ 1

2
[2T2+(e2σ2 −e2σ3)(2

∑2
j=1 exp(−2σ2−∑1

k=j+1KTk)
1
j
[1− e−jTj ]−

∑1
j=2 exp(−2σ2 −

∑1
k=j+1KTk)

1
j
[1− e−jTj ]]− 1

2
e−2σ2 − e−σ1 ]

An empty sum is every sum
∑q

p such that p > q. In this case,
∑q

p = 0. Replace every
empty sum in this formula with 0.

P(Topology does not change)= 1
L(T )

[1
2
[T2+(e2σ2−e2σ1)(

∑2
j=2 exp(−2σ2−

∑1
k=j+1KTk)

1
j
[1−

ejTj ])] + 1
2
[2T2+(e2σ2 − e2σ3)(2

∑2
j=1 exp(−2σ2−

∑1
k=j+1KTk)

1
j
[1− e−jTj ])]− 1

2
e−2σ2 − e−σ1 ]

Now replace T2 = σ2 = l0 and σ1 = σ3 = 0 and L(T ) = 2l0 as denoted by the chart and
diagram.

P(Topology does not change)= 1
2l0

[1
2
[l0 + (e2l0 − 1)(

∑2
j=2 exp(−2l0 −

∑1
k=j+1 KTk)

1
j
[1 −

ejTj ])] + 1
2
[2l0 + (e2l0 − 1)(2

∑2
j=1 exp(−2l0 −

∑1
k=j+1KTk)

1
j
[1− e−jTj ])]− 1

2
e−2l0 − 1]

Now sum over j.

P(Topology does not change)= 1
2l0

[1
2
[l0 + (e2l0 − 1)(exp(−2l0 −

∑1
k=3 KTk)

1
2
[1 − e2l0 ])] +

1
2
[2l0 + (e2l0 − 1)(2

∑2
j=1 exp(−2l0 −

∑1
k=j+1 KTk)

1
j
[1− e−jTj ])]− 1

2
e−2l0 − 1]

Now sum over k, taking special note that the sum
∑1

k=j+1 becomes an empty sum in the
case of j=1 or j=2.

P(Topology does not change)= 1
2l0

[1
2
[l0 + (e2l0 − 1)(exp(−2l0)

1
2
[1− e2l0 ])] + 1

2
[2l0 + (e2l0 −

1)(2
∑2

j=1 exp(−2l0)
1
j
[1− e−jTj ])]− 1

2
e−2l0 − 1]

Repeat the process of summing over j for the final sum.

P(Topology does not change)= 1
2l0

[1
2
[l0+(e2l0−1)(exp(−2l0)

1
2
[1−e2l0 ])]+ 1

2
[exp(−2l0)

1
2
(1−

e−2l0)]− 1
2
e−2l0 − 1]

Now replace exp(x) = ex

P(Topology does not change)= 1
2l0

[1
2
[l0+(e2l0 − 1)(e−2l0 1

2
[1− e2l0 ])]+ 1

2
[e−2l0 1

2
(1− e−2l0)]−

1
2
e−2l0 − 1]

Simplify by multiplying and adding.

P(Topology does not change)= 1
2l0

[1
2
[l0+(e2l0−1)(1

2
e−2l0− 1

2
e−4l0)]+

1
2
[2l0+(e2l0−1)(e−2l0−

e−4l0)]− 1
2
e−2l0 − 1]

Simplify further by multiplying and adding further.

P(Topology does not change)= 1
6l0

[2l0+1−2e−2l0+e−4l0+4l0+2−4e−2l0+2ee
−4l0−2e−2l0−4]

Combining like terms produces the final equation as follows.

P(Topology does not change)= 3e−4l0−8e−2l0+6l0−1
6l0

The two final results from each paper are below.

P(Topology does not change)= 3e−4l0−8e−2l0+6l0−1
6l0

P(Lengthening + Shortening + No Change)= −e−2l0+2e−l0+2l0−1
2l0
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Though these are obviously two slightly different fractions, they contain all of the same
exponents and follow the same behavior after l0 = 2. They both rapidly approach the value
1.

7. Biological Glossary

• Coalescence: “To coalesce means to grow together, to join, or to fuse. When two
copies of a gene are descended from a common ancestor which gave rise to them
in some past generation, looking back we say that they coalesce in that specific
generation. Seen forward in time, coalescent events are simply DNA replication
events, and are only of special interest due to their place in the history of a particular
sample. Kingman showed that the joining up of lineages into common ancestors is
described by a particular mathematical process" [Wak09].

• Recombination: “In general recombination, genetic exchange takes place between a
pair of homologous DNA sequences. These are usually located on two copies of the
same chromosome. The details of the intimate interplay between replication and
recombination are still incompletely understood" [BA02].

• Chromosome: Any of the rod-shaped or threadlike DNA-containing structures of
cellular organisms that contain all or most of the genes of the organism (Merriam-
Webster dictionary).

• MRCA: Most Recent Common Ancestor of two individuals. This is the common an-
cestor at which two copies of a gene coalesce as described in the coalescence definition
[Wak09].

• Generation: An iteration of reproduction. Describes a group of offspring that are at
the same stage of descent from a common ancestor (Merriam-Webster dictionary).

• Allele: "Alternative forms of the same gene" [BA02].

8. Variable Glossary

• x: A left to right distance on the genetic material.
• T (x): The coalescent tree for x. A function of x.
• L(x): The length of T (x). A function of x.
• y: A left to right distance on the genetic material.
• ρ: The recombination rate for the sample.
• g: A point on T (x).
• x̂: A left to right distance on the genetic material.
• A: The random variable representing the distance backward in time on the tree until

the recombination event begins.
• a: The realization of one A distance.
• λ(r): The recombination rate for a recombination event.
• L0: The random variable representing the length of the first iteration of a tree.
• l0: The realization of one L0 length.
• L1: The random variable representing the length of the next iteration of a tree.
• l1: The realization of one L1 length.
• α: The upper bound on the range of possible L1 lengths.
• β: The lower bound on the range of possible L1 lengths.
• N [n1, n2]: The number of recombination events within the interval [n1, n2]
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